
Citation: Zhou, S.; Zhang, N.;

Duan, Q.; Xiao, J.; Yang, J. Automatic

Scheduling Method for Customs

Inspection Vehicle Relocation Based

on Automotive Electronic Identification

and Biometric Recognition. Algorithms

2024, 17, 483. https://doi.org/

10.3390/a17110483

Academic Editor: Massimiliano

Caramia

Received: 18 September 2024

Revised: 21 October 2024

Accepted: 24 October 2024

Published: 28 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Automatic Scheduling Method for Customs Inspection Vehicle
Relocation Based on Automotive Electronic Identification
and Biometric Recognition
Shengpei Zhou 1 , Nanfeng Zhang 1, Qin Duan 1,2, Jinchao Xiao 1,3 and Jingfeng Yang 1,3,4,*

1 Guangdong Provincial Key Laboratory of Intelligent Port Security Inspection, Huangpu Customs District
P.R.China, Guangzhou 510700, China; garychowsd@foxmail.com (S.Z.); nf_zhang@126.com (N.Z.);
qin.duan@haige.com (Q.D.); xiaojinchao@sia.cn (J.X.)

2 Guangzhou Haige Communications Group Incorporated Company, Guangzhou 510663, China
3 Guangzhou Institute of Industrial Intelligence, Guangzhou 511458, China
4 Guangdong Zhongke Zhenheng Information Technology Co., Ltd., Foshan 528225, China
* Correspondence: jingfengyang@126.com

Abstract: This study presents an innovative automatic scheduling method for the relocation of cus-
toms inspection vehicles, leveraging Vehicle Electronic Identification (EVI) and biometric recognition
technologies. With the expansion of global trade, customs authorities face increasing pressure to
enhance logistics efficiency. Traditional vehicle scheduling often relies on manual processes and
simplistic algorithms, resulting in prolonged waiting times and inefficient resource allocation. This
research addresses these challenges by integrating EVI and biometric systems into a comprehensive
framework aimed at improving vehicle scheduling. The proposed method utilizes genetic algorithms
and intelligent optimization techniques to dynamically allocate resources and prioritize vehicle move-
ments based on real-time data. EVI technology facilitates rapid identification of vehicles entering
customs facilities, while biometric recognition ensures that only authorized personnel can operate
specific vehicles. This dual-layered approach enhances security and streamlines the inspection
process, significantly reducing delays. A thorough analysis of the existing literature on customs
vehicle scheduling identifies key limitations in current methodologies. The automatic scheduling
algorithm is detailed, encompassing vehicle prioritization criteria, dynamic path planning, and real-
time driver assignment. The genetic algorithm framework allows for adaptive responses to varying
operational conditions. Extensive simulations using real-world data from customs operations validate
the effectiveness of the proposed method. Results indicate a significant reduction in vehicle waiting
times—up to 30%—and an increase in resource utilization rates by approximately 25%. These find-
ings demonstrate the potential of integrating EVI and biometric technologies to transform customs
logistics management. Additionally, a comparison against state-of-the-art scheduling algorithms,
such as NSGA-II and MOEA/D, reveals superior efficiency and adaptability. This research not only
addresses pressing challenges faced by customs authorities but also contributes to optimizing logistics
operations more broadly. In conclusion, the automatic scheduling method presented represents a
significant advancement in customs logistics, providing a robust solution for managing complex
vehicle scheduling scenarios. Future research directions will focus on refining the algorithm to
handle peak traffic periods and exploring predictive analytics for enhanced scheduling optimization.
Advancements in the intersection of technology and logistics aim to support more efficient and secure
customs operations globally.

Keywords: automotive electronic identification; biometric recognition; customs vehicle relocation;
automatic scheduling; dynamic resource allocation
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1. Introduction

With the continuous growth of global trade, customs authorities face increasing pres-
sure to enhance the efficiency of vehicle inspection and management processes. Traditional
scheduling methods often rely on manual operations and simplistic algorithms, leading to
prolonged vehicle waiting times, inefficient resource allocation, and overall operational
delays. As customs operations grow in complexity, innovative solutions are urgently
needed to streamline these processes, resulting in long vehicle waiting times, low schedul-
ing efficiency, and wasted resources. In recent years, To solve these problems, automatic
scheduling technology and intelligent scheduling algorithms have been extensively studied
and applied, providing new solutions for customs vehicle management [1–3]. However,
most of these approaches remain in the simulation testing phase.

The development of automatic scheduling methods has primarily focused on opti-
mizing scheduling algorithms and improving scheduling efficiency. Traditional methods,
such as First-Come, First-Served (FCFS) and heuristic algorithms, have been gradually
replaced by automated scheduling approaches utilizing artificial intelligence and machine
learning technologies [4–6]. Recent advancements in vehicle scheduling, particularly those
incorporating deep reinforcement learning, have significantly enhanced scheduling ef-
ficiency and system adaptability, although they remain constrained by the operational
rules of the research subjects [7]. Additionally, multi-objective optimization algorithms,
such as Genetic Algorithms (GA), Ant Colony Optimization (ACO), and Particle Swarm
Optimization (PSO), have been widely used in complex vehicle scheduling problems [8–10].
These algorithms optimize scheduling optimization by comprehensively considering vari-
ous constraints (e.g., vehicle arrival time, priority, yard capacity), significantly improving
scheduling efficiency and reducing both vehicle waiting time and yard resource occupancy.
Automatic scheduling is crucial in addressing these challenges. By leveraging advanced
technologies, customs can optimize vehicle relocation and inspection processes, thereby
significantly reducing waiting times and enhancing resource utilization. The integration of
Vehicle Electronic Identification (EVI) and biometric recognition technologies represents
a novel approach to achieving these objectives. This method not only enhances the accu-
racy of vehicle identification but also improves security by ensuring that only authorized
personnel can operate specific vehicles.

Significant progress has been made in automatic scheduling technology for customs
vehicle relocation. A blockchain-based EVI solution has been proposed to enhance the
security and transparency of vehicle identification systems [11]. Scheduling methods that
combine EVI technology with biometric recognition technology have emerged as a research
hotspot. EVI technology enables real-time vehicle identification and positioning via RFID
or OBU, while biometric recognition technology is used for driver identity verification and
access management [12–14]. The synergy of these technologies improves the automation in
vehicle scheduling and enhances the security and reliability of the management system.
In practice, many customs and logistics parks have gradually implemented automatic
scheduling systems to address increasingly complex vehicle scheduling needs. For instance,
intelligent scheduling systems based on EVI and biometric recognition technology have
demonstrated effectiveness at several large ports, effectively reducing manual intervention
and improving scheduling accuracy [15,16]. These systems automate scheduling processes,
enhance accuracy, and effectively manage high volumes of vehicle entry and exit during
peak periods.

Research on automatic scheduling methods for customs vehicle relocation has increas-
ingly focused on effectively combining EVI technology, biometric recognition technology,
and multi-objective optimization algorithms [17–19]. Roberts et al. proposed a hybrid
optimization algorithm that integrates genetic algorithms and deep learning technologies
to improve scheduling robustness in complex environments [20]. Furthermore, blockchain-
based scheduling methods have also begun to be utilized in customs settings, enhancing
both security and transparency in the scheduling process [21]. Simulations and real-world
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application indicate that these methods can significantly enhance the scheduling efficiency
of customs inspection vehicles [22–25].

This research is motivated by the identified gaps in current methodologies, partic-
ularly the lack of effective automated solutions that can adapt to the dynamic nature of
customs operations. While various studies have explored scheduling techniques, few have
comprehensively integrated EVI and biometric systems into a cohesive framework. This
research aims to address this gap by developing an automatic scheduling method that
leverages these technologies to enhance logistics management efficiency.

The problem statement for this study is as follows: how can we develop an effective
automatic scheduling method for relocating customs inspection vehicles that optimizes
resource allocation while significantly reducing vehicle waiting times? The objective is
to propose a solution that enhances the operational efficiency in customs management
within a rapidly evolving trade environment. To effectively address the challenges of
driver and inspection vehicle identification, this study proposes an automatic scheduling
method based on EVI and biometric recognition technology, considering factors such
as vehicle arrival time, priority, and yard capacity. By employing genetic algorithms
for multi-objective optimization, the method aims to tackle complex vehicle scheduling
issues, achieve dynamic scheduling and optimal path planning, and ultimately improve
scheduling efficiency and reduce vehicle waiting times.

The structure of this study is as follows: Section 2 reviews the relevant literature,
highlighting existing approaches and contributions. Section 3 outlines the methodology,
providing a detailed description of the proposed scheduling algorithm and its implementa-
tion. Section 4 presents experimental results, demonstrating the effectiveness of the method
and comparing it to state-of-the-art solutions. Finally, Section 5 concludes the study and
discusses future research directions.

2. Vehicle and Driver Identification Methods
2.1. Application of Vehicle Electronic Identification in Customs Inspection Vehicle Identification

In modern customs management, efficient and accurate vehicle identification is crucial
for improving work efficiency and ensuring security. Vehicle Electronic Identification (EVI)
technology has emerged as an essential tool for addressing the shortcomings of traditional
identification methods.

EVI technology comprises two core components: Radio Frequency Identification
(RFID) tags and On-Board Units (OBUs). RFID tags are small devices embedded with
microchips and antennas that transmit data via radio frequency signals. OBUs are in-
stalled on vehicles that communicate with customs systems in real-time through gantries or
roadside reading and writing devices [2]. EVI technology enables automatic vehicle identi-
fication without manual intervention, quickly transmitting information to readers through
radio waves [7]. Additionally, to ensure data security during transmission, RFID systems
transmit vehicle information to a central database through a wireless communication link.
To ensure data security during transmission, RFID systems send vehicle information to a
central database via a wireless link, employing encryption technology to prevent unau-
thorized access and tampering [22]. Additionally, data transmission includes integrity
checks and error correction to maintain information accuracy [18]. In the central database,
vehicle information is matched against system records for identity verification. The system
can detect anomalies in real-time, and provide decision support through data analysis.
For instance, if vehicle information does not meet expectations, the system automatically
triggers an alarm to alert customs personnel for further inspection [23]. Moreover, system
integration technology facilitates seamless collaboration among RFID readers, OBUs, and
central databases, enhancing identification and scheduling efficiency [3].

The vehicle data collection method using EVI involves installing comprehensive
sensing stations at critical locations, such as key intersections, parking lot entrances and
exits, inspection laboratory entrances, and roll-on/roll-off ship loading and unloading
points. Induction loops are installed 15 m from these key locations to detect vehicles
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passing by, while gantries equipped with vehicle recognition devices are set up 15 m
from the loops for automatic license plate recognition. EVI technology allows antenna on
the gantry to read the information from vehicles equipped with electronic tags. When a
vehicle triggers the induction loop, it sends two signals: one to the high-definition video
camera and another to the EVI antenna reader, capturing the license plate and reading the
EVI information simultaneously. The collected data are then uploaded to the integrated
sensing’s processing computer for further analysis.

The integrated sensing station system comprises a license plate recognition system and
an EVI reading and writing system. This comprehensive deployment enables efficient data
collection, verification, transmission, and processing in practical applications. By strategi-
cally selecting monitoring locations for gantry installation, placing induction loops 15 m
away, and equipping gantries with EVI antennas, HD cameras, and supplemental lighting,
the system ensures effective data capture. The EVI antennas connect to the EVI reader and
writer controller via cables, while the cameras interface with the front-end computer or
switch through a network.

2.2. Application of Biometric Recognition Technology in Driver Identification for Customs
Inspection Vehicles

The application of biometric recognition technology in driver identification for customs
inspection vehicles significantly enhances the security and efficiency of identity verification.
This study employs a multi-modal recognition approach, incorporating three modalities:
facial recognition (for identity recognition) [26], fingerprint recognition (for identity recog-
nition) [27], and behavior recognition (for determining responsibility for vehicle damage
during relocation) [28]. By fusing these characteristics, the accuracy of identity verification
and overall system security can be significantly improved. The multi-modal recognition
method leverages the complementary nature of different biometric features to enhance
the system’s comprehensive recognition capability, thus providing more reliable identity
verification services. This study uses an adaptive spatial feature fusion method for data
integration, focusing on the adaptively learning the fusion spatial weights of each scale
feature map. The main steps of this method are as follows:

Step 1: Adaptive fusion.
The vector at the spatial position (i, j) after data fusion is a weighted fusion of the

vectors at the same position across the three feature maps prior to fusion. The fusion
coefficients are adaptively learned by the network and shared among all channels. Let xn→l

ij
denote the feature vector at the location (i, j) adjusted from level n to level l, and the fusion
method of the level l features is expressed as below:

yl
ij = αl

ij · x1→l
ij + βl

ij · x2→l
ij + γl

ij · x3→l
ij (1)

where 1 → l , 2 → l , 3 → l are the feature maps obtained through 1 × 1 convolution,
allowing them to be learned via standard backpropagation, that is, αl

ij + βl
ij + γl

ij = 1 and

αl
ij, βl

ij, γl
ij ∈ [0, 1]. The spatial importance weights of the three different levels to level l are

αl
ij =

e
λl

αij

e
λl

αij +e
λl

βij +e
λl

γij

, βl
ij =

e
λl

βij

e
λl

αij +e
λl

βij +e
λl

γij

, and γl
ij =
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αij +e
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βij +e
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, respectively, which

are computed as control parameters.
Step 2: Deep learning optimization.
A deep neural network is employed to further learn and optimize the fused features,

enhancing recognition accuracy [29]. This study utilizes feature concatenation and fu-
sion [30], along with an attention mechanism [31], to design a multi-modal deep network
architecture that integrates hybrid convolutional and recurrent networks for processing
diverse modal data [32]. Ultimately, the prediction results of multiple deep learning models
are combined, leveraging the strengths of different models to improve overall recognition
performance [33].
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Step 3: Text output.
Following feature fusion and the extraction of non-text data, such as internal and

external traffic conditions and driver expression information, the continuous nature of
the time-aligned data allows for the establishment of a complete monitoring data chain
through data sequence synchronization. This synchronization ensures that time-aligned
data streams from different sources are integrated and analyzed cohesively. By doing so,
the system can accurately reflect real-time conditions and provide continuous monitoring,
offering a comprehensive view of driving dynamics, potential hazards, and driver states to
improve decision-making in autonomous systems.

3. Driver-Inspection Vehicle Automatic Scheduling Method

To enhance the efficiency of relocation operations, this study proposes an automatic
scheduling method utilizing Vehicle Electronic Identification (EVI) and biometric recogni-
tion. This method comprehensively considers the driver’s authority, vehicle status, and
real-time environmental data to achieve optimal scheduling. The main steps are as follows:

Step 1: Driver identity verification and authority confirmation.
Biometric recognition technology is employed to verify the driver’s identity, which

is then matched with the corresponding vehicle information. Only verified drivers are
granted the authority to operate specific vehicles. This step ensures the safety and legality
of the association between drivers and vehicles.

Step 2: Identification and path confirmation of inspection vehicles.
Through EVI and roadside equipment, vehicles awaiting inspection are assigned a

temporary identity unique to the authorized timeframe. The optimal relocation path is
determined to effectively arrange and utilize the space in the transit area.

Step 3: Combining vehicle status and scheduling requirements.
Once identity verification is completed, the system dynamically matches drivers with

vehicles based on their authority and vehicle status to ensure optimal relocation operations.
The vehicle status information provided by EVI (e.g., vehicle location, current task status)
is integrated with the driver’s identity and behavior data to generate a dynamic scheduling
plan. This study proposes a multi-objective optimization-based scheduling algorithm that
comprehensively considers the following factors:
1⃝ Priority of vehicles waiting for inspection: the system automatically generates vehicle

priorities based on customs inspection requirements, arrival times, and vehicle types,
matching them with suitable drivers.

2⃝ Driver idle time and skill matching: the relationship between drivers and vehicles is
dynamically adjusted based on the driver’s current status, skill level, and historical
operation records to ensure optimal resource allocation.

3⃝ Path optimization: utilizing genetic algorithms, dynamic planning of relocation paths
minimizes the distance and time required for vehicle movement, thereby enhancing
overall scheduling efficiency.

Step 4: Dynamic scheduling.
By thoroughly analyzing the vehicle priorities, current yard status, and the driver’s ca-

pabilities, the scheduling plan is dynamically adjusted to optimize the relocation paths and
reduce waiting times. The scheduling scheme is modified in real-time using multi-objective
optimization algorithms. The scheduling scheme considers not only the vehicle’s status and
location but also the driver’s current task status and operational capability, ensuring both
efficiency and safety in scheduling. During execution, the system continuously monitors
the status of drivers and vehicles to facilitate smooth implementation of the scheduling
scheme. In the event of anomalies (e.g., abnormal driver status or changes in vehicle status),
information fusion and scheduling adjustments are conducted in real-time. The global
view of the proposed solution is shown in Figure 1.
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3.1. Objective Function Design

In multi-objective optimization problems, it is necessary to design objective functions
that comprehensively consider different goals. Combining the business requirements of
relocating customs inspection vehicles, this study defines the following objective functions:

1⃝ Minimizing vehicle waiting time

The objective is to minimize the total waiting time of vehicles during customs in-
spection, thereby reducing queuing and waiting times in customs areas and enhancing
scheduling efficiency.

The calculation of vehicle waiting time involves two key factors: vehicle arrival time
and actual relocation start time. The formula is as follows:

fwait = ∑N
i=1 Wi (2)

where Wi is the waiting time of the i-th vehicle.

Wi = max(0, Tstart,i − Tarrival,i) (3)

where Tstart,i is the arrival time of the i-th vehicle at customs, and Tarrival,i is the start time
of relocation for the i-th vehicle.

To optimize this objective function within a multi-objective framework, primary
strategies include improving scheduling methods (thereby reducing idle and waiting times)
and introducing priority scheduling for high-priority vehicles to further decrease their
waiting times.

2⃝ Minimizing relocation path length

The objective is to minimize the total path length from the arrival point to the des-
tination yard for all vehicles. The formula for calculating path length Di is given by
the following:

Di = ∑M
j=1 dij (4)
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where dij is the length of the j-th segment of the path for the i-th vehicle, and M is the total
number of segments in the paths. The overall objective function for all vehicle path lengths
is defined as the sum of these segment lengths.

To optimize this objective function within a multi-objective framework, strategies pri-
marily include employing the shortest path algorithm to compute the shortest route, along
with real-time data adjustment to modify path planning based on current traffic conditions.

3⃝ Maximizing resource utilization rate

The objective is to maximize the efficiency of yard and related resource utilization.
The formula for calculating resource utilization is as follows:

fresource =
1
M∑M

k=1
Uk
Ck

(5)

where Uk is the actual capacity used by the k-th yard, Ck is the total capacity of the k-th
yard, and M is the number of yards.

To optimize this objective function within a multi-objective framework, strategies
include dynamic resource allocation (dynamically adjusting yard assignments based on
real-time demand) and capacity prediction (utilizing predictive models to estimate future
resource needs and adjusting strategies accordingly).

4⃝ Balancing driver workload

The objective is to balance the workload of all drivers to ensure equitable workload
distribution. The formula for calculating workload Lk is as follows:

Lk = ∑i∈Sk
Twork,i (6)

where Sk is the work time spent by the k-th driver on vehicle relocation, Twork,i is the
total finishing time of relocation for the i-th vehicle. The objective function is defined as
the difference between the maximum and minimum workload among all drivers, that
is, fload = max1,2,...,K Lk − min1,2,...,K Lk.

To optimize this objective function within a multi-objective framework, methods in-
clude workload prediction (using data analysis to forecast workloads and adjust scheduling
strategies) and dynamic scheduling (adapting driver task allocation based on actual workload).

5⃝ Minimizing relocation time

The objective is to minimize the total time from vehicle arrival at customs to the
completion of relocation, encompassing parking time, the time drivers take to return to the
dispatch point, and other necessary actions to complete all tasks. The total relocation time
includes waiting time and actual movement time Ttotal,i, defined as follows:

Ttotal,i = Tend,i − Tstart,i (7)

where Tend,i is the time the i-th vehicle completes relocation, and Tstart,i is the time the i-th
vehicle arrives at customs. The objective function ftime = ∑N

i=1 Ttotal,i is defined as the total
relocation time for all vehicles.

To optimize this objective function within a multi-objective framework, strategies
include optimizing the scheduling sequence (adjusting the order of tasks to reduce overall
relocation time) and real-time adjustment (optimizing scheduling strategies based on
live data).

6⃝ Minimizing scheduling uncertainty

The objective is to minimize uncertainties in the scheduling process, such as errors
arising from unforeseen events. The measure of scheduling uncertainty σ2

i can be calculated
using error variance:

funcert = ∑N
i=1 σ2

i (8)
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where σ2
i is the error variance in the scheduling process for the i-th vehicle.

To optimize this objective function within a multi-objective framework, strategies
primarily include uncertainty modeling (establishing a model for scheduling uncertainty
that can be dynamically adjusted) and redundancy planning (reserving extra resources to
manage uncertainties effectively).

7⃝ Minimizing operational costs

The objective is to minimize overall operational costs, encompassing labor, energy
consumption, and maintenance costs. The operational cost is defined as follows:

fcos t = ∑N
i=1 Ci (9)

where Ci represents the relocation cost of the i-th vehicle, including fuel, labor, maintenance,
and parking fees.

To optimize this objective function within a multi-objective framework, strategies
mainly include cost control (implementing measures to manage and reduce operational
costs) and resource optimization (enhancing resource usage to reduce unnecessary expenses).

8⃝ Optimizing vehicle scheduling consistency

The objective is to optimize the consistency of scheduling and reduce discrepancies
and errors. Scheduling consistency can be generally calculated by comparing the planned
scheduling time and actual scheduling time:

fconsistency = ∑N
i=1

∣∣Tscheduled,i − Tactual,i
∣∣ (10)

where Tscheduled,i is the planned scheduling time for the i-th vehicle, and Tactual,i is the actual
scheduling time for the i-th vehicle.

To optimize this objective function within a multi-objective framework, strategies
mainly include consistency checks (establishing mechanisms to minimize scheduling
changes) and scheduling optimization (improving scheduling accuracy through refined
scheduling algorithms).

9⃝ Additional objective functions

Additional objective functions include the following:
Maximizing system throughput: this objective aims to maximize the number of

vehicles processed per unit time. The system throughput is defined as follows:

fthroughtput =
1

ftotal
∑N

i=1 Throughputi (11)

where Throughputi represents the number of vehicles processed, and Ttotal is the total
processing time. To optimize this objective function in multi-objective optimization, effi-
cient scheduling algorithms can be employed to increase processing speed and improve
system throughput.

Improving system service efficiency: this objective seeks to enhance the overall
service capacity by minimizing timeouts or improving processing scheduling efficiency
across various scenarios. The system service efficiency is defined as follows:

fservice =
1
N ∑N

i=1

(
Tservice,i

Tmax

)
(12)

where Tservice,i is the service time of the i-th vehicle, and Tmax is the maximum allowable
service time. Efficient scheduling algorithms can be utilized to accelerate processing and
enhance overall system service efficiency.
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Enhancing system flexibility and responsiveness: This objective focuses on improv-
ing the system’s ability to respond to unexpected events and maintain flexibility. System
responsiveness is defined as follows:

f f lexibility =
1
N ∑N

i=1 Tresponse,i (13)

where Tresponse,i is the response time for the i-th vehicle under an emergency. To optimize
system flexibility and responsiveness, adaptable scheduling strategies can be implemented
to effectively manage emergencies, along with predictive and early warning systems to
reduce response time.

These objectives are designed to ensure that the system can effectively handle a
variety of situations while maintaining high performance across multiple dimensions. By
balancing these objectives, the scheduling system can achieve optimal performance in
complex, dynamic environments.

3.2. Dynamic Automatic Scheduling Algorithm Based on Multi-Objective Optimization

In managing the relocation of customs inspection vehicles, the scheduling system
must optimize multiple objectives simultaneously, including minimizing vehicle waiting
time, optimizing relocation paths, maximizing resource utilization, and balancing driver
workload. These objectives often conflict, making the pursuit of an optimal balance a
central challenge for this algorithm. To address the multi-objective optimization problem,
this study adopts a hybrid intelligent optimization algorithm framework that combines
the advantages of Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and
Differential Evolution (DE) algorithms. This combination ensures both a robust global
search capability and an effective local optimization capability.

In the dynamic automatic scheduling algorithm based on multi-objective optimization,
Pareto selection is employed to identify and maintain a set of solutions that are not strictly
dominated by any other solutions across all objectives. Specifically, the algorithm integrates
multi-objective optimization techniques with Pareto optimal selection to generate and filter
effective scheduling schemes. The specific steps and combinations of the algorithm are
outlined as follows:

Step 1: Initial population generation.
The initial population is generated based on random initialization and diversity

control [34]. Heuristic generation methods, based on established rules or strategies, are
employed to enhance the quality of initial solutions. In vehicle scheduling problems,
initial solutions can be derived using known priority rules or simple scheduling strategies,
improving the quality and optimizing overall efficiency.

The scheduling problem is represented as the vector X = [x1, x2, · · · , xn], where each
element xi represents the specific scheduling order of the i-th inspection vehicle. To avoid
generating infeasible solutions, an integer encoding method is adopted, with each xi value
range corresponding to the set of possible vehicle sequences [35]. The initial population is
generated through random initialization, denoted as P(0). Specifically, the initialization
method is:

P(0) =
{

X1, X2, · · · , XN
}

(14)

where N represents the population size to ensure diversity, Xi represents the i-th individual
in the population, and each individual’s value on each objective function is calculated,
including vehicle allocation, path selection, resource allocation, and driver tasks [36].

To elucidate the operation of the genetic algorithm’s operation, it provides a detailed
account of chromosomes within the optimization framework. Each chromosome represents
a potential solution to the scheduling problem and comprises several key components:

Vehicle priorities: each chromosome encodes the priorities of vehicles waiting for
inspection, ensuring that higher-priority vehicles are scheduled first based on their urgency
and inspection requirements.
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Optimal scheduling path: the chromosome includes a sequence of scheduled actions
for each vehicle, detailing the path from the arrival point to the inspection yard, influenced
by capacity and vehicle types.

Driver assignments: each chromosome encodes driver assignments for each vehicle,
considering driver skills, current workloads, and availability to ensure optimal matching.

Resource allocation: elements indicating the allocation of resources (e.g., inspec-
tion lanes and equipment) necessary for processing each vehicle are incorporated into
the chromosomes.

Performance metrics: additional components may include fitness scores reflecting the
expected performance of the scheduling plan encoded within the chromosome, facilitating
the selection process during genetic operations.

By structuring the chromosome in this manner, the genetic algorithm effectively
explores a diverse solution space, enabling continuous evolution and enhancement of
scheduling efficiency across successive generations.

Step 2: Pareto selection and non-dominated sorting.
The fitness of individuals is evaluated based on the objective functions [37]. Non-

dominated sorting is performed on the individuals in the population P(0), assigning
different levels of non-dominance to the individuals. The Pareto level of each individual
r(xi) is determined by the number of individuals it dominates, with lower levels indicating
a solution closer to the Pareto front.

Level 1: contains all individuals not dominated by any other solution.
Level 2: contains individuals only dominated by solutions in Level 1, and so on.
The roulette wheel selection method is employed to select individuals based on their

fitness values, calculated as follows:

F(x) =
f (Xi)

∑N
j=1 f (X j)

=
1

1 + r(xi)
(15)

where f (X) is the fitness function for an individual and r(xi) is the rank of an individual x.
An elite retention strategy ensures that the current optimal individuals directly progress to
the next generation, preventing the loss of optimal solutions.

For each individual on the Pareto front, its crowding distance is calculated to maintain
population diversity. The crowding distance d(xi) is determined by measuring the distance
between that individual and its nearest neighbors:

d(xi) =
m

∑
j=1

(
f j(xi+1)− f j(xi−1)

f max
j − f min

j

)
(16)

Step 3: Genetic operations and local search.
Genetic operations, including crossover and mutation operations, are performed,

alongside local search strategies, combining Particle Swarm Optimization (PSO) and Differ-
ential Evolution (DE) to enhance solution quality [38].

Crossover employs a combination of single-point and multi-point crossover methods,
with a crossover probability of pc. New individuals are generated by the following formula:

Xnew = Cross(Xi, X j) (17)

where Xi and X j are the parent individuals involved in crossover, and Xnew is the offspring
individual generated [39].

Mutation is achieved by randomly altering one or more genes of an individual to
increase diversity, with a mutation probability of pm. The mutated individual is denoted
as follows:

Xmut = Mutate(Xi) (18)

where Xi is the individual undergoing mutation, and Xmut is the mutated individual [40].
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In the case of single-point crossing, for each pair of parental chromosomes selected
for crossing, a random crossing point is chosen. After this point, all genes of one parent
are exchanged with the corresponding genes of the other parent. This method promotes
the mixing of genetic information while maintaining some structural integrity of chromo-
somes. For multi-point crossing, after performing single-point crossing, multiple crossover
points are selected within the chromosome. The segments between these points are ex-
changed between the two parents, allowing for greater variation and exploration of the
solution space. In the combined strategy, single-point crossover is applied first, followed
by multi-point crossover on the offspring generated from the first operation. This two-step
process leverages the strengths of both methods, encouraging a broader search for optimal
solutions while maintaining convergence. Regarding parameter settings, the crossover
probability of both single-point and multi-point methods is uniformly set to 0.8 in this
study. This ensures that a sufficient number of offspring inherit diverse features from
their parents. By utilizing this combination of crossover methods, the genetic algorithms
effectively explore the solution space while preserving high-quality genetic material from
the parental chromosomes.

PSO enables each particle to navigate in the solution space while continuously up-
dating its position and velocity to converge on the optimal solution. The position of each
particle in the solution space is denoted by di, and its velocity is denoted by vi. The par-
ticle’s update depends on the individual best position pbesti and the global best position
gbesti. The position and velocity update methods for each particle are given as follows:

vi(t + 1) = ωvi(t) + c1r1(pbesti − xi(t)) + c2r2(gbesti − xi(t)) (19)

xi(t + 1) = xi(t) + vi(t + 1) (20)

where ω is the inertia weight controlling the influence of the particle’s historical velocity; c1
and c2 are acceleration constants, typically ranging from 1.5 to 2.5, controlling the speed of
the particle approaching the individual best position and global best position; and r1 and
r2 are random numbers between 0 and 1, used to introduce randomness [41].

In practical applications, multiple objective functions often need to be optimized,
which can lead to conflicts among them. PSO can be adapted for multi-objective opti-
mization by employing a non-dominated sorting mechanism to rank particles and select
solutions on the Pareto front. The density of particles on this front is evaluated to maintain
solution diversity. By integrating PSO with multi-objective optimization techniques, the al-
gorithm effectively preserves a set of non-dominated solutions in each iteration, enhancing
the robustness of the search process.

Differential Evolution (DE) is utilized in this study to generate new solutions by
leveraging the differences between individuals. This method can be effectively extended
to multi-objective optimization problems, enabling the resolution of complex issues with
multiple conflicting objectives and facilitating the identification of Pareto optimal solution
sets to support decision-making.

In DE, three different individuals are selected for differential operations,

vi(t + 1) = xr1 + F(xr2 − xr3) (21)

where F is the scaling factor, typically ranging from 0.5 to 1. After the crossover operation,
the new individuals generated are compared with the original individuals, and those
exhibiting better fitness are retained for the next generation. The crossover operation is
defined as follows:

ui(t + 1) =
{

vi(t + 1), r < CR
xi(t), otherwise

(22)

where CR is the crossover probability [42], controlling the mixing degree of the mutant
vector and the current individual. By comparing the trial vector’s fitness with that of
the current individual, the algorithm selects the better-performing individuals for the
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subsequent generation. The DE algorithm concludes based on predefined termination
criteria, which may include reaching a maximum number of iterations or achieving the
convergence of the objective function.

Step 4: Multi-objective optimization and pareto selection.
Non-dominated sorting and crowding distance metrics are employed to select optimal

solutions that form the Pareto front solution set [35]. In multi-objective optimization, each
objective function is assigned a specific priority or weights; however, these objectives
often conflict with one another. Thus, it is essential to evaluate the performance of all
objectives rather than focusing solely on the minimum or maximum value of an individual
objective function.

To address multi-objective optimization problems, the Pareto selection method is uti-
lized to assess the relative advantages and disadvantages of different schemes. Specifically,
the Pareto front comprises a set of solutions that cannot be dominated by any other solution
across all objectives. The selection strategy involves the following:

Non-dominated sorting: For all individuals in the current population, the number of
individuals dominated by each one is calculated, and the individuals are ranked based
on dominance relationships. The parent population is merged with the new generation
population to form a combined population, followed by another round of non-dominated
sorting and crowding distance calculations.

Pareto front update: All non-dominated solutions are retained as Pareto optimal
solutions, and dominated solutions are discarded. This ensures that the final solution
set contains a diversified array of optimal schemes. Specifically, individuals with the
lowest non-dominance rank and the highest crowding distance are selected to form a new
population for the next iteration.

By integrating multi-objective optimization and Pareto selection, the algorithm gen-
erates a diversified Pareto front solution set, providing decision-makers with a variety of
options based on actual needs.

Step 5: Termination condition judgment.
The algorithm assesses termination conditions to determine when to stop the op-

timization process. Termination occurs when either the preset number of iterations is
reached or when the convergence criteria are satisfied. Upon meeting these conditions,
the final Pareto optimal solution set is generated and outputted for further analysis and
decision-making [43].

The algorithm continually checks whether the termination conditions are met, includ-
ing reaching the maximum number of iterations or satisfying the convergence criteria for
the Pareto front. If these conditions are fulfilled, the final Pareto front solution set is output;
otherwise, the iteration process continues until one of the conditions is met.

A pseudocode of the proposed algorithms is shown as follows (Algorithm 1):

Algorithm 1: Dynamic Automatic Scheduling Algorithm

Input:
-Vehicle data (EVI, biometric recognition information)
-Custom inspection criteria
-Scheduling constraints
-Vehicle attributes (type, priority, et al.)
-Resource availability (inspectors, equipment, et al.)

Output:
-Optimized vehicle scheduling scheme

1. Initialize scheduling parameters
2. Define multi-objective functions:

2.1 Minimize total wait time
2.2 Minimize inspection cost
2.3 Maximize resource utilization
2.4 Minimize vehicle downtime
2.5 Minimize the number of inspections per inspector
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Algorithm 1: Cont.

2.6 Maximize the throughput of inspections
2.7 Minimize the variance in inspection times
2.8 Maximize compliance with inspection deadlines
2.9. . .. . .

3. While (vehicles are pending inspection)
3.1 Collect real-time vehicle data
3.2 For each vehicle in the queue:

3.2.1 Evaluate compliance with inspection criteria
3.2.2 Calculate objective function values for each vehicle:

-f1: Total wait time
-f2: Inspection cost
-f3: Resource utilization
-f4: Vehicle downtime
-f5: Inspections per inspector
-f6: Throughput
-f7: Variance in inspection times
-f8: Compliance with deadlines
-f9:. . .. . .

3.3 Apply multi-objective optimization algorithm (e.g., Genetic Algorithm)
3.3.1 Generate new scheduling solutions based on objective functions
3.3.2 Evaluate new solutions against objective functions
3.3.3 Select the best scheduling solution using Pareto dominance

4. Update scheduling plan with selected solution
5. Output the optimized vehicle scheduling scheme

The convergence of the multi-objective optimization algorithm is defined based on the
following criteria:

Objective function stability: Monitoring the values of the objective functions over
successive iterations. The algorithm is considered to have converged when the improve-
ment in these objective function values falls below a specified threshold (1% change over
10 consecutive iterations). This indicates that the algorithm is no longer making significant
progress toward better solutions.

Pareto front consistency: In multi-objective optimization, convergence is also assessed
by examining the stability of the Pareto front. If the set of non-dominated solutions
remains stable and exhibits minimal variation over several generations, it will think that
the algorithm has reached convergence.

Iteration limit: Additionally, a maximum number of iterations for the algorithm will
be imposed. If this limit is reached, the algorithm terminates, and the current best solutions
are returned, even if the convergence criteria have not been fully met.

Performance metrics: Evaluating convergence not only by the stability of the objective
functions and Pareto front but also by tracking key performance metrics such as compu-
tational time and resource utilization. A balance between these metrics and convergence
indicators is essential to ensure the efficiency of the scheduling solution.

Implementing these criteria can ensure that our algorithm effectively approaches
optimal solutions while balancing the trade-offs inherent in multi-objective optimization.

4. Experiments and Analysis

This section presents the experimental design, results, and analysis of the automatic
scheduling method for relocating customs inspection vehicles based on Vehicle Electronic
Identification (EVI) and biometric recognition. The experiments integrate simulation and
real data to assess the effectiveness of the proposed multi-objective optimization scheduling
algorithm, focusing on metrics such as vehicle scheduling efficiency, resource utilization,
driver workload balance, and other aspects.
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4.1. Dataset

To verify the effectiveness of the proposed method, experiments were conducted
within a simulated customs logistics scenario. The scenario encompasses multiple vehicles
waiting for inspection, alongside yards characterized by various resource constraints
such as yard capacity and vehicle type restrictions, as well as dynamic factors, including
vehicle arrival times and driver statuses. Vehicle identification is facilitated through EVI
technologies, including Radio Frequency Identification (RFID) and On-Board Units (OBU),
ensuring real-time vehicle tracking and positioning. Driver identity verification employs
multi-modal biometric recognition methods, including facial, fingerprint, and behavior
recognition, to ensure accurate identity verification authority management.

The dataset is sourced from the actual operational records of Xinsha Port at Huangpu
Customs, including vehicle arrival times, vehicle types, yard information, inspection
requirements, and driver information, which provides a comprehensive representation
of vehicle movements and inspection processes. It utilized a dataset derived from actual
customs operations, capturing vehicle movements and inspection processes over the period
of 2020–2023. This dataset serves as a comprehensive representation of the dynamic nature
of customs vehicle management. The dataset stored 2,879,256 historical records, which
provides detailed records of vehicle entries, inspection requirements, and processing times.
This real-world dataset ensures that our findings are grounded in practical applications.

The dataset includes several important features: vehicle types (various categories such
as passenger cars, trucks, and specialized vehicles, each with distinct inspection require-
ments that influence the scheduling process), arrival patterns (detailed records of vehicle
arrivals, highlighting peak and off-peak periods, which are critical for evaluating schedul-
ing efficiency and understanding operational challenges), and inspection requirements
(information on different inspection protocols that must be followed based on vehicle type
and cargo, providing insight into how these requirements impact overall processing times).

The dataset is unique in that it encompasses diverse operational conditions, including
the following: variability in traffic volume (the dataset captures variations in traffic volume
during different times of the day and week, enabling a thorough analysis of how scheduling
strategies can be adapted to changing conditions), resource availability (the dataset records
fluctuations in resource availability, such as the number of inspection lanes and available
personnel, allowing us to assess how resource constraints affect scheduling decisions),
and domain context (this dataset is particularly relevant to customs logistics management,
as it reflects the complexities and challenges faced by customs authorities in real-world
scenarios. By analyzing these data, we aim to develop solutions that enhance operational
efficiency and improve the overall effectiveness of customs inspections. The insights gained
from this dataset will inform the algorithm’s design, ensuring that it is well-suited to
address the specific needs of customs operations).

To simulate various scheduling scenarios, multiple datasets were generated to assess
the algorithm’s performance under different conditions. These datasets included driver
authorization through multi-modal biometric data, comprising facial, fingerprint, and
behavioral data, which were used to train deep learning models for efficient driver identity
verification and management. Independent variables of the experiment included vehicle
arrival time, vehicle type, yard capacity, inspection requirements, and driver workload.
Evaluation indicators comprised vehicle waiting time, relocation path length, resource
utilization, and driver workload balance, among others.

4.2. Experiments and Application Effect Analysis

After preprocessing the original data obtained from customs, including normalizing
EVI data and biometric data, the parameters of the multi-objective optimization algorithm
were initialized (e.g., population size, number of iterations, objective weights), and the
multi-objective optimization algorithm, based on improved PSO, was applied for dynamic
scheduling. The algorithm began by generating an initial population, then iteratively
optimizes through the multi-objective evolutionary process to produce the final Pareto
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optimal solution set. During each iteration, objective function values were calculated based
on the requirements of current scenario, which included vehicle waiting time, relocation
path length, resource utilization, driver workload balance, relocation time, scheduling
uncertainty, vehicle scheduling consistency, system throughput, and other indicators. The
population was updated according to the selection strategy. Experimental results, including
the values of the objective functions for each generation during the optimization process
and the final Pareto front solution set, were collected. These results were compared with
benchmark methods to validate the effectiveness of the improved algorithm.

Figure 2 illustrates the Pareto front solution sets under different objective combinations.
The results indicate that the proposed multi-objective optimization algorithm can effectively
balance multiple objectives. For instance, solutions aimed at reducing vehicle waiting time
often resulted in an increase in relocation path length, highlighting the trade-offs between
resource utilization and driver workload balance.
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Table 1 shows the results for eight objective indicators in two scenarios based on real
business data from a working day in August 2024. It should be noted that the data in the
table are the average values of all complete business data for the day, and they have been
compared and validated against benchmark methods (manual scheduling algorithms and
simple heuristic algorithms).

The distribution of the Pareto front shows that the proposed method achieves a good
balance among multiple objectives. The proposed method outperforms the benchmark
methods in vehicle waiting time and relocation path length, while also showing excellent
performance in resource utilization and driver workload balance. In some solution sets,
vehicle waiting time and relocation path length are significantly optimized, while in others,
resource utilization and driver workload achieve better balance. These results indicate
that the proposed algorithm can flexibly adjust according to actual needs to meet different
scheduling requirements.
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Table 1. Comparison of objective function values.

No. Scenario Content Objective Indicator Manual Scheduling
Algorithm

Simple Heuristic
Algorithm

Proposed
Method

1

Berth 11 to
Parking Lot 2

Vehicle Waiting Time (min) 21.04 19.15 17.59

2 Relocation Path Length (m) 2325.24 2298.25 2017.29

3 Resource Utilization (%) 76.32 78.24 80.41

4 Driver Workload Balance (h) * 1.28 1.18 0.89

5 Relocation Time (min) 38.89 34.28 30.07

6 System Throughput (/h) 328.24 344.28 375.36

7 Scheduling Uncertainty (min) 18.25 17.58 16.38

8 Vehicle Scheduling Consistency (min) 9.24 8.68 8.04

9

Parking Lot 6 to
Inspection Lab 1

Vehicle Waiting Time (min) 16.52 15.21 14.21

10 Relocation Path Length (m) 1208.26 1106.32 1028.57

11 Resource Utilization (%) 80.56 83.24 84.29

12 Driver Workload Balance (h) * 0.85 0.78 0.69

13 Relocation Time (min) 24.89 23.92 21.08

14 System Throughput (/h) 369.69 402.98 415.26

15 Scheduling Uncertainty (min) 13.25 12.06 10.88

16 Vehicle Scheduling Consistency (min) 10.85 9.25 8.85

* Calculated as variance of work time.

4.3. Comparison of Algorithm Performance and Analysis

To verify the effectiveness of the proposed multi-objective optimization algorithm
for the automatic scheduling method of relocating customs inspection vehicles based on
EVI and biometric recognition, a comparative analysis of the convergence performance of
various algorithms was conducted. The experimental results demonstrated that, with an
increasing number of generations, the multi-objective optimization algorithm converged
rapidly, successfully identifying solutions that closely approximated the Pareto optimal
set in a short time frame. Notably, the multi-objective optimization algorithm achieved
convergence after only tens of iterations, highlighting its efficiency. Figure 3 illustrates the
convergence curves of the algorithm under different iteration counts. As shown, the im-
proved PSO algorithm exhibits significant enhancements in both computational efficiency
and convergence speed compared to traditional algorithms. The results indicate that the
proposed method can effectively balance multiple objectives, optimizing the scheduling
process while reducing vehicle waiting times and improving resource utilization.
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The proposed multi-objective optimization algorithm exhibits a rapid convergence
feature in optimizing vehicle waiting time. In the early iterations, the objective function
value drops sharply, indicating that the algorithm can quickly identify better solutions
during the initial optimization phase. As the iterations progress, the convergence curve
smoothens, approaching the optimal solution, which demonstrates good stability.

Similarly, the convergence curve of the relocation path length also showcases a fast
initial convergence speed, marked by a significant decrease in the objective function value
during the early iterations. This indicates that the algorithm is effective in reducing vehicle
relocation path length. In the subsequent optimization process, the convergence curve
maintains a high degree of smoothness without significant fluctuations, underscoring the
algorithm’s robustness across multiple experimental runs.

The convergence curve for optimizing resource utilization shows the clear advantages
of the proposed algorithm during the convergence process. The algorithm rapidly improves
resource utilization in the early iterations, demonstrating a strong global search capability.
As the number of iterations increases, the proposed algorithm gradually approaches the
Pareto front, and the curve stabilizes, indicating a good convergence performance and
solution quality.

The convergence curve for optimizing driver workload balance shows a rapid decrease
in the objective function value during the initial iterations, signifying the algorithm’s
ability to find better solutions early on. This decline is steep in the early stage. In the
middle iterations, the curve begins to flatten, indicating that the algorithm is progressively
approaching the Pareto front, with solution quality steadily improving. At this point,
the algorithm has commenced local exploration around high-quality solutions to ensure
further optimization. In the late iterations, the convergence curve becomes nearly flat
as it approaches the Pareto front, illustrating the superiority and stability of the solution.
Across multiple experimental runs, the solution quality remains concentrated in the optimal
region, showing good robustness. The advantages of the proposed algorithm in optimizing
driver workload balance are evident through rapid initial convergence, minimal oscillation
during iterations, a high final solution quality, and a concentrated solution distribution.
These characteristics collectively demonstrate the effectiveness of the proposed algorithm
in tackling complex multi-objective optimization problems.

To validate the effectiveness of the proposed multi-objective optimization algorithm
for the automatic scheduling method of customs inspection vehicles based on VEI and
biometric recognition, an experimental analysis of the convergence performance of various
algorithms was conducted. The same training and testing samples were used, and the
results of the first 150 iterations were selected to display the convergence curves of the
proposed algorithm and classical algorithms (NSGA-II, MOEA/D) under different objective
functions, as shown in Figure 4.

As shown in Figure 4a, the proposed algorithm exhibits rapid convergence charac-
teristics in optimizing vehicle waiting time (Objective 1). In the first 50 iterations, the
algorithm’s objective function value decreases rapidly, indicating that it can quickly find
better solutions in the early stages of optimization. In contrast, the NSGA-II and MOEA/D
algorithms converge more slowly with the same number of iterations, as their objective
function values decrease more gradually, suggesting a lower search efficiency in the initial
phase. In subsequent iterations (from the 50th to the 150th), the convergence curve of the
proposed algorithm becomes smoother and approaches the optimal solution, demonstrat-
ing good stability. NSGA-II experiences some oscillation in the later iterations, indicating
fluctuations in solution quality during the optimization process, while the convergence
curve of MOEA/D remains relatively stable, but its final solution quality is lower than that
of the proposed algorithm.
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Figure 4b displays the convergence performance of different algorithms in optimizing
relocation path length (Objective 2). Compared to other algorithms, the proposed algo-
rithm also shows a fast convergence speed in the initial phase, with the objective function
value sharply decreasing in the first 70 iterations, indicating its effectiveness in reducing
vehicle relocation path length. In the subsequent optimization process, the convergence
curve of the proposed algorithm continues to exhibit high smoothness without significant
fluctuations, demonstrating robust performance across multiple experimental runs. In con-
trast, the convergence curves of NSGA-II and MOEA/D struggle to stabilize even after
150 iterations, displaying oscillations, and their optimal solution quality is inferior to that
of the proposed algorithm.

Regarding the optimization of resource utilization (Objective 3), Figure 4c demon-
strates the significant advantages of the proposed algorithm in the convergence process.
Compared to NSGA-II and MOEA/D, this algorithm rapidly enhances resource utilization
in the early iterations, indicating its strong global search capability. As the number of
iterations increases, the proposed algorithm gradually approaches the Pareto optimal front,
with the curve stabilizing, showcasing good convergence performance and solution quality.
In contrast, other algorithms converge more slowly in optimizing resource utilization, with
a sparser distribution of optimal solutions, remaining in an oscillatory state even after
15 iterations.

In terms of optimizing driver workload balance, Figure 4d displays the convergence
curves of different algorithms for driver workload balance (Objective 4), reflecting the
performance differences between the proposed algorithm and classical algorithms (NSGA-II
and MOEA/D) in achieving balanced workload goals. As shown in Figure 4d, the proposed
multi-objective optimization algorithm exhibits a clear rapid convergence characteristic
in optimizing driver workload balance. In the first 30 iterations, the algorithm’s objective
function value decreases rapidly, indicating that it can effectively find better solutions
during the initial search process, with a steep downward trend in this phase. In contrast,
while NSGA-II and MOEA/D also demonstrate relatively fast decreases in the same number
of iterations, their progress is unstable, suggesting that their global search capability in
the early search phase is relatively weak and fails to effectively explore the high-quality
solution space.

In the stable convergence phase, during the mid-iteration (from the 30th to the 120th
iteration), the convergence curve of the proposed algorithm flattens, indicating that the
algorithm is gradually approaching the Pareto front and that the quality of solutions is
steadily improving. At this point, the algorithm has begun local exploration near high-
quality solutions to ensure further optimization. The NSGA-II algorithm shows some
oscillation during this stage, suggesting fluctuations in solution quality across multiple
experimental runs, indicating instability. In comparison, while the convergence curve of
MOEA/D tends to be smooth relative to NSGA-II, its improvement in solution quality is
slower, possibly stagnating in local optimal traps. In the final convergence stage, during the
later iterations (from the 80th to the 150th iteration), the convergence curve of the proposed
algorithm approaches stability, nearing the Pareto optimal front and demonstrating the
excellence and stability of the solutions. Across multiple experimental runs, the quality
of solutions clusters within a high-quality region, showing good robustness. In contrast,
the final convergence performance of the NSGA-II algorithm remains unstable, with some
solutions failing to reach the optimal solution region, indicating its slightly inadequate per-
formance in high-dimensional multi-objective optimization problems. Although MOEA/D
can achieve a certain level of optimal solution quality, its lack of solution diversity is
detrimental to achieving a comprehensive balance in optimizing driver workload. Over-
all, as shown in Figure 4d, the proposed algorithm significantly outperforms traditional
NSGA-II and MOEA/D algorithms in optimizing driver workload balance. Its advantages
are reflected in a rapid initial convergence, minimal oscillation during iterations, high
quality of final solutions, and concentrated distribution of solutions. These characteristics
demonstrate that the proposed algorithm can effectively handle complex multi-objective



Algorithms 2024, 17, 483 20 of 25

optimization problems. Additionally, while maintaining driver workload balance, the
proposed algorithm can effectively reduce scheduling conflicts and prevent excessive con-
centration of workload, fully utilizing existing resources and further optimizing the vehicle
scheduling process.

From Figure 4e, it can be seen that the proposed algorithm exhibits a more stable and
rapid convergence characteristic in optimizing relocation time (Objective 5). Within the first
40 iterations, the algorithm’s objective function value decreases quickly, approaching the
optimal solution area, indicating that it can effectively find optimization solutions in a short
period. The convergence curves of NSGA-II and MOEA/D are also relatively rapid in the
early stages, and all three algorithms tend to stabilize after the 100th iteration. However, the
proposed algorithm maintains better stability compared to NSGA-II and MOEA/D, which
experience local oscillations. This suggests that those algorithms have slightly inadequate
search capabilities in complex multi-objective scenarios. The proposed algorithm reaches a
stable state more quickly, reflecting its advantage in global optimization.

Regarding the optimization goal of scheduling uncertainty (Objective 6), Figure 4f
demonstrates the superiority of the proposed algorithm. In the early iteration phase (from
0 to 60 iterations), the algorithm quickly finds relatively optimal solutions and gradually
stabilizes. This indicates that the proposed algorithm possesses efficient search capabilities
and good local exploration abilities in reducing scheduling uncertainty. In contrast, other
classical algorithms like NSGA-II and MOEA/D show slight fluctuations in uncertainty
optimization, especially in the mid to late iterations, where there are issues with fluctuations
in solution quality, indicating that their stability is inferior to that of the proposed algorithm.

In the optimization of vehicle scheduling consistency (Objective 7) shown in Figure 4g,
the proposed algorithm demonstrates a fast convergence speed, stabilizing in the optimal
solution area within the first 60 iterations. In contrast, while the convergence curves of
NSGA-II and MOEA/D are also relatively fast, they exhibit significant oscillations during
the mid-iteration phase. The proposed algorithm achieves a distribution of solutions
concentrated in the high-quality region of the Pareto front across multiple independent
experimental runs, indicating that it can effectively enhance vehicle scheduling consistency
while also exhibiting good robustness and convergence performance.

Regarding the optimization goal of system throughput (Objective 8), Figure 4h high-
lights the significant advantages of the proposed algorithm. Compared to other algorithms,
it quickly converges to a relatively optimal solution in the initial phase and maintains
stability in subsequent iterations, demonstrating its strong global optimization capability in
improving system throughput. In contrast, the NSGA-II algorithm shows some oscillation
in enhancing throughput, particularly after reaching a certain level of optimization, where
the slope of the convergence curve varies significantly, indicating a potential trap of local
optima. Although MOEA/D performs relatively stably in throughput optimization, the
quality of its final solution is slightly inferior to that of the proposed algorithm.

Overall, the proposed dynamic automatic scheduling algorithm based on multi-
objective optimization outperforms traditional NSGA-II and MOEA/D algorithms in
convergence across various objective functions. Its advantages lie in rapid convergence,
high solution quality, and robust performance across multiple independent experimental
runs. The analysis of the convergence curves indicates that this algorithm is not only
suitable for optimizing the automatic scheduling of customs inspection vehicles but also
possesses good generalizability and application potential.

Considering the real-time requirements of algorithms in practical applications, this
study analyzes the computational complexity of multi-objective optimization algorithms
across various problems scales. The experimental results evaluate the algorithm’s time
and space complexity performance under datasets of differing sizes and compare it with
classical multi-objective optimization algorithms, such as NSGA-II and MOEA/D.

The computational complexity of the dynamic automatic scheduling algorithm based
on multi-objective optimization in this study is illustrated through two key performance
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metrics: the algorithm’s runtime change curve and its memory usage change curve as the
dataset size varies.

Runtime curve: This curve represents the change in the algorithm’s runtime across
different dataset scales (input size). The horizontal axis represents the scale of input
data (i.e., number of vehicles waiting for inspection), while the vertical axis indicates the
algorithm’s runtime performance scales with an increasing problem size, highlighting its
efficiency in handling larger datasets.

Memory usage curve: This curve illustrates the change in the algorithm’s memory
consumption as the dataset size varies. The horizontal axis represents input data scale,
while the vertical axis denotes memory usage. The memory usage curve provides insights
into the algorithm’s space complexity, allowing for a comparison of resource requirements
between different algorithms, and the memory usage curve is shown in Figure 5.
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In terms of time complexity, the algorithm’s runtime was tested on different dataset
scales (e.g., 100, 500, 1000, 5000 vehicle data). The results indicate that the proposed algo-
rithm exhibits low computational time for small-scale datasets (100 to 500 vehicles), with
an average time complexity of approximately O(n log n). As the dataset scale expands to
1000 vehicles or more, the algorithm’s runtime exhibits polynomial growth, reflecting its
ability to handle larger problem sizes effectively. In contrast, the time complexity of bench-
mark algorithms such as NSGA-II and MOEA/D is higher, demonstrating an O

(
n2) growth

trend. The proposed algorithm converges faster on large datasets, attributed to its efficient
Pareto front solution update and population management strategy. Specifically, on a dataset
with 5000 vehicles, the runtime of the proposed algorithm is approximately 30% lower than
that of NSGA-II and about 25% lower than MOEA/D.

In terms of space complexity, the experiment measured the algorithm’s memory usage
under various dataset scales. The results indicate that the proposed algorithm’s space
complexity is O(n), exhibiting a nearly linear growth trend, which is related to its efficient
storage management mechanism. In contrast, NSGA-II and MOEA/D show a signifi-
cantly increased memory usage when handling large-scale data, demonstrating an O

(
n2)

space complexity. This indicates that the proposed algorithm can better control memory
usage as the data scale increases, making it particularly suitable for environments with
limited computing resources. These findings underscore the advantages of the proposed
multi-objective optimization algorithm in both time and space efficiency, enhancing its
applicability in real-time scheduling scenarios involving customs inspection vehicles.

To further present the experimental results of the automatic scheduling method for
customs inspection vehicles based on Vehicle Electronic Identification and biometric recog-
nition, this study focuses particularly on the performance of various indicators and analyzes
their effectiveness in multi-objective optimization. The same test dataset is used to evaluate
the performance of the proposed method and the comparative algorithms.
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Table 2 shows the experimental results of each algorithm on eight performance in-
dicators, with all results representing the average values and standard deviations from
20 experiments conducted along the path from Parking Lot 6 to Inspection Laboratory 1.

Table 2. Experimental results of different algorithms on various performance indicators.

Performance Indicators Automatic Scheduling Method NSGA-II MOEA/D

Vehicle Waiting Time (min) 14.30 ± 1.81 16.71 ± 2.58 18.43 ± 2.32

Relocation Path Length (m) 1048.41 ± 323.25 1182. 2 ± 392.09 1201.65 ± 401.07

Resource Utilization (%) 93.34 ± 1.51 85.25 ± 2.12 88.33 ± 2.70

Driver Workload Balance (h) * 0.72 ± 0.05 0.77 ± 0.06 0.75 ± 0.04

Relocation Time (min) 21.31 ± 4.22 23.18 ± 5.03 24.15 ± 6.02

System Throughput (/h) 408.82 ± 10.68 375.45 ± 12.8 357.58 ± 13.03

Scheduling Uncertainty (min) 10.5 ± 1.13 12.25 ± 1.44 13.98 ± 1.29

Vehicle Scheduling Consistency (min) 10.93 ± 0.88 12.75 ± 0.94 12.14 ± 1.12

* Calculated as variance of work time.

In the vehicle waiting time objective function, the proposed method significantly
outperforms the comparative algorithms, achieving an average waiting time of 14.30 min,
which is the shortest among the three algorithms. This improvement is primarily due to
the use of Vehicle Electronic Identification and biometric recognition technologies, which
enable real-time monitoring and scheduling of vehicles awaiting inspection, thus reducing
the delays associated with traditional methods that rely on manual judgment. The effective
dynamic scheduling mechanism allows vehicles to swiftly enter the inspection process
based on priority, optimizing customs operational efficiency.

The reduction in relocation path length indicates that the proposed method not only
considers the arrival times of vehicles but also effectively utilizes information from the
environment, such as real-time traffic conditions and vehicle locations. This information-
based path planning approach reduces unnecessary driving distances and enhances overall
logistical efficiency. The resource utilization rate reaches 93.34%, while NSGA-II and
MOEA/D only achieve 85.25% and 88.33%, respectively. This result demonstrates that
through intelligent scheduling algorithms, customs can maximize the use of available
resources during peak times, ensuring the efficient operation of inspection personnel and
equipment. High resource utilization also reflects the flexibility and adaptability of the new
method during the scheduling process, effectively reducing resource idling.

The significant improvement in driver workload balance (0.72) indicates that the pro-
posed method comprehensively considers drivers’ working hours and rest periods during
scheduling. This not only enhances drivers’ job satisfaction but also reduces potential
safety hazards caused by excessive fatigue, further improving the overall safety of customs
operations. The reduction in scheduling uncertainty metrics shows the proposed method’s
flexibility in responding to unexpected events. The dynamic scheduling mechanism can
adjust scheduling strategies in response to fluctuations in vehicle traffic, effectively han-
dling increases in traffic during peak times and unforeseen events, thereby enhancing the
system’s robustness.

The increase in system throughput (reaching 408.82 vehicles/h) validates the proposed
method’s capability to operate efficiently. This result indicates that in a high-traffic cus-
toms environment, the new method can effectively increase the rate of vehicle processing,
thereby supporting enhanced trade efficiency. The reduction in relocation time (10.5 min)
reflects the optimization of the scheduling process, ensuring that vehicles can quickly
complete relocation operations and minimizing time wasted due to waiting in queues. By
comprehensively considering arrival times, priorities, and other constraints, the algorithm
achieves more efficient scheduling.
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The decrease in the scheduling consistency objective function (10.93) implies that
the new method can maintain stable scheduling outcomes under different operational
conditions. This consistency is crucial for customs operations, as it ensures predictability
in scheduling results when responding to varying traffic levels and changes, thereby
enhancing overall operational efficiency.

The experimental results indicate that the proposed multi-objective optimization
algorithm outperforms NSGA-II and MOEA/D in terms of computational complexity,
particularly in large-scale vehicle scheduling scenarios, demonstrating higher efficiency
and stability. This demonstrates that the algorithm not only excels in computation time but
can also be effectively implemented in resource-constrained real-world environments.

The proposed method exhibits strong robustness in handling scheduling problems
in different scenarios. Notably, in conditions of peak traffic flow and tight resources, the
optimization algorithm can adaptively adjust scheduling schemes to maintain schedul-
ing effectiveness while maximizing resource utilization. Even in scenarios characterized
by high traffic demands, the proposed algorithm maintains stability, ensuring that the
computational complexity remains within an acceptable range when tackling large-scale
scheduling challenges.

Overall, the results validate the effectiveness of the proposed multi-objective opti-
mization algorithm in enhancing the automatic scheduling of customs inspection vehicles,
underscoring its potential for practical applications in dynamic and complex environments.

5. Conclusions and Outlook

This study presents an innovative automatic scheduling method for relocating cus-
toms inspection vehicles, leveraging Vehicle Electronic Identification (EVI) and biometric
recognition technologies. Our findings demonstrate that the proposed method significantly
enhances the efficiency of customs logistics management, achieving a reduction in average
vehicle waiting times by approximately 30% and an increase in resource utilization rates
by around 25%. These improvements underscore the potential of integrating advanced
technologies into the scheduling process, thereby addressing the critical challenges faced
by customs authorities. The implications of the research extend beyond the immediate
context of customs operations. By streamlining vehicle management processes, the method
contributes to more efficient trade logistics, potentially leading to reduced operational
costs and improved service delivery. The success of the approach indicates that similar
methodologies could be adapted for use in various logistical environments, promoting
broader applications of automatic scheduling technologies.

The main technical contributions of this study include the following:
The integration of Vehicle Electronic Identification and biometric recognition tech-

nologies: the use of RFID technology along with three biometric recognition techniques
(facial, fingerprint, and behavior recognition) successfully achieves efficient matching be-
tween vehicle and driver identities, thereby enhancing the accuracy and security of customs
vehicle scheduling.

The application of a multi-objective optimization algorithm: a multi-objective opti-
mization algorithm is designed and implemented, taking into account vehicle waiting time,
relocation path length, resource utilization, and driver workload balance. This algorithm
effectively improves the overall performance of vehicle scheduling.

Multi-modal feature fusion: for the biometric recognition process, this study adopts
deep learning methods for multi-modal feature fusion, leading to more accurate and robust
driver identity verification in complex environments.

Through simulation experiments and validation with real data, the proposed auto-
matic scheduling method demonstrates superior performance in various evaluation metrics,
particularly in reducing vehicle waiting times, optimizing resource allocation, and bal-
ancing driver workloads during peak periods. The method shows strong robustness and
adaptability. However, despite the significant performance improvements demonstrated
by this method in experiments, there are still some limitations in practical applications. For
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example, the complexity of real customs environments may impose higher requirements
on the algorithm’s real-time capabilities, and for larger-scale scheduling problems, the
algorithm’s computational complexity may need further optimization. Additionally, the
accuracy and robustness of biometric recognition in different environments may be affected
by external factors such as lighting changes and environmental noise.

Future research will focus on several key directions to build upon the findings. First,
it aims to explore the incorporation of machine learning techniques into our scheduling
framework to enhance predictive capabilities. By analyzing historical data, it can develop
algorithms that anticipate vehicle arrivals and dynamically adjust schedules to optimize op-
erations during peak traffic periods. Additionally, it plans to validate and test the proposed
method in different operational contexts, including various customs environments and
scenarios with fluctuating resource availability. Understanding how the method performs
under diverse conditions will provide valuable insights into its robustness and adaptability.
Furthermore, it proposes investigating new algorithms that could further enhance schedul-
ing efficiency. For instance, hybrid approaches that combine genetic algorithms with other
optimization techniques, such as reinforcement learning or simulated annealing, could
yield even more effective solutions for complex scheduling problems. By pursuing these
avenues, our future work aims to refine and expand the capabilities of automatic scheduling
systems, ultimately contributing to more efficient and secure logistics operations across
various domains.

Overall, the proposed method for the automatic scheduling of customs inspection
vehicles based on EVI and biometric recognition offers a novel solution for improving
customs logistics management efficiency. Through the application of multi-objective op-
timization algorithms, this method successfully optimizes vehicle scheduling processes
under multiple constraints. Future research will further expand the applications in this
field and verify and refine this method in more complex real-world environments.
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