
Citation: Hsieh, F.-S. A Self-Adaptive

Meta-Heuristic Algorithm Based on

Success Rate and Differential

Evolution for Improving the

Performance of Ridesharing Systems

with a Discount Guarantee.

Algorithms 2024, 17, 9. https://

doi.org/10.3390/a17010009

Academic Editors: Łukasz Knypiński,

Ramesh Devarapalli and

Marcin Kaminski

Received: 1 December 2023

Revised: 22 December 2023

Accepted: 22 December 2023

Published: 25 December 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Self-Adaptive Meta-Heuristic Algorithm Based on Success
Rate and Differential Evolution for Improving the Performance
of Ridesharing Systems with a Discount Guarantee
Fu-Shiung Hsieh

Department of Computer Science and Information Engineering, Chaoyang University of Technology,
Taichung 413310, Taiwan; fshsieh@cyut.edu.tw

Abstract: One of the most significant financial benefits of a shared mobility mode such as ridesharing
is cost savings. For this reason, a lot of studies focus on the maximization of cost savings in shared
mobility systems. Cost savings provide an incentive for riders to adopt ridesharing. However, if cost
savings are not properly allocated to riders or the financial benefit of cost savings is not sufficient
to attract riders to use a ridesharing mode, riders will not accept a ridesharing mode even if the
overall cost savings is significant. In a recent study, the concept of discount-guaranteed ridesharing
has been proposed to provide an incentive for riders to accept ridesharing services through ensuring
a minimal discount for drivers and passengers. In this study, an algorithm is proposed to improve
the performance of the discount-guaranteed ridesharing systems. Our approach combines a success
rate-based self-adaptation scheme with an evolutionary computation approach. We propose a
new self-adaptive metaheuristic algorithm based on success rate and differential evolution for the
Discount-Guaranteed Ridesharing Problem (DGRP). We illustrate effectiveness of the proposed
algorithm by comparing the results obtained using our proposed algorithm with other competitive
algorithms developed for this problem. Preliminary results indicate that the proposed algorithm
outperforms other competitive algorithms in terms of performance and convergence rate. The results
of this study are consistent with the empirical experience that two people working together are more
likely to come to a correct decision than they would if working alone.

Keywords: shared mobility; ridesharing; optimization; self-adaptive; evolutionary computation;
metaheuristic

1. Introduction

Shared mobility is a paradigm of transport modes that enables the reduction of vehicles,
traffic congestion, consumption of energy and emission of greenhouse gas in cities. Due
to the potential benefits of shared mobility, different sharing models have emerged in
the past years. These include ridesharing, car sharing and bike sharing. As all of these
transport models are helpful for sustainability issues, relevant issues and problems have
attracted researchers’ and practitioners’ attention in academia and industry. In particular,
ridesharing has been implemented in university campuses [1], by companies [2] and by
transport service providers such as Uber [3], Lyft [4] and BlaBlaCar [5].

In the literature, early studies of ridesharing focused on the problem of meeting
the transport requirements of drivers and passengers. A lot of the work from the early
ridesharing literature can be found in [6,7]. In these early works, the goal was to optimize
total cost savings or total travel distance through matching drivers and passengers based
on their itineraries. The ways to achieve this goal can include building a simulation
environment to simulate the application scenarios or formulating an optimization model to
solve the ridesharing problems. Due to the wide variety of ridesharing problems, different
models were proposed and studied in the past years. Optimization methods were applied
to formulate the ridesharing problems. The challenges and opportunities for solving

Algorithms 2024, 17, 9. https://doi.org/10.3390/a17010009 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010009
https://doi.org/10.3390/a17010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-0208-9937
https://doi.org/10.3390/a17010009
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010009?type=check_update&version=1

Algorithms 2024, 17, 9 2 of 26

ridesharing problems with optimization models can be found in [8,9]. A review on variants
of shared mobility, problems and solution approaches is available in [10].

In addition to the issues of optimizing total cost savings or total travel distance [11],
there are recent works on other issues in ridesharing systems. For example, to promote
ridesharing, the optimization of monetary issues and non-monetary issues in ridesharing
systems has been studied. As mentioned in [12–14], dealing with these issues often requires
the modeling of more complex constraints that are highly nonlinear. These constraints
may lead to a more complex solution space and make it difficult to find a solution for the
problem. Therefore, these monetary issues and non-monetary issues in ridesharing systems
pose new challenges in the development of effective methods to solve relevant ridesharing
problems.

One prominent financial benefit of a shared mobility mode such as ridesharing is
cost savings. For this reason, a lot of studies focus on maximization of cost savings in
shared mobility systems. Cost savings provide an incentive for riders to adopt ridesharing.
However, if cost savings are not properly allocated to riders or the financial benefit of
cost savings is not sufficient to attract riders to use ridesharing mode, riders will not
accept ridesharing mode even if the overall cost savings is significant [15,16]. In a recent
study [13], the concept of discount-guaranteed ridesharing has been proposed to provide an
incentive for riders to accept ridesharing services through ensuring a minimal discount for
drivers and passengers. In [13], several algorithms have been applied to solve the Discount-
Guaranteed Ridesharing Problem (DGRP). With the advances in computing technology, it
is possible to develop a more effective algorithm to solve the problem. In this study, we will
propose an algorithm to improve the performance of the discount-guaranteed ridesharing
systems and the convergence rate to find a solution for the DGRP. Neighborhood search
has been recognized as an effective mechanism to improve solutions in an evolutionary
computation approach. The concept of self-adaptation has been widely used in meta-
heuristic algorithms to identify better search strategies through learning and to apply them
in the solution-finding processes to improve convergence rate. In this paper, a success
rate-based self-adaptation mechanism and neighborhood search are used jointly to develop
an effective algorithm to solve the DGRP.

One of the challenges in solving the DGRP arises from the large number of constraints
and discrete decision variables. To tackle the constraints effectively, we adopt a method
that discriminates feasible regions from infeasible regions in the solution space [17] by
designing a proper fitness function. To deal with the discrete decision variables, we use a
transformation approach that transforms the real values of decision variables into discrete
values. The contributions of this paper include the development of a new self-adaptive
neighborhood search algorithm for solving the DGRP and the assessment of its effectiveness
by comparing with existing methods.

The rest of this paper is organized as follows. In Section 2, we will provide a literature
review of ridesharing problems and relevant solution methods. We will present the problem
formulation and the model of the DGRP in Section 3. In Section 4, the details about the
development of a solution algorithm based on self-adaptation and neighborhood search
will be presented. In Section 5, the results obtained by applying the proposed algorithm and
other competitive algorithms will be presented. We will discuss the results of experiments
and conclude this study in Section 6.

2. Literature Review

In this section, we briefly review existing studies relevant to this paper. As we con-
centrate on the development of an effective algorithm for the DGRP based on success rate
self-adaptation and neighborhood search, the papers reviewed in this section include two
categories: papers related to ridesharing literature and papers relevant to self-adaptation
and neighborhood search in an evolutionary computation approach. Papers related to
ridesharing will be introduced first. Papers related to self-adaptation and neighborhood
search in an evolutionary computation approach will be introduced next.

Algorithms 2024, 17, 9 3 of 26

One of the sustainable development goals is to promote emerging paradigms to miti-
gate global warming by reducing the consumption of energies, greenhouse gas emissions
and negative impact to the environment. With the global trend to achieve this goal, several
transport modes such as ridesharing, car-sharing and bike-sharing have appeared in the
transportation sector in the past two decades under the sharing economy. As one of the
most important transport modes for shared mobility, ridesharing makes it possible for
passengers and drivers with similar itineraries to share rides and enjoy cost savings. For a
comprehensive survey of ridesharing literature, please refer to [6,7,18].

Although ridesharing is one of the transport modes with the most potential to achieve
shared economy, there are still barriers and challenges for its acceptance by the general pub-
lic. For example, the lack of trust in ridesharing is one factor that hinders users’ acceptance
of ridesharing [14]. Several studies have been done on the barriers to the acceptance of
ridesharing. The acceptance of ridesharing mode is influenced by several monetary factors
and non-monetary factors. Monetary factors for the acceptance of ridesharing are directly
related to the financial benefits due to cost savings [12]. Non-monetary factors are directly
related to the safety and comfortability of ridesharing such as trust, enjoyability and social
awareness. For example, the trust issue in ridesharing has been studied in [14]. In particular,
providing a monetary incentive is essential for the acceptance of ridesharing. In this study,
we propose a scheme to provide a monetary incentive for ridesharing participants.

As cost savings is recognized as one of the most prominent benefits from rideshar-
ing, the objective of the ridesharing problem considered in most studies is to maximize
overall cost savings or minimize the overall travel costs while meeting the transportation
requirements of riders and drivers [11]. However, individual ridesharing participants may
not enjoy the benefits of cost savings even if overall cost savings have been maximized or
the overall travel costs have been minimized. To make individual ridesharing participants
enjoy the benefits of cost savings, the overall cost savings must be allocated to individual
ridesharing participants properly such that the benefit of cost savings is sufficient for
ridesharing participants to accept ridesharing.

In [12], a problem formulation has been proposed to maximize the overall rewarding
ratio. However, there is no guarantee that the minimal rewarding rate can be guaranteed
even if the overall cost savings is maximized [13]. In [13], a problem formulation and asso-
ciated solution methods are proposed to ensure that the rewarding rate can be guaranteed.
However, scalability of the algorithms was not studied. In this study, we will propose a new
algorithm for the DGRP formulated in [13] to improve the performance and convergence
rate to guarantee satisfaction of the rewarding rate for ridesharing participants.

As the DGRP is a typical integer programming problem in which the decision vari-
ables are binary, the complexity of the problem grows exponentially with the problem
size. Exact optimization approaches are computationally feasible only for small instances
due to the exponential growth of the solution space as the instances grow. Therefore,
approximate optimization approaches will be adopted to solve the decision problem. In the
past decades, a lot of evolutionary algorithms were proposed to find solutions for com-
plex optimization problems. These include the Genetic Algorithm [19], Particle Swarm
Optimization algorithm [20], Firefly algorithm [21] and metaheuristic algorithms such
as the Differential Evolution algorithm [22]. In the literature, a wide variety of variants
in the Genetic Algorithm, Particle Swarm Optimization algorithm, Firefly algorithm and
Differential Evolution algorithm can be found in [23–26], respectively. Although these
approaches may be applied to find solutions for optimization problems, their performances
vary. The studies of [27,28] show several advantages of the PSO approach over the Genetic
Algorithm. The previous study of [29] indicates that the Differential Evolution approach
performs better than the Genetic Algorithm. Evolutionary computation approaches such as
PSO or DE algorithms are well-known metaheuristic algorithms. A metaheuristic algorithm
refers to a higher-level procedure that generates or selects a heuristic to find a good solution
to an optimization problem. In [30–36], several adaptive Differential Evolution algorithms
have been proposed to solve optimization problems.

Algorithms 2024, 17, 9 4 of 26

The goal of this study is to propose a more effective solution algorithm to improve the
performance of the DGRP. In this study, we will combine a Differential Evolution approach
with a success rate self-adaptation mechanism to develop a solution algorithm for the DGRP.
The characteristics of the DGRP are different from the problems addressed in [30–36] as the
decision variables of the DGRP are discrete whereas the decision variables of the problems
studied in [30–36] are continuous real values. In this paper, the self-adaptation mechanism
of [37] and the concept of the neighborhood search of [38] are applied jointly to develop
an effective problem solver. Note that the self-adaptation mechanism of [37] and the
neighborhood search concept of [38] are originally proposed for a continuous solution
space. This study will verify effectiveness of combining the self-adaptation mechanism
and neighborhood search mechanism for problems with a large number of constraints and
discrete decision variables.

The problem addressed in this paper is the DGRP, which was formulated in [13].
This paper is different from the previous work [13] in that the proposed success rate-
based self-adaptive metaheuristic algorithm is different from the ten algorithms proposed
in [13]. The contribution of this paper is to propose a novel self-adaptive algorithm to
improve the performance and convergence rate of discount-guaranteed ridesharing systems.
We verified the effectiveness of the self-adaptive algorithm by conducting experiments. The
results indicated that the proposed method improves the performance of the solution and
convergence rate for finding the solution. Although the algorithm proposed in this paper is
designed for the DGRP, it can be applied to other optimization problems. For example, the
work reported in [14] also applied a similar approach to another instance of a trust-based
ridesharing problem.

3. The Formulation of the DGRP

In this section, we will present the formulation of the DGRP based on a combinatorial
double auction mechanism [39]. The variables, parameters and symbols used in this paper
are listed in Table 1. We first briefly introduce the combinatorial double auction model and
then formulate the DGRP based on the combinatorial double auction model.

Table 1. Notation of symbols, variables, and parameters.

Variable Meaning

P Total passengers.
D Total drivers.
p Passenger index, where p ∈ {1, 2, 3, . . . P}.
d Driver index, where d ∈ {1, 2, 3, . . . , D}.
K The number of location indices for all passengers, i.e., K is equal to P.
k Location index, k ∈ {1, 2, . . . , K}.
Jd Total bids of driver d ∈ {1, 2, . . . , D}.
j The j-th bid index of driver d ∈ {1, 2, 3, . . . , D} with j ∈ {1, 2, . . . , Jd}.

DBdj DBdj = (q1
dj1, q1

dj2, q1
dj3, . . . , q1

djP, q2
dj1, q2

dj2, q2
dj3, . . . , q2

djP, odj, cdj): driver d’s j-th bid, where

qdjp: the no. of seats allocated for passenger p,

odj: the original cost of driver d ∈ {1, 2, . . . , D} if he/she travels alone,

cdj: the bid’s travel cost.
q1

djp No. of seats allocated at the pick-up location of passenger p, q1
djp = qdjp.

q2
djp No. of seats released at the drop-off location of passenger p, q2

djp = qdjp.

PBp PBp = (s1
p1, s1

p2, s1
p3, . . . , s1

pP, s2
p1, s2

p2, s2
p3 . . . , s2

pP, fp): passenger p’s bid, where

spk: the no. of seats requested by p at location k and

fp: the original cost of p without ridesharing.

s1
pk No. of seats requested at passenger p’s pick-up location, s1

pk =

{
spp i f k = p
0 otherwise

.

Algorithms 2024, 17, 9 5 of 26

Table 1. Cont.

Variable Meaning

s2
pk No. of seats released at passenger p’s drop-off location, s2

pk =

{
spp i f k = p
0 otherwise

.

xdj Decision variable for driver d ∈ {1, 2, . . . , D}: xdj = 1 if DBdj is a winning bid and xdj = 0 otherwise.
yp Decision variable for passenger p ∈ {1, 2, 3, . . . P}: yp = 1 if PBp is a winning bid and yp = 0 otherwise.
rD Drivers’ minimal expected cost savings discount.
rP Passengers’ minimal expected cost savings discount.

F(x, y) The objective function, F(x, y) =

(
P
∑

p=1
yp

(
fp

))
+

(
D
∑

d=1

Jd

∑
j=1

xdjodj

)
−
(

D
∑

d=1

Jd

∑
j=1

xdjcdj

)
.

Γdj The set of passengers on the ride of the bid DBdj of driver d ∈ {1, 2, . . . , D}.

Fdj(x, y) Cost savings of the bid DBdj of driver d ∈ {1, 2, . . . , D}. Hdj(x, y) =

[(
∑

p∈Γdj

yp fp

)
+ xdjodj −

(
xdjcdj

)]
.

c fpdj Travel cost for passenger p ∈ Γdj on the ride of bid DBdj.

3.1. An Auction Model for Ridesharing Systems

Just like buyers and sellers who trade goods in a traditional marketplace, the functions
and operations of a ridesharing system are similar to a traditional marketplace. In a tradi-
tional marketplace, buyers purchase goods according to their need and sellers recommend
goods based on the available items in stock. In a ridesharing system, individual passengers
with transportation requirements are on the demand side. Individual drivers also have
their transportation requirements and constraints. Individual drivers are on the supply side.
The roles of passengers and drivers in a ridesharing system are similar to buyers and sellers
in a traditional marketplace. Therefore, a ridesharing system can be modeled as a virtual
“marketplace” in which potential passengers and drivers seek to find an opportunity for
ridesharing. Auctions are a proper business model that can be applied to trade goods in
a marketplace in which the price of goods is not fixed and is determined by buyers and
sellers. They can also be applied to determine the passengers and drivers for ridesharing in
ridesharing systems.

In the literature, a variety of auction models have been proposed and applied in
different application scenarios. Depending on the number of buyers and sellers in an
auction, auctions can be classified into two categories: single-side auctions and double
auctions. There are two types of single-side auctions: (1) single seller and multiple buyers
and (2) single buyer and multiple sellers. In a double auction, there are multiple buyers
and multiple sellers. If there are multiple types of goods for trading in a double auction,
buyers and sellers can purchase or sell a combination of goods in the auction. This type of
double auction is called a combinatorial double auction.

For an auction scenario with multiple buyers and multiple sellers to trade multiple
types of goods, although one can apply either multiple single-side auctions or one com-
binatorial double auction, the combinatorial double auction is more effective in terms of
efficiency. Therefore, we apply the combinatorial double auction model to determine the
passengers and drivers for ridesharing in ridesharing systems. There are three types of
roles in a typical combinatorial double auction for trading goods: buyers, sellers and the
auctioneer. In a ridesharing system modeled with a combinatorial double auction, there
are three types of roles: passengers, drivers and the ridesharing information provider. The
ridesharing information provider acts as the auctioneer and provides a ridesharing system
to process the requests from the passengers and drivers.

3.2. A Formulation of the DGRP Based on Combinatorial Double Auctions

A passenger expresses his/her transportation requirements by sending a request to the
ridesharing system provided by the ridesharing information provider. A driver expresses
his/her transportation requirements by sending a request to the ridesharing system to

Algorithms 2024, 17, 9 6 of 26

indicate his/her transportation requirements and constraints. The ridesharing system must
determine the passengers and drivers for ridesharing. In a combinatorial double auction
model, buyers and sellers who place the winning bids are called winners. In a ridesharing
system, each passenger and each driver on a shared ride determined by the ridesharing
system are called winners.

The request submitted by a passenger takes the following form: Rp = (Lop, Lep, ωe
p, ωl

p, np),
which includes the passenger p’s start location, Lop, end location, Lep, earliest departure
time, ωe

p, latest arrival time, ωl
p, and requested seats, np, respectively. The request submitted

by a driver takes the following form: Rd = (Lod, Led, ωe
d, ωl

d, ad, τd, Γd), which includes the
driver’s start location, Lod, end location, Led, earliest departure time, ωe

d, latest arrival time,
ωl

d, available seats, ad, and maximum detour ratio, τd. The earliest departure time and the
latest arrival time in the request are used in the decision models of most papers on rideshar-
ing. The earliest departure time and the latest arrival time are specified by the ridesharing
participant sending the request. The ridesharing system will extract the information
from the Rp of a passenger to form a bid PBp = (s1

p1, s1
p2, s1

p3, . . . , s1
pP, s2

p1, s2
p2, s2

p3 . . . , s2
pP, fp),

where s1
pk is the No. of seats requested at pick-up location k of passenger p, s2

pk is the No.
of seats released at drop-off location k of passenger p and fp is passenger p’s original cost
without ridesharing. The ridesharing system will extract the information from Rd of a
driver to form a bid DBdj = (q1

dj1, q1
dj2, q1

dj3, . . . , q1
djP, q2

dj1, q2
dj2, q2

dj3, . . . , q2
djP, odj, cdj), where

q1
djp is the No. of seats allocated at the pick-up location k of passenger p, q2

djp is the No. of
seats released at the drop-off location k of passenger p, odj is the original cost of the driver
when he/she travels alone and cdj is the travel cost of the bid.

The DGRP to be formulated takes into account several factors: balance between
demand and supply, the non-negativity of surplus, a maximum of one winning bid for
each driver, minimal rewarding rate for drivers and minimal rewarding rate for passengers
based on the bids submitted by passengers, PBp∀p ∈ {1, 2, 3, . . . P} and the bids submitted
by DBdj ∀d ∈ {1, 2, . . . , D}, j ∈ {1, 2, . . . , Jd}, submitted by drivers.

The surplus or total cost savings is F(x, y) =

(
P
∑

p=1
yp

(
fp

))
−
(

D
∑

d=1

Jd
∑

j=1
xdj(cdj − odj)

)
.

The objective function is described in (1). Constraint (2) and (3) describe balance between
demand and supply of seats in ridesharing vehicles. To benefit from ridesharing, the
non-negativity of surplus (cost savings) described by Constraint (4) must be satisfied.
A driver may submit multiple bids, a maximum of one bid can be a winning bid for each
driver. This constraint is described by Constraint (5). To attract individual drivers to
take part in ridesharing, Constraint (6) enforces the satisfaction of the minimal rewarding
rate for drivers. To provide incentives for individual passengers to accept ridesharing,
Constraint (7) enforces the satisfaction of the minimal rewarding rate for passengers. The
constraint that all decision variables must be binary is described by Constraint (8).

Based on the objective function (1) and the constraints defined by Constraint (2)
through (8), the DGRP is formulated as an integer programming problem as follows.

Problem Formulation of the DGRP

max
x,y

F(x, y) (1)

D

∑
d=1

Jd

∑
j=1

xdjq1
djk = yps1

pk∀p ∈ {1, 2, . . . , P} ∀k ∈ {1, 2, . . . , P} (2)

D

∑
d=1

Jd

∑
j=1

xdjq2
djk = yps2

pk∀p ∈ {1, 2, . . . , P} ∀k ∈ {1, 2, . . . , P} (3)

P

∑
p=1

yp fp +
D

∑
d=1

Jd

∑
j=1

xdjodj ≥
D

∑
d=1

Jd

∑
j=1

xdjcdj (4)

Algorithms 2024, 17, 9 7 of 26

Jd

∑
j=1

xdj ≤ 1∀d ∈ {1, . . . , D} (5)

xdj(
Fdj(x, y)

∑
p∈Γdj

ypc fpdj + xdjcdj
− rD) ≥ 0 (6)

yp(
Fdj(x, y)

∑
p∈Γdj

ypc fpdj + xdjcdj
− rP) ≥ 0 (7)

xdj ∈ {0, 1}∀d ∈ {1, . . . , D} ∀j ∈ {1, . . . , Jd} and yp ∈ {0, 1}∀p ∈ {1, 2, . . . , P} (8)

The determination of the ridesharing decisions is not solely based on price and loca-
tions, the model also considers the constraint that the minimal rewarding rate for drivers
and passengers must be satisfied. As we focus on comparison with [13], we use the same
model as the one used in [14]. Factors other than price and locations not considered in the
model of this paper can be taken into consideration in the future.

4. A Self-Adaptive Meta-Heuristic Algorithm Based on Success Rate and
Differential Evolution

The complexity of the DGRP is due to two characteristics: (1) discrete decision variables
and (2) a large number of constraints. For these reasons, the development of an effective
solution algorithm for the DGRP relies on a method to ensure values of the decision
variables are discrete and a method to enforce the evolution processes to guide the candidate
solutions in the population to move toward a feasible solution space. For the former, we
use a function to systematically map the continuous values of decision variables to discrete
values in the evolution processes. For the latter, a fitness function is used in this paper to
provide a direction to improve solution quality by reducing the violation of constraints
in the solution-finding processes. In this section, we first briefly describe the details of
the methods to convert continuous values of decision variables to discrete values and the
fitness function to guide the candidate solutions in the population to move toward feasible
solution space, as mentioned. We then present the proposed algorithm.

4.1. The Conversion of Decision Variables and Fitness Function

We define a conversion function to ensure the values of the decision variables are
discrete. The function Convert2Binary in (9) through (15) is used in our solution algorithm
to map the continuous values of decision variables to discrete values in the evolution
processes. This procedure makes it possible to adapt existing evolutionary algorithms
that were originally proposed for problems with a continuous solution space to work for
problems with a discrete solution space.

Function Convert 2 Binary (9)

Input: u (10)

Output: u (11)

Step 1 : v =

Vmax i f u > Vmax
u i f −Vmax ≤ u ≤ Vmax
−Vmax i f u < −Vmax

(12)

Step 2 : s(v) =
1

1 + exp−v (13)

Step 3 : Generate a random variable rsid with uniform distribution U(0, 1)

u =

{
1 rsid < s(v)
0 otherwise

(14)

Step 4 : return u (15)

Algorithms 2024, 17, 9 8 of 26

To provide a direction for an evolutionary algorithm to improve solution quality by
reducing the violation of constraints in the solution finding processes, we define the set of
feasible solutions in the current population as S f and use S f min = min

(x,y)∈S f

F(x, y) to denote

the objective function value of the worst feasible solution in S f . We introduce the following
fitness function.

The fitness function F1(x, y) for the penalty method is defined in (16):

F1(x, y) =
{

F(x, y) i f (x, y) is f easible
U(x, y) otherwise

, (16)

where U(x, y) is defined in (17).

U(x, y) = S f min −
(

P
∑

p=1

K
∑

k=1
(

∣∣∣∣∣ D
∑

d=1

Jd
∑

j=1
xdjq

\1
djk − yps1

pk

∣∣∣∣∣+
∣∣∣∣∣ D

∑
d=1

Jd
∑

j=1
xdjq2

djk − yps2
pk

∣∣∣∣∣)
)

+min(
P
∑

p=1
yp fp −

D
∑

d=1

Jd
∑

j=1
xdj(cdj − odj), 0.0)

+
D
∑

d=1

Jd
∑

j=1
min(1−

Jd
∑

j=1
xdj, 0.0)

+
D
∑

d=1

Jd
∑

j=1
xdjmin((

Fdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
)− rD, 0.0)

+
P
∑

p=1
ypmin((

Fdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
)− rP, 0.0)

(17)

In (17), we define the penalty function U(x, y) to penalize violation of constraints.

The terms

∣∣∣∣∣ D
∑

d=1

Jd
∑

j=1
xdjq

\1
djk − yps1

pk

∣∣∣∣∣ and

∣∣∣∣∣ D
∑

d=1

Jd
∑

j=1
xdjq2

djk − yps2
pk

∣∣∣∣∣ correspond to

penalty due to the violation of Constraints (2) and (3), respectively. The term

min(
P
∑

p=1
yp fp −

D
∑

d=1

Jd
∑

j=1
xdj(cdj − odj), 0.0) corresponds to penalty due to the violation of

Constraint (4). The term
D
∑

d=1

Jd
∑

j=1
min(1−

Jd
∑

j=1
xdj, 0.0) corresponds to penalty due to the

violation of Constraint (5). The terms
D
∑

d=1

Jd
∑

j=1
xdjmin((

Fdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
) − rD, 0.0) and

P
∑

p=1
ypmin((

Fdj(x,y)

∑
p∈Γdj

ypc fpdj+xdjcdj
) − rP, 0.0) correspond to penalties due to the violation of

Constraints (6) and (7), respectively.

4.2. The Proposed Success Rate-Based Self-Adaptive Metaheuristic Algorithm

Based on the conversion function and the fitness function defined above, we introduce
the proposed algorithm as follows. Instead of using one single mutation strategy, we
use two different mutation strategies and adopt a self-adaptation mechanism to select
the best strategy for improving the performance. The two different mutation strategies
are DE-1 and DE-6, which are two well-known mutation strategies. Therefore, the self-
adaptive metaheuristic algorithm is referred to as SaNSDE(DE1, DE6) or SaNSDE-1-6 in
this paper for simplicity. The self-adaptation mechanism used by SaNSDE-1-6 keeps track
of the number of times that a mutation strategy successfully improves the performance
and calculates the success rate of each mutation strategy. A strategy selection index for a
mutation strategy is calculated by dividing the success rate of the mutation strategy with
the sum of success rate for all mutation strategies. The strategy selection index is used to
select one mutation strategy used in the solution-finding processes.

Algorithms 2024, 17, 9 9 of 26

Let N be the problem dimension. To describe a mutation strategy, we use Zgbn = (zgbn)
to denote the value of the n-th dimension of the best individual in the population of the g-th
generation. We use zgr1n, zgr2n, zgr3n and zgr4n to denote four individuals randomly selected
from the current population. In this paper, we use the two strategies defined in (18) and
(19) to design the proposed success rate-based self-adaptive metaheuristic algorithm. The
n-th dimension of the mutant vector v(g+1)in of the i-th individual in the population of the
(g + 1)-th generation is calculated either by (18) or by (19), depending on the success rates
of the two strategies. The flow chart of the success rate-based self-adaptive metaheuristic
algorithm is shown in Figure 1.

v(g+1)in = zgr1n + Fi(zgr2n − zgr3n) (18)

v(g+1)in = zgin + Fi(zgbn − zgin) + Fi(zgr1n − zgr2n) + Fi(zgr3n − zgr4n) (19)

Algorithms 2024, 17, x FOR PEER REVIEW 10 of 29

randomly selected from the current population. In this paper, we use the two strategies
defined in (18) and (19) to design the proposed success rate-based self-adaptive metaheu-
ristic algorithm. The n -th dimension of the mutant vector ingv)1(+ of the i -th individual
in the population of the)1(+g -th generation is calculated either by (18) or by (19),
depending on the success rates of the two strategies. The flow chart of the success rate-
based self-adaptive metaheuristic algorithm is shown in Figure 1.

)(
321)1(ngrngringring zzFzv −+=+ (18)

)()()(
4321)1(ngrngringrngrigingbnigining zzFzzFzzFzv −+−+−+=+ (19)

Begin

 Initialize parameters (Step 1-1)

Calculate fitness function value for each
 individual in the population (Step 1-3)

Stopping criteria
satisfied ?

 For each individual
Generate a random number to generate the scale factor according to Step 2-1

 Generate a random number to select a strategy and compute mutant vector
according to Step 2-2

 Generate a Gaussian random number to set the crossover probability and
 generate a uniform random number to perform crossover operation, compute
 and convert the trial vector to binary according to Step 2-3

Select the trial vector and update success or failure counters as needed according
to Step 2-4
Update success rate of each strategy and parameters according
to Step 2-5

 End For

No

End

Yes

Randomly generate a population of individuals
according to Step 1-2

Figure 1. A flowchart of the proposed algorithm.

As we use two mutation strategies, a mutation strategy is referred to as s , where
}2,1{∈s . In the proposed algorithm, the number of times that a mutation strategy s suc-

cessfully improves the performance is stored in variable sS . The number of times that a

Figure 1. A flowchart of the proposed algorithm.

As we use two mutation strategies, a mutation strategy is referred to as s, where
s ∈ {1, 2}. In the proposed algorithm, the number of times that a mutation strategy s
successfully improves the performance is stored in variable Ss. The number of times
that a mutation strategy s fails to improve the performance is stored in variable Us. The
success rate of strategy s is ws =

Ss
Ss+Us

, where s ∈ {1, 2}. The parameter fp used to select
the probability distribution to generate the scale factor and select the mutation strategy

Algorithms 2024, 17, 9 10 of 26

is calculated by fp = w1
w1+w2

. A list L is used to store the crossover probability cri that
successfully improves performance by executing the statement L← L ∪ {cri} . The list L

is used to update the parameter cr by cr =
∑

k∈{1,2,...,|L|}
L(k)

|L| , which is used to generate the
crossover probability cri in the next generation.

The discrete self-adaptive metaheuristic algorithm based on success rate and differen-
tial evolution is listed in Algorithm 1.

Algorithm 1: Discrete Self-Adaptive Metaheuristic Algorithm based on Success Rate and Differential Evolution

Step 1: Initialize the parameters and population of individuals
Step 1-1: Initial the parameters

cr = 0.5
fp = 0.5

Step 1-2: Generate a population with NP individuals randomly
Step 2: Evolve solutions

For g = 1 to G
For i = 1 to NP

Step 2-1: Generate a uniform random number r from uniform distribution U(0, 1) ranging from 0 to 1

Fi =

{
r1, where r1 is a Gaussian random number with N(µ, σ2

1) i f r < fp
r2, where r2 is a uni f orm random number sampled f rom U(0, 1) otherwise

Step 2-2: Generate a uniform random number r from uniform distribution U(0, 1) ranging from 0 to 1
Calculate the mutant vector vgi as follows.
For n ∈1, 2, . . ., N

v(g+1)in =

{
zgr1n + Fi(zgr2n − zgr3n) i f r < fp
v(g+1)in = zgin + Fi(zgbn − zgin) + Fi(zgr1n − zgr2n) + Fi(zgr3n − zgr4n) otherwise

s =
{

1 i f r < fp
2 otherwise

End For
Step 2-3: Generate a trial vector ugi

Generate a Gaussian random number cri with distribution N(cr, σ2
2)

For l ∈1, 2, . . ., N
Generate a uniform random number r from uniform distribution U(0, 1) ranging from 0 to 1

ugil =

{
vgil i f r < cri
zgil otherwise

ugil ← Convert2Binary(ugil)

End For
Step 2-4: Update the individual and success/failure counters

If H1(ugi) ≥ H1(zgi)

z(g+1)i = ugi
L← L ∪ {cri}
Ss = Ss + 1

Else
Us = Us + 1

End If
End For

Step 2-5: Update the parameters as needed
If g > LP

w1 = S1
(S1+U1)

w2 = S2
(S2+U2)

fp = w1
w1+w2

cr =
∑

k∈{1,2,...,|L|}
L(k)

|L|
End If

End For

Algorithms 2024, 17, 9 11 of 26

5. Results

As the goal of this paper is to improve the performance of the quality of solutions
for the DGRP and improve the convergence rate (the number of generations) for finding
the best solutions, verification by the results of experiments is needed to demonstrate the
advantage of the proposed algorithm. In this section, the results of experiments obtained
by applying the algorithm developed in this paper will be analyzed. Our analysis focuses
on two algorithmic properties: performance and convergence rate.

The evaluation process of the algorithms can be divided into five steps. The first step is
to select the performance metrics for comparing different algorithms, the second step is to
create instances for the DGRP, the third step is to set the parameters for different algorithms,
the fourth step is to apply different algorithms to solve each instance of the DGRP and
the fifth step is to calculate the performance metrics under consideration based on the
results of experiments and compare all algorithms. For the first step, the performance
metrics for comparing different algorithms include the average fitness function values, the
average number of generations to find the best solutions and the average computation
time to find the best solutions. For the second step, the locations of drivers and passengers
are randomly generated based on a selected geographical area in Taichung City, which is
located in the central part of Taiwan. The number of drivers and the number of passengers
are increased gradually to generate instances of the DGRP with different size. For the third
step, the parameters for PSO, NSDE, DE-1 and DE-3 are the same as the ones used in [13].
The parameters for SaNSDE-1-6 are specified later in this section. For the fourth step, we
apply SaNSDE-1-6 ten times to solve each instance of the DGRP. As the results of applying
PSO, NSDE, DE-1 and DE-3 to Case 1 through Case 10 are available in [13], we apply PSO,
NSDE, DE-1 and DE-3 ten times to solve to Case 11 through Case 14. For the fifth step, we
first calculate the average fitness function values, the average number of generations to
find the best solutions and the average computation time to find the best solutions based
on the results obtained. We then compare all algorithms based on the performance metrics
mentioned above.

In [13], ten algorithms were developed to solve the DGRP. The study of [13] indicates
that the NSDE, DE-1, DE-3 and PSO are the top four solvers among the ten algorithms for
solving the DGRP in terms of performance and convergence rate (the number of generations
to find the best solutions).

To illustrate effectiveness of the algorithm proposed, the experiments include Test Case
1–10 (available at [40]) used in [13] and Test Case 11–14 (available at [41]) to compare with
the existing algorithms for the DGRP. To illustrate superiority of the algorithm proposed
in terms of scalability with respect to problem size, we generated several test cases by
increasing the problem size. We conducted these additional test cases by applying the
algorithm proposed in this paper and the best four algorithms reported in [13]. We ana-
lyzed by comparing the results obtained by applying all of these algorithms to study the
performance and convergence rate of these algorithms as problems grow.

As the effectiveness of evolutionary algorithms depends on the population size pa-
rameter, we conducted two series of experiments. The population size parameter of the
first series of experiments is 30. The population size parameter of the second series of
experiments is 50. The values of algorithmic parameters used by each algorithm are listed
in Table 2. The number of generations parameter used by each algorithm is set to 1000
for Test Case 1 through Test Case 10. The number of generations parameter used by each
algorithm is set to 50,000 for Test Case 11 through Test Case 14.

Experiments based on the parameters in Table 2 for NP = 30 were performed. The
results were summarized in Tables 3 and 4 for NP = 30. Table 3 shows the average fitness
function value and Table 4 shows the average number of iterations to find the best solutions.

Algorithms 2024, 17, 9 12 of 26

Table 2. Parameters for different algorithms and test cases.

Algorithm Parameters for Case 1 through Case 10 Parameters for Case 11 through Case 14

SaNSDE-1-6 POP = 30, Gen = 1000,
LP = 1000

POP = 50, Gen = 50,000,
LP = 1000

DE-1
POP = 30, Gen = 1000,
CR = 0.5
F: a value arbitrarily selected from uniform (0, 2)

POP = 50, Gen = 50,000,
CR = 0.5
F: a value arbitrarily selected from uniform (0, 2)

DE-3
POP = 30, Gen = 1000,
CR = 0.5
F: a value arbitrarily selected from uniform (0, 2)

POP = 50, Gen = 50,000,
CR = 0.5
F: a value arbitrarily selected from uniform (0, 2)

NSDE

POP = 30, Gen = 1000,
CR = 0.5,
Fi = 0.5r1 + 0.5, where r1 is a
random value with Gaussian distribution N(0, 1).

POP = 50, Gen = 50,000,
CR = 0.5,
Fi = 0.5r1 + 0.5, where r1 is a
random value with Gaussian distribution N(0, 1).

PSO POP = 30, Gen = 1000,
c1 = 0.4, c2 = 0.6, ω = 0.4

POP = 50, Gen = 50,000,
c1 = 0.4, c2 = 0.6, ω = 0.4

Table 3. Fitness function values for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and PSO algorithms with
NP = 30; rD = rP = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

1 3 10 32.998 32.998 32.998 32.998 32.998
2 5 11 63.615 63.615 63.615 63.615 63.615
3 5 12 41.715 41.715 41.715 41.715 41.2892
4 6 12 51.11 51.11 51.11 51.11 50.9085
5 7 13 30.063 30.063 30.063 30.063 28.4254
6 8 14 72.328 72.328 72.328 72.328 70.2629
7 9 15 89.03 89.03 89.03 89.03 80.8106
8 10 16 54.02 54.02 54.02 54.02 44.0023
9 11 17 74.05 74.05 74.05 74.05 49.356
10 12 18 50.9 50.0623 50.9 50.9 32.8349
11 20 20 112.906 112.906 112.906 112.906 97.7979
12 30 30 202.15 196.9089 200.1078 200.7964 141.6005
13 40 40 201.8256 190.1664 179.4244 186.6996 −1.5081
14 50 50 190.9436 137.1625 171.1756 161.3107 −3.9598

Table 4. Average number of generations for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and PSO
algorithms with NP = 30; rD = rP = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

1 3 10 9.6 16.6 19.8 15.6 64.6
2 5 11 19.2 32.2 36.9 29.1 299.6
3 5 12 29.4 39.7 47.6 43.3 394.5
4 6 12 19.6 43.8 50.3 44.1 320.9
5 7 13 16.7 31.8 44.1 37.3 304.1
6 8 14 20 48.3 67.8 39.6 375.6
7 9 15 60.8 101.4 135 70.7 553.6
8 10 16 48.2 61.3 78.6 59.5 447.5
9 11 17 53.9 59.7 65 64.2 580.7
10 12 18 106.4 136.8 146.3 94.3 489.3
11 20 20 191 436.5 817.1 542.5 21,314.5
12 30 30 1392.5 5691.5 16,065.1 14,417.2 21,742.3
13 40 40 18,439.777 15,185.8 27,574.4 27,260.1 22,734.2
14 50 50 19,390.5 17,131.7 22,745.3 36,742.7 25,822.2

Algorithms 2024, 17, 9 13 of 26

The results in Table 3 show that the top four algorithms are SaNSDE-1-6, NSDE, DE-1
and DE-3. For small test cases, including Case 1 through Case 11, the fitness function
values obtained using SaNSDE-1-6, NSDE, DE-1 and DE-3 are the same. However, as the
problem size grows, the average fitness function values obtained using SaNSDE-1-6 are
significantly better than those obtained using NSDE, DE-1 and DE-3. For Case 12, the
average fitness function value obtained using SaNSDE-1-6 is better than those obtained
using NSDE, DE-1 and DE-3. The differences between the average fitness function value
obtained using SaNSDE-1-6 and those obtained using NSDE, DE-1 and DE-3 are about 1%
to 2%. For Case 12, the average fitness function value obtained using SaNSDE-1-6 is better
than those obtained using NSDE, DE-1 and DE-3. For Case 13, the differences between the
average fitness function value obtained using SaNSDE-1-6 and those obtained using NSDE,
DE-1 and DE-3 are about 5% to 10%. For Case 14, the differences between the average
fitness function value obtained using SaNSDE-1-6 and those obtained using NSDE, DE-1
and DE-3 are about 10% to 28%. In short, SaNSDE-1-6 outperforms NSDE, DE-1 and DE-3
in terms of scalability. To compare performance clearly, please refer to the bar chart shown
in Figure 2 for the average fitness function values of Case 1 through Case 14.

In terms of convergence rate (the number of generations to find the best solutions),
the results in Table 4 indicate that the average numbers of iterations for SaNSDE-1-6
to find the best solutions are significantly less than those for NSDE, DE-1 and DE-3 to
find the best solutions for most test cases (with some exceptions). This indicates that
SaNSDE-1-6 outperforms NSDE, DE-1 and DE-3 in terms of convergence rate. To compare
the convergence rate clearly, please refer to the bar chart shown in Figure 3 for the average
number of generations of Case 1 through Case 10 and please refer to the bar chart shown in
Figure 4 for the average number of generations of Case 11 through Case 14.

Algorithms 2024, 17, x FOR PEER REVIEW 15 of 29

Figure 2. Average fitness function values for Dr = Pr = 0.1 with POP = 30.

Table 4. Average number of generations for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and

PSO algorithms with NP = 30; Dr = Pr = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

1 3 10 9.6 16.6 19.8 15.6 64.6

2 5 11 19.2 32.2 36.9 29.1 299.6

3 5 12 29.4 39.7 47.6 43.3 394.5

4 6 12 19.6 43.8 50.3 44.1 320.9

5 7 13 16.7 31.8 44.1 37.3 304.1

6 8 14 20 48.3 67.8 39.6 375.6

7 9 15 60.8 101.4 135 70.7 553.6

8 10 16 48.2 61.3 78.6 59.5 447.5

9 11 17 53.9 59.7 65 64.2 580.7

10 12 18 106.4 136.8 146.3 94.3 489.3

11 20 20 191 436.5 817.1 542.5 21,314.5

12 30 30 1392.5 5691.5 16,065.1 14,417.2 21,742.3

13 40 40 18,439.777 15,185.8 27,574.4 27,260.1 22,734.2

14 50 50 19,390.5 17,131.7 22,745.3 36,742.7 25,822.2

-50

0

50

100

150

200

250

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14

Average Fitness Function Values

SaNSDE(DE1-DE6) DE-1 DE-3 NSDE PSO

Figure 2. Average fitness function values for rD = rP = 0.1 with POP = 30.

Algorithms 2024, 17, 9 14 of 26
Algorithms 2024, 17, x FOR PEER REVIEW 16 of 29

Figure 3. Average number of generations for Case 1 through Case 10 with Dr = Pr = r

= 0.1 and POP = 30.

0

100

200

300

400

500

600

700

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

Average Number of Generations

SaNSDE(DE1-DE6) DE-1 DE-3 NSDE PSO

Figure 3. Average number of generations for Case 1 through Case 10 with rD = rP = r = 0.1 and POP = 30.
Algorithms 2024, 17, x FOR PEER REVIEW 17 of 29

Figure 4. Average number of generations for Case 11 through Case 14 with Dr = Pr = r

= 0.1 and POP = 30.

To verify the convergence rate for POP = 30, we show the results of several runs of

Case 5, Case 11, Case 12, Case 13 and Case 14 in Figure 5, Figure 6, Figure 7, Figure 8 and

Figure 9, respectively.

0

5000

10000

15000

20000

25000

30000

35000

40000

Case 11 Case 12 Case 13 Case 14

Average Number of Generations

SaNSDE(DE1-DE6) DE-1 DE-3 NSDE PSO

Figure 4. Average number of generations for Case 11 through Case 14 with rD = rP = r = 0.1 and POP = 30.

Algorithms 2024, 17, 9 15 of 26

To verify the convergence rate for POP = 30, we show the results of several runs of
Case 5, Case 11, Case 12, Case 13 and Case 14 in Figures 5–9, respectively.

Algorithms 2024, 17, x FOR PEER REVIEW 18 of 29

Figure 5. Convergence curves for a run of Case 5 for Dr = Pr = r = 0.1 with POP = 30.

Figure 6. Convergence curves for a run of Case 11 for Dr = Pr = r = 0.1 with POP = 30.

Figure 5. Convergence curves for a run of Case 5 for rD = rP = r = 0.1 with POP = 30.

Algorithms 2024, 17, x FOR PEER REVIEW 18 of 29

Figure 5. Convergence curves for a run of Case 5 for Dr = Pr = r = 0.1 with POP = 30.

Figure 6. Convergence curves for a run of Case 11 for Dr = Pr = r = 0.1 with POP = 30. Figure 6. Convergence curves for a run of Case 11 for rD = rP = r = 0.1 with POP = 30.

Algorithms 2024, 17, 9 16 of 26Algorithms 2024, 17, x FOR PEER REVIEW 19 of 29

Figure 7. Convergence curves for a run of Case 12 for Dr = Pr = r = 0.1 with POP = 30.

Figure 8. Convergence curves for a run of Case 13 for Dr = Pr = r = 0.1 with POP = 30.

Figure 7. Convergence curves for a run of Case 12 for rD = rP = r = 0.1 with POP = 30.

Algorithms 2024, 17, x FOR PEER REVIEW 19 of 29

Figure 7. Convergence curves for a run of Case 12 for Dr = Pr = r = 0.1 with POP = 30.

Figure 8. Convergence curves for a run of Case 13 for Dr = Pr = r = 0.1 with POP = 30. Figure 8. Convergence curves for a run of Case 13 for rD = rP = r = 0.1 with POP = 30.

Algorithms 2024, 17, 9 17 of 26Algorithms 2024, 17, x FOR PEER REVIEW 20 of 29

Figure 9. Convergence curves for a run of Case 14 for Dr = Pr = r = 0.1 with POP = 30.

The results presented above are based on a comparison of the average number of
generations. For the comparison of computation time, the results in Table 5 indicate that
the average computation time for SaNSDE-1-6 to find the best solutions is significantly
less than that for PSO to find the best solutions for Case 1 through Case 9 and is greater
than those of NSDE, DE-1 and DE-3 for Case 1 through Case 10. This indicates that
SaNSDE-1-6 outperforms PSO in terms of computation time for Case 1 through Case 9
and NSDE, DE-1 and DE-3 outperform SaNSDE-1-6 in terms of computation time for Case
1 through Case 10. For Case 11, SaNSDE-1-6 outperforms PSO, NSDE, DE-1 and DE-3 in
terms of computation time. For bigger cases, Case 12 through Case 14, PSO, NSDE, DE-1
and DE-3 outperform SaNSDE-1-6 in terms of computation time. As the experiments were
done on the same platform as the one used in [13], which was an old laptop delivered in
2019 with Intel(R) Core(TM) i7 CPU, base clock speed of 2.6 GHz and16 GB of onboard
memory, to compare different algorithms, the computation times of SaNSDE-1-6 are much
longer for Case 12, Case 13 and Case 14. Obviously, a more powerful computer or a server
class computer is required to apply the SaNSDE-1-6 algorithm.

Table 5. Average computation time (in mini-second) for discrete SaNSDE-1-6,DE-1, DE-3,
NSDE and PSO algorithms with NP = 30; Dr = Pr = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO
1 3 10 11.494 5.8907 6.7182 7.3339 15.1677
2 5 11 31.0079 21.2555 18.0998 19.4591 118.2929
3 5 12 45.7525 22.0871 25.3382 26.1856 130.6768
4 6 12 42.0781 25.937 25.8155 29.1062 113.5842
5 7 13 28.2401 18.4303 22.264 16.7606 100.2475
6 8 14 48.7842 25.7381 34.9751 28.5755 132.6016
7 9 15 139.7892 73.5523 87.1861 55.5141 264.7854
8 10 16 111.0234 45.3785 54.5258 51.003 200.8072
9 11 17 152.6207 50.241 50.4531 64.2084 286.7221

10 12 18 236.4897 108.65 106.4809 87.0697 199.9287

Figure 9. Convergence curves for a run of Case 14 for rD = rP = r = 0.1 with POP = 30.

The results presented above are based on a comparison of the average number of
generations. For the comparison of computation time, the results in Table 5 indicate that
the average computation time for SaNSDE-1-6 to find the best solutions is significantly less
than that for PSO to find the best solutions for Case 1 through Case 9 and is greater than
those of NSDE, DE-1 and DE-3 for Case 1 through Case 10. This indicates that SaNSDE-1-6
outperforms PSO in terms of computation time for Case 1 through Case 9 and NSDE, DE-1
and DE-3 outperform SaNSDE-1-6 in terms of computation time for Case 1 through Case 10.
For Case 11, SaNSDE-1-6 outperforms PSO, NSDE, DE-1 and DE-3 in terms of computation
time. For bigger cases, Case 12 through Case 14, PSO, NSDE, DE-1 and DE-3 outperform
SaNSDE-1-6 in terms of computation time. As the experiments were done on the same
platform as the one used in [13], which was an old laptop delivered in 2019 with Intel(R)
Core(TM) i7 CPU, base clock speed of 2.6 GHz and16 GB of onboard memory, to compare
different algorithms, the computation times of SaNSDE-1-6 are much longer for Case 12,
Case 13 and Case 14. Obviously, a more powerful computer or a server class computer is
required to apply the SaNSDE-1-6 algorithm.

Experiments based on the parameters in Table 2 for NP = 50 were performed. The
results were summarized in Tables 6 and 7 for NP = 50. Table 6 shows the average
fitness function values and Table 7 shows the average number of iterations to find the
best solutions.

Algorithms 2024, 17, 9 18 of 26

Table 5. Average computation time (in mini-second) for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and
PSO algorithms with NP = 30; rD = rP = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

1 3 10 11.494 5.8907 6.7182 7.3339 15.1677
2 5 11 31.0079 21.2555 18.0998 19.4591 118.2929
3 5 12 45.7525 22.0871 25.3382 26.1856 130.6768
4 6 12 42.0781 25.937 25.8155 29.1062 113.5842
5 7 13 28.2401 18.4303 22.264 16.7606 100.2475
6 8 14 48.7842 25.7381 34.9751 28.5755 132.6016
7 9 15 139.7892 73.5523 87.1861 55.5141 264.7854
8 10 16 111.0234 45.3785 54.5258 51.003 200.8072
9 11 17 152.6207 50.241 50.4531 64.2084 286.7221
10 12 18 236.4897 108.65 106.4809 87.0697 199.9287
11 20 20 798.39717 1134.249 2142.048 1496.592 45,171.44
12 30 30 21,158.007 17,419.87 49,393.98 48,106.86 51,932.66
13 40 40 2,116,465.2 60,483.27 113,286.7 119,378.3 66,539.42
14 50 50 3,198,096.1 90,395.02 118,089.5 144,559.9 87,874.68

Table 6. Fitness function values for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and PSO algorithms with
NP = 50; rD = rP = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

1 3 10 32.998 32.998 32.998 32.998 32.998
2 5 11 63.615 63.615 63.615 63.615 63.615
3 5 12 41.715 41.715 41.715 41.715 41.2892
4 6 12 51.11 51.11 51.11 51.11 51.11
5 7 13 30.063 30.063 30.063 30.063 30.063
6 8 14 72.328 72.328 72.328 72.328 69.9483
7 9 15 89.03 89.03 89.03 89.03 80.5986
8 10 16 54.02 54.02 54.02 54.02 46.8013
9 11 17 74.05 74.05 74.05 74.05 55.9356
10 12 18 50.9 50.9 50.9 50.9 31.1131
11 20 20 112.906 112.906 112.906 112.906 104.4808
12 30 30 202.15 201.8116 200.6549 201.8116 145.0514
13 40 40 202.4952 194.0284 190.4004 185.9914 −1.2835
14 50 50 192.343 190.4874 157.1781 162.1984 −3.6674

Table 7. Average number of generations for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and PSO
algorithms with NP = 50; rD = rP = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

1 3 10 10.1 17.6 19.2 12.9 51.5
2 5 11 18.7 30.2 33 26.4 127.3
3 5 12 22.3 28.7 43.3 32.9 437.2
4 6 12 22.5 35.4 37.4 33.2 468.6
5 7 13 17.7 29.3 32.2 24.8 247.1
6 8 14 30 38 47.1 41.9 416.4
7 9 15 37.5 78.9 75.4 61.3 366.4
8 10 16 35.3 51.5 66.3 48.6 609.5
9 11 17 65.6 68.7 78.4 67 611.5
10 12 18 79.4 83.6 197.9 63.1 521.5
11 20 20 98.6 469.5 829.5 565.5 22,275.7
12 30 30 2216.7 8847.1 6494.7 26,379.5 20,738.9
13 40 40 15,231.4 14,944.6 18,551.7 21,166.5 30,168.9
14 50 50 16,730.2 28,597.9 32,025.9 25,665.8 33,480.8

Algorithms 2024, 17, 9 19 of 26

The results in Table 6 show that the top four algorithms are SaNSDE-1-6, NSDE, DE-1
and DE-3. For small test cases, including Case 1 through Case 11, the fitness function values
obtained using SaNSDE-1-6, NSDE, DE-1 and DE-3 are the same. However, as the problem
size grows, the average fitness function values obtained via SaNSDE-1-6 are significantly
better than those obtained via NSDE, DE-1 and DE-3. For Case 12, the average fitness
function value obtained via SaNSDE-1-6 is better than those obtained by NSDE, DE-1 and
DE-3. The differences between the average fitness function value obtained via SaNSDE-1-6
and those obtained via NSDE, DE-1 and DE-3 are about 0.1674% to 0.73959%. For Case 12,
the average fitness function value obtained via SaNSDE-1-6 is better than those obtained
via NSDE, DE-1 and DE-3. For Case 13, the differences between the average fitness function
values obtained via SaNSDE-1-6 and those obtained via NSDE, DE-1 and DE-3 are about
4.00326% to 7.9796%. For Case 14, the differences between the average fitness function
value obtained via SaNSDE-1-6 and those obtained via NSDE, DE-1 and DE-3 are about
3.1171% to 46.403%. In short, SaNSDE-1-6 outperforms NSDE, DE-1 and DE-3 in terms of
scalability. To compare performance clearly, please refer to the bar chart shown in Figure 10
for the average fitness function values of Case 1 through Case 14.

Algorithms 2024, 17, x FOR PEER REVIEW 22 of 29

Figure 10. Average fitness function values for Dr = Pr = r = 0.1 with POP = 50.

Figure 11. Average number of generations for Case 1 through Case 10 with Dr = Pr = r

= 0.1 and POP = 50.

-50

0

50

100

150

200

250

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14

Average Fitness Function Values

SaNSDE(DE1-DE6) DE-1 DE-3 NSDE PSO

0

100

200

300

400

500

600

700

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

Average Number of Generations

SaNSDE(DE1-DE6) DE-1 DE-3 NSDE PSO

Figure 10. Average fitness function values for rD = rP = r = 0.1 with POP = 50.

In terms of convergence rate (the number of generations to find the best solutions), the
results in Table 7 indicate that the average numbers of iterations for SaNSDE-1-6 to find
the best solutions are significantly less than those for NSDE, DE-1 and DE-3 to find the
best solutions for most test cases (with some exception). This indicates that SaNSDE-1-6
outperforms NSDE, DE-1 and DE-3 in convergence rate. To compare the convergence
rate clearly, please refer to the bar chart shown in Figure 11 for the average number of
generations of Case 1 through Case 10 and please refer to the bar chart shown in Figure 12
for the average number of generations of Case 11 through Case 14.

Algorithms 2024, 17, 9 20 of 26

Algorithms 2024, 17, x FOR PEER REVIEW 22 of 29

Figure 10. Average fitness function values for Dr = Pr = r = 0.1 with POP = 50.

Figure 11. Average number of generations for Case 1 through Case 10 with Dr = Pr = r

= 0.1 and POP = 50.

-50

0

50

100

150

200

250

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14

Average Fitness Function Values

SaNSDE(DE1-DE6) DE-1 DE-3 NSDE PSO

0

100

200

300

400

500

600

700

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

Average Number of Generations

SaNSDE(DE1-DE6) DE-1 DE-3 NSDE PSO

Figure 11. Average number of generations for Case 1 through Case 10 with rD = rP = r = 0.1 and POP = 50.

Algorithms 2024, 17, x FOR PEER REVIEW 23 of 29

Table 7. Average number of generations for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and

PSO algorithms with NP = 50; Dr = Pr = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

1 3 10 10.1 17.6 19.2 12.9 51.5

2 5 11 18.7 30.2 33 26.4 127.3

3 5 12 22.3 28.7 43.3 32.9 437.2

4 6 12 22.5 35.4 37.4 33.2 468.6

5 7 13 17.7 29.3 32.2 24.8 247.1

6 8 14 30 38 47.1 41.9 416.4

7 9 15 37.5 78.9 75.4 61.3 366.4

8 10 16 35.3 51.5 66.3 48.6 609.5

9 11 17 65.6 68.7 78.4 67 611.5

10 12 18 79.4 83.6 197.9 63.1 521.5

11 20 20 98.6 469.5 829.5 565.5 22,275.7

12 30 30 2216.7 8847.1 6494.7 26,379.5 20,738.9

13 40 40 15,231.4 14,944.6 18,551.7 21,166.5 30,168.9

14 50 50 16,730.2 28,597.9 32,025.9 25,665.8 33,480.8

Figure 12. Average number of generations for Case 11 through Case 14 with Dr = Pr =

r = 0.1 and POP = 50.

0

5000

10000

15000

20000

25000

30000

35000

40000

Case 11 Case 12 Case 13 Case 14

Average Number of Generations

SaNSDE(DE1-DE6) DE-1 DE-3 NSDE PSO

Figure 12. Average number of generations for Case 11 through Case 14 with rD = rP = r = 0.1 and POP = 50.

Algorithms 2024, 17, 9 21 of 26

To verify the convergence rate for POP = 50, we show the results of several runs of
Case 5, Case 11, Case 12, Case 13 and Case 14 in Figures 13–17, respectively.

Algorithms 2024, 17, x FOR PEER REVIEW 24 of 29

To verify the convergence rate for POP = 50, we show the results of several runs of
Case 5, Case 11, Case 12, Case 13 and Case 14 in Figure 13, Figure 14, Figure 15, Figure 16
and Figure 17, respectively.

Figure 13. Convergence curves for a run of Case 5 for Dr = Pr = r = 0.1 with POP = 50.

Figure 14. Convergence curves for a run of Case 11 for Dr = Pr = r = 0.1 with POP =
50.

Figure 13. Convergence curves for a run of Case 5 for rD = rP = r = 0.1 with POP = 50.

Algorithms 2024, 17, x FOR PEER REVIEW 24 of 29

To verify the convergence rate for POP = 50, we show the results of several runs of
Case 5, Case 11, Case 12, Case 13 and Case 14 in Figure 13, Figure 14, Figure 15, Figure 16
and Figure 17, respectively.

Figure 13. Convergence curves for a run of Case 5 for Dr = Pr = r = 0.1 with POP = 50.

Figure 14. Convergence curves for a run of Case 11 for Dr = Pr = r = 0.1 with POP =
50.

Figure 14. Convergence curves for a run of Case 11 for rD = rP = r = 0.1 with POP = 50.

Algorithms 2024, 17, 9 22 of 26
Algorithms 2024, 17, x FOR PEER REVIEW 25 of 29

Figure 15. Convergence curves for a run of Case 12 for Dr = Pr = r = 0.1 with POP = 50.

Figure 16. Convergence curves for a run of Case 13 for Dr = Pr = r = 0.1 with POP = 50.

Figure 15. Convergence curves for a run of Case 12 for rD = rP = r = 0.1 with POP = 50.

Algorithms 2024, 17, x FOR PEER REVIEW 25 of 29

Figure 15. Convergence curves for a run of Case 12 for Dr = Pr = r = 0.1 with POP = 50.

Figure 16. Convergence curves for a run of Case 13 for Dr = Pr = r = 0.1 with POP = 50. Figure 16. Convergence curves for a run of Case 13 for rD = rP = r = 0.1 with POP = 50.

Algorithms 2024, 17, 9 23 of 26Algorithms 2024, 17, x FOR PEER REVIEW 26 of 29

Figure 17. Convergence curves for a run of Case 14 for Dr = Pr = r = 0.1 with POP = 50.

The results presented above are based on comparison of average number of genera-
tions. The results in Table 8 indicate that the average computation time for SaNSDE-1-6 to
find the best solutions is significantly less than that for PSO to find the best solutions for
Case 1 through Case 10 and is greater than those of NSDE, DE-1 and DE-3 for Case 1
through Case 10. This indicates that SaNSDE-1-6 outperforms PSO in terms of computa-
tion time for Case 1 through Case 10 and NSDE, DE-1 and DE-3 outperform SaNSDE-1-6
in terms of computation time for Case 1 through Case 10. For Case 11 and Case 12,
SaNSDE-1-6 outperforms PSO, NSDE, DE-1 and DE-3 in terms of computation time. For
Case 13 through Case 14, PSO, NSDE, DE-1 and DE-3 outperform SaNSDE-1-6 in terms of
computation time. As the experiments to compare the different algorithms were done on
the same platform as the one used in [13], which was an old laptop delivered in 2019 with
Intel(R) Core(TM) i7 CPU, base clock speed of 2.6 GHz and16 GB of onboard memory, the
computation times of SaNSDE-1-6 are much longer for Case 12, Case 13 and Case 14. Ob-
viously, a more powerful computer or a server class computer is required to apply the
SaNSDE-1-6 algorithm.

Table 8. Average computation time (in mini-second) for discrete SaNSDE-1-6,DE-1, DE-3,
NSDE and PSO algorithms with NP = 50; Dr = Pr = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO
1 3 10 10.2156 10.1452 10.1662 8.4324 18.3854
2 5 11 31.0283 24.8503 24.4498 23.7312 57.3819
3 5 12 42.8796 23.849 32.7592 31.2488 212.022
4 6 12 33.3958 31.4915 29.161 33.3068 205.7338
5 7 13 33.6951 25.0836 25.8515 25.2025 105.7623
6 8 14 57.5261 32.3747 37.1701 42.8416 213.5017
7 9 15 117.5981 83.4787 78.1544 75.29 205.419
8 10 16 84.5311 65.2448 71.6938 71.265 385.2561
9 11 17 105.9706 87.5031 93.5826 86.378 413.8388

10 12 18 148.0639 101.1059 232.0098 96.711 400.4348

Figure 17. Convergence curves for a run of Case 14 for rD = rP = r = 0.1 with POP = 50.

The results presented above are based on comparison of average number of genera-
tions. The results in Table 8 indicate that the average computation time for SaNSDE-1-6 to
find the best solutions is significantly less than that for PSO to find the best solutions for
Case 1 through Case 10 and is greater than those of NSDE, DE-1 and DE-3 for Case 1 through
Case 10. This indicates that SaNSDE-1-6 outperforms PSO in terms of computation time
for Case 1 through Case 10 and NSDE, DE-1 and DE-3 outperform SaNSDE-1-6 in terms
of computation time for Case 1 through Case 10. For Case 11 and Case 12, SaNSDE-1-6
outperforms PSO, NSDE, DE-1 and DE-3 in terms of computation time. For Case 13 through
Case 14, PSO, NSDE, DE-1 and DE-3 outperform SaNSDE-1-6 in terms of computation time.
As the experiments to compare the different algorithms were done on the same platform as
the one used in [13], which was an old laptop delivered in 2019 with Intel(R) Core(TM) i7
CPU, base clock speed of 2.6 GHz and16 GB of onboard memory, the computation times of
SaNSDE-1-6 are much longer for Case 12, Case 13 and Case 14. Obviously, a more powerful
computer or a server class computer is required to apply the SaNSDE-1-6 algorithm.

Table 8. Average computation time (in mini-second) for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and
PSO algorithms with NP = 50; rD = rP = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

1 3 10 10.2156 10.1452 10.1662 8.4324 18.3854
2 5 11 31.0283 24.8503 24.4498 23.7312 57.3819
3 5 12 42.8796 23.849 32.7592 31.2488 212.022
4 6 12 33.3958 31.4915 29.161 33.3068 205.7338
5 7 13 33.6951 25.0836 25.8515 25.2025 105.7623
6 8 14 57.5261 32.3747 37.1701 42.8416 213.5017
7 9 15 117.5981 83.4787 78.1544 75.29 205.419
8 10 16 84.5311 65.2448 71.6938 71.265 385.2561
9 11 17 105.9706 87.5031 93.5826 86.378 413.8388
10 12 18 148.0639 101.1059 232.0098 96.711 400.4348
11 20 20 679.74567 1395.58 2805.873 1912.745 51,907.85

Algorithms 2024, 17, 9 24 of 26

Table 8. Cont.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

12 30 30 14,772.423 35,531.47 25,760.51 118,419.7 57,773.8
13 40 40 2,016,957.3 83,749.26 104,356 131,989.4 108,469.1
14 50 50 2,890,556.2 171,886.2 233,575.7 201,288.2 145,752.5

6. Discussion and Conclusions

In this paper, we applied the self-adaptation concept to develop an algorithm to
improve the performance in finding solutions for the DGRP formulated in the previous
study. The self-adaptation mechanism used in this paper attempts to identify a better
strategy that can be selected in the future as the strategy for mutation with a higher
probability. To identify a better strategy and the probability for serving as a mutation
strategy in the future, the algorithm records the number of “success events” and the
number of “failure events” in a learning period. The probability for serving as the mutation
strategy is calculated based on the number of “success events” and the number of “failure
events” in a learning period for each mutation strategy. A mutation strategy with a higher
probability for serving as the mutation strategy will be selected with a higher probability.
A mutation strategy with a lower probability for serving as the mutation strategy will be
selected with a lower probability. In this way, the performance of the solution that is found
can be improved more efficiently in terms of the average number of generations for most
cases. However, due to the additional computation in each iteration, the computation time
of SaNSDE-1-6 is much longer for big cases.

A mutation strategy with a higher probability for serving as the mutation strategy
indicates that the ratio between the number of “success events” and the total number
of “success events” and “failure events” is higher. It is expected that using a mutation
strategy with a higher probability for serving as the mutation strategy tends to improve the
performance of the solution that is found. The results presented in the previous section
confirm that using a more effective mutation strategy with a higher probability for serving
as the mutation strategy indeed improves the performance of the solution that is found
significantly. The degree of improvement is case dependent. With NP = 30, for Case 12, the
improvement achieved using SaNSDE-1-6 is about 1% to 2%. For Case 13, the improvement
achieved using SaNSDE-1-6 is about 5% to 10%. For Case 14, the improvement achieved
using SaNSDE-1-6 is about 10% to 28%. In short, SaNSDE-1-6 outperforms NSDE, DE-1
and DE-3 in terms of scalability. With NP = 50, for Case 12, the improvement achieved
using SaNSDE-1-6 is about 0.1674% to 0.73959%. For Case 13, the improvement achieved
using SaNSDE-1-6 is about 4.00326% to 7.9796%. For Case 14, the improvement achieved
using SaNSDE-1-6 is about 3.1171% to 46.403%. In short, SaNSDE-1-6 outperforms NSDE,
DE-1 and DE-3 in terms of scalability. The bigger the problem size, the more significant the
improvement.

In the real world, when one person fails to solve a problem alone, it might be easier
to solve the problem by asking another person for help and working together. The reason
is that one may consult the other and/or help each other when taking actions or making
decisions. This way to solve a problem effectively is commonly used in our daily life. The
results of the experiments presented in this paper are consistent with the abovementioned
phenomena in the real world. In our self-adaptation mechanism, there are two strategies
involved in the solution-finding processes. The selection of one strategy in the solution-
searching processes is based on the success probability learned from the learning period.
To verify the effectiveness of the self-adaptation mechanism, we carried out experiments
by applying several standard algorithms and our proposed algorithm. Two different pop-
ulation sizes were used to perform the experiments. We compared the effectiveness of
several single strategy algorithms and the self-adaptation-based algorithm. Our results
indicate that the proposed algorithm based on the self-adaptation mechanism improves the
performance and convergence rate in terms of the average number of generations required

Algorithms 2024, 17, 9 25 of 26

for finding the solutions for most cases. Although our proposed algorithm outperforms
all of the other four algorithms in terms of performance and convergence rate for most
cases, the computation time of the proposed algorithm is much longer for several big cases
due to the additional computation in each iteration. The results of this study have two
implications. First, the performance in solving the DGRP with two strategies and a self-
adaptation mechanism is better than with one strategy. Second, although the performance
in solving the DGRP can be improved and the average number of generations required for
finding the solution is reduced, the computation time of the proposed algorithm is much
longer than all of the other four algorithms for bigger instances. This implies that either a
more powerful computer or a proper divide-and–conquer strategy to divide a big instance
of the DGRP into small ones must be used before applying the proposed algorithm. The
computational experience showing that the proposed self-adaptive algorithm outperforms
the other four algorithms for the test cases in this paper sparks an interesting research
question: does the proposed self-adaptive algorithm outperform the other four algorithms?
This research question requires further study in the comparative analysis of the proposed
algorithm. A comparative analysis of the algorithms studied in this paper for specific per-
formance indicators is a challenging future research direction. Studies of other performance
evaluation indicators for the proposed algorithm are another interesting future research
directions. The other interesting future research direction is to extend the success rate-based
self-adaptive scheme proposed in this study to other evolutionary approaches.

Funding: This research was supported in part by the National Science and Technology Council,
Taiwan, under Grant NSTC 111-2410-H-324-003.

Data Availability Statement: Data available in a publicly accessible repository described in the article.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Bruglieri, M.; Ciccarelli, D.; Colorni, A.; Luè, A. PoliUniPool: A carpooling system for universities. Procedia-Soc. Behav. Sci. 2011,

20, 558–567. [CrossRef]
2. Hwang, K.; Giuliano, G. The Determinants of Ridesharing: Literature Review. Working Paper UCTC No. 38, The Univer-

sity of California Transportation Center. 1990. Available online: https://escholarship.org/uc/item/3r91r3r4 (accessed on
29 November 2023).

3. Uber. Available online: https://www.uber.com (accessed on 29 November 2023).
4. Lyft. Available online: https://www.lyft.com (accessed on 29 November 2023).
5. BlaBlaCar. Available online: https://www.blablacar.com (accessed on 29 November 2023).
6. Agatz, N.; Erera, A.; Savelsbergh, M.; Wang, X. Optimization for dynamic ride-sharing: A review. Eur. J. Oper. Res. 2012, 223,

295–303. [CrossRef]
7. Furuhata, M.; Dessouky, M.; Ordóñez, F.; Brunet, M.; Wang, X.; Koenig, S. Ridesharing: The state-of-the-art and future direc-tions.

Transp. Res. Part B Methodol. 2013, 57, 28–46. [CrossRef]
8. Mourad, A.; Puchinger, J.; Chu, C. A survey of models and algorithms for optimizing shared mobility. Transp. Res. Part B Methodol.

2019, 123, 323–346. [CrossRef]
9. Martins, L.C.; Torre, R.; Corlu, C.G.; Juan, A.A.; Masmoudi, M.A. Optimizing ride-sharing operations in smart sustainable cities:

Challenges and the need for agile algorithms. Comput. Ind. Eng. 2021, 153, 107080. [CrossRef]
10. Ting, K.H.; Lee, L.S.; Pickl, S.; Seow, H.-V. Shared Mobility Problems: A Systematic Review on Types, Variants, Characteristics,

and Solution Approaches. Appl. Sci. 2021, 11, 7996. [CrossRef]
11. Hsieh, F.S.; Zhan, F.; Guo, Y. A solution methodology for carpooling systems based on double auctions and cooperative

coevolutionary particle swarms. Appl. Intell. 2019, 49, 741–763. [CrossRef]
12. Hsieh, F.S. A Comparative Study of Several Metaheuristic Algorithms to Optimize Monetary Incentive in Ridesharing Systems.

ISPRS Int. J. Geo-Inf. 2020, 9, 590. [CrossRef]
13. Hsieh, F.-S. Development and Comparison of Ten Differential-Evolution and Particle Swarm-Optimization Based Algorithms for

Discount-Guaranteed Ridesharing Systems. Appl. Sci. 2022, 12, 9544. [CrossRef]
14. Hsieh, F.S. Trust-Based Recommendation for Shared Mobility Systems Based on a Discrete Self-Adaptive Neighborhood Search

Differential Evolution Algorithm. Electronics 2022, 11, 776. [CrossRef]
15. Hsieh, F.-S. A Comparison of Three Ridesharing Cost Savings Allocation Schemes Based on the Number of Acceptable Shared

Rides. Energies 2021, 14, 6931. [CrossRef]

https://doi.org/10.1016/j.sbspro.2011.08.062
https://escholarship.org/uc/item/3r91r3r4
https://www.uber.com
https://www.lyft.com
https://www.blablacar.com
https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1016/j.trb.2013.08.012
https://doi.org/10.1016/j.trb.2019.02.003
https://doi.org/10.1016/j.cie.2020.107080
https://doi.org/10.3390/app11177996
https://doi.org/10.1007/s10489-018-1288-x
https://doi.org/10.3390/ijgi9100590
https://doi.org/10.3390/app12199544
https://doi.org/10.3390/electronics11050776
https://doi.org/10.3390/en14216931

Algorithms 2024, 17, 9 26 of 26

16. Hsieh, F.-S. Improving Acceptability of Cost Savings Allocation in Ridesharing Systems Based on Analysis of Proportional
Methods. Systems 2023, 11, 187. [CrossRef]

17. Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338.
[CrossRef]

18. Hyland, M.; Mahmassani, H.S. Operational benefits and challenges of shared-ride automated mobility-on-demand services.
Transp. Res. Part A Policy Pract. 2020, 134, 251–270. [CrossRef]

19. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: New York, NY, USA, 1992.
20. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
21. Yang, X.S. Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and Applications. SAGA 2009;

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5792, pp. 169–178.
22. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Global

Optim. 1997, 11, 341–359. [CrossRef]
23. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80,

8091–8126. [CrossRef]
24. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A

Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]
25. Li, J.; Wei, X.; Li, B.; Zeng, Z. A survey on firefly algorithms. Neurocomputing 2022, 500, 662–678. [CrossRef]
26. Ahmad, M.F.; Isa, N.A.M.; Lim, W.H.; Ang, K.M. Differential evolution: A recent review based on state-of-the-art works. Alex.

Eng. J. 2022, 61, 3831–3872. [CrossRef]
27. Eberhart, R.C.; Shi, Y. Comparison between genetic algorithms and particle swarm optimization. In Evolutionary Programming VII,

Proceedings of the 7th International Conference, ep98, San Diego, CA, USA, 25–27 March 1998; Porto, V.W., Saravanan, N., Waagen, D.,
Eiben, A.E., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1447, pp. 611–616.

28. Hassan, R.; Cohanim, B.; Weck, O.D. A comparison of particle swarm optimization and the genetic algorithm. In Proceedings
of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Structures, Structural
Dynamics, and Materials and Collocated Conferences, Austin, TX, USA, 18–21 April 2005. [CrossRef]

29. Tušar, T.; Filipič, B. Differential Evolution versus Genetic Algorithms in Multiobjective Optimization. In Evolutionary Multi-
Criterion Optimization; Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2007; Volume 4403, pp. 257–271.

30. Qin, A.K.; Suganthan, P.N. Self-adaptive Differential Evolution Algorithm for Numerical Optimization. Proc. IEEE Congr. Evol.
Comput. 2005, 2, 1784–1791.

31. Omran, M.G.H.; Salman, A.; Engelbrecht, A.P. Self-adaptive differential evolution. Proc. Comput. Intell. Secur. Lect. Notes Artif.
Intell. 2005, 3801, 192–199.

32. Huang, V.L.; Qin, A.K.; Suganthan, P.N. Self-adaptive differential evolution algorithm for constrained real-parameter optimization.
In Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006;
pp. 324–331.

33. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical optimiza-
tion. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [CrossRef]

34. Islam, S.M.; Das, S.; Ghosh, S.; Roy, S.; Suganthan, P.N. An adaptive differential evolution algorithm with novel mutation and
crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011, 42, 482–500. [CrossRef]

35. Kumar, J.; Singh, A.K. Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future
Generation Comput. Syst. 2021, 81, 41–52. [CrossRef]

36. Rosic’, M.B.; Simic´, M.I.; Pejovic´, P.V. An improved adaptive hybrid firefly differential evolution algorithm for passive target
localization. Soft. Comput. 2021, 25, 5559–5585. [CrossRef]

37. Yang, Z.; Tang, K.; Yao, X. Self-adaptive differential evolution with neighborhood search. In Proceedings of the 2008 IEEE
Congress on Evolutionary Computation, Hong Kong, China, 1–6 June 2008; pp. 1110–1116.

38. Yang, Z.; He, J.; Yao, X. Making a difference to differential evolution. In Advances in Metaheuristics for Hard Optimization;
Michalewicz, Z., Siarry, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 415–432.

39. Xia, M.; Stallaert, J.; Whinston, A.B. Solving the combinatorial double auction problem. Eur. J. Oper. Res. 2005, 164, 239–251.
[CrossRef]

40. Data of Test Cases 1–10. Available online: https://drive.google.com/drive/folders/19Zj69lRsQP8z0uuiJOqfkHBegCvZE2Pe?
usp=sharing (accessed on 11 August 2022).

41. Data of Test Cases 11–14. Available online: https://drive.google.com/drive/folders/1FxECvDt_5ZuXCuL0zNQUXza2Bg82G2
Ds?usp=sharing (accessed on 8 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/systems11040187
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.1016/j.tra.2020.02.017
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1109/ACCESS.2022.3142859
https://doi.org/10.1016/j.neucom.2022.05.100
https://doi.org/10.1016/j.aej.2021.09.013
https://doi.org/10.2514/6.2005-1897
https://doi.org/10.1109/TEVC.2008.927706
https://doi.org/10.1109/TSMCB.2011.2167966
https://doi.org/10.1016/j.future.2017.10.047
https://doi.org/10.1007/s00500-020-05554-8
https://doi.org/10.1016/j.ejor.2003.11.018
https://drive.google.com/drive/folders/19Zj69lRsQP8z0uuiJOqfkHBegCvZE2Pe?usp=sharing
https://drive.google.com/drive/folders/19Zj69lRsQP8z0uuiJOqfkHBegCvZE2Pe?usp=sharing
https://drive.google.com/drive/folders/1FxECvDt_5ZuXCuL0zNQUXza2Bg82G2Ds?usp=sharing
https://drive.google.com/drive/folders/1FxECvDt_5ZuXCuL0zNQUXza2Bg82G2Ds?usp=sharing

	Introduction
	Literature Review
	The Formulation of the DGRP
	An Auction Model for Ridesharing Systems
	A Formulation of the DGRP Based on Combinatorial Double Auctions

	A Self-Adaptive Meta-Heuristic Algorithm Based on Success Rate and Differential Evolution
	The Conversion of Decision Variables and Fitness Function
	The Proposed Success Rate-Based Self-Adaptive Metaheuristic Algorithm

	Results
	Discussion and Conclusions
	References

