
Citation: Nayyeri, M.; Rouhani, M.;

Yazdi, H.S.; Mäkelxax, M.M.;

Maskooki, A.; Nikulin, Y.

Correntropy-Based Constructive One

Hidden Layer Neural Network.

Algorithms 2024, 17, 49. https://

doi.org/10.3390/a17010049

Academic Editor: Takeshi Yamada

Received: 29 November 2023

Revised: 9 January 2024

Accepted: 11 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Correntropy-Based Constructive One Hidden Layer
Neural Network
Mojtaba Nayyeri 1, Modjtaba Rouhani 2 , Hadi Sadoghi Yazdi 2, Marko M. Mäkelä 3, Alaleh Maskooki 3

and Yury Nikulin 3,*

1 Institute for Artificial Intelligence, University of Stuttgart, 70569 Stuttgart, Germany;
mojtaba.nayyeri@ki.uni-stuttgart.de

2 Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 1696700, Iran
3 Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
* Correspondence: yurnik@utu.fi

Abstract: One of the main disadvantages of the traditional mean square error (MSE)-based con-
structive networks is their poor performance in the presence of non-Gaussian noises. In this paper,
we propose a new incremental constructive network based on the correntropy objective function
(correntropy-based constructive neural network (C2N2)), which is robust to non-Gaussian noises.
In the proposed learning method, input and output side optimizations are separated. It is proved
theoretically that the new hidden node, which is obtained from the input side optimization problem,
is not orthogonal to the residual error function. Regarding this fact, it is proved that the correntropy
of the residual error converges to its optimum value. During the training process, the weighted
linear least square problem is iteratively applied to update the parameters of the newly added node.
Experiments on both synthetic and benchmark datasets demonstrate the robustness of the proposed
method in comparison with the MSE-based constructive network, the radial basis function (RBF)
network. Moreover, the proposed method outperforms other robust learning methods including
the cascade correntropy network (CCOEN), Multi-Layer Perceptron based on the Minimum Error
Entropy objective function (MLPMEE), Multi-Layer Perceptron based on the correntropy objective
function (MLPMCC) and the Robust Least Square Support Vector Machine (RLS-SVM).

Keywords: information theoretic learning; probability theory; measure space; correntropy;
non-Gaussian noise; constructive network; compact architecture; half-quadratic programming
problem

1. Introduction

Non-Gaussian noises, especially impulse noise, and outliers are one of the most
challenging issues in training adaptive systems including adaptive filters and feedforward
networks (FFNs). The mean square error (MSE), the second-order statistic, is used widely
as the objective function for adaptive systems due to its simplicity, analytical tractability
and linearity of its derivative. The Gaussian noise assumption beyond MSE objective
functions supposes that many real-world random phenomena may be modeled by Gaussian
distribution. Under this assumption, MSE could be capable of extracting all information
from data whose statistic is defined solely by the mean and variance [1]. Most real-world
random phenomena do not have a normal distribution and the MSE-based methods may
perform unsatisfactorily in such cases.

Several types of feedforward networks have been proposed by researchers. From the
architecture viewpoint, these networks can be divided into four classes including fixed
structure networks, constructive networks [2–6], pruned networks [7–10] and pruning
constructive networks [11–13].

Algorithms 2024, 17, 49. https://doi.org/10.3390/a17010049 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010049
https://doi.org/10.3390/a17010049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2423-6715
https://orcid.org/0000-0001-6409-9423
https://doi.org/10.3390/a17010049
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010049?type=check_update&version=3

Algorithms 2024, 17, 49 2 of 36

The constructive networks start with a minimum number of nodes and connections,
and the network size is increased gradually. These networks may have an adjustment
mechanism based on the optimization of an objective function. The following literature
survey focuses on the single-hidden layer feedforward networks (SLFNs) and multi-hidden
layer feedforward networks with incremental constructive architecture, which are trained
based on the MSE objective function.

Fahlman and Lebier [2] proposed a cascade correlation network (CCN) in which new
nodes are added and trained one by one, creating a multi-layer structure. The parameters
of the network are trained to maximize the correlation between the output of the new
node and the residual error. The authors in [3] proposed several objective functions for
training the new node. They proved that the networks with such objective functions are
universal approximators. Huang et al. [4] proposed a novel cascade network. They used the
orthogonal least square (OLS) method to drive a novel objective function for training new
hidden nodes. Ma and Khorasani [6] proposed a constructive one hidden layer feedforward
network in which its hidden unit activation functions are Hermite polynomial functions.
This approach results in a more efficient capture of the underlying input–output map.
They proposed a new one hidden layer constructive adaptive neural network (OHLCN)
scheme in which the input and output sides of the training are separated [5]. They scaled
error signals during the learning process to achieve better performance. Inefficient input
connections are pruned to achieve better performance. A new constructive scheme was
proposed by Wu et al. [14] based on a hybrid algorithm, which is presented by combining
the Levenberg–Marquardt algorithm and the least square method. In their approach,
a new randomly selected neuron is added to the network when training is entrapped into
local minima.

Inspired by information theoretic learning (ITL), correntropy, which is a localized
similarity measure between two random variables [15,16], has recently been utilized as
the objective function for training adaptive systems. Bessa et al. [17] employed maxi-
mum correntropy criterion (MCC) for training neural networks with fixed architecture.
They compared the Minimum Error Entropy (MEE) and MCC-based neural networks
with MSE-based networks and reported new results in wind power prediction. Singh
and Principe [18] used correntropy as the objective function in the linear adaptive filter
to minimize the error between the output of the adaptive filter and the desired signal,
to adjust the filter weights. Shi and Lin [19] employed a convex combination scheme to
improve the performance of the MCC adaptive filtering algorithm. They showed that the
proposed method has better performance compared to the original signal filter algorithm.
Zhao et al. [20] combined the advantage of Kernel Adaptive Filter and MCC and proposed
Kernel Maximum Correntropy (KMC). The simulation results showed that KMC has signif-
icant performance in the noisy frequency doubling problem [20]. Wu et al. [21] employed
MCC to train Hammerstein adaptive filters and showed that it provides a robust method
in comparison to the traditional Hammerstein adaptive filters. Chen et al. [22] studied a
fixed-point algorithm for MCC and showed that under sufficient conditions convergence of
the fixed-point MCC algorithm is guaranteed. The authors in [23] studied the steady-state
performance of adaptive filtering when MCC is employed. They established a fixed-point
equation in the Gaussian noise condition to obtain the exact value of the steady-state
excess mean square error (EMSE). In non-Gaussian conditions, using the Taylor expansion
approach, they derived an approximate analytical expression for the steady-state EMSE.
Employing stack auto-encoders and the correntropy-induced loss function, Chen et al. [24]
proposed a robust deep learning model. The authors in [25], inspired by correntropy, pro-
posed a margin-based loss function for classification problems. They showed that in their
method, outliers that produce high error have little effect on discriminant function. In [26],
the authors provided a learning theory analysis for the connection between the regression
model associated with the correntropy-induced loss and the least square regression model.
Furthermore, they studied its convergence property and concluded that the scale parameter
provides a balance between the convergence rate of the model and its robustness. Chen and

Algorithms 2024, 17, 49 3 of 36

Principe [27] showed that maximum correntropy estimation is a smooth maximum a poste-
riori estimation. They also proved that when kernel size is larger than the special value and
some condition is held, maximum correntropy estimation has a unique optimal solution
due to the strictly concave region of the smooth posterior distribution. The authors in [28],
investigated the approximation ability of a cascade network when its input parameters
are calculated by the correntropy objective function with a sigmoid kernel. They reported
that their method works better than the other methods introduced in [28] when data are
contaminated by noise.

MCC with Gaussian kernel is a non-convex objective function that leads to local
solutions for neural networks. In this paper, we propose a new method to overcome this
bottleneck by adding hidden nodes one by one until the constructive network reaches a
specific amount of predefined accuracy or reaches a maximum number of nodes. We prove
that the correntropy of the constructive network constitutes a strictly increasing sequence
after adding each hidden node and converging to its maximum.

This paper can be considered as an extension of [28]. While in [28] the correntropy
measure was based on the sigmoid kernel in the objective function to adjust the input
parameters of a newly added node in a cascade network, in this paper, the kernel in the
correntropy objective function is changed from sigmoid to Gaussian kernel. This objective
function is then used for training both input and output parameters of the new nodes in
a single-hidden layer network. The proposed method performs better than [28] for two
reasons: (1) the Gaussian kernel provides better results than the sigmoid kernel as it is a
local similarity measure, and (2) in contrast to [28], in this paper, correntropy is used to
train both the input and output parameters of each newly added node.

In a nutshell, the proposed method has the following advantages:

1. The proposed method is robust to non-Gaussian noises, especially impulse noise, since
it takes advantage of the correntropy objective function. In particular, the Gaussian
kernel provides better results than the sigmoid kernel. The reason for the robust-
ness of the proposed method is discussed in Section 4 analytically, and in Section 5
experimentally.

2. Most of the methods that employ correntropy as the objective function to adjust
their parameters suffer from local solutions. In the proposed method, the amount of
correntropy of the network is increased by adding new nodes and converging to its
maximum; thus, the global solution is provided.

3. The network size is determined automatically; consequently, the network does not
suffer from over/underfitting, which results in satisfactory performance.

The structure of the remainder of this paper is as follows. In Section 2, some necessary
mathematical notations, definitions and theorems are presented. Section 3 presents some
related previous work. Then a correntropy-based constructive neural network (C2N2) is
proposed in Section 4. Experimental results and a comparison with other methods are
carried out in Section 5. The paper is concluded in Section 6.

2. Mathematical Notations, Definitions and Preliminaries

In this section, first, measure and function spaces that are necessary for describing
previous work are defined in Section 2.1. Section 2.2 introduces the structure of the single-
hidden layer feedforward network (SLFN) that is used in this paper, followed by its
mathematical notations and definitions of its related variables.

Algorithms 2024, 17, 49 4 of 36

2.1. Measure Space, Probability Space and Function Space

As mentioned in [3], let X be the input space that is a bounded measurable subset in
Rd and L2(X) be the space of all function f that is

∫
X (f (x))2dµ(x) < ∞. For u, v ∈ L2(X),

the inner product is defined as follows:

⟨u, v⟩µ :=
∫
X

u(x)v(x)dµ(x).

where µ is a positive measure on input space. Under the measure µ, the l2 norm in L2(X)
space is denoted as | · |2. The closeness between u and v is measured by

|u − v|2 =

(∫
X
(u(x)− v(x))2dµ(x)

) 1
2

The angle between u and v is defined by

θu,v := arccos
(⟨u, v⟩µ

|u|2|v|2

)
Definition 1 ([28,29]). Let W be a probability space that is a measure space with a total measure
one. This space is represented as follows:

W = (Ω,F ,P)

where Ω is its sample space. In this paper, Ω is considered a compact subset of Rd,F is a sigma-
algebra of events and P is a probability measure that is a measure on F with P(Ω) = 1.

Definition 2 ([28,29]). Let Lp(Ω,F ,P), 1 ≤ p < ∞ be a set of all p - integrable random variables
X : Ω → R, i.e.,

∥X∥p =

(∫
Ω

XpdP
) 1

p
= (E(Xp))

1
p < ∞

This is a vector space and the inner product in this space is defined as follows:

⟨X, Y⟩ :=
∫

Ω
X(ω)Y(ω)dP = E(XY)

where X, Y ∈ Lp(Ω,F ,P) and E(·) is expectation in probability theory. The closeness between
two random variables X and Y is measured by Lp(Ω,F ,P) norm:

∥X − Y∥p =

(∫
Ω
|X(ω)− Y(ω)|pdP

) 1
p
=

(E(|X − Y|p))
1
p X, Y ∈ Lp(Ω,F ,P)

In ITL, the correlation between random variables is generalized to correntropy, which
is a measure of similarity [15]. Let X and Y be two given random variables; the correntropy
in the sense of [15] is defined as

VM(X, Y) := E(kM(X, Y))

where kM(·, ·) is a Mercer kernel function.
In general, a Mercer kernel function is a type of positive semi-definite kernel function

that satisfies Mercer’s condition. Formally, a symmetric function kM is a Mercer kernel
function if, for any positive integer m and any set of random variables X1, . . . , Xm ∈
Lp(Ω,F ,P), the corresponding Gram matrix Kij = kM(Xi, Xj) is positive semi-definite.

Algorithms 2024, 17, 49 5 of 36

In the definition of correntropy, E(·) implies the expected value of the random variable
and M is replaced by α or σ if the sigmoid or Gaussian kernel (radial basis) are used,
respectively. In our recent work [28], we use a sigmoid kernel, which is defined as

kα(X, Y) = tanh(α⟨X, Y⟩+ c),

where α, c ∈ R are scale and offset hyperparameters of the sigmoid kernel. The offset
parameter c in the sigmoid kernel influences the shape of the kernel function. A higher
value of c leads to a steeper sigmoid curve, making the kernel function more sensitive to
variations in the input space. It is important to note that the choice of hyperparameters,
including c and α, can significantly impact the performance of a machine learning model
using the sigmoid kernel. These parameters are often tuned during the training process to
optimize the model for a specific task or dataset.

In contrast to [28], in this paper, we use the Gaussian kernel that is represented as

kσ(X, Y) =
1√
2πσ

exp
(
−∥X − Y∥2

2σ2

)
where σ is the variance for the Gaussian function. Here, σ controls the width of the Gaussian
kernel. A larger σ results in a smoother and more slowly decaying kernel, while a smaller
σ leads to a narrower and more rapidly decaying kernel.

Let error function be defined as e := e(X, Y) ≡ X − Y; the correntropy of the error
function is represented as

Vσ(e) = E(kσ(X, Y)).

At the end of this subsection, we note that, alternatively, the Wasserstein distance, also
known as the Earth Mover’s Distance (EMD), Kantorovich–Rubinstein metric, Mallows’s
distance or optimal transport distance, can be used as a metric that quantifies the minimum
cost of transforming one probability distribution into another and can therefore be used
to quantify the rate of convergence when the error is measured in some Wasserstein
distance [30]. The relationship between correntropy and Wasserstein distance is often
explored in the context of kernelized Wasserstein distances. By using a kernel function,
the Wasserstein distance can be defined in a reproducing kernel Hilbert space (RKHS).
In this framework, correntropy can be seen as a special case of a kernelized Wasserstein
distance when the chosen kernel is the Gaussian kernel.

2.2. Network Structure

This paper focuses on the single-hidden layer feedforward network. As shown in
Figure 1, it has three layers, including the input layer, the hidden layer and the output layer.
Without loss of generality, this paper considers the SLFN with only one output node.

The output of SLFN with L hidden nodes is represented as follows [3]:

fL =
L

∑
i=1

βigi(x)

where gi is the i-th hidden node and can be one of the two following types:

1. For additive nodes

gi(x) = g
(
⟨wi, x⟩µ + bi

)
; wi ∈ Rd and bi ∈ R

2. For RBF nodes

gi(x) = g
(
|x − wi|2

bi

)
; wi ∈ Rd and bi ∈ R+

For additive nodes, the vector wi is the input weights of the i-th hidden node and bi is its
bias. For RBF nodes, the vector wi is the center of the i-th radial basis function and bi is its
impact factor.

Algorithms 2024, 17, 49 6 of 36

Figure 1. SLFN with additive nodes.

All networks that can be generated are represented as the following functions set [3]:

O =
∞⋃

L=1

OL

where

OL =

{
fL | fL(x) =

L

∑
i=1

βigi(x); βi ∈ R, gi(x) ∈ G
}

and G is a set of all possible hidden nodes. For additive nodes, we have

G =
{

g
(
⟨w, x⟩µ + b

)
; w ∈ Rd, b ∈ R

}
For the RBF case, we have

G =

{
g
(
|x − w|2

b

)
; w ∈ Rd, b ∈ R+

}
Let f be a target function that is approximated by the network with L hidden nodes.
The network residual error function is defined as follows:

eL := f − fL,

In practice, the function form of error is not available and the network is trained
on finite data samples, which are described as X = {xi, yi}N

i=1, where xi ∈ Rd is the d
dimension input vector of the i-th training sample and yi ∈ R is its target value. Thus,
the error vector on the training samples is denoted as follows:

EL = (EL1, . . . , ELN),

where ELi is the error of the i-th training sample for the network with L hidden nodes
(ELi = eL(xi)). Furthermore, the activation vector for the L-th hidden node is

Algorithms 2024, 17, 49 7 of 36

GL = (GL1, . . . , GLN)

where GLi is the output of the L-th hidden nodes for the i-th training sample (GLi = gL(xi)).

3. Previous Work

There are several types of constructive neural networks. In this section, the networks
that are proposed in [3,28] are introduced. In those methods, the network is constructed
by adding a new node to the network in each step. The training process of the newly
added node (L-th hidden node) is divided into two phases: the first phase is devoted to
adjusting the input parameters and the second phase is devoted to adjusting the output
weight. When the parameters of the new node are obtained, they are fixed and do not
change during the training of the next nodes.

3.1. The Networks Introduced in [3]

For the input parameters’ (wL, bL) adjustment in [3], several objective functions are
proposed to adjust the input parameters of the newly added node in the constructive
network. They are as follows [3]:

V1 =

(
EL−1GT

L
GLGT

L

)2

,

V2 =
(

EL−1GT
L

)2
,

V3 =

(
(EL−1 − ĒL−1)(GL − ḠL)

T∥∥GL − ḠL
∥∥

)2

,

V4 =
√

V1,

V5 =
√

V2,

V6 =
√

V3,

VCasCor =
(
(EL−1 − ĒL−1)

(
GL − GL

)T
)2

,

where VCasCor is the objective function for the cascade correlation network, ĒL−1 =
1
N ∑N

i=1 EL−1(xi).
The objective function that is used to adjust the output weight of the L-th hidden node is [3]

∆L = EL−1ET
L−1 − ELET

L

and ∆L is maximized if and only if [3]

βL =
EL−1GT

L
GLGT

L

which is the optimum output parameter of the new node. In [3], the authors also proved
that for each of the objective functions V1 to V6, the network error converges.

Theorem 1 ([3]). Given span (G) is dense in L2 and ∀g ∈ G, 0 < |g|2 < b for some b ∈ R. If gL

is selected so as to maximize
(

(eL−1,gL⟩µ

|gL |2

)2
, then limL→∞| f − fL|2 = 0.

More detailed discussion about theorems and their proofs can be found in [3].

Algorithms 2024, 17, 49 8 of 36

3.2. Cascade Correntropy Network (CCOEN) [28]

The authors in [28] proved that if the input parameters of each new node in a cascade
network are assessed by using the correntropy objective function with the sigmoid kernel
and its output parameter is adjusted by

βL =
E(eL−1gL)

E
(

g2
L
)

then the network is a universal approximator. The following theorem investigates the
approximation ability of CCOEN:

Theorem 2 ([28]). Suppose span(g) is dense in P2(Ω,F ,G). For any continuous function f and
for the sequence of error similarity feedback functions

{
gs(e)

L

}
, L ∈ N, there exists a real sequence

{ηL; L ∈ N} such that
lim

L→∞
E
(

e2
L

)
= 0

holds with probability one if

gs(e)
L = argmaxgL∈g Vσ(eL−1, ηLgL)

βL =
E
(

eL−1gs(e)
L

)
E
((

gs(e)
L

)2
)

It was shown that CCOEN is more robust than the networks proposed in [3] when
data are contaminated by noise.

4. Proposed Method

In this section, a novel constructive neural network is proposed based on the maximum
correntropy criterion with the Gaussian kernel. To the best of our knowledge, it is the
first time that correntropy with Gaussian kernel is employed as the objective function for
training both the input and output weights of a single-hidden layer constructive network. It
must be considered that the correntropy is a non-convex objective function and it is difficult
to adjust the optimum solution. This section proposes a new theorem and surprisingly
proves that the proposed method that is trained by using the correntropy objective function
converges to the global solution. It is shown that the performance of the proposed method
is excellent in the presence of non-Gaussian noise, especially impulse noise. In the proposed
network, hidden nodes are added and trained one by one and the parameters of the newly
added (L-th hidden node) nodes are obtained and then fixed (see Figure 2).

This section is organized as follows: First, some preliminaries, mathematical defini-
tions and theorems that are necessary for presenting the proposed method and proving
the convergence of the method are introduced in Section 4.1. The new training strategy
for the proposed method is described in Section 4.2. In Section 4.3, the convergence of
the proposed method is proven when the error and activation function are continuous
random variables. In practice and during the training on the dataset, the error function is
not available; thus, the error vector and activation vector are used to train the new node.
Regarding this fact, in Section 4.1, two optimization problems are presented to adjust the
parameters of the new node based on training data samples.

Algorithms 2024, 17, 49 9 of 36

Figure 2. Constructive network in which the last added node is referred to by L.

Algorithms 2024, 17, 49 10 of 36

4.1. Preliminaries for Presenting the Proposed Method

This section presents a new theorem for the proposed method based on special spaces,
which are defined in Definitions 1 and 2.

The following lemmas, propositions and theorems are also used in the proof of the
main theorem.

Lemma 1 ([31]). Given g : R → R, Span
{

g(⟨w, x⟩+ b), (w, b) ∈ Rd ×R
}

is dense in Lp for
every p ∈ [1, ∞), if and only if g is not a polynomial (almost everywhere).

Proposition 1 ([32]). For G(z) = exp
(
− ∥z∥2

2σ2

)
, there exists a convex conjugated function ϕ,

such that

G(z) = sup
α∈R−

(
α
∥z∥2

2σ2 − ϕ(α)

)
Moreover, for a fixed z, the supremum is reached at α = −G(z).

Theorem 3 ([33]). If Xn is any sequence of random variables which are positive (take values
in [0, ∞), increasingly converge (Xn(ω) ↑ X(ω)) for any ω ∈ Ω), and the expectation exists(

Xn ∈ L1 for all n), then E(Xn) → E(X).

Theorem 4 ([33]). (Monotonicity) Let X and Y be random variables with X ≤ Y, then E(X) ≤
E(Y), with equality if and only if X = Y almost surely.

Theorem 5 ([34]). (Convergence) Every upper bounded increasing sequence converges to its
supremum.

4.2. C2N2: Objective Function for Training the New Node

In this subsection, we combine the idea of constructive SLFN with the idea of corren-
tropy and propose a new strong constructive network that is robust to impulsive noise.
The proposed method employs correntropy as the objective function to adjust the input
(wL, bL, L = 1, . . . , ∞) and output (βL, L = 1, . . . , ∞) parameters of the network. To the best
of our knowledge, it is the first time that correntropy with the Gaussian kernel has been
employed for training all the parameters of a constructive SLFN. C2N2 starts with zero
hidden nodes. The first hidden node is added to the network. First, the input parameters
(w1, b1) of the hidden node are calculated by employing a correntropy objective function
with a Gaussian kernel. Then, they are fixed and the output parameter (β1) of the node is
adjusted by the correntropy objective function with Gaussian kernel. After the parameters
of the first node are obtained, they are then fixed and the next hidden node is added to the
network and trained. This process is iterated until the stopping condition is satisfied.

The proposed method can be viewed as an extension of CCOEN [28] with the following
differences:

1. In contrast to CCOEN, which uses correntropy with a sigmoid kernel to adjust the
input parameters of a cascade network, the proposed method uses correntropy with a
Gaussian kernel to adjust the whole parameters of an SLFN.

2. CCOEN uses correntropy to adjust the input parameters of the new node in a cascade
network to provide a more robust method. However, the output parameter of the
new node in a cascade network is still adjusted based on the least mean square
error. In contrast, the proposed method uses correntropy with Gaussian kernel to
obtain both the input and output parameters of the new node in a constructive SLFN.
Therefore, the proposed method is more robust than CCOEN and other networks
introduced in [3] when the dataset is contaminated by impulsive noise.

3. Employing Gaussian kernel for correntropy as the objective function to adjust the
network’s parameters provides a closed-form formula introduced in the next sec-

Algorithms 2024, 17, 49 11 of 36

tion. In other words, both the input and output parameters are adjusted by two
closed-form formulas.

For the proposed network, each newly added node (L-th added node where L = 1, . . . , ∞)
is trained using the two phases.

In the first phase, the new node is selected from G, using the following optimization
problem: where

gsim(e)
L = argmaxgL∈G{V(gL)},

V(gL) = E

(
1√
2πσ

exp

(
−∥eL−1 − kLgL∥2

2σ2

))
.

From the definition of the kernel, the most similar
(

gsim(e)
L

)
activation function to

the residual error of L − 1 nodes network is selected from G as this node is selected to
maximize:

V(gL) =E(⟨Φ(eL−1), Φ(kLgL)⟩)
, kL ∈ R− {0}

where Φ is feature mapping. Consequently, the biggest reduction in error is obtained and
the network has a more compact architecture.

In the second phase, the output parameter (βL) of the new node is adjusted whereby

β
sim(e)
L = argmaxβL

{V(βL), βL ∈ R},

V(βL) = E

 1√
2πσ

exp

−

∥∥∥eL−1 − βLgsim(e)
L

∥∥∥2

2σ2


.

These two phases are iterated and a new node is added in each iteration until the
certain stopping condition is satisfied. This is discussed in Section 5.

After the parameters of the new node are tuned, the correntropy of the residual error
(error of the network with L hidden nodes) is shown as

V(eL) = E

 1√
2πσ

exp

−

∥∥∥eL−1 − β
sim(e)
L gsim(e)

L

∥∥∥2

2σ2


,

and the residual error is updated as follows:

eL = eL−1 − β
sim(e)
L gsim(e)

L .

It is important to note that this subsection only presents two optimization problems
for adjusting the input and output parameters of the new node. In Section 4.4, we present a
way to solve these problems.

4.3. Convergence Analysis

In this subsection, we prove that the correntropy of the newly constructed network
undergoes a strictly increasing sequence and converges to its supremum. Furthermore,
it is proven that the supremum equals the maximum. To prove the convergence of the
correntropy of the network, the definitions, theorems and lemma that are presented in
Section 4.1 are employed. To prove convergence of the proposed method, similarly to [3,28],
we propose the following lemma and prove that the new node, which is obtained from the
input side optimization problem, is not orthogonal to the residual error function.

Algorithms 2024, 17, 49 12 of 36

Lemma 2. Given span(G) is dense in L2(Ω,F ,P) and eL−1 ∈ L2(Ω,F ,P). There exists a real
number kL ∈ R− {0} such that gsim(e)

L is not orthogonal to eL−1, where

gsim(e)
L = argmaxgL∈G

(
E

(
1√
2πσ

exp

(
−∥eL−1 − kLgL∥2

2σ2

)))
.

Employing Lemma 2 and what is mentioned in Section 4.1, the following theorem
proves that the proposed method achieves its global solution.

Theorem 6. Given an SLFN with tanh (tangent hyperbolic) function for the additive nodes, for any
continuous function f and for the sequence of hidden nodes functions, obtained based on the residual
error functions, i.e.,

{
gsim(e)

L

}
, L ∈ N, there exists a real sequence {kL; L ∈ N} such that

lim
L→∞

V(eL) = Vmax

holds almost everywhere, provided that

gsim(e)
L = argmaxgL∈G{V(gL)}.

β
sim(e)
L = argmaxβL∈R{V(βL)},

where

Vmax =
1√
2πσ

.

The proof of Lemma 2 and Theorem 6 contain some pure mathematics contents and
are placed in Appendix A.

4.4. Learning from Data Samples

In Theorem 6, we proved that the proposed network, i.e., the one hidden layer construc-
tive neural network based on correntropy (C2N2), achieves an optimal solution. During the
training process, the function form of the error is not available and the error and activation
vectors are generated from the training samples. In the rest of this subsection, we propose
a method to train the network from data samples.

4.4.1. Input Side Optimization

The optimization problem to adjust the input parameters is as follows:

Vg
L = max

GL

(
E

(
1√
2πσ

exp

(
−∥EL−1 − kLGL∥2

2σ2

)))
.

On training data, expectation can be approximated as:

V̂g
L = max

GL

 1
N
√

2πσ

N

∑
i=1

exp

−

∥∥∥E(L−1)i − kLGLi

∥∥∥2

2σ2



.

The constant term 1
N
√

2πσ
can be removed and the following problem can be solved instead V̂g

L :

Ûg
L = max

GL

 N

∑
i=1

exp

−

∥∥∥E(L−1)i − kLGLi

∥∥∥2

2σ2



.

Consider the following equality:

E(L−1)i = kLGLi i = 1, . . . , N.

Algorithms 2024, 17, 49 13 of 36

In this paper, the tanh function is selected as the activation function, which is bipolar
and invertible. Therefore:

g−1
(E(L−1)i

kL

)
= XiW(d+1)∗1 i = 1, . . . , N,

where Xi =
[

xi 1
]
, W(d+1)∗1 =

[
WL
bL

]
,

X =
[

XT
1 , . . . , XT

N

]T

in which abs(.) is the absolute function. The range of g (domain of g−1) is [−1, 1]. Thus, it
is necessary to rescale the error signal to be in the range. To do so, kL is assigned as follows:

kL =
max(abs(EL))

λ′ ,

where λ′ ∈ (−1, 1)− {0}. Let HLi = g−1
(E(L−1)i

kL

)
, and therefore, the term

∥∥∥E(L−1)i − kLGLi

∥∥∥2

can be replaced by
∥HLi − XiWL∥2,

and thus the following problem is presented to adjust the input parameters

Ûg
L = max

WL

(
N

∑
i=1

(
exp

(
−∥HLi − XiWL∥2

2σ2

)))
.

To achieve better generalization performance, the norm of the weights needs to be
kept minimized too; thus, the problem above is reformulated as

Ûg
L = max

WL

(
N

∑
i=1

(
exp

(
−∥HLi − XiWL∥2

2σ2

))
− C

2
∥WL∥2

)
.

It should be considered that if C = 0, both problems from above are equivalent. Since
the necessary condition for convergence is that in each step and by adding each node
amount of correntropy of the error should be increased, in the experiment section, C ≈ 0
and other amounts for C are checked and the best result is selected. This guarantees
convergence of the method according to Theorem 6.

The half-quadratic method is employed to adjust the input parameters. Based on
Proposition 1, we have

⊓g
L(α, WL) = max

WL ,α

(
N

∑
i=1

(
αi
∥HLi − XiWL∥2

2σ2 − Φ(αi)

)
− C

2
∥WL∥2

)
.

The local solution of the above optimization problem is adjusted using the following
iterative process: αt+1

i = −G(HLi − XiWL)

Wt+1
L = argWL

max
(

∑N
i=1

(
αt+1

i
∥HLi−XiWL∥2

2σ2

)
− C

2 ∥WL∥2
)

,

i.e., the following optimization problem needs to be solved in each iterate:

V g
L(α, WL) = max

WL

(
N

∑
i=1

(
αt+1

i
∥HLi − XiWL∥2

2σ2

)
− C

2
∥WL∥2

)
.

Algorithms 2024, 17, 49 14 of 36

Since σ2 is a constant term, it can be removed from the optimization problem. Then,
the optimization problem can be multiplied by 1

C . We set C′ = 1
C . Thus, the following

constraint optimization problem is obtained:{
max ∑N

i=1
C′
2

(
αt+1

i ξ2
i

)
− 1

2∥WL∥2

s.t. XiWL = HLi − ξi i = 1, . . . , N

The Lagrangian is constituted as

L(ξi, ηi, WL) =
N

∑
i=1

C′

2

(
αt+1

i ξ2
i

)
− ∥WL∥2 −

N

∑
i=1

ηi(XiWL − HLi + ξi).

The derivations of the Lagrangian function with respect to its variables are the following

∂L
∂WL

= 0 → WL = −
N

∑
i=1

ηiXT
i = −XTη,

where η = [η1, . . . , ηN]
T .

∂L
∂ξi

= 0 → ηi = C′αt+1
i ξi i = 1, . . . , N,

∂L
∂ηi

= 0 → XiWL − HLi + ξi = 0 i = 1, . . . , N.

Now we consider two cases.
Case 1. d ≤ N
By substituting derivatives in

WL = −
N

∑
i=1

C′αt+1
i ξiXT

i

we obtain

WL = −
N

∑
i=1

C′αt+1
i (−XiWL + HLi)XT

i

=
N

∑
i=1

C′αt+1
i (XiWL)XT

i −
N

∑
i=1

C′αt+1
i HLiXT

i .

Let Ψ be a diagonal matrix with Ψii = αi; therefore,

WL −
(

C′XTΨXWL

)
= −C′XTΨHL

WL

(
I − C′XTΨX

)
= −C′XTΨHL

WL =

(
XTΨX − I

C′

)−1
XTΨHL.

Case 2. d ≥ N
By substituting derivatives in

XWL − HL + ξ = 0 → −XXTη − HL + ξ = 0,

η = C′Ψξ.

Algorithms 2024, 17, 49 15 of 36

we obtain
− XXTC′Ψξ − HL + ξ = 0

→ −XXTC′Ψξ + ξ = HL

→
(
−C′XXTΨ + I

)
ξ = HL

→
(
−XXTΨ +

I
C′

)
C′ξ = HL

→ C′ξ =

(
−XXTΨ +

I
C′

)−1
HL

Then

−
(

XT
)+

WL = Ψ
(
−XXTΨ +

I
C′

)−1
HL

→ WL = XTΨ
(

XXTΨ − I
C′

)−1
HL

Thus, the input parameters are obtained by the following iterative process:

αt+1
i = −G

(
HLi − XiWt

L
)

Wt+1
L =

(
XTΨtX − I

C′

)−1
XTΨtHL

or

Wt+1
L = XTΨt

(
XXTΨt − I

C′

)−1
HL

4.4.2. Output Side Optimization

When the input parameters of the new node are obtained from the previous step,
the new node is named Gsim(e)

L =
{

Gsim(e)
L1 , . . . , Gsim(e)

LN

}
, where Gsim (e)

Li = gsim(e)
L (xi) and

the output parameter is adjusted using the following optimization problem:

Vβ
L = max

βL

E

 1√
2πσ

exp

−

∥∥∥eL−1 − βLgsim(e)
L

∥∥∥2

2σ2



.

The expectation can be approximated on training samples:

V̂β
L = max

βL

 1
N
√

2πσ

N

∑
i=1

exp

−

∥∥∥E(L−1)i − βLGsim(e)
Li

∥∥∥2

2σ2



.

The constant term 1
N
√

2πσ
can be removed and the following problem can be solved instead V̂β

L :

Ûβ
L = max

βL

 N

∑
i=1

exp

−

∥∥∥E(L−1)i − βLGsim(e)
Li

∥∥∥2

2σ2



.

Similar to the previous step, the half-quadratic method is employed to adjust the output
parameter. Based on Proposition 1, we obtain

uβ
L(γ, βL) = max

βL ,γ

 N

∑
i=1

γi

∥∥∥E(L−1)i − βLGsim(e)
Li

∥∥∥2

2σ2 − Φ(γi)


.

Algorithms 2024, 17, 49 16 of 36

The local solution of the above optimization problem is adjusted using the following
iterative process: 

γt+1
i = −kσ

(
ELi − βt

LGsim(e)
Li

)
βt+1

L = argβL
max

(
∑N

i=1

(
γt+1

i
∥ELi−βt

LGsim
Li (e)

2σ2

)) .

i.e., the following optimization problem is required to be solved in each iteration:

V β
L (γ, βL) = max

βL

 N

∑
i=1

γt+1
i

∥∥∥ELi − βLGsim(e)
Li

∥∥∥2

2σ2


,

ν
β
L(γ, βL) = max

βL

(
1

2σ2

((
EL − βLGsim(e)

L

)
Θ
(

EL − βLGsim(e)
L

)T
))

.

where Θ is a diagonal matrix with Θii = γi, i = 1, . . . , N.

Vβ
L (γ, βL) = max

(
1

2σ2

(
ELΘET

L + β2
LGsim(e)

L ΘGsim(e)T

L − βLELΘGsim(e)T

L − βLGsim(e)
L ΘET

L

))
.

The optimum output weight is adjusted by differentiating V β
L (γ, βL) with respect to βL as(

2βLGsim(e)
L ΘGsim(e)T

L − ELΘGsim(e)T

L − Gsim(e)
L ΘET

L

)
= 0,

βL =
ELΘGsim(e)T

L

Gsim(e)
L ΘGsim(e)T

L

.

Finally, the output weight is adjusted by the following iterative process:
γt+1

i = −kσ

(
ELi − βt

LGsim(e)
Li

)
βt+1

L =
ELΘGsim(e)T

L

Gsim(e)
L ΘGsim(e)T

L

.

In these two phases, the parameters of the new node (L-th added node where L ∈ N)
are tuned and then fixed. This process is iterated for each new node until the prede-
fined condition is satisfied. The following proposition demonstrates that for each node,
the algorithm converges.

Proposition 2. The sequences
{
⊓g

L
(
αt, Wt

L
)
, t = 1, 2, . . .

}
and

{
U β

L
(
γt, βt

L
)
, t = 1, 2, . . .

}
converge.

Proof. From Theorem 5 and Proposition 1, we have uβ
L
(
γt, βt

L
)

≤ uβ
L
(
γt+1, βt

L
)

≤ uβ
L

(
γt+1, βt+1

L

)
and

(
⊓g

L
(
αt, Wt

L
)
≤ ug

L
(
αt+1, Wt

L
)
≤ ug

L

(
αt+1, Wt+1

L

))
. Thus, the non-

decreasing sequence
{

uβ
L
(
γt, βt

L
)
, t = 1, 2, . . .

}({
ug

L
(
αt, Wt

L
)
, t = 1, 2, . . .

})
converges since

the correntropy is upper bounded.

Proposition 3. When Θ = I, the output weight that is adjusted by the correntropy criterion is
equivalent to the output weight that is adjusted by the MSE-based method such as IELM.

Algorithms 2024, 17, 49 17 of 36

Proof. Suppose that Θ = I, by βL =
EbθGsim(e)T

L

Gsim(e)
L ΘGsim(e)T

L

, we have

βL =
ELGsim(e)T

L

Gsim(e)
L Gsim(e)T

L

.

The training process of the proposed method is summarized in the following
Algorithm 1 (C2N2).

Algorithm 1 C2N2

Input: training samples χ = {xi, yi}N
i=1

Output: Optimal input and output weights βL, WL, L = 1, ..., Lmax
Initialization: Maximum number of hidden nodes Lmax, regularization term C′, maxi-
mum input side and output side iterations IT1, IT2, error E0 = [y1, ...yN].
For L = 1 : Lmax

Step 1: Calculate HL and X
For k = 1 : IT1

Update input parameters
End

Step 2: Calculate the hidden node vector, Gsim(e)
L by previous step

For k = 1 : IT2
Update output weight

End
Update error as EL = EL−1 − β

sim(e)
L Gsim(e)

L
End

Remark 1. The auxiliary variables γi and αi, i = 1, . . . , N are utilized to reduce the effect of noisy
data. For the samples with a high amount of error, these variables are very small; thus, these samples
have slight effects on the optimization of the parameters of the network, which results in a more
robust network.

5. Experimental Results

This section compares C2N2 with RBF, CCN and other constructive networks that
are presented in [3]. The networks, whose hidden nodes’ input parameters are trained by
the objective functions V1, V2, V3,

√
V1,

√
V2,

√
V3 that are introduced in [3], are denoted by

N1, . . . , N6. In addition to the mentioned methods, the proposed method is compared to the
state-of-the-art constructive networks such as the orthogonal least square cascade network
(OLSCN) [4] and the one hidden layer constructive network (OHLCN) introduced in [5].
Moreover, C2N2 is also compared with state-of-the-art robust learning methods including
Multi-Layer Perceptron based on MCC (MLPMCC) [17], Multi-Layer Perceptron based on
Minimum Error Entropy (MLPMEE) [17] and Robust Least Square Support Vector Machine
(RLS-SVM) [35] and the recent work, CCOEN [28].

The rest of this section is organized as follows. Section 5.1 describes a framework
for the experiments. The presented theorem and hyperparameters (L, C′ and η′) are
investigated in Section 5.2. In Section 5.3, the presented method is compared to N1-
N6, CCN, RBF and some state-of-the-art constructive networks including OHLCN and
OLSCN. Experiments are performed on several synthetic and benchmark datasets that are
contaminated with impulsive noise (one of the most popular types of non-Gaussian noise).
In this part, experiments are also performed in the absence of impulsive noise. Section 5.4
compares the proposed method with state-of-the-art robust learning methods including
MLPMEE, MLPMCC, RLS-SVM and CCOEN on various types of datasets.

Algorithms 2024, 17, 49 18 of 36

5.1. Framework for Experiments

This part presents a framework for the experiments. The framework includes the
type of activation function for C2N2 and other mentioned methods, type of kernel, kernel
parameters (σ), range of hyperparameters (L, C′, λ′) and dataset specification.

5.1.1. Activation Function and Kernel

For the proposed method, the tangent hyperbolic activation function is used. It is
represented as follows (see Figure 3):

Figure 3. Tangent hyperbolic function.

tanh(x) =
ex − e−x

ex + e−x

For networks N1 − N6, CCN, OLSCN, OHLCN, MLPMCC and MLPMEE, the sigmoid
activation function is used. This function is represented and displayed as follows (see
Figure 4):

Figure 4. Sigmoid function.

Algorithms 2024, 17, 49 19 of 36

For the proposed method and RLS-SVM, RBF kernel is used. It is shown as

K(X, Y) = exp
(
−∥X − Y∥2

2σ2

)
In the experiments, the optimum kernel parameter (σ) is selected from the set

{0.1, 0.5, 1, 10, 15}.

5.1.2. Hyperparameters

The method has three hyperparameters. These parameters help to avoid over or
underfitting, which improves performance. The first parameter is a number of hidden
nodes (L). The optimum number of hidden nodes is selected from the set {1, . . . , 8}. Due
to the boundedness of tanh function (−1 < tanh(x) < 1), the error signal must be scaled
to this range. Thus, λ′ should be selected from the set {−0.9, . . . ,−0.1, 0.1, 0.2, . . . , 0.9}.
Figure 5 shows that accuracy is symmetric with respect to λ′. Thus, λ′ should be selected
from the set {0.1, . . . , 0.9}. The possible range for C′ is investigated in the next part.

Figure 5. Effect of λ′ on accuracy. Parameter C′ is set to 0.45. The experiment is performed on the
diabetes dataset with the network with only one hidden node.

5.1.3. Data Normalization

In this paper, the input vector of data samples is normalized into the range [−1, 1].
For regression datasets, their targets are normalized into the range [0, 1].

In this paper, most of the datasets are taken from the UCI Machine Learning Reposi-
tory [36] and Statlib [37]. These datasets are specified in Tables 1 and 2.

Algorithms 2024, 17, 49 20 of 36

Table 1. Specification of the regression problem.

Datasets #Train #Test #Features

Baskball 64 32 4

Strike 416 209 6

Bodyfat 168 84 14

Quake 1452 726 3

Autoprice 106 53 9

Baloon 1334 667 2

Pyrim 49 25 27

Housing 337 169 13

Abalone 836 3341 8

Cleveland 149 148 13

Cloud 54 54 7

Table 2. Specification of the classification problem.

Dataset #Train #Test #Features

Ionosphere 175 176 34

Australian Credit 460 230 6

Diabetes 512 256 8

Colon 32 30 2000

Liver 230 115 6

Leukemia 36 36 7129

Dimdata 1000 3192 14

5.2. Convergence

This part investigates the convergence of the proposed method (Theorem 6), followed
by an investigation of the hyperparameters.

5.2.1. Investigation of Theorem 6

The main goal of this paper is to maximize the correntropy of the error function.
Regarding the kernel definition and due to maximization of correntropy, the approxima-
tor (output of the neural network, fL) has the most similarity to the target function (f).
Theorem 6 proves that the proposed method obtains the optimal solution, i.e., the corren-
tropy of the error function is maximized. This part investigates the convergence of the
proposed method. In this experiment, the kernel parameter is set to 10; thus, the optimum
value for correntropy is v(e = 0) = Vmax = 0.0399. Figure 6 shows the convergence of
C2N2 to the optimum value in the approximation of the sinc function.

Algorithms 2024, 17, 49 21 of 36

Figure 6. Convergence of the proposed method in the approximation of Sinc function when σ = 10.
It converges to Vmax = 0.0399.

5.2.2. Hyperparameter Evaluation

To evaluate parameters C′ and λ′, C2N2 with only one hidden node was experimented
on using the diabetes dataset. Figure 7 shows that the best amount for parameter C′

is in the range [0, 1]. Thus, in the experiments, parameter C′ is selected from the set
{0.05, 0.15, 0.25, . . . , 0.95}.

Figure 7. Effect of hyperparameters (C′, λ′) on accuracy.

Algorithms 2024, 17, 49 22 of 36

5.3. Comparison

This part compares the proposed method with the networks N1, . . . , N6, CCN, OHLCN,
OLSCN, and RBF in the presence and absence of non-Gaussian noise. One of the worst
types of non-Gaussian noise is impulsive noise.

For λ′ = 0, the accuracy is set to zero. This type of noise adversely affects the perfor-
mance of MSE-based methods such as the networks N1 − N6, CCN, OHLCN and OLSCN.
In this part and part D, we perform experiments similar to [4]. We calculated the RMSE
(classification accuracy) on the testing dataset after each hidden unit was added and re-
ported the lowest (highest) RMSE (accuracy) along with the corresponding network size.
Similar to [4], experiments were carried out in 20 trials and the results (RMSE (accuracy)
and number of nodes) averaged over 20 trials are listed in Tables 3–6.

In all result tables, the best results are shown in bold and underlined. The results that
are close to the best ones are in bold.

Algorithms 2024, 17, 49 23 of 36

Table 3. Performance comparison of C2N2 and the networks N4, N5, N6, CCN and RBF: benchmark regression dataset.

Datasets

C2N2 N4 N5 N6 CCN RBF

Testing
RMSE #N Time

(s)
Testing
RMSE #N Time

(s)
Testing
RMSE #N Time

(s)
Testing
RMSE #N Time

(s)
Testing
RMSE #N Time

(s)
Testing
RMSE #N Time

(s)

Autoprice 0.2689 4.8 0.54 0.2996 2 1.49 0.2689 9.2 3.99 0.3681 5 6.99 0.2758 1.5 1.67 0.2725 79 0.008

Autoprice
(Noise) 0.2770 6.7 0.70 0.5521 1.33 1.07 0.3610 2.60 0.43 0.4295 3.77 1.41 0.4768 1.2 1.89 0.9082 79 0.009

Baloon 0.1065 5.9 10.73 0.1163 5.75 5.21 0.1066 10 4.96 0.1257 8.3 9.97 0.1317 3.58 2.09 0.0563 150 0.086

Baloon
(Noise) 0.1056 5.1 3.25 0.1166 2 1.32 0.1252 8.9 4.66 0.1281 5 3.31 0.1358 2.9 2.12 0.1051 1501 0.1351

Pyrim 0.0482 6.7 0.23 0.0843 1 0.27 0.2062 1.2 0.07 0.1696 1 0.17 0.1694 1 0.17 0.0842 37 0.0090

Pyrim
(noise) 0.0521 4.9 0.16 0.6666 1.5 0.32 0.4150 1 0.036 0.6203 1 0.62 0.5712 1 0.62 1.5034 37 0.0043

Table 4. Performance comparison of RBF, N4, N5, N6, CCN and C2N2: classification datasets.

Datasets

N4 N5 N6 RBF CCN C2N2

Testing
Rate
(%)

#N Time
(s)

Testing
Rate
(%)

#N Time
(s)

Testing
Rate
(%)

#N Time
(s)

Testing
Rate
(%)

#N Time
(s)

Testing
Rate
(%)

#N Time
(s)

Testing
Rate
(%)

#N Time
(s)

Ionospher 70.97 1.10 0.12 65.45 1 0.11 78.98 2.40 0.25 82.61 175 0.14 78.04 1.60 0.21 86.70 1.30 0.22

Colon 62.00 1 0.02 63.00 1.15 0.03 62.33 1.35 0.38 90.50 32 0.12 64.04 1.05 0.29 91.50 1 0.15

Leukemia 64.44 1 0.03 64.44 1 0.05 72.44 1 0.04 88.61 36 0.22 83.71 1.3 0.31 94.72 1 0.20

Dimdata 89.74 7.05 15.31 88.44 6.60 9.39 88.77 4.30 7.34 95.05 1000 4.36 88.37 3.60 8.98 93.73 3.50 8.29

Table 5. Performance comparison of C2N2 and the state-of-the-art constructive networks OLSCN and OHLCN: benchmark regression dataset.

Dataset

C2N2 OLSCN OHLCN

Testing
RMSE #Nodes Time

(s)
Testing
RMSE #Nodes Time

(s)
Testing
RMSE #Nodes Time

(s)

Housing 0.0966 5.6 0.79 0.0988 1.9 1.44 0.0993 2.8 0.38

Housing
(Noise) 0.0978 5.87 1.07 0.2411 1.1 1.53 0.1824 4.3 0.09

Algorithms 2024, 17, 49 24 of 36

Table 5. Cont.

Dataset

C2N2 OLSCN OHLCN

Testing
RMSE #Nodes Time

(s)
Testing
RMSE #Nodes Time

(s)
Testing
RMSE #Nodes Time

(s)

Strike 0.2807 2.8 1.11 0.2818 2 2.77 0.2888 3.3 0.62

Strike
(Noise) 0.2817 4.4 0.87 0.3017 2 2.21 0.3912 6.0 0.07

Quake 0.1784 6.6 2.05 0.1821 2 3.88 0.1815 6 0.023

Quake
(noise) 0.1744 2 0.42 0.1870 1.75 2.21 0.1849 4 0.021

Table 6. Performance comparison of C2N2 AND the state-of-the-art constructive networks OLSCN and OHLCN: benchmark classification dataset.

Dataset

C2N2 OLSCN OHLCN

Testing
RMSE #Nodes Time

(s)
Testing
RMSE #Nodes Time

(s)
Testing
RMSE #Nodes Time

(s)

Australian (Noise) 86.77 3 0.48 86.67 2 10.88 86.09 1 1.01

Liver (Noise) 65.70 4 0.25 65.12 2 1.01 53.49 9 0.02

Diabete (noise) 79.95 1 1.11 78.65 2 3.36 40.56 1 6.23

Algorithms 2024, 17, 49 25 of 36

5.3.1. Synthetic Dataset (Sinc Function)

Figure 8 compares C2N2 with RBF and the network N1 in the approximation of the
Sinc function. In Figure 9, the experiment is performed in the presence of impulsive noise.

Figure 8. Comparison of C2N2 with RBF and the network N1. The experiment is performed on the
approximation of the Sinc function.

Figure 9. Comparison of C2N2 with RBF and the network N1. The experiment is performed on the
approximation of the Sinc function and in the presence of impulsive noise.

5.3.2. Other Synthetic Dataset

The following regression problems are used to evaluate the performance of the pro-
posed method in comparison to the networks N1, N2 and N3.

f (1)(x1, x2) = 10.391((x1 − 0.4)(x2 − 0.6) + 0.36)

f (2)(x1, x2) = 24.234r2
(

0.75 − r2
)

Algorithms 2024, 17, 49 26 of 36

where
r = (x1 − 0.5)2 + (x2 − 0.5)2

f (3)(x1, x2) =42.659
(

0.1 + r1

(
0.05 + r4

1 − 10r2
1r2

2 + 5r4
2

))
r1 = x1 − 0.5 and r2 = x2 − 0

f (4)(x1, x2) =

1.3365
(

1.5(1 − x1) + e2x1−1 sin
(

3π(x1 − 0.6)2
)
+ e3(x2 − 0.5) + sin

(
4π(x2 − 0.9)2

))
For each of the above functions, 225 pairs (x1, x2) are generated randomly in the

interval [0, 1]. For each piece of training data, its target is assigned as

yji = f (j)
l (xi1, xi2) = f (j)(xi1, xi2) + ηil

i = 1, . . . , 225 and j = 1, . . . , 4 and l = 0, 1

where ηi is noise that is added to the target of the data samples. In this section, the index of
the noise (l) is: {

0. without noise
1. ηi1 = impulse noise

For impulse noise, the outputs of five data samples are changed by extra high values using
the uniform distribution.

5.4. Discussion
5.4.1. Discussion on Table 7

Table 7 compares C2N2 with the networks N1, N2 and N3. From the table, we can see
that in the absence of noise, the proposed method outperforms the other methods on the
datasets f (2)0 , f (3)0 and f (4)0 . For the dataset f (1)0 , the best result is for the network N2. We
added impulsive noise to the dataset and again performed experiments. From Table 7,
we can see that the proposed method is more stable when data are contaminated with
impulsive noise. For example, for the dataset f (2)0 , the RMSEs of C2N2 and N1 to N3 are

close. However, in the presence of impulsive noise for the dataset f (2)1 , the RMSEs for
C2N2 and N1 to N3 are 0.2487, 0.3676, 0.2790, and 0.3226 respectively. This means that
noisy data samples have less effect on the proposed method in comparison to the other
mentioned methods and the proposed method is more stable. The goal of any learning
method is to increase performance. Thus, in this paper, we focus on RMSE. However,
from the architecture viewpoint, the proposed method tends to have a smaller number of
nodes in 50% of the datasets.

5.4.2. Why C2N2 Denies Impulse Noises?

Regarding optimization problems, for noisy (impulsive noise) data, auxiliary variables
αt

i , γt
i are low. Thus, such data have a small role in optimization problems; parameters of

the new node are obtained based on noise-free data (Remark 1). Table 8 shows the auxiliary
variables for several noisy and noise-free data samples.

5.4.3. Benchmark Dataset

In this part, several regression and classification datasets are contaminated with im-
pulse noise. At this time, as in [38], we produce impulsive noise by generating random real
numbers from the following distribution function, and then we add them to data samples:

η = 0.95N
(

0, 10−4
)
+ 0.05N(0, 10)

where N(µ, σ) is a Gaussian distribution function with the mean µ and variance σ. For the
regression dataset, we add noise to its target. For the classification dataset, we add noise

Algorithms 2024, 17, 49 27 of 36

to its input feature vector. Experiments on these datasets confirm the robustness of the
proposed method in comparison with N4, . . . , N6, CCN and RBF, OLSCN and OHLCN.

Table 7. Performance comparison of C2N2 and the networks N1, N2 and N3: synthetic regres-
sion dataset.

Datasets

C2N2 N1 N2 N3

Testing
RMSE #N Time

(s)
Testing
RMSE #N Time

(s)
Testing
RMSE #N Time

(s)
Testing
RMSE #N Time

(s)

f (1)0
0.1358 3.70 0.69 0.1555 4.85 1.48 0.1284 6.30 1.78 0.1536 7.05 0.81

f (1)1
0.1587 6.25 0.91 0.3244 3.70 0.44 0.2460 3.20 0.72 0.2750 4.40 2.40

f (2)0
0.1963 2.70 1.09 0.1953 5.90 1.91 0.1953 4.55 1.57 0.1954 5.45 2.18

f (2)1
0.2487 3.55 3.98 0.3676 5.25 1.08 0.2790 3.25 0.89 0.3226 5.65 1.16

f (3)0
0.0892 3.15 1.05 0.0940 6.80 0.12 0.0943 3.30 1.34 0.0935 6.40 0.34

f (3)1
0.1416 4.15 1.12 0.2949 4.15 0.64 0.2309 2.35 0.51 0.2555 4.35 0.57

f (4)0
0.1136 2.10 1.81 0.1141 4.55 1.34 0.1139 8.10 2.02 0.1963 4.70 0.87

f (4)1
0.1360 7.70 3.01 0.2928 1.65 1.54 0.2569 4.20 0.98 0.2961 4.85 0.45

Table 8. Amount of auxiliary variables for noisy and noise-free data. The experiment is performed on
the f 1 dataset.

Noisy Data #3 #10 #36 #55 #100

(αi , γi) (−0.2351,−3.29 ∗ 10−22) −0.2551,−4.3 ∗ 10−22) (−0.2310,−1.04 ∗ 10−24) (−0.2607,−8.06 ∗ 10−22) (−0.2482,−6.12 ∗ 10−23)

Noise-free data #4 #11 #37 #56 #101

αi , γi (0.3837,−0.3989) (−0.3983,−0.3989) (−0.3989,−0.3955) (−0.3989,−0.3982) (−0.3988,−0.3988)

5.4.4. Discussion on Table 3

Table 3 compares C2N2 with the networks N4, N5, N6, CCN and RBF on the Autoprice,
Baloon and Pyrim datasets in the presence and absence of impulsive noise. It shows that
C2N2 is more stable than the networks N4 to N6, CCN and RBF in the presence of non-
Gaussian noise. For example, for the Autoprice dataset, RMSEs for C2N2, N4-N6, CCN
and RBF are 0.2689, 0.2996, 0.2689, 0.3681, 0.2775 and 0.2725, respectively. After adding
noise, RMSEs are 0.2770, 0.5521, 0.3610, 0.4295, 0.4768 and 0.9082 respectively. These
results confirm that the proposed method is robust to impulsive noise in comparison to the
mentioned methods.

5.4.5. Discussion on Table 4

This table compares C2N2 with the networks N4, N5, N6, CCN and RBF on the Iono-
sphere, Colon, Leukemia and Dimdata datasets in the presence of impulsive noise. It
shows that C2N2 outperforms the other mentioned methods on the Ionosphere, Colon
and Leukemia datasets. For the dataset Dimdata, RBF outperforms the proposed method.
However, the result is obtained with 1000 nodes for RBF and with an average of 3.5 nodes
for C2N2.

5.4.6. Discussion on Tables 5 and 6

These tables compare C2N2 with state-of-the-art constructive networks on the regres-
sion and classification datasets. They show that the best results are for C2N2. For the
Housing dataset, RMSEs for C2N2, OLSCN and OHLCN are 0.0966, 0.0988 and 0.0993,
respectively. In the presence of impulsive noise, RMSEs are 0.0978, 0.2411 and 0.1824 . Thus,
the proposed method has the best stability among the other mentioned state-of-the-art
constructive networks when data samples are contaminated with impulsive noise. From the
architecture viewpoint, OLSCN has the most compact architecture. However, it has the

Algorithms 2024, 17, 49 28 of 36

worst training time. Table 6 shows that C2N2 outperforms OLSCN and OHLCN in the
presence of impulsive noise in the classification dataset.

5.4.7. Computational Complexity

Let L be the maximum number of hidden units to be added to the network. For each
newly added node, its input parameter is adjusted as specified in Section 4.4.1. The order
of adjusting the inverse of the d × d matrix is d3. Thus, h = O

(
Lk
(
min

(
d3, N3)+ N2)),

where k is the constant term (number of iterations). Thus, we have

h = O
(

L
(

min
(

d3, N3
)
+ N2

))
.

5.5. Comparison

This part compares C2N2 with state-of-the-art robust learning methods on several
benchmark datasets. These methods are Robust Least Square SVM (RLS-SVM), MLPMEE
and MLPMCC. As mentioned in Section 5.4, and similar to [4], in this part, experiments
are performed in 20 trials and average results of RMSE (accuracy for classification) and the
number of hidden nodes(#N) are reported in Table 9.

5.5.1. Discussion on Table 9

From the table, we can see that for Pyrim, Prim (noise) and baskball (noise), C2N2
absolutely outperforms the other robust methods in terms of RMSE. For Bodyfat and Body-
fat (noise), C2N2 slightly outperforms other methods in terms of RMSE. Thus, to compare
them, we need to check the number of nodes and training times. For both datasets, C2N2
has a fewer number of nodes. In the presence of noise, C2N2 has a better training time in
comparison to RLS-LSVM.

Thus, the proposed method outperforms the other methods for these two datasets.
Among these six datasets, RLS-SVM only outperforms C2N2 in one dataset, i.e., Baskball;
however, it has a worse training time and more nodes. It can be seen that among the robust
methods, the proposed method has the most compact architecture.

Table 9. Performance comparison of C2N2 and the state-of-the-art robust methods MLPMEE,
MLPMCC and RLS-LSVM: benchmark regression dataset.

Dataset

C2N2 MLPMEE MLPMCC RLS-LSVM

Testing
RMSE #Nodes

Time
(s)

Testing
RMSE #Nodes

Time
(s)

Testing
RMSE #Nodes Time

(s)
Testing
RMSE #Nodes Time

(s)

Bodyfat 0.00281 5 0.4623 0.0045 10 - 0.00291 40 - 0.00295 101 0.0789

Bodyfat
(Noise) 0.00241 4 0.2751 0.00251 10 - 0.00257 10 - 0.00451 101 9.651

Pyrim 0.0488 7 0.2712 0.0798 20 - 0.0882 40 - 0.0817 37.3 0.0352

Pyrim
(Noise) 0.05213 4.4 0.1521 0.0586 10 - 0.12034 30 - 0.12345 37 4.495

Baskball 0.12293 5.5 0.2454 0.1352 30 - 0.13114 20 - 0.1143 48 0.3687

Baskball
(noise) 0.11981 1.33 0.0238 0.14352 20 - 0.1328 20 - 0.12839 48 22.569

5.5.2. Discussion on Table 10

This table compares the recent work, CCOEN, with the proposed method on three
datasets in the presence and absence of noise. According to the table, the proposed method
outperforms CCOEN in all cases except the Cloud dataset in the presence of noise where
CCOEN has a slightly better performance with more hidden nodes. From the architecture
viewpoint, the proposed method has a fewer number of nodes in comparison to CCOEN
in most cases. Therefore, correntropy with the Gaussian kernel provides better results in
comparison to the sigmoid kernel.

Algorithms 2024, 17, 49 29 of 36

Table 10. Performance comparison of C2N2 and the recent work. CCOEN: benchmark regres-
sion dataset.

Dataset

C2N2 CCOEN

Testing
RMSE #Nodes Testing

RMSE #Nodes

Abalone 0.075 6 0.090 8.8

Abalone (Noise) 0.079 2.6 0.091 7.8

Cleveland 0.061 4.2 0.791 6.1

Cleveland (Noise) 0.066 2 0.821 8.5

Cloud 0.277 4.2 0.293 4.7

Cloud (noise) 0.302 5.6 0.290 4.8

6. Conclusions

In this paper, a new constructive feedforward network is presented that is robust to
non-Gaussian noises. Most of the other existing constructive networks are trained based on
the mean square error (MSE) objective function and consequently act weak in the presence
of non-Gaussian noises, especially impulsive noise. Correntropy is a local similarity
measure of two random variables and is successfully used as the objective function for the
training of adaptive systems such as adaptive filters. In this paper, this objective function
with a Gaussian kernel is utilized to adjust the input and output parameters of the newly
added node in a constructive network. It is proved that the new node obtained from the
input side optimization is not orthogonal to the residual error of the network. Regarding
this fact, correntropy of the residual error converges to its optimum when the error and the
activation function are continuous random variables in L2(Ω,F ,P) space where the triple
(Ω,F ,P) is considered as a probability space. During the training on datasets, the function
form of error is not available; thus, we provide a method to adjust the input and output
parameters of the new node from training data samples. The auxiliary variables that appear
in input and output side optimization problems decrease the effect of the non-Gaussian
noises. For example, for impulsive noise, these variables are close to zero; thus, these data
samples have little role in optimizing the parameters of the network. For the MSE-based
constructive networks, the data samples that are contaminated by impulsive noises have
a great role in optimizing the parameters of the network, and consequently, the network
is not robust. The experiments are performed on some synthetic and benchmark datasets.
For the synthetic datasets, the experiments are performed in the presence and absence
of impulsive noises. We saw that for the datasets that are contaminated by impulsive
noises, the proposed method has significantly better performance than the state-of-the-art
MSE-based constructive network. For the other synthetic and benchmark datasets, in most
cases, the proposed method has satisfactory performance in comparison to the MSE-based
constructive network and radial basis function (RBF). Furthermore, C2N2 was compared
with state-of-the-art robust learning methods such as MLPMEE, MLPMCC and the robust
version of the Least Square Support Vector Machine and CCOEN. The performances are
obtained with compact architectures due to the input parameters being optimized. We
also see that correntropy with Gaussian kernel provides better results in comparison to the
correntropy with sigmoid kernel.

The use of the correntropy-based function introduced in this research may also benefit
networks with other architectures toward enhancing the generalization performance and
robustness level. In the context of further research, the validity of similar results can be
verified for various classes of neural networks. In addition, since impulsive noise is one
of the worst cases of non-Gaussian noise, it can be expected that a different non-Gaussian
noise will yield a result between clean data and data with impulsive noise. This should be
verified in further experiments.

It is also necessary to point out here other novel modern avenues and similar research
directions. For example, ref. [39] delves into modal regression, presenting a statistical

Algorithms 2024, 17, 49 30 of 36

learning perspective that could enrich the discussion on learning algorithms and their
efficiency in different noise conditions. In particular, it points out that correntropy-based
regression can be interpreted from a modal regression viewpoint when the tuning parameter
goes to zero. At the same time, [40] depicts a big picture of correntropy-based regression by
showing that with different choices of the tuning parameter, correntropy-based regression
learns a location function.

Correntropy not only has inferential properties that could be used for neural net-
work analysis, but another approach could be, for example, cross-sample entropy-based
techniques. One such direction was shown to be effective in [41] with reported results of
simulation on exchange market datasets.

Finally, it is also worth mentioning that the choice of the algorithm applied for optimiz-
ing the objective functions can influence the results. The usage of non-smooth methodology
focusing on bundle-based algorithms [42] as a possible efficient tool in machine learning
and neural network analysis can also be tested.

Author Contributions: All authors contributed to the paper. The experimental part was mainly done
by the first author, M.N. Conceptualization was done by M.R. and H.S.Y. Verification and final editing
of the manuscript was done by Y.N., A.M. and M.M.M. who played a role of a research director. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data and codes can be requested from the first author

Acknowledgments: The authors would like to express their thanks to the GA. Hodtani and Ehsan
Shams Davodly for their constructive remarks and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

C2N2 Correntropy-based constructive neural network
MCC Maximum correntropy criterion
MSE Mean square error
MEE Minimum Error Entropy
EMSE Excess mean square error
OLS Orthogonal least square
CCOEN Cascade correntropy network
MLPMEE Multi-Layer Perceptron based on Minimum Error Entropy
MLPMCC Multi-Layer Perceptron based on correntropy
RLS-SVM Robust Least Square Support Vector Machine
FFN Feedforward network
RBF Radial basis function
ITL Information theoretic learning
CGN Cascade correlation network
OHLCN One hidden layer constructive adaptive neural network

Appendix A

Appendix A.1. Proof of Lemma 1

Proof. Similar to [28], let kL = ∥eL−1∥∥∥∥g∥L
∥∥∥ γ, γ ∈ R− {0} where

∀gL ∈ G
∣∣cos

(
θeL−1 , g∗L

)∣∣ ≥ ∣∣cos
(
θeL−1 , gL

)∣∣.
Thus,

1√
2πσ

exp

(
−∥eL−1 − kLgL∥2

2σ2

)
=

Algorithms 2024, 17, 49 31 of 36

1√
2πσ

exp

−
∥eL−1∥2 + ∥eL−1∥2γ2 ∥∥L∥2

∥gIL∥
2 − 2γ∥eL−1∥

∥∥∥gg2

∥∥∥
∥∥L

L∥
cos
(
θeL−1 , gL

)
2σ2

.

Let A = ∥gL∥
∥gL

L∥
, we have,

1√
2πσ

exp

(
−∥eL−1 − kLgL∥2

2σ2

)
=

1√
2πσ

exp

(
−
∥eL−1∥2(1 + A2γ2 − 2γA cos

(
θeL−1 , gL

))
2σ2

)
.

We need to prove that kL ∈ R− {0} exists such that

1√
2πσ

exp

(
−
∥eL−1∥2(1 + γ2 − 2γ cos

(
θeL−1 , g∗L

))
2σ2

)
≥

1√
2πσ

exp

(
−
∥eL−1∥2(1 + A2γ2 − 2γA cos

(
θeL−1 , gL

))
2σ2

)
, ∀gL ∈ G.

Suppose that the inequality above does not hold.
Two possible conditions may happen:

1. cos
(
θeL−1 , g∗L

)
≥ 0

1.1. If γ > 0, we have

∀γ > 0 2γ
(
cos
(
θeL−1 , g∗L

)
− A cos

(
θeL−1 , g∗L

))
≤ 2γ

(
cos
(
θeL−1 , g∗L

)
− A cos

(
θeL−1 , gL

))
≤ γ2

(
1 − A2

)
, ∀gL ∈ G

→ ∀γ > 0 2γ cos
(
θeL−1 , g∗L

)
(1 − A) ≤ γ2

(
1 − A2

)
, ∀gL ∈ G.

Again, there are two possible conditions: First, (1 − A) ≥ 0. Then
→ ∀γ > 0 2 cos

(
θeL−1 , g∗L

)
≤ γ(1 + A) ∀gL ∈ G.

→ ∀γ > 0
2 cos(θeL−1 ,g∗L)

(1+A)
≤ γ, ∀gL ∈ G.

Let γ =
cos(θeL−1 ,g∗L)

(1+A)
→ cos

(
θeL−1 , g∗L

)
≤ 0, ∀gL ∈ G. From the assumption and the

above inequality, we have cos
(
θeL−1 , g∗L

)
= 0.

This is contradicted by the fact that span(G) is dense in L2(Ω,F ,P). Second: (1 −
A) ≤ 0.

→ ∀γ > 0 2 cos
(
θeL−1 , g∗L

)
≥ γ(1 + A) ∀gL ∈ G.

→ ∀γ > 0
2 cos(θeL−1 ,g∗L)

(1+A)
≥ γ ∀gL ∈ G.

Let γ =
3 cos(θeL−1 ,g∗L)

(1+A)
→ cos

(
θeL−1 , g∗L

)
≤ 0 ∀gL ∈ G.

From the assumption above, we have cos
(
θeL−1 , g∗L

)
= 0.

This is contradicted by the fact that span(G) is dense in L2(Ω,F ,P).

2. cos
(
θeL−1 , g∗L

)
≤ 0.

2.1. If γ < 0, we have

∀γ < 0 2γ
(
cos
(
θeL−1 , g∗L

)
− A cos

(
θeL−1 , g∗L

))
≤ 2γ

(
cos
(
θeL−1 , g∗L

)
− A cos

(
θeL−1 , gL

))
≤ γ2

(
1 − A2

)
, ∀gL ∈ G.

Algorithms 2024, 17, 49 32 of 36

→ ∀γ < 0 2γ cos
(
θeL−1 , g∗L

)
(1 − A) ≤ γ2

(
1 − A2

)
∀gL ∈ G

→ ∀γ < 0 2 cos
(
θeL−1 , g∗L

)
(1 − A) ≤ γ

(
1 − A2

)
∀gL ∈ G.

Again, there are two possible conditions: First: (1 − A) ≥ 0. Then
∀γ < 0 2 cos

(
θeL−1 , g∗L

)
≤ γ(1 + A) ∀gL ∈ G,

∀γ < 0
2 cos(θeL−1 ,g∗L)

(1+A)
≤ γ∀gL ∈ G.

Let γ =
3 cos(θeL−1 ,g∗L)

(1+A)
→ cos

(
θeL−1 , g∗L

)
≥ 0, ∀gL ∈ G.

∈ G cos
(
θeL−1 , g∗L

)
= 0.

From the assumption, we have cos
(
θeL−1 , g∗L

)
= 0.

This is contradicted by the fact that span(G) is dense in L2(Ω,F ,P). Second: (1 −
A) ≤ 0

∀γ < 0 2 cos
(
θeL−1 , g∗L

)
≥ γ(1 + A) ∀gL ∈ G.

∀γ < 0
2 cos(θeL−1 ,g∗L)

(1+A)
≥ γ ∀gL ∈ G.

Let γ =
cos(θeL−1 ,g∗L)

(1+A)
→ cos

(
θeL−1 , g∗L

)
≥ 0, ∀gL ∈ G.

From the assumption above, we have, cos
(
θeL−1 , g∗L

)
= 0, and this is contradicted by

the fact that span(G) is dense in L2(Ω,F ,P). Based on the above arguments, a real number
γ ̸= 0 exists such that the following inequality holds:

1√
2πσ

exp

(
−
∥eL−1∥2(1 + γ2 − 2γ cos

(
θeL−1 , g∗L

))
2σ2

)

≥ 1√
2πσ

exp

(
−
∥eL−1∥2(1 + A2γ2 − 2γA cos

(
θeL−1 , gL

))
2σ2

)
, ∀gL ∈ G.

Thus, from Theorem 4, we have

E

(
1√
2πσ

exp

(
−
∥eL−1∥2(1 + γ2 − 2γ cos

(
θeL−1 , g∗L

))
2σ2

))
≥

E

(
1√
2πσ

exp

(
−
∥eL−1∥2(1 + A2γ2 − 2γA cos

(
θeL−1 , gL

))
2σ2

))
, ∀gL ∈ G.

Thus, there exists a real number kL ∈ R− {0} such that

E

(
1√
2πσ

exp

(
−∥eL−1 − kLg∗L∥

2

2σ2

))
≥ E

(
1√
2πσ

exp

(
−∥eL−1 − kLgL∥2

2σ2

))
, ∀gL ∈ G,

→ V(g∗L) ≥ V(gL), ∀gL ∈ G.

This means that gsim(e)
L = g∗L and this completes the proof.

Appendix A.2. Proof of Theorem 6

Proof. Inspired by [3], the proof of this theorem is divided into two parts: First, we prove
that the correntropy of the network strictly increases after adding each hidden node,
and then we prove that the supremum of the correntropy of the network is Vmax = 1√

2πσ
.

Step 1: The correntropies of an SLFN with L − 1 and L hidden nodes are:

V(eL−1) = E

(
1√
2πσ

exp

(
−∥eL−1∥2

2σ2

))
,

Algorithms 2024, 17, 49 33 of 36

V(eL) = E

(
1√
2πσ

exp

(
−∥eL∥2

2σ2

))

= E

 1√
2πσ

exp

−

∥∥∥eL−1 − β
sim(e)
L gsim (e)

L

∥∥∥2

2σ2


,

respectively.
In the following, it is proved that

{
kL, ge

L
}

exists such that

V(eL) > V(eL−1).

Let
k′L = η∥eL−1∥, η ∈ R− {0},

then we have

V(gL) = E

(
1√
2πσ

exp

(
−∥eL−1 − η∥eL−1∥gL∥2

2σ2

))
= E

(
1√
2πσ

exp
(
− U

2σ2

))
,

where
U = ∥eL−1∥2 + η2∥eL−1∥2∥gL∥2 − 2η∥eL−1∥2∥gL∥ cos

(
θeL−1 , gL

)
Thus,

V(gL) = E

 1√
2πσ

exp

−
∥eL−1∥2

((
1 + η2∥gL∥2

)
− 2η∥gL∥ cos

(
θeL−1 , gL

))
2σ2

.

We need to prove that gL ∈ G and η ∈ R− {0} exist such that

V(gL) > V(eL−1).

Suppose that there are no η ∈ R− {0} and gL ∈ G such that

exp

−
∥eL−1∥2

((
1 + η2∥gL∥2

)
− 2η∥gL∥ cos

(
θeL−1 , gL

))
2σ2

 ≤ exp

(
−∥eL−1∥2

2σ2

)
,

→ exp

(
−∥eL−1∥2

2σ2

)
exp

∥eL−1∥2
((

1 + η2∥gL∥2
)
− 2η∥gL∥ cos

(
θeL−1 , gL

))
2σ2

 ≥ 1,

∀gL ∈ G and ∀η ∈ R− {0}.
Then the following inequality holds,

exp

∥eL−1∥2
((

η2∥gL∥2
)
− 2η∥gL∥ cos

(
θeL−1 , gL

))
2σ2

 ≥ exp(0),

∀gL ∈ G ∀η ∈ R− {0}.

→ ∥eL−1∥2
((

η2∥gL∥2
)
− 2η∥gL∥ cos

(
θeL−1 , gL

))
≥ 0,

Algorithms 2024, 17, 49 34 of 36

∀gL ∈ G and ∀η ∈ R− {0}

→ η2∥gL∥2 − 2η∥gL∥ cos
(
θeL−1 , gL

)
≥ 0,

∀gL ∈ G and ∀η ∈ R− {0}.
Let

η =
cos
(
θeL−1 , gL

)
∥gL∥

, cos2(θeL−1 , gL
)
− 2 cos2(θeL−1 , gL

)
≥ 0 ∀gL ∈ G,

→ cos2(θeL−1,gL

)
≤ 0 ∀gL ∈ G.

Thus, cos2(θeL−1 , gL
)
= 0 ∀gL ∈ G. This is contradictory to span(G) being dense in

L2(Ω,F ,P); thus, we have

∃gL ∈ G, ∃k′L ∈ R− {0} 1√
2πσ

exp
(
−∥eL−1−k′LgL∥2

2σ2

)
> 1√

2πσ
exp

(
− ∥eL−1∥2

2σ2

)
.

Based on Theorem 4, the following inequality holds with probability one:
∃gL ∈ G, ∃k′L ∈ R− {0}

E
(

1√
2πσ

exp
(
−∥eL−1−k′LgL∥2

2σ2

))
>

(
1√
2πσ

exp
(
− ∥eL−1∥2

2σ2

))
, i.e.,

∃gL ∈ G, ∃k′L ∈ R− {0}, E
(
k
(
eL−1 − k′LgL

))
> E(k(eL−1))

almost surely.
Based on the above argument, with probability one, we have: V(eL) > V(eL−1)
Based on Theorem 5, since the correntropy is strictly increasing, with probability one

it converges to its supremum.
Step 2: We know that

Vβ
L = E

exp

−

∥∥∥eL−1 − βLgsim(e)
L

∥∥∥2

2σ2


 =

E

 sup
α∈R−

α

∥∥∥eL−1 − βLgsim(e)
L

∥∥∥2

2σ2 − ϕ(α)


,

and according to Proposition 1, we have

α = −G


∥∥∥eL−1 − βLgsim(e)

L

∥∥∥2

2σ2

,

There is

Vβ
Lmax = E


α

∥∥∥eL−1 − βLgsim(e)
L

∥∥∥2

2σ2 − ϕ(α)


.

Therefore, the optimum βL is

βL =
E(γeL−1gL)

E
(
γg2

L
) .

In the previous step, we showed that correntropy converges; the norm of error con-
verges and γ converges to a constant term. In the case of constant γ, similar to [3], the error
sequence constitutes a Cauchy sequence and because the mentioned probability space is
complete, ∃e∗ ∈ Lp(Ω,F ,P). Therefore, ∀L > N, ∀g ∈ G

Algorithms 2024, 17, 49 35 of 36

eL → e∗,

lim
L→∞

E(eL−1gL)
2

E
(

g2
L
) = 0.

Thus, similar to [3], we have
As we know, E(e∗g) = 0, ∀g ∈ G, and we have

lim
L→∞

E(eL−1g) = 0, ∀g ∈ G

and
∥e∗∥ = 0.

Based on Theorem 3 and limL→∞∥eL∥ = 0, we have limL→∞ E(k(eL)) = E(limL→∞(k(eL))) =

E
(

1√
2πσ

e− limL→∞∥eL∥2
)

= E(k(0)) = 1√
2πσ

= Vmax. Based on step 1 and step 2, we have
limL→∞ V(eL) = Vmax almost surely.

This completes the proof.

References
1. Erdogmus, D.; Principe, J.C. An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems.

Signal Process. IEEE Trans. 2002, 50, 1780–1786. [CrossRef]
2. Fahlman, S.E.; Lebiere, C. The cascade-correlation learning architecture. In Proceedings of the Advances in Neural Information

Processing Systems 2, NIPS Conference, Denver, CO, USA, 27–30 November 1989; pp. 524–532.
3. Kwok, T.-Y.; Yeung, D.-Y. Objective functions for training new hidden units in constructive neural networks. Neural Netw. IEEE

Trans. 1997, 8, 1131–1148. [CrossRef] [PubMed]
4. Huang, G.; Song, S.; Wu, C. Orthogonal least squares algorithm for training cascade neural networks. Circuits Syst. Regul. Pap.

IEEE Trans. 2012, 59, 2629–2637. [CrossRef]
5. Ma, L.; Khorasani, K. New training strategies for constructive neural networks with application to regression problems. Neural

Netw. 2004, 17, 589–609. [CrossRef] [PubMed]
6. Ma, L.; Khorasani, K. Constructive feedforward neural networks using Hermite polynomial activation functions. Neural Netw.

IEEE Trans. 2005, 16, 821–833. [CrossRef] [PubMed]
7. Reed, R. Pruning algorithms-a survey. Neural Netw. IEEE Trans. 1993, 4, 740–747. [CrossRef] [PubMed]
8. Castellano, G.; Fanelli, A.M.; Pelillo, M. An iterative pruning algorithm for feedforward neural networks. Neural Netw. IEEE

Trans. 1997, 8, 519–531. [CrossRef] [PubMed]
9. Engelbrecht, A.P. A new pruning heuristic based on variance analysis of sensitivity information. Neural Netw. IEEE Trans. 2001,

12, 1386–1399. [CrossRef]
10. Zeng, X.; Yeung, D.S. Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure. Neurocomputing

2006, 69, 825–837. [CrossRef]
11. Sakar, A.; Mammone, R.J. Growing and pruning neural tree networks. Comput. IEEE Trans. 1993, 42, 291–299. [CrossRef]
12. Huang, G.-B.; Saratchandran, P.; Sundararajan, N. A generalized growing and pruning RBF (GGAPRBF) neural network for

function approximation. Neural Netw. IEEE Trans. 2005, 16, 57–67. [CrossRef]
13. Huang, G.-B.; Saratchandran, P.; Sundararajan, N. An efficient sequential learning algorithm for growing and pruning RBF

(GAP-RBF) networks. Syst. Man. Cybern. Part Cybern. IEEE Trans. 2004, 34, 2284–2292. [CrossRef] [PubMed]
14. Wu, X.; Rozycki, P.; Wilamowski, B.M. A Hybrid Constructive Algorithm for Single-Layer Feedforward Networks Learning. IEEE

Trans. Neural Netw. Learn. Syst. 2014, 26, 1659–1668. [CrossRef] [PubMed]
15. Santamaría, I.; Pokharel, P.P.; Principe, J.C. Generalized correlation function: Definition, properties, and application to blind

equalization. Signal Process. IEEE Trans. 2006, 54, 2187–2197. [CrossRef]
16. Liu, W.; Pokharel, P.P.; Príncipe, J.C. Correntropy: Properties and applications in non-Gaussian signal processing. Signal Process.

IEEE Trans. 2007, 55, 5286–5298. [CrossRef]
17. Bessa, R.J.; Miranda, V.; Gama, J. Entropy and correntropy against minimum square error in offline and online three-day ahead

wind power forecasting. Power Syst. IEEE Trans. 2009, 24, 1657–1666. [CrossRef]
18. Singh, A.; Principe, J.C. Using correntropy as a cost function in linear adaptive filters. In Proceedings of the 2009 International

Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 2950–2955.
19. Shi, L.; Lin, Y. Convex Combination of Adaptive Filters under the Maximum Correntropy Criterion in Impulsive Interference.

Signal Process. Lett. IEEE 2014, 21, 1385–1388. [CrossRef]
20. Zhao, S.; Chen, B.; Principe, J.C. Kernel adaptive filtering with maximum correntropy criterion. In Proceedings of the 2011

International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 2012–2017.

http://doi.org/10.1109/TSP.2002.1011217
http://dx.doi.org/10.1109/72.623214
http://www.ncbi.nlm.nih.gov/pubmed/18255715
http://dx.doi.org/10.1109/TCSI.2012.2189060
http://dx.doi.org/10.1016/j.neunet.2004.02.002
http://www.ncbi.nlm.nih.gov/pubmed/15109686
http://dx.doi.org/10.1109/TNN.2005.851786
http://www.ncbi.nlm.nih.gov/pubmed/16121724
http://dx.doi.org/10.1109/72.248452
http://www.ncbi.nlm.nih.gov/pubmed/18276504
http://dx.doi.org/10.1109/72.572092
http://www.ncbi.nlm.nih.gov/pubmed/18255656
http://dx.doi.org/10.1109/72.963775
http://dx.doi.org/10.1016/j.neucom.2005.04.010
http://dx.doi.org/10.1109/12.210172
http://dx.doi.org/10.1109/TNN.2004.836241
http://dx.doi.org/10.1109/TSMCB.2004.834428
http://www.ncbi.nlm.nih.gov/pubmed/15619929
http://dx.doi.org/10.1109/TNNLS.2014.2350957
http://www.ncbi.nlm.nih.gov/pubmed/25216485
http://dx.doi.org/10.1109/TSP.2006.872524
http://dx.doi.org/10.1109/TSP.2007.896065
http://dx.doi.org/10.1109/TPWRS.2009.2030291
http://dx.doi.org/10.1109/LSP.2014.2337899

Algorithms 2024, 17, 49 36 of 36

21. Wu, Z.; Peng, S.; Chen, B.; Zhao, H. Robust Hammerstein Adaptive Filtering under Maximum Correntropy Criterion. Entropy
2015, 17, 7149–7166. [CrossRef]

22. Chen, B.; Wang, J.; Zhao, H.; Zheng, N.; Principe, J.C. Convergence of a fixed-point algorithm under Maximum Correntropy
Criterion. Signal Process. Lett. IEEE 2015, 22, 1723–1727. [CrossRef]

23. Chen, B.; Xing, L.; Liang, J.; Zheng, N.; Principe, J.C. Steady-state mean-square error analysis for adaptive filtering under the
maximum correntropy criterion. Signal Process. Lett. IEEE 2014, 21, 880–884.

24. Chen, L.; Qu, H.; Zhao, J.; Chen, B.; Principe, J.C. Efficient and robust deep learning with Correntropyinduced loss function.
Neural Comput. Appl. 2015, 27, 1019–1031. [CrossRef]

25. Singh, A.; Principe, J.C. A loss function for classification based on a robust similarity metric. In Proceedings of the 2010
International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–6.

26. Feng, Y.; Huang, X.; Shi, L.; Yang, Y.; Suykens, J.A. Learning with the maximum correntropy criterion induced losses for regression.
J. Mach. Learn. Res. 2015, 16, 993–1034.

27. Chen, B.; Príncipe, J.C. Maximum correntropy estimation is a smoothed MAP estimation. Signal Process. Lett. IEEE 2012, 19,
491–494. [CrossRef]

28. Nayyeri, M.; Yazdi, H.S.; Maskooki, A.; Rouhani, M. Universal Approximation by Using the Correntropy Objective Function.
IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4515–4521. [CrossRef]

29. Athreya, K.B.; Lahiri, S.N. Measure Theory and Probability Theory; Springer Science & Business Media: New York, NY, USA, 2006.
30. Fournier, N.; Guillin, A. On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields

2015, 162, 707–738. [CrossRef]
31. Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can

approximate any function. Neural Netw. 1993, 6, 861–867. [CrossRef]
32. Yuan, X.-T.; Hu, B.-G. Robust feature extraction via information theoretic learning. In Proceedings of the 26th Annual International

Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 1193–1200.
33. Klenke, A. Probability Theory: A Comprehensive Course; Springer Science & Business Media: New York, NY, USA, 2013.
34. Rudin, W. Principles of Mathematical Analysis; McGraw-Hill: New York, NY, USA, 1964; Volume 3.
35. Yang, X.; Tan, L.; He, L. A robust least squares support vector machine for regression and classification with noise. Neurocomputing

2014, 140, 41–52. [CrossRef]
36. Newman, D.; Hettich, S.; Blake, C.; Merz, C.; Aha, D. UCI Repository of Machine Learning Databases; Department of Information

and Computer Science, University of California: Irvine, CA, USA, 1998. Available online: https://archive.ics.uci.edu/ (accessed
on 29 November 2023).

37. Meyer, M.; Vlachos, P. Statlib. 1989. Available online: https://lib.stat.cmu.edu/datasets/ (accessed on 29 November 2023).
38. Pokharel, P.P.; Liu, W.; Principe, J.C. A low complexity robust detector in impulsive noise. Signal Process. 2009, 89, 1902–1909.

[CrossRef]
39. Feng, Y.; Fan, J.; Suykens, J.A. A Statistical Learning Approach to Modal Regression. J. Mach. Learn. Res. 2020, 21, 1–35.
40. Feng, Y. New Insights into Learning with Correntropy-Based Regression. Neural Comput. 2021, 33, 157–173. [CrossRef]
41. Ramirez-Parietti, I.; Contreras-Reyes, J.E.; Idrovo-Aguirre, B.J. Cross-sample entropy estimation for time series analysis: A

nonparametric approach. Nonlinear Dyn. 2021, 105, 2485–2508. [CrossRef]
42. Bagirov, A.; Karmitsa, N.; Mäkelä, M.M. Introduction to Nonsmooth Optimization: Theory, Practice and Software; Springer International

Publishing: Cham, Switzerland; Heidelberg, Germany, 2014; Volume 12.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/e17107149
http://dx.doi.org/10.1109/LSP.2015.2428713
http://dx.doi.org/10.1007/s00521-015-1916-x
http://dx.doi.org/10.1109/LSP.2012.2204435
http://dx.doi.org/10.1109/TNNLS.2017.2753725
http://dx.doi.org/10.1007/s00440-014-0583-7
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1016/j.neucom.2014.03.037
https://archive.ics.uci.edu/
https://lib.stat.cmu.edu/datasets/
http://dx.doi.org/10.1016/j.sigpro.2009.03.027
http://dx.doi.org/10.1162/neco_a_01334
http://dx.doi.org/10.1007/s11071-021-06759-8

	Introduction
	Mathematical Notations, Definitions and Preliminaries
	Measure Space, Probability Space and Function Space
	Network Structure

	Previous Work
	The Networks Introduced in ref3
	Cascade Correntropy Network (CCOEN) ref28

	Proposed Method
	Preliminaries for Presenting the Proposed Method
	C2N2: Objective Function for Training the New Node
	Convergence Analysis
	Learning from Data Samples
	Input Side Optimization
	Output Side Optimization

	Experimental Results
	Framework for Experiments
	Activation Function and Kernel
	Hyperparameters
	Data Normalization

	Convergence
	Investigation of Theorem 6
	Hyperparameter Evaluation

	Comparison
	Synthetic Dataset (Sinc Function)
	Other Synthetic Dataset

	Discussion
	Discussion on Table 7
	Why C2N2 Denies Impulse Noises?
	Benchmark Dataset
	Discussion on Table 3
	Discussion on Table 4
	Discussion on Tables 5 and 6
	Computational Complexity

	Comparison
	Discussion on Table 9
	Discussion on Table 10

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

