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Abstract: Rotating mechanical systems (RMSs) are widely applied in various industrial fields. Intel-
ligent fault diagnosis technology plays a significant role in improving the reliability and safety of
industrial equipment. A new algorithm based on improved multiscale fuzzy entropy and support
vector machine (IMFE-SVM) is proposed for the automatic diagnosis of various fault types in elevator
rotating mechanical systems. First, the empirical mode decomposition (EMD) method is utilized to
construct a decomposition model of the vibration data for the extraction of relevant parameters re-
lated to the fault feature. Secondly, the improved multiscale fuzzy entropy (IMFE) model is employed,
where the scale factor of the multiscale fuzzy entropy (MFE) is extended to multiple subsequences to
resolve the problem of insufficient coarse granularity in the traditional MFE. Subsequently, linear
discriminant analysis (LDA) is applied to reduce the dimensionality of the extracted features in order
to overcome the problem of feature redundancy. Finally, a support vector machine (SVM) model is
utilized to construct the optimal hyperplane for the diagnosis of fault types. Experimental results
indicate that the proposed method outperforms other state-of-the-art methods in the fault diagnosis
of elevator systems.

Keywords: rotating mechanical systems (RMS); intelligent fault diagnosis; empirical mode decomposition
(EMD); multiscale fuzzy entropy (MFE); support vector machine (SVM)

1. Introduction

Rotating machinery plays an increasingly important role in industries such as health-
care, manufacturing, and transportation [1,2]. Under long-term operating conditions, crit-
ical components of rotating machinery, such as bearings and gears, are prone to various
types of faults. These faults not only lead to production stagnation but may also trigger
safety incidents. Consequently, the introduction of intelligent diagnostic technologies is
crucial for accurately diagnosing faults in rotating machinery, thereby ensuring equipment
safety and enhancing production efficiency [3–5].

Traditional fault diagnosis methods for rotating machinery typically rely on experien-
tial knowledge and physical mechanisms [6]. However, in changeable working conditions,
such methods often struggle to meet the demands for real-time and efficient automated
diagnosis due to their reliance on expert experience, insufficient timeliness, and high
maintenance costs. Li et al.[7] highlighted the limitations of expert experience in complex
fault scenarios, which can result in the overlooking of subtle faults in equipment. Badihi
et al. [8] proposed that fault diagnosis based on physical mechanisms often fails under
dynamic and nonlinear conditions, leading to suboptimal diagnostic outcomes. Further-
more, traditional fault diagnosis methods impose high requirements on the quality of input
data, with noise and anomalous data significantly impacting diagnostic results. Currently,
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with advancements in equipment diagnostic sensor technologies, researchers can set up
fault conditions in laboratory settings based on actual production scenarios to obtain more
comprehensive data sources. This development has allowed data-driven intelligent fault
diagnosis technologies to gradually emerge in the field of fault diagnosis [9], particularly
methods based on entropy for feature extraction.

Entropy is a tool for measuring uncertainty and complexity, and it is widely applied in
the fault diagnosis of rotating machinery [10,11]. By analyzing the complexity of vibration
signals, fault features can be extracted. Guan et al. [12] proposed a fault diagnosis method
for rotating machinery based on sample entropy (SE). Through the analysis of fault signals
using SE, effective differentiation between normal and fault states can be achieved. Results
indicate that this method demonstrates high accuracy in identifying early faults. Ma
et al. [13] utilized improved composite multiscale approximate entropy to analyze fault
signals from rolling bearings. It was observed that this improved entropy exhibits high
sensitivity to fault types, enabling the detection of minor changes in vibration signals
and significantly improving fault classification accuracy. Chang et al. [14] introduced
fuzzy entropy (FE) as a feature extraction method, combining it with support vector
machine (SVM) for fault diagnosis, which yielded favorable results. Research has shown
that FE possesses strong robustness in handling noisy signals. Ge et al. [15] employed
multiscale entropy methods to analyze fault signals, and the results revealed that this
method significantly improves fault detection sensitivity. Li et al. [16] integrated multiscale
permutation entropy (MPE) with deep learning, utilizing MPE to extract signal features
and performing fault classification through a convolutional neural network (CNN). This
approach exhibited high diagnosis accuracy when addressing complex faults, particularly
outperforming traditional diagnostic methods in noisy environments. However, challenges
still exist in fault diagnosis techniques based on entropy algorithms:

1. Variable entropy algorithms exhibit the disadvantage of difficult hyperparameter
adjustment, which undermines the generalization ability and adaptability of such
algorithms [17]. Even when the tuning time for the optimization of hyperparameters
is reduced, the time required for the model to implement responsive tuning strategies
in response to different vibration signals remains unavoidable.

2. In order to conduct research across multiple time scales, commonly used coarse-
graining techniques may result in the loss of local variations within the signals. When
the scale factor is large, the original data length is significantly reduced. This can
lead to issues such as insufficient smoothness in feature generation, bias in feature
extraction, and the neglect of certain signal features.

3. The widely used multiscale entropy calculates the average entropy values of coarse-
grained sequences at different scale factors, which can lead to overfitting [18]. Due to
the presence of many similar patterns within vibration signals, averaging the entropy
values of various subsequences may introduce redundant information. This causes
the model to become dependent on these redundant features, hindering its ability
to accurately capture subtle changes and trends in the signals, thereby affecting the
algorithm’s generalization capability.

To address the aforementioned challenges, the main contributions of this article are
outlined as follows:

1. FE is extended to multiple time scales through the method of shifted coarse-graining to
handle data uncertainty and fuzziness. The advantage of this shifted coarse-graining
approach is that the vibration signals are utilized multiple times. Consequently, each
window can capture more subtle changes and trends, thereby reducing abrupt varia-
tions between different windows and accurately reflecting the local features of the
original signal.

2. To avoid overfitting caused by redundant features, a non-parametric feature extraction
method named improved multiscale fuzzy entropy (IMFE) is proposed. This method
utilizes the nonlinear dynamic model of IMFE to quantify temporal complexity, cir-
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cumventing the issue of hyperparameter tuning time. Comparative experimental
results demonstrate that IMFE exhibits superior robustness.

3. An intelligent fault diagnosis method for rotating machinery is proposed, consisting
of four modules: data decomposition, feature extraction, feature dimensionality re-
duction, and fault diagnosis. First, the empirical mode decomposition (EMD) method
is used to perform three-layer decomposition on the data, yielding three intrinsic
mode functions. Then, the signal features extracted using IMFE are input into linear
discriminant analysis (LDA) for dimensionality reduction. Finally, the support vector
machine (SVM) algorithm is employed as the classifier to achieve fault diagnosis,
with K-fold cross-validation methods utilized to evaluate the diagnostic model’s
performance [19].

4. The proposed method is validated using open-source data from rotating mechanical
rolling bearings. The results indicate that the proposed method outperforms other
comparative methods.

The remainder of this article is organized as follows. A brief introduction to the foun-
dational theories is provided in Section 2. The proposed method is presented in Section 3.
Two case studies are discussed in Section 4, in which self-constructed signal data and the
Case Western Reserve University (CWRU) bearing dataset are utilized for validation. The
conclusions and future work are summarized in Section 5.

2. Multiscale Entropy Theory

Multiscale entropy (ME) is a method utilized for analyzing the complexity of time-
series data [20]. The complexity of signals is measured at different time scales, providing
more comprehensive information compared to traditional single-scale methods. The ME
theory was initially proposed by Costa et al. in 2002 [21], aimed at addressing the limita-
tions associated with measuring complexity using a single scale. The computational process
involves the following steps: (1) signal data are constructed at different time scales. Initially,
a series of new signals is generated by averaging the samples of the original signal inside
windows. These generated signal series represent different time scales. (2) The sample en-
tropy is calculated at each time scale for each downsampled signal to obtain entropy values
at various time scales. A smaller sample entropy value indicates stronger regularity in the
signal and better diagnostic capability, while a larger value suggests greater randomness
and poorer diagnostic capability in the signal. The specific computation steps are outlined
as follows:

1. A downsampled signal of the vibration data is constructed. Given a signal of X =

{x1, x2, . . . , xN}, the downsampled sequence (X(τ)) at a time scale of τ is constructed
as follows:

X(τ) = {y1, y2, . . . , yN/τ} (1)

where yj =
1
τ ∑

jτ
i=(j−1)τ+1 xi and τ is the size of the time window.

2. The constructed signal is used to calculate the sample entropy. For each downsampled
signal (X(τ)), the sample entropy is calculated using two parameters: m (the embed-
ding dimension) and r (the similarity tolerance). A vector (X(τ)) of length m of the fol-
lowing sequence is constructed: ui = {yi, yi+1, . . . , yi+m−1}, i = 1, 2, . . . , N/τ − m.
Then, the distance between the elements of the vector is determined (d(ui, uj) =
maxk=0,...,m−1 |yi+k − yj+k|). The similarity ratio (Cm(r)) is defined, which is calcu-
lated as follows:

Cm(r) =
1

N/τ − m

N/τ−m

∑
j=1

θ(r − d(ui, uj)) (2)

where θ(x) is the indicator function. The value is 1 when x exceeds 0 and 0 otherwise.
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The approximation ratio (Bm(r)) is calculated, and the likelihood ratio is the ratio of
the approximate number to the total number. It is calculated as follows:

Bm(r) =
1

N/τ − m

N/τ−m

∑
i=1

Cm
i (r) (3)

Then, the dimension is increased by 1 to become m + 1, and the above steps are
repeated to obtain Bm+1(r). It is calculated as follows:

Bm+1(r) =
1

N/τ − m − 1

N/τ−m−1

∑
i=1

Cm+1
i (r) (4)

Finally, the sample entropy is defined as follows:

SampEn(m, r, N) = − ln
(

Bm+1(r)
Bm(r)

)
(5)

3. Finally, the ME is calculated. For each value of τ, the corresponding SampEn is
calculated to obtain the ME. It is calculated as follows:

MSE = {SampEn(X(1)), SampEn(X(2)), . . . , SampEn(X(τN))} (6)

3. Proposed Method
3.1. EMD Construction

The EMD, due to its adaptive nature, is able to effectively decompose non-stationary
and nonlinear signals. Unlike methods that rely on pre-defined basis functions, EMD
performs stepwise decomposition based on the extreme points of the local signal, allowing
it to better capture the intrinsic modes within the signal. Compared to wavelet transform
and VMD, EMD offers greater flexibility and adaptability, making it particularly suitable
for complex dynamic vibration signals. The basis of EMD lies in adaptively decomposing
nonlinear and non-stationary signals in vibration data into several intrinsic mode functions
(IMFs) [22,23]. Each IMF reflects the dynamic characteristics of the signal at different
time scales. For the selection of IMFs, a criterion based on the energy contribution of the
decomposed modes was employed in this study. Specifically, modes with significant energy
contributions were retained, while those with minimal energy contributions were discarded.
Additionally, when processing the residual components after decomposition, optimization
was performed based on the frequency characteristics of the residuals. Typically, the low-
frequency component is considered noise, and it was filtered out to improve the signal
quality and enhance the stability of the model.

This method emphasizes time-frequency analysis by extracting local features through
an iterative process, effectively capturing instantaneous frequency and amplitude variations
within the vibration signals. EMD is employed as a data processing method for vibration
signals due to its ability to decompose based on the inherent characteristics of the signal, in
contrast to other decomposition methods. It effectively extracts dynamic features across
various time scales and possesses time-frequency analysis capabilities, allowing for a
more comprehensive characterization of the signal. Specifically, the EMD method can
decompose a non-stationary signal into a trend component and several meaningful IMFs
with instantaneous frequencies [24,25].

The processing of vibration signal data is conducted based on three assumptions:
(1) The signal must have at least two extreme points, including one maximum and one
minimum. (2) The time scale of signal is defined by the time between the two extreme
points. (3) If the signal lacks extreme points but contains inflection points, extreme points
may be obtained by differentiating the data once or multiple times, followed by integration
to achieve the decomposition result. The EMD algorithm, as illustrated in Figure 1, sepa-
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rates different frequency components from the original signal, thereby enhancing feature
extraction. The main steps are detailed as follows:

Figure 1. EMD of the signal.

Step 1: For the input signal (x(t)), the maximum and minimum points of the original sig-
nal are fitted using spline interpolation to construct the upper and lower envelope
curves. The mean envelope (x0(t)) is then calculated, and the original signal is sub-
tracted from this mean to obtain a new signal (h1(t)). This process can be expressed
as follows:

h1(t) = x(t)− x0(t) (7)

Step 2: The new signal (h1(t)) is evaluated to determine whether it satisfies the conditions of
an IMF. If the conditions are satisfied, h1(t) is designated as the first IMF component.
If h1(t) does not meet the conditions, the process continues in a loop using Step 1
until h1(t) fulfills the feature conditions of an IMF.

Step 3: The first IMF (imf1) is separated from the original vibration signal to obtain (r1(t)).
The new signal can be expressed as r1(t) = x(t)− imf1.

Step 4: The process is repeated until the K-th IMF is obtained. The final result of the EMD
can be expressed as follows:

x(t) =
n

∑
j=1

imfj + rn(t) (8)

where rn(t) denotes the residue, which represents the central tendency of the vibra-
tion signal.

IMFE Design

By evaluating the fuzziness and uncertainty of vibration signals, fuzzy entropy effec-
tively extracts fault-related features. Compared to traditional fuzzy entropy algorithms,
the multiscale fuzzy entropy (MFE) algorithm extracts multi-level signal features by cal-
culating entropy values across different time scales, allowing potential fault patterns to
be identified [26,27]. However, as the scale factor of entropy increases, the length of the
coarse-grained time series decreases significantly. This sudden reduction in sequence length
causes sharp fluctuations in entropy values, complicating the extraction of key features.

To address this issue, a novel time segmentation method is proposed in this arti-
cle to replace traditional segmentation approaches, aiming to address the problem of
high volatility in entropy values at large scale factors. Figure 2 illustrates the improved
coarse-graining approach, unlike traditional coarse-graining that produces only a single
subsequence of length 7, which preserves more local information essential for feature



Algorithms 2024, 17, 588 6 of 16

construction. The vibration signal sequence is denoted as x(t), and sequences µ1(t), µ2(t),
and µ3(t) are defined based on a sliding window approach. Specifically, µ1(t) is obtained
by averaging the first three elements of x(t), then shifting the sliding window one step
to the right and averaging the subsequent three elements. Similarly, µ2(t) is derived by
averaging the first three elements, followed by a two-step rightward shift of the window
and averaging of the next three elements. µ3(t) is calculated by averaging the first three
elements, shifting the window three steps to the right, and averaging the subsequent
three elements. Assuming x(t) = [x1, x2, x3, . . . , xn], the following results are obtained:
µ1(t) =

[
x1+x2+x3

3 , x2+x3+x4
3 , x3+x4+x5

3 , . . .
]
, µ2(t) =

[
x1+x2+x3

3 , x3+x4+x5
3 , x5+x6+x7

3 , . . .
]
, and

µ2(t) =
[

x1+x2+x3
3 , x4+x5+x6

3 , x7+x8+x9
3 , . . .

]
. For instance, when the sequence length is 21

and the scale factor is 3, the proposed offset coarse-graining method generates three sub-
sequences with lengths of 19, 10, and 7, respectively, thereby reducing sudden entropy
fluctuations and computational bias. This approach, combined with fuzzy entropy, forms
an IMFE algorithm, with the algorithmic design shown in Figure 3. The main steps are
described as follows:

…

…

…
…

�3(�)

�2(�)

�1(�)

�2�1 �4�3 �5 �6

Figure 2. An improved coarse-graining method for a scale factor of 3.

Step 1: The signal samples are input from the equipment, and set the coarse-graining scale
factor sequence is set to scales =

(
scale1, scale2, . . . , scaleN

)
, where 1 < scalei < N.

Step 2: The offset factor is set to k = 1. When the scale factor is scale1, it increments from
1 until it equals scale1. At each distinct k, coarse-graining is performed to obtain a
signal, the fuzzy entropy of which is calculated. This process is repeated for each
subsequent scale factor.

Step 3: The fuzzy entropy is calculated [28]. Given an N-dimensional signal ([u(1), u(2), . . . ,
u(N)]), the phase space dimension (m(m ≤ N − 2)) and similarity tolerance (r) are
defined. Then, the phase space is reconstructed as

X
(
i
)
= [u

(
i
)
, u

(
i + 1

)
, . . . , u

(
i + m − 1

)
]− u0

(
i
)
, i = 1, 2, . . . , N − m + 1 (9)

where u0(i) = 1
m ∑m−1

j=0 u(i + j). The fuzzy membership function is calculated by

Am
ij = exp[− ln(2)

(
dm

ij /r
)2

] (10)

where j = 1, 2, . . . , N − m + 1 and j ̸= i. The maximum absolute distance between
window vectors X(i) and X(j) is obtained as

dm
ij = d[X(i), X(j)] = max

p=1,2,...,m
(|u(i + p − 1)− u0(i)| − |u(j + p − 1)− u0(j)|) (11)
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Taking the average for each i yields Cm
i (r) = 1

N−m ∑N−m+1
j=1,j ̸=i Am

ij , and Φm(r
)

is de-
fined by

Φm(r
)
=

1
N − m + 1

N−m+1

∑
i=1

Cm
i
(
r
)

(12)

The fuzzy entropy of the original signal is denoted by

FuzzyEn(m, r) = lim
N→∞

[ln Φm(r)− ln Φm+1(r)] (13)

In the case of a finite dataset, the fuzzy entropy can be estimated as FuzzyEn
(
m, r, N

)
=

ln Φm(r
)
− ln Φm+1(r

)
. The combination of all fuzzy entropy is the improved multiscale

fuzzy entropy, and the output entropy matrix is entropy = [. . .]sum(scale1,scale2,...,scaleN).

Start

Enter a signal sample x(t)

Set scale factor in 
scales=[scale1,scale2,…,scaleN]

i=1,scale=scalei

Set offset factor k=1

xc(t) is derived through the process of 
offset coarse granulation applied to x(t)

Calculate the fuzzy entropy of xc(t) and 
add it to the output matrix entropy

k<=scalei

k+1

Yes

i+1

i<=N
Yes

No

No The output 
matrix entropy 

is obtained

End

Figure 3. The design of the IMFE algorithm.

3.2. LDA Applied

LDA is a supervised learning algorithm. By maximizing between-class scatter and
minimizing within-class scatter, LDA effectively reduces high-dimensional data to lower
dimensions, simplifying the feature space and improving computational efficiency. In bi-
nary classification problems, it is also referred to as Fisher discriminant analysis (FDA) [29].
However, there are some distinctions between LDA and FDA. LDA assumes that the data
of each class follows a Gaussian distribution, with identical covariance matrices that are
full-rank [30]. Additionally, when handling fault modes with clear class distinctions, LDA
can provide high classification accuracy. The main steps of LDA are outlined as follows:

Step 1: The signal data are input (X = [(x1, y1), (x2, y2), . . . , (xn, yn)]), where any sample
(xi) is an n-dimensional vector and yi represents the fault-class label.

Step 2: The mean vector (µi) for each class in the dataset and the overall mean vector (µ) are
calculated. The within-class scatter matrix (Sω) and the total scatter matrix (St) are
computed, and the between-class scatter matrix (Sb = St − Sω) is computed.

Step 3: Eigenvalue decomposition is performed on matrix S−1
ω Sb, and the eigenvalues are

sorted in descending order. The feature vectors corresponding to the top k eigenval-
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ues are selected, and the n-dimensional samples are reduced to k dimensions using
the feature matrix (x′ = ωTx).

3.3. SVM Adopted

SVM is a commonly used machine learning algorithm capable of handling high-
dimensional vibration signal data [31]. By constructing an optimal hyperplane for fault
classification, SVM achieves high diagnosis accuracy, performing particularly well when
the sample size is limited. Furthermore, SVM exhibits strong robustness, being insensitive
to noise and outliers, which enhances its reliability in practical applications. Its primary
concept involves finding a hyperplane in the feature space that separates data from different
fault categories while maximizing the distance between the hyperplane and the closest
data points from each fault class [32]. The main steps of SVM are outlined as follows:

Step 1: The vibration signal data are input (X = [(x1, y1), (x2, y2), . . . , (xn, yn)]), where any
sample (xi) is an n-dimensional vector, with xi ∈ Rn. Let yi represent the fault class
label, where i = 1, 2, . . . , N.

Step 2: A penalty parameter (C > 0) is selected, and a convex quadratic programming
minimization problem is constructed, denoted as min 1

2 ∑N
i=1 ∑N

j=1 αiαjyiyj
(

xi · xj
)
−

∑N
i=1 αi, subject to the constraints of ∑N

i=1 αiyi = 0 and 0 < αi < C, i = 1, 2, . . . , N.
This problem is solved to obtain the optimal solution (α∗ =

(
α∗1 , α∗2 , . . . , α∗N ,

)T).
Step 3: ω∗ = ∑N

i=1 α∗i yixi is computed; then, a component (α∗) that satisfies the condition of
0 < αj < C is selected, and b∗ = yj − ∑N

i=1 α∗i yi
(
xi · xj

)
is calculated.

Step 4: The separating hyperplane defined by ω∗ · x + b∗ = 0 is obtained, and the classifica-
tion decision function is set as f (x) = sign(ω∗ · x + b∗).

3.4. Overall Framework of the Proposed Method

The overall framework of the proposed method is illustrated in Figure 4. Initially, the
vibration signal data are decomposed using EMD, and the first three IMFs are extracted.
These IMFs capture the vibration information within specific frequency ranges while
preserving the nonlinear and non-stationary characteristics of the signal. Subsequently,
IMFE is employed to extract features from each of the three IMFs, forming an initial feature
vector. LDA is then applied for dimensionality reduction, followed by diagnosis using
an SVM. Finally, the superiority of the proposed method is validated through K-fold
cross-validation. The following are the main procedures.

Step 1: Vibration signal data are collected from the rotating machinery system. First, the
signals are decomposed using the EMD method to extract fault features. This process
decomposes complex nonlinear and non-stationary signals into a series of IMFs,
with each IMF representing a specific frequency component in the signal, thereby
obtaining IMFs that reflect the system’s condition.

Step 2: The IMFs obtained from EMD are applied to the IMFE algorithm. IMFE is a nonlinear
dynamics technique, extending the fuzzy entropy approach to multiple time scales.
Through the IMFE algorithm, finer vibration data features can be captured across
different time scales, addressing the limitations of traditional MFE in handling
vibration data with insufficient granularity.

Step 3: After multiscale feature extraction, LDA is applied to reduce the dimensionality of
the features. This produces a set of features with enhanced classification performance,
reducing feature redundancy and improving diagnostic efficiency.

Step 4: Using the extracted and dimensionally reduced features, an SVM model is trained.
This model is designed to accurately recognize various fault types in the elevator
rotating machinery system. Finally, K-fold cross-validation is applied to assess the
effectiveness of the proposed algorithm.
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Rotating machinery fault test sytem  Data sample

IMFE feature extraction

LDA dimension reduction

EMD signal decomposition

 SVM fault diagnosis

Figure 4. Overall framework of the proposed method.

4. Experimental Validation
4.1. CASE 1: Performance Verification of IMFE Algorithm
4.1.1. The Selection of a Vibration Signal

The length of a vibration signal impacts the performance of feature extraction algo-
rithms. A signal that is too short can lead to significant feature fluctuations, while an overly
long signal results in substantial time costs [33]. Therefore, this section examines the entropy
value distributions of fuzzy entropy (FE), MFE, and IMFE across vibrations signal of varying
lengths. Four specific signals are used in this case. A segment of white noise with a duration
of 1 s is generated, with x1 sampled at 10,000 Hz. This white-noise signal is produced by
drawing random samples from a standard normal distribution characterized by a mean of
0 and a standard deviation of 1. Uniformly distributed in the frequency domain, this white
noise is suitable for a range of signal processing and system testing applications. x2(t) =
5(1 + cos(4πt)) cos(20πt)+ 10(1 + cos(4πt)) cos(40πt)+ 15(1 + cos(4πt)) cos(60πt)+ n,
where n is Gaussian white noise with a value of −20 dB and x2 exhibits periodic character-
istics resembling a sinusoidal waveform. x3 is generated by drawing random samples from
a uniform distribution, with values ranging between −1 and 1. This uniformly distributed
white noise maintains equal intensity across all frequency components in the frequency
domain, making it equally suitable for signal processing, system testing, and noise analysis.
x4 is a sine wave signal. Inspired by [34], entropy distribution within the range of 1024
to 6656 signal lengths is analyzed, with a step size of 512, generating 12 different subse-
quences. A correlation metric is then introduced to comprehensively assess the algorithm’s
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adaptability to various vibration signal lengths. The specific forms of the four signals
are shown in Figure 5. The primary differences among the four signals lie in amplitude,
frequency, and signal trend.

Figure 5. The specific forms of the four signals. (a) x1; (b) x2; (c) x3; (d) x4.

4.1.2. Performance Experiment

As illustrated in Figure 6, IMFE exhibits smaller entropy fluctuations across varying
subsequence lengths (1024 to 6656), demonstrating greater stability. As the signal length
increases, the FE values show a general upward trend with substantial fluctuations. For
sequence 1, the FE value rises from 1.741 to 1.923, an increase of approximately 10.4%. In
contrast, the IMFE for sequence 1 increases only from 1.240 to 1.293, a mere 4.3% increase,
which is significantly smaller than the fluctuation range seen in FE, confirming that IMFE
displays notably reduced variability across different lengths.

Figure 6. The results using FE, MFE, and IMFE methods for different lengths of four experimental signals.

Additionally, for sequence 2, MFE rises from 0.189 at a length of 1024 to 0.376 at 6656,
an increase of 98.9%. However, the IMFE for the same sequence increases only from 0.271 to
0.374, an increase of 37.9%. This indicates that MFE fluctuates significantly with increasing
signals length, while IMFE demonstrates lower sensitivity to scale variations, allowing it to
capture sequence features with greater stability.

The results across all sequence data indicate that IMFE has a smaller fluctuation range,
with an average increase kept within 5%. In contrast, FE and MFE exhibit increases of
over 10% as length grows. Table 1 shows that IMFE demonstrates superior uncorrelated
performance in sequences x1 and x3, while the values for x2 and x4 are also close to those of
FE, showing that IMFE maintains significant robustness under varying signal lengths. This
robustness makes it particularly advantageous in complex signal analysis. Tables 2 and 3
and Figure 7 present the standard deviation and variance results for IMFE, both of which
are consistently low across the four signals. These results indicate that IMFE possesses
higher stability and interference resistance across various signal lengths, making it more
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reliable for reflecting sequence features and suitable for analyzing multiscale, variable-
length signals.

Figure 7. The variance and standard deviation results of entropy values for four signals at differ-
ent lengths.

Table 1. Correlation coefficient between entropy and sequence length for four signals at differ-
ent lengths.

Correlation Coefficient FE MPE IMFE

x1 0.9219 0.9091 0.8911
x2 0.0709 0.6306 0.1901
x3 0.8380 0.7203 0.6845
x4 0.2189 0.3634 0.3069

Table 2. Standard deviation of entropy values for four signals at different lengths.

Standard Deviation FE MPE IMFE

x1 0.0536 0.0305 0.0164
x2 0.0596 0.0541 0.0462
x3 0.0156 0.0156 0.0109
x4 0.0026 0.0029 0.0028

Table 3. Variance of entropy values of four signals at different lengths.

Variation FE MPE IMFE

x1 0.00287 0.00093 0.00027
x2 0.00356 0.00292 0.00214
x3 0.00024 0.00024 0.00012
x4 0.0000069 0.0000087 0.0000077

The four signals were processed by combining EMD with IMFE to extract features from
IMFs. Due to the fixed frequency of the sine wave function, EMD cannot effectively extract
valid intrinsic functions from it. Therefore, only x1, x2, and x3 were analyzed. The sample
length was set to 1024, with a step size of 512. Then, 10 samples were taken from each
signal, totaling 30 samples for the experiment. The clustering results are shown in Figure 8,
where “feature 1” represents the IMFE of im f1 after EMD and “feature 2” represents the
IMFE of im f2. As shown in Figure 8, IMFE exhibits effective feature extraction following
EMD, enabling clear separation of samples from different signal classes.
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Figure 8. Visualization of clustering effects of different signal features based on EMD and IMFE.

4.2. CASE 2: Fault Diagnosis of a Roller Bearing Unit
4.2.1. Fault Data Description of Roller Bearing

The Case Western Reserve University (CWRU) bearing fault simulation platform con-
sists of bearings, a motor, a torque sensor, an encoder, a power tester, and other electronic
control equipment [35]. Its platform is shown in Figure 4. Single-point faults were intro-
duced on the bearings using electric discharge machining, with fault sizes ranging from
0.007 inches to 0.040 inches in diameter. The fault types include inner ring faults, rolling
element faults, and outer ring faults. Faulty bearings were mounted onto the test motor.
Accelerometers were placed on the drive end, fan end, and base of the motor casing to
record vibration data under four load conditions (from 0 to 3 horsepower) at motor speeds
ranging from 1797 to 1720 RPM.

The vibration data consist of four datasets. The normal baseline data dataset contains
baseline vibration signals from the base under normal operating conditions. The 12 k
drive-end bearing fault data contain drive-end fault data collected at a 12 kHz sampling
rate. The 12k fan-end bearing fault data comprise fan-end fault data collected at a 12 kHz
sampling rate, and the 48 k drive-end bearing fault data comprise drive-end fault data
collected at a 48 kHz sampling rate.

4.2.2. Comparative Analysis of Experimental Results

For this experiment, the dataset used is the 12 k drive-end bearing fault data collected
at a 12 kHz sampling rate. Under conditions of a 2-horsepower motor load and a motor
speed of 1750 rpm, a dataset comprising 10 classes was prepared, including 9 fault types
(involving inner and outer race faults at different locations and rotor faults), as well as
normal operational data. From the initial data, subsequences of a length of 1024 were
extracted as samples, with a step size of 512 used to select subsequent samples. A total of
2330 of the first samples were used for the experiment.

Table 4 presents the ten working conditions of a rolling bearing. Among them, Class 1
represents data collected under normal operating conditions, while Classes 2 to 10 cor-
respond to data recorded during motor faults. The faults are primarily located in three
areas: the inner ring, outer ring, and rolling element. Each fault type is further divided
based on defect diameter, including 0.07 inches, 0.14 inches, and 0.21 inches, yielding a total
of nine fault categories. Figure 9 illustrates sample waveforms for each of the nine fault
types: (a) inner ring fault with a 0.07-inch defect, (b) tolling element fault with a 0.07-inch
defect, (c) outer ring fault with a 0.07-inch defect, (d) inner ring fault with a 0.14-inch defect,
(e) rolling element fault with a 0.14-inch defect, (f) outer ring fault with a 0.14-inch defect,
(g) inner ring fault with a 0.21-inch defect, (h) rolling element fault with a 0.21-inch defect,
and (i) outer ring fault with a 0.21-inch defect. These fault categorizations allow for a
comprehensive dataset to effectively assess the fault diagnosis model’s performance across
varying fault types.
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Table 4. Ten working conditions of rolling bearings.

Number Fault (Yes/No) Fault Location Fault Diameter
(Inches) Abbreviation

Class 1 No / / Nor
Class 2 Yes Inner ring 0.007 IR7
Class 3 Yes Rolling element 0.007 RE7
Class 4 Yes Outer ring 0.007 OR7
Class 5 Yes Inner ring 0.014 IR14
Class 6 Yes Rolling element 0.014 RE14
Class 7 Yes Outer ring 0.014 OR14
Class 8 Yes Inner ring 0.021 IR21
Class 9 Yes Rolling element 0.021 RE21

Class 10 Yes Outer ring 0.021 OR21

Figure 9. Time-domain waveforms of the nine types of working fault.

This section compares the diagnostic results of different entropy-based algorithms,
including FE, MFE, FE combined with waveform factor, and the proposed method. The
scale factors for MFE and IMFE are set to scales = [2, 3, 4], with an embedding dimension
of 2 and a time delay of 1. The embedding dimension (m) and similarity tolerance r
parameters were optimized through multiple experiments to achieve the best performance
of the proposed method, with m = 2 and r = 0.2. The features extracted using IMFE are
reduced to three dimensions by LDA. Given that the maximum dimensionality reduction
achievable by LDA corresponds to the total number of fault categories minus one, which
is 9 in the case of 10 categories, the dimensionality was reduced to 9 in this article. This
choice ensures that as much feature information as possible is retained while maintaining
the ability to effectively distinguish between different categories. All methods are classified
using an SVM classifier and validated through K-fold cross-validation, where K is set to
10 (i.e., the dataset is split into 10 folds, each containing 233 samples). In all comparative
experiments, the parameters of the SVM were kept consistent, with the penalty parameter
(C) set to 1.0. As shown in Figure 10, the proposed method achieves a consistently high
classification accuracy across all folds. Table 5 shows a comparison of diagnostic results,
showing the average classification accuracy over ten runs, as well as the highest and lowest
accuracy achieved across these runs. The proposed IMFE method demonstrates superior
performance compared to the baseline entropy methods, with a notable improvement in
diagnostic accuracy across various scales and validation folds.
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Figure 10. Detailed diagnosis results of different methods.

As shown in Table 5, under the operating conditions of a motor load of 2 horsepower
and a motor speed of 1750 rpm, the proposed method achieves the highest accuracy across
all metrics, demonstrating its superior diagnostic performance. From the results of Method
1 and Method 2, it is evident that the number of EMD layers has a significant impact on
diagnostic accuracy, with diagnostic performance improving as the number of decomposi-
tion layers increases. Notably, when the decomposition layers are insufficient, traditional
feature extraction methods yield suboptimal diagnostic results. For instance, with only
3 decomposition layers, the average classification accuracy of Method 1 and Method 4 fails
to reach 90%, making these methods impractical for real-world applications. The results of
Method 2, Method 3, and Method 4 also show that when extracting detailed features using
fuzzy entropy, an excessive number of EMD layers can lead to overfitting. For Method 3
and Method 4, the average accuracy drops by 0.12%, with the highest and lowest accuracy
remaining largely unchanged. This suggests that attempting further feature extraction on
entropy features at high decomposition levels increases the risk of overfitting. To address
this, the proposed approach introduces IMFE as the feature extraction method, combined
with LDA for dimensionality reduction, under low decomposition-layer conditions. Ex-
perimental results show that with three EMD layers, the proposed method achieves high
classification accuracy, confirming its feasibility and effectiveness in practical applications.

Table 5. Statistical diagnosis results of the six methods in CASE 2.

Model Average Accuracy Max Accuracy Min Accuracy

Method 1 (EMD(3) & FE & SVM) 88.88% 91.42% 85.41%
Method 2 (EMD(7) & FE & SVM) 94.54% 96.14% 92.70%

Method 3 (EMD(7) & FE + WF(FE) & SVM) 94.83% 96.12% 93.10%
Method 4 (EMD(7) & FE + WF(FE) & CV(FE) & SVM 94.71% 96.12% 93.10%

Method 5 (EMD(3) & MFE & SVM) 85.40% 87.55% 83.69%
Method 6 (EMD(3) & IMFE & LDA & SVM, proposed method) 98.41% 99.14% 97.42%

5. Conclusions

Intelligent fault diagnosis plays a critical role in working condition maintenance for
rotating machinery, significantly enhancing the operational efficiency and reliability of
industrial equipment. To improve the diagnostic performance of intelligent fault diag-
nosis methods for various types of faults in rotating machinery, this article proposes a
novel algorithm that combines EMD, IMFE, LDA, and SVM. The proposed IMFE offers
advantages of few adjustable parameters, strong algorithmic robustness, and effective
discrimination across different signal types. Experimental results were shown to assess the
robustness of IMFE across varying time lengths and its recognition performance for differ-
ent signals, verifying the stability of IMFE in feature extraction. The proposed method was
compared with several other diagnostic methods for rotating machinery. The diagnostic
results demonstrate a competitive edge over traditional diagnostic models, validating the
strong diagnostic capabilities of this algorithm.
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This article proposes an efficient and convenient fault diagnosis method for rotating
machinery, which enhances equipment safety and stability while reducing maintenance
costs. However, as the experiments were based solely on single-sensor signals, challenges
remain concerning information loss and uncertainty. Future work will focus on improving
the model to enable diagnostic applications with multi-source signals, further enhancing
diagnostic accuracy and reliability.
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Abbreviations

The following abbreviations are used in this article:

RMS Rotating mechanical system
IMFE-SVM Improved multiscale fuzzy entropy and support vector machine
EMD Empirical mode decomposition
IMFE Improved multiscale fuzzy entropy
LDA Linear discriminant analysis
SVM Support vector machine
SE Sample entropy
FE Fuzzy entropy
MPE Multiscale permutation entropy
CNN Convolutional neural network
ME Multiscale entropy
IMFs Intrinsic mode functions
MFE Multiscale fuzzy entropy
FDA Fisher discriminant analysis
CWRU Case Western Reserve University
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