
Citation: Ganguli, T.; Chong, E.K.P.

Activation-Based Pruning of Neural

Networks. Algorithms 2024, 17, 48.

https://doi.org/10.3390/a17010048

Academic Editor: Frank Werner

Received: 18 December 2023

Revised: 11 January 2024

Accepted: 19 January 2024

Published: 21 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Activation-Based Pruning of Neural Networks
Tushar Ganguli * and Edwin K. P. Chong

Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
edwin.chong@colostate.edu
* Correspondence: tushar.ganguli@colostate.edu

Abstract: We present a novel technique for pruning called activation-based pruning to effectively prune
fully connected feedforward neural networks for multi-object classification. Our technique is based
on the number of times each neuron is activated during model training. We compare the performance
of activation-based pruning with a popular pruning method: magnitude-based pruning. Further
analysis demonstrated that activation-based pruning can be considered a dimensionality reduction
technique, as it leads to a sparse low-rank matrix approximation for each hidden layer of the neural
network. We also demonstrate that the rank-reduced neural network generated using activation-
based pruning has better accuracy than a rank-reduced network using principal component analysis.
We provide empirical results to show that, after each successive pruning, the amount of reduction
in the magnitude of singular values of each matrix representing the hidden layers of the network
is equivalent to introducing the sum of singular values of the hidden layers as a regularization
parameter to the objective function.

Keywords: machine learning; network pruning; dimensionality reduction; computer vision

1. Introduction

Deep neural networks are used to solve real-world problems in various domains such
as image classification, text classification, and speech recognition. These networks often
require millions of parameters and billions of floating-point operations to make accurate
predictions. Network pruning has emerged as an important technique for improving the
efficiency of deep neural networks by removing redundant structures. Pruning reduces the
number of parameters of a neural network, resulting in a reduction of the computational
resource required to run the network. Some of the most-popular pruning methods are
magnitude-based pruning [1,2], structured pruning [3,4], pruning based on the lottery
ticket hypothesis [5], and dynamic pruning [6].

Of these methods, magnitude-based pruning [2,7] has been proven to be successful
for producing compact models and has witnessed widespread acceptance. However, prior
work on magnitude-based pruning contains certain deficiencies. As we demonstrate in
our study, magnitude-based pruning does not inherently induce a low-rank structure
in the hidden layers of neural networks. More-rigorous constraints are needed to drive
rank reduction. Integrating it with structured pruning or low-rank regularizers is likely
necessary to fully exploit the compression property.

To address these limitations, we propose a novel technique for pruning called activation-
based pruning to reduce the number of parameters in a feedforward neural network. Our
objective was to achieve results comparable to magnitude-based pruning [8] in terms of
training, validation, and testing accuracy, while also demonstrating that activation-based
pruning functions as a dimensionality reduction technique. This method effectively re-
duces the hidden layers of neural networks to sparse low-rank matrix approximations.
Activation-based pruning can be achieved using both labeled and unlabeled data, provided
the data are representative of the same distribution as the training data. Our empirical
evidence supports the assertion that activation-based pruning is equivalent to introducing

Algorithms 2024, 17, 48. https://doi.org/10.3390/a17010048 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0003-7575-1706
https://orcid.org/0000-0002-7622-4815
https://doi.org/10.3390/a17010048
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010048?type=check_update&version=1

Algorithms 2024, 17, 48 2 of 23

a weighted nuclear norm as a regularization parameter during the minimization of the
objective function in image classification tasks. Consequently, activation-based pruning
eliminates the need for additional regularizers to induce a low-rank structure in the hidden
layers of the feedforward network.

To further analyze the low-rank structure of the hidden layers, we conducted an
empirical comparison between the low-rank structures generated using activation-based
pruning and those obtained through principal component analysis (PCA) [9]. PCA is a
linear dimensionality reduction technique that seeks to find orthogonal axes, known as
principal components, in the high-dimensional input space. These principal components
capture the maximum variance in the data while reducing dimensionality. In the context of
a trained feedforward neural network, each hidden layer functions as a representation of
input data capturing specific features inherent to the input. In this study, we applied rank-k
reduction using PCA to each hidden layer, where the value of k is layer-specific. For a
trained feedforward neural network, we conducted a comparative analysis of the network’s
training accuracy after reducing the dimensions of the hidden layers through PCA versus
employing activation-based pruning to achieve a sparse low-rank matrix approximation.

2. Related Work
2.1. Low-Rank Matrix Approximation

Various pruning methods [2,10,11] have resulted in sparse matrices, low-rank matrix
approximation, or a hybrid of both. Han et al. [2] compressed deep neural networks by
simultaneously pruning both network weights and connections to reduce computational
cost and memory usage by inducing a regularization term that encourages sparsity during
training. Weights with small magnitudes are pruned based on a specified threshold.
This technique results in sparse weight matrices. Swaminathan et al. [10] proposed a
novel method called sparse low rank (SLR) to compress the dense layers of deep neural
networks by improving upon truncated singular-value decomposition (SVD). The key idea
is to induce structured sparsity into the decomposed matrices from SVD based on the
significance of the input/output neurons. Neuron significance is estimated by absolute
weights, activations, or a change in cost when removed. Yang et al. [11] proposed a method
called SVD training, which first decomposes each layer into the form of its full-rank SVD
and, then, performs training on the decomposed weights. Low rank is encouraged by
applying sparsity-inducing regularizers on the singular values of each layer. Singular-
value pruning is applied at the end to explicitly reach a low-rank model. Activation-
based pruning achieves sparsity in low-rank matrix approximation by assigning scores
to each neuron to identify significant and insignificant neurons. Our method avoids
the computationally expensive process of decomposing matrices using SVD, making it
advantageous for large matrices.

2.2. Structured/Unstructured Pruning

Pruning can be classified into structured [3–5,12–16], unstructured [2,17], and semi-
structured [18] pruning. Structured pruning removes filters, channels, or layers to induce
structured sparsity patterns. It is commonly used in convolutional neural networks (CNNs),
where entire filters or channels (groups of neurons) can be pruned. In unstructured pruning,
individual weights without structural constraints are considered for removal. It can be ap-
plied to any layer of a neural network, including fully connected layers and convolutional
layers. Semi-structured pruning is a hybrid approach that combines aspects of both struc-
tured and unstructured pruning. It involves removing entire structures, such as filters or
channels, but within those structures, individual weights may be pruned. Activation-based
pruning falls under unstructured pruning, as we assign a score to individual neurons for
pruning.

Algorithms 2024, 17, 48 3 of 23

2.3. Importance-Based Pruning

Pruning can also be categorized based on the importance assigned to the weights,
filters, and neurons of the network. These techniques induce sparsity by removing con-
nections or filters based on criteria such as the weight magnitude [4,5,12] or sensitivity
scores [19,20]. The sparse architectures are then retrained to regain accuracy. Zhu and
Gupta [8] explored model pruning as a means of model compression by implementing
magnitude-based pruning, where the weights with the smallest absolute values are pruned.
In activation-based pruning, importance is assigned to the neurons of the network by as-
signing a score for each neuron, which guides the decision regarding connections to prune.

2.4. Iterative/One-Shot Pruning

Pruning can also be categorized as either iterative [2,6,7,21] or one-shot [20]. Iterative
pruning is a multi-step process of assigning a score, pruning the network, and retraining.
Han et al. [2] proposed a three-step pipeline to prune redundant connections in neural
networks without affecting accuracy. They first trained the dense network, then pruned
low-weight connections below a threshold to obtain a sparse network, and finally, retrained
the sparse network to learn the weight parameters. Guo et al. [6] introduced a two-step
process called pruning and splicing, where weight connections can be removed and added
back, based on solving a constrained optimization problem for each layer. Han et al. [7]
used a three-pronged approach of pruning, quantization, and Huffman coding, to achieve
substantial compression of the network. Yuan et al. [21] demonstrated how networks can
be grown and pruned dynamically during the training phase using structured continuous
sparsification. Growing and pruning of the network are often performed by introducing a
regularization parameter in the cost function and relaxing the initial optimization problem.
Liu et al. [20] implemented one-shot pruning to prune weights in a single step. Activation-
based pruning is an iterative method. Initially, a score is assigned to each neuron, and
subsequently, the neurons with the lowest score are pruned. Afterward, the network is
retrained, and this cycle is repeated multiple times.

2.5. When to Prune

Pruning can also be classified based on when the pruning occurs, before [2,6,19,22],
during [5,17,21,23], or after training [7,8]. The motivation for pruning before training is to
eliminate the cost of pretraining. Pruning during training iteratively prunes and retrains the
network to induce sparsity by updating the weight magnitudes or filters and channels, and
pruning after training generally takes a pretrained network and, subsequently, prunes and
retrains multiple times. Activation-based pruning comes under pruning during training.
We set a predefined training accuracy for the network to achieve before initiating the
pruning and retraining cycles during training.

With the advent of large language models (LLMs), established pruning methods
have failed to scale successfully. Frantar et al. [24] demonstrated that magnitude-based
pruning [2] fails in LLMs with relatively low levels of sparsity. As activation-based pruning
uses a small network and small dataset, the scalability of our approach belongs to a future
scope of work. Hence, we refrained from including pruning techniques related to bigger
architectures and larger datasets. However, we mention [25] to clarify that the methodology
is different than our implementation. Sun et al. [25] introduced pruning for LLMs based
on the product of network weights and input activation of neurons. Our method differs
in principle as we did not consider the activation value of the neurons, but the number of
times the neuron is activated during the training phase of the neural network.

3. Methodology

Activation-based pruning is based on the number of times each neuron is activated
during the forward pass of the training phase of a neural network. In the forward pass, data
are processed at each layer and passed on to the next layer until the processed data reach
the output layer. In a fully connected network, each neuron is connected with incoming

Algorithms 2024, 17, 48 4 of 23

weights from all the neurons of the previous layer. The output of a neuron is calculated
as σ(WTX), where W is the vector of incoming weights, X is the vector of processed data
from the previous layer, and σ is the non-linear activation function. Activation of a neuron
means that its output is not zero, σ(WTX) 6= 0. The number of times a neuron is activated is
stored as a parameter called activation counter.Each neuron has a corresponding activation
counter. During training, we chose a random set of data as the input to the network before
each cycle of pruning, which resulted in the neurons either being activated (σ(WTX) 6= 0) or
not activated (σ(WTX) = 0). Every time a neuron is activated, we incremented the value of
the activation counter by 1. The values of the activation counter of all the neurons are used
to perform pruning. After every pruning cycle, the network suffers some loss in training
accuracy. Hence, we trained the network to reach a predetermined training accuracy before
we initiated the next pruning cycle. The random set of data used to compute the activation
counter can belong either to the training set or can be separated before the start of the
training phase. The data can either be labeled or unlabeled, provided they belong to the
same distribution used to train the neural network. We carried out empirical comparison
of two ways of pruning the network using activation-based pruning. The first was global
activation-based pruning,where at each stage of pruning, we considered neurons from all
hidden layers of the network to decide which neurons to prune. The second was local
activation-based pruning,where at each stage of pruning, we pruned one hidden layer.

3.1. Global Activation-Based Pruning

Algorithms 1–3 demonstrate the steps for pruning the network during training.
Figure 1 illustrates pruning a fully connected feedforward network. The figure depicts
that connection of neurons with activation counters 34 and 41 removed. This is a visual
representation of activation-based pruning. We implemented the pruning by setting the
incoming weights of the pruned neurons to 0.

Algorithm 1 Global activation-based pruning.

1: Input: X: image data, W: weight matrix.
2: Require: Fta: final training accuracy, Cta: current training accuracy, Tp: target prune

percentage, Cp: current prune percentage, Pp: total pruned percentage, Np: number of
pruning cycles, Pl : pruning list in Np cycles.

3: Procedure 1: Main
4: Calculate Pl for Np pruning cycles.
5: Pp ← 0
6: for Cp ∈ Pl do
7: Call update neuron.
8: if Pp < Tp then
9: Retrieve Cta.

10: if Cta ≥ Fta then
11: Stop training.
12: return{Exit the algorithm}
13: else if accuracy reached for next pruning cycle then
14: Wnew ← call prune.
15: W ←Wnew
16: Pp ← Pp + Cp
17: end if
18: end if
19: end for

Algorithms 2024, 17, 48 5 of 23

Algorithm 2 Update neuron.

1: Input: M: random batch of data from input X, L: hidden layers of the network.
2: Require: Al : activation counter of neurons for layer l.
3: for each m ∈ M do
4: for l ∈ L do
5: Calculate output: Fl ← σ(WT

l Fl−1).
6: {the for loop signifies a matrix operation}
7: for Fl(r, c) ∈ Fl do
8: if Fl(r, c) 6= 0 then
9: Al(r, c)← Al(r, c) + 1

10: end if
11: end for
12: end for
13: end for

Algorithm 3 Prune.

1: Input: L: hidden layers of the network.
2: Require: R: list for activation counter and associated weights, Cp: current prune

percentage, Pindex: prune index.
3: for l ∈ L do
4: R← R + (Al , Wl). {add activation counters and associated weights to R}.
5: end for
6: if pruning type = neuron then
7: Sort R on the activation counter in ascending order.
8: else
9: Sort R on the product of the activation counter and weights in ascending order.

10: end if
11: Pindex ← Cp × len(R). {len(R): No. of elements in R}.
12: RW(0, Pindex)← 0.{Assign 0 value to weights}.
13: Wnew ← RW . {Set new weights for all hidden layers}.
14: return Wnew

124

128

234

65

34

233

41

Hidden Layers

Input Data

Output Layer

124

128

234

65

34

233

41

Hidden Layers

Input Data

Output Layer

Before Pruning After Pruning

Figure 1. Network before and after pruning. Values in the circles indicate the activation counter of
the respective neurons.

3.2. Local Activation-Based Pruning

The disadvantage of global activation-based pruning is the time and space complexity
of the algorithm. Table 1 presents the time and space complexity for global and local
activation-based pruning. We employed Big-O notation as a standard means to express

Algorithms 2024, 17, 48 6 of 23

the time and space complexity of our proposed algorithm. For global activation-based
pruning, the space complexity for storing activation counters for n neurons is O(n). Ana-
lyzing Algorithm 3, we find that the processing time for global activation-based pruning is
O(n log(n)). As the network grows larger, it puts a considerable strain on the memory and
processing requirement for each pruning cycle. We present an alternative implementation
for activation-based pruning, where pruning is performed on one hidden layer per pruning
cycle. We obtain significant performance improvements if the total number of neurons
in a single layer l is much less than the total number of neurons in the entire network n,
i.e., l � n. The space complexity to store the activation counters is O(l), and the time
complexity for pruning is O(l log(l)). We initiated pruning with the first hidden layer of
the network immediately following the input layer. We sequentially applied this procedure
to each subsequent hidden layer in the ensuing pruning cycles. We stopped after pruning
the hidden layer before the output layer. If the total pruning of the network was set at
x%, we pruned x% of a hidden layer during one pruning cycle. The total number of
pruning cycles is equal to the number of hidden layers present in the feedforward network.
Algorithms 4–6 demonstrate the steps for pruning the network during training.

Table 1. Time and space complexity for different types of pruning with l � n, where n represents
the total number of neurons in the hidden layers and l denotes the number of neurons in a single
hidden layer.

Pruning Type Time Space

Global O(n log(n)) O(n)
Local O(l log(l)) O(l)

Algorithm 4 Local activation-based pruning.

1: Input: X: image data, W: weight matrix.
2: Require: Fta: final training accuracy, Cta: current training accuracy, Tp: target prune

percentage, Cp: current prune percentage, Pp: total pruned percentage, L: hidden layers
of the network.

3: Procedure 1: Main
4: Pp ← 0
5: for l ∈ L do
6: if Pp < Tp then
7: Retrieve Cta.
8: if Cta ≥ Fta then
9: Stop training.

10: return{Exit the algorithm}
11: else if accuracy reached for next pruning cycle then
12: Call update neuron.
13: Wlnew ← Call prune.
14: Wl ←Wlnew
15: Pp ← Pp + Cp
16: end if
17: end if
18: end for

Algorithms 2024, 17, 48 7 of 23

Algorithm 5 Update neuron.

1: Input: M: random batch of data from input X, l: Hidden layer to be pruned.
2: Require: Al : activation counter of neurons for layer l.
3: for each m ∈ M do
4: Calculate output: Fl ← σ(WT

l Fl−1).
5: {the for loop signifies a matrix operation}
6: for Fl(r, c) ∈ Fl do
7: if Fl(r, c) 6= 0 then
8: Al(r, c)← Al(r, c) + 1
9: end if

10: end for
11: end for

Algorithm 6 Prune.

1: Input: l: l: hidden layer to be pruned,
2: Require: Rl : list for activation counter and associated weights for layer l, Cp: current

prune percentage, Pindex: prune index.
3: Rl ← (Al , Wl). {assign activation counters and associated weights to Rl}.
4: if pruning type = neuron then
5: Sort Rl on the activation counter in ascending order.
6: else
7: Sort Rl on the product of the activation counter and weights in ascending order.
8: end if
9: Pindex ← Cp × len(Rl). {len(Rl): No. of elements in Rl}.

10: RlW (0, Pindex)← 0.{Assign 0 value to weights}.
11: Wlnew ← RlW . {Set new weights for hidden layer l}.
12: return Wlnew

3.3. Activation- vs. Magnitude-Based Pruning

Magnitude-based pruning as described in [8], is available in the TensorFlow library.
We used the same experiment setup mentioned in Section 4.1. We compared activation- and
magnitude-based pruning by pruning 80% of the network and, subsequently, attempting
to retrain the pruned network to 98% accuracy. We observed the effect of retraining the
pruned networks, on the training, validation, and test accuracy. We also observed the effect
on the rank of each hidden layer of the pruned network. We wanted to determine the extent
to which the networks were able to maintain sparsity and low-rank approximation after
retraining.

3.4. Principal Component Analysis of Hidden Layers

Activation-based pruning generates low-rank approximation of each matrix represent-
ing the hidden layers of the neural network. Our hypothesis posited that activation-based
pruning offers a better rank-k approximation of network layers while preserving significant
levels of training, validation, and test accuracy. To substantiate this hypothesis, we ascer-
tained the ranks of each pruned model and applied PCA to a fully trained model, resulting
in the creation of rank-reduced models. Subsequently, we compared the test accuracy of the
PCA-generated rank-reduced models with those derived from activation-based pruning.

3.5. Effect of Pruning on Singular Values of Matrices of Hidden Layers

Every hidden layer of a feedforward neural network can be represented in the form of
a matrix. The singular values of a matrix can be computed using singular-value decompo-
sition (SVD). The magnitudes of the singular values capture information about the data.
The larger the singular value, the greater the information captured by the corresponding
basis vector is. We observed the change in singular values of the weight matrix of each hid-

Algorithms 2024, 17, 48 8 of 23

den layer before and after pruning. Notably, activation-based pruning leads to a low-rank
representation of the hidden layer by selectively pruning the less important singular values.

Consider a feedforward neural network for the image classification problem formu-
lated as an optimization problem. Given a set of images with corresponding labels, the
goal is to learn a function f that maps each image X to its correct label y. The optimization
problem is to find the optimal set of weights and biases for the neural network to minimize
the classification error on the training data. This can be formalized as:

min
w,b

1
n

n

∑
i=1

L(f (xi; w, b), yi) (1)

where w and b are the weights and biases of the neural network, n is the number of images
in the training set, xi is the ith image in the set, yi is the corresponding label, f (xi; w, b) is
the predicted label for image xi with weights w and biases b, and L is the loss function that
measures the difference between the predicted and true label.

The nuclear norm ‖X‖∗ of a matrix X is defined as the sum of its singular values:

‖X‖∗ = ∑
i
|λi(X)|1 (2)

where λi(X) is the i-th singular value of the matrix X.
The weighted nuclear norm of a matrix X is defined as:

‖X‖w,∗ = ∑
i
|wiλi(X)|1, (3)

where w = [w1, · · ·, wn] and wi ≥ 0 is a non-negative weight assigned to λi(X).
The weighted nuclear norm of a layer of the feedforward network is defined as ||Xj||w,∗

where Xj is the matrix of the j-th hidden layer of the network.
We will show that activation-based pruning is equivalent to adding the sum of

weighted nuclear norm as a regularization parameter to the image classification problem:

min
w,b

1
n

n

∑
i=1

L(f (xi; w, b), yi) +
l

∑
j=1
‖Xj‖w,∗ (4)

where parameters for the first part of the equation are as described in the explanation
followed by (1). Including the sum of the weighted nuclear norm as a regularization
parameter encourages each matrix of the neural network to have a low rank.

4. Experiment Settings
4.1. Common Setting

We implemented activation-based pruning on a 4-layer feedforward network with the
total number of neurons in each layer as 300, 200, 100, and 50, respectively. We used the
Rectified Linear Unit (ReLU) as the nonlinear activation function for all neurons. We used
Stochastic Gradient Descent (SGD) as the optimization method, where the loss function
is sparse categorical cross-entropy. To train the network, we used the Fashion MNIST
database, publicly available through the Keras framework. The target training accuracy
for each run was set to 98%. We allocated a part of the data for validation testing. We
implemented early stopping by monitoring the validation loss so that the model did not
overfit to the training data. If validation and training accuracy are improving, but validation
loss is increasing, it signifies that the model might be overfitting to the training data. The
stopping criterion was set at 0.1% so that training would stop when the validation loss
exceeded 10% of the minimum validation loss for three consecutive times.

In our study on activation-based pruning, we conducted an in-depth analysis of
importance-based scoring. This evaluation was carried out using two distinct methods
for assigning importance, which we termed Neurons and Neurons & Weights.In the first

Algorithms 2024, 17, 48 9 of 23

case, we pruned k% of the neurons with the lowest activation counters. In the second case,
we computed the product of the activation counter of each neuron and the absolute value
of the corresponding incoming weights and pruned k% of the weights with the smallest
product values. More precisely, consider a neuron with an associated activation counter a.
If the incoming weights associated with the neuron are given by the vector w, we computed
the product of the absolute value of the weight vector with the activation counter, |w|a. We
performed this operation for each neuron in the network and pruned k% of the weights
with the smallest product values.

4.2. Global Activation-Based Pruning Setting

We started pruning the network after it reached 80% training accuracy. The final
achievable training accuracy was set to 98%. This was the best-case scenario as our early
stopping criterion might stop the training of the network so that the model does not overfit
to the training data. We experimented with two pruning percentages of 80% and 85%.
The total number of pruning cycles set for both pruning percentages was 5 and 10. We
implemented a form of gradual pruning. We started by pruning a larger percentage of
the network and gradually reduced the percentage for subsequent pruning cycles. More
precisely, the percentage of the network pruned after n pruning cycles was set to bn, where
b ∈ (0, 1) represents a decay factor. The network loses training accuracy after each pruning
cycle. The next pruning cycle is initiated after achieving a predetermined percentage of
training accuracy. This provides the network sufficient time to recover training accuracy
between successive pruning.

4.3. Local Activation-Based Pruning Setting

Due to the structure of feedforward networks, where each successive hidden layer
has fewer neurons than the previous hidden layer, local pruning is a natural way of
implementing gradual pruning. The number of times we pruned was based on the number
of hidden layers in the network. As we had 4 hidden layers in our network, we pruned
4 times. As the value of the pruning percentage was set at 80%, we pruned 80% of a
hidden layer during each pruning cycle. The hyperparameters used were as mentioned in
Section 4.1.

5. Results and Discussion
5.1. Global Activation-Based Pruning

Figures 2 and 3 demonstrate the training and validation accuracy for, Neurons and
Neurons & Weights. The target pruning percentages were 80% and 85% with the number
of pruning cycles specified as 5 and 10. Subsequently, Figures 4 and 5 demonstrate the
training and validation accuracy for pruning percentages of 80% and 85% providing a
different perspective of the same test run. The drop in accuracy at certain epochs in Figure 4
was due to the affect of pruning. Eventually, the network trains and recovers the loss
in accuracy. Figure 2 illustrates that a higher percentage of pruning can be achieved by
increasing the number of pruning cycles, particularly when employing importance score
to Neurons. When the total pruning was specified as 85%, we achieved 79.25% pruning
in 10 pruning cycles and 74.64% pruning in 5 pruning cycles. We did not see evidence for
a similar result when the importance score was Neurons & Weights. Figure 4 illustrates
that using Neurons as the importance score resulted in a pronounced decrease in accuracy
compared to Neurons & Weights. For the same number of pruning cycles, the pruning
percentage attained for Neurons & Weights exceeded that achieved for Neurons. For 10
pruning cycles, the left figure achieved 77.59% pruning for Neurons & Weights and 74.59%
for Neurons. We see the same results in the right-hand figure where total pruning specified
was 85%.

Algorithms 2024, 17, 48 10 of 23

0 10 20 30 40 50 60 70
Epoch

0.50
0.54
0.58
0.62
0.66
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98

Tr
ai

ni
ng

 A
cc

ur
ac

y

Total,Actual,Pruning
80%,74.59%,10
85%,79.25%,10
80%,70.25%,5
85%,74.64%,5

(a)

0 10 20 30 40 50 60
Epoch

0.50
0.54
0.58
0.62
0.66
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98

Tr
ai

ni
ng

 A
cc

ur
ac

y

Total,Actual,Pruning
80%,77.59%,10
85%,82.44%,10
80%,70.25%,5
85%,85.0%,5

(b)

Figure 2. Training accuracy. (a) Neurons. (b) Neurons & Weights.

0 10 20 30 40 50 60 70
Epoch

0.50
0.54
0.58
0.62
0.66
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98

Va
lid

at
io
n
Ac

cu
ra
cy

Total,Actual,Pruning
80%,74.59%,10
85%,79.25%,10
80%,70.25%,5
85%,74.64%,5

(a)

0 10 20 30 40 50 60
Epoch

0.50
0.54
0.58
0.62
0.66
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98

Va
lid

at
io
n
Ac

cu
ra
cy

Total,Actual,Pruning
80%,77.59%,10
85%,82.44%,10
80%,70.25%,5
85%,85.0%,5

(b)

Figure 3. Validation accuracy. (a) Neurons. (b) Neurons & Weights.

0 10 20 30 40 50 60
Epoch

0.50
0.54
0.58
0.62
0.66
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98

Tr
ai

ni
ng

 A
cc

ur
ac

y

Prune Type,Actual,Pruning
Neuron,74.59%,10
Neuron Wts,77.59%,10
Neuron,70.25%,5
Neuron Wts,70.25%,5

(a)

0 10 20 30 40 50 60 70
Epoch

0.50
0.54
0.58
0.62
0.66
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98

Tr
ai

ni
ng

 A
cc

ur
ac

y

Prune Type,Actual,Pruning
Neuron,79.25%,10
Neuron Wts,82.44%,10
Neuron,74.64%,5
Neuron Wts,85.0%,5

(b)

Figure 4. Training accuracy for different pruning percentages: (a) 80%; (b) 85%.

0 10 20 30 40 50 60
Epoch

0.50
0.54
0.58
0.62
0.66
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98

Va
lid

at
io

n
Ac

cu
ra

cy

Prune Type,Actual,Pruning
Neuron,74.59%,10
Neuron Wts,77.59%,10
Neuron,70.25%,5
Neuron Wts,70.25%,5

(a)

0 10 20 30 40 50 60 70
Epoch

0.50
0.54
0.58
0.62
0.66
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98

Va
lid

at
io

n
Ac

cu
ra

cy

Prune Type,Actual,Pruning
Neuron,79.25%,10
Neuron Wts,82.44%,10
Neuron,74.64%,5
Neuron Wts,85.0%,5

(b)

Figure 5. Validation accuracy for different pruning percentages: (a) 80%; (b) 85%.

Algorithms 2024, 17, 48 11 of 23

Table 2 demonstrates the training and pruning of models with different sets of hy-
perparameters. The first row illustrates the results of training the network without any
pruning. All subsequent rows specify the details of training and pruning the network based
on the pruning number, pruning type, and target pruning percentage. The epoch column
demonstrates that it took more epochs to prune and train the network compared to training
the network without any pruning. After every subsequent pruning cycle, a greater number
of epochs was required to recover the network’s lost accuracy. All pruned models achieved
training accuracy comparable to the standard model for top-1% accuracy and perform
better in terms of validation and test accuracy. For top-5% accuracy, all pruned models
demonstrated better results, except G1 and G6, which corresponded to the importance
score of Neurons. For the same number of pruning and target prune percentages, we
observed better results for the importance score of Neurons & Weights. Overall, G2, G3,
G5, G7, and G8 performed better than the standard run in terms of pruning and accuracy
achieved. However, the top-three results were G5, G7, and G8, which achieved consider-
able pruning and accuracy results. This demonstrated that the probability of achieving
improved performance increased with more pruning iterations.

Table 2. Global activation-based pruning.

No. Pruning
Iterations Pruning Type Epochs Target Prune % Pruning

Achieved Top 1% Accuracy Top 5% Accuracy

Training Validation Test Training Validation Test

S1 NA Standard 46 NA NA 10.19 8.17 8.22 69.10 68.72 69.40
G1 5 Neurons 62 80 70.25 10.24 9.75 10.16 70.45 66.47 65.69
G2 5 Neurons 62 85 74.64 10.13 9.23 9.54 72.23 71.47 71.67
G3 5 Neurons & Weights 47 80 70.25 10.13 9.35 9.66 81.30 81.50 81.83
G4 5 Neurons & Weights 62 85 85.00 10.15 9.00 9.46 66.59 66.65 66.77
G5 10 Neurons 67 80 74.59 10.25 9.32 9.57 80.99 80.57 80.24
G6 10 Neurons 74 85 79.25 10.17 9.62 9.69 71.44 65.10 64.99
G7 10 Neurons & Weights 53 80 77.59 10.16 12.17 12.30 77.19 79.60 79.23
G8 10 Neurons & Weights 54 85 82.44 10.15 11.42 11.58 78.35 78.45 79.31

While activation-based pruning prolonged the network training duration, it consis-
tently led to better validation and test accuracy in almost all scenarios. Pruning resulted
in a loss of accuracy, which was recovered by retraining the network. The pruned model
can be used for prediction in place of the original model. As discussed in Section 3.2, a
limitation of global activation-based pruning is its memory- and time-intensive nature,
which may lead to poor scalability for larger networks.

5.2. Local Activation-Based Pruning

Table 3 demonstrates the results of local activation-based pruning. Compared to
Table 2 for global pruning, local pruning demonstrated a superior pruning percentage,
while maintaining the training, validation, and test accuracy at a comparable level. Table 3
also demonstrates that the validation and test accuracy for local pruning was better than
the standard run. For top-1% accuracy, nearly all pruning runs had better results than the
standard run, except for the validation accuracy for Neurons & Weights in the fourth row,
where the percentage of pruning achieved was 79.88%. For top-5% accuracy, all results
were better than the standard run, except L1. In summary, it was evident that L2, L3, and
L4 yielded significantly improved results compared to the standard run.

Table 1 demonstrates that local pruning exhibited superior space and time complexity
compared to global pruning. A comparison of Tables 2 and 3 demonstrates that local
pruning was much closer to achieving the target pruning percentage while maintaining
comparable training, validation, and test accuracy. Local pruning delivered equivalent
accuracy and pruning percentages to global activation-based pruning, while significantly
enhancing processing time efficiency and reducing memory consumption.

Algorithms 2024, 17, 48 12 of 23

Table 3. Local activation-based pruning.

No. Pruning Type Epochs Pruning
Achieved

Training
Accuracy

Validation
Accuracy

Test
Accuracy Top 1% Accuracy Top 5% Accuracy

Training Validation Test Training Validation Test

S Standard 46 NA 95.64 85.68 84.35 10.19 8.17 8.22 69.10 68.72 69.40
L1 Neurons 88 79.88 93.12 88.02 87.56 10.22 11.08 10.83 64.33 63.37 64.09
L2 Neurons 88 84.85 92.29 86.73 86.79 10.18 12.12 11.99 72.81 73.55 74.67
L3 Neurons & Weights 75 79.88 93.29 87.92 87.11 10.19 7.73 8.01 86.36 84.92 85.29
L4 Neurons & Weights 73 84.87 92.83 87.62 86.94 10.23 12.10 12.10 74.26 75.92 75.64

5.3. Activation- vs. Magnitude-Based Pruning

In this section, we will conduct a comprehensive comparison between activation-based
and magnitude-based pruning across various evaluation metrics. We will first analyze the
impact of these pruning techniques on training, validation, and test accuracy. Furthermore,
we will assess the computational efficiency by comparing the FLOPS requirements after
network pruning. Additionally, we will examine the test results obtained after retraining
the pruned network. Lastly, we will evaluate the rank of each hidden layer both before and
after retraining the pruned networks.

Table 4 demonstrates that activation-based pruning was able to generate equivalent
results to magnitude-based pruning. Activation-based pruning yielded better training
accuracy compared to magnitude-based pruning, while demonstrating slightly lower vali-
dation accuracy and equivalent test accuracy. Activation-based pruning achieved network
pruning comparable to magnitude-based pruning while preserving equivalent accuracy.

Table 4. Test result after pruning.

Model Activation Type Pruning Percentage Training Accuracy Validation Accuracy Test Accuracy

Magnitude 80.00 91.79 92.35 88.72
Activation-based Neurons 79.88 93.12 88.02 87.56
Activation-based Neurons & Weights 79.88 93.29 87.92 87.11

In Tables 5–7, model M represents magnitude-based pruning, while the other entries
correspond to activation-based pruning. Within activation-based pruning, models G1 to
G8 underwent global pruning, while models L1 to L4 underwent local pruning.

Table 5 demonstrates the floating point operation per second (FLOPS) for each model.
The explanation for the model symbols can be obtained from Tables 2 and 3. We demon-
strate the FLOPS using kFLOPS, denoted as 1/1000th of FLOPS, commonly referred to
as KiloFLOPS. For a fully connected feedforward network, the number of floating-point
operations considering only non-zero weights was computed as ∑l

i=1(2×Wi
nz), where Wi

nz
is the number of non-zero weights of the i-th layer and l is the total number of hidden
layers of the network. We multiplied Wi

nz by 2 inside the summation, as each weight will
be involved in one multiplication and one addition with the input. The values G4, G8, L1
to L4in the Pct. Reduction column signify better performance relative to magnitude-based
pruning. Local activation-based pruning outperformed global activation-based pruning
and magnitude-based pruning, in reducing the computational cost of the network, as
assessed through the FLOPS computation.

Table 6 demonstrates the training, validation, and testing accuracy achieved after
retraining the pruned network. The training accuracy for models G1 to G8 was comparable
to model M. However, the training accuracy of models L1 to L4 was lower than that
of model M. The validation and test accuracy of models G1 to G8 and L1 to L4 was
comparable to model M. For top-1% accuracy, the validation and test accuracy for model
M were much higher than for the other models. For top-5% accuracy, models G3, G4, L2,
L3, and L4 performed much better than model M. Our observations indicated that, in
certain instances, magnitude-based pruning may outperform activation-based pruning.
This disparity in performance is primarily attributed to the fact that retraining a network

Algorithms 2024, 17, 48 13 of 23

subjected to magnitude-based pruning tends to utilize the full spectrum of network weights.
In contrast, networks pruned using the activation-based method strive to preserve the
low-rank structure of the hidden layers. A more-detailed explanation of this phenomenon
is provided in the following paragraph.

Table 5. FLOPS comparison. kFLOPS before pruning ≈ 641.

Pruning Type ≈kFLOPS Pct. Reduction

M 129 79.87

G1 191 70.25
G2 163 74.64
G3 191 70.25
G4 96 85.00
G5 163 74.59
G6 133 79.25
G7 144 77.59
G8 113 82.44

L1 129 79.88
L2 97 84.85
L3 129 79.88
L4 97 84.87

Table 6. Test results after retraining pruned networks.

Model Pruning Type Epochs Training
Accuracy

Validation
Accuracy

Test
Accuracy Top 1% Accuracy Top 5% Accuracy

Training Validation Test Training Validation Test

M Magnitude 9 95.01 87.37 87.01 10.23 14.10 14.09 66.62 74.13 74.85
G1 Neuron 21 95.24 86.55 85.99 10.10 7.57 7.82 70.90 62.45 62.52
G2 Neuron 24 95.34 86.97 86.08 10.10 7.58 7.73 71.26 70.43 70.68
G3 Neuron 24 95.29 88.73 88.50 10.18 10.17 10.51 79.96 84.55 84.22
G4 Neuron 23 94.69 87.78 87.41 10.13 9.28 9.93 76.62 78.15 78.40
G5 Neuron & Weights 8 93.72 87.65 86.94 10.11 9.15 9.23 82.72 73.02 73.29
G6 Neuron & Weights 17 95.22 86.35 85.79 10.15 7.70 8.23 67.68 66.60 66.59
G7 Neuron & Weights 7 93.65 88.38 87.94 10.14 11.17 11.24 76.49 78.18 77.92
G8 Neuron & Weights 25 95.97 89.42 88.87 10.17 9.00 9.28 77.17 73.78 74.41
L1 Neuron 29 94.73 87.05 86.30 10.20 9.32 9.20 63.53 61.12 61.67
L2 Neuron 31 93.67 86.93 86.54 10.10 8.73 8.88 74.43 75.52 76.16
L3 Neuron & Weights 5 92.39 84.57 84.25 10.13 10.10 10.39 87.58 85.90 85.86
L4 Neuron & Weights 20 93.95 86.67 85.99 10.16 11.82 11.56 74.90 79.88 79.78

Table 7. Ranks before and after retraining pruned networks.

Model Pruning Type Percentage of Pruning Rank of Pruned Network Rank after Retraining Pruned Network

Before
Retraining

After
Retraining Layer 1 Layer 2 Layer 3 Layer 4 Layer 1 Layer 2 Layer 3 Layer 4

M Magnitude 80 0.11 300 200 100 50 300 200 100 50
G1 Neuron 70.25 43.57 78 80 40 21 170 132 66 34
G2 Neuron 74.64 40.74 60 68 56 29 184 114 72 37
G3 Neuron 74.59 37.16 61 74 50 25 199 113 66 37
G4 Neuron 79.25 41.02 48 64 38 26 185 122 59 43
G5 Neuron & Weights 70.25 20.37 225 163 74 36 244 167 77 36
G6 Neuron & Weights 85 24.36 207 143 83 38 237 150 84 40
G7 Neuron & Weights 77.59 17.39 243 161 79 36 257 163 80 36
G8 Neuron & Weights 82.44 25.19 205 156 84 43 227 163 87 46
L1 Neuron 79.88 50.43 60 40 20 10 151 130 50 32
L2 Neuron 84.85 58.72 45 30 15 8 132 86 42 26
L3 Neuron & Weights 79.88 22.76 148 98 46 26 235 160 74 39
L4 Neuron & Weights 84.87 26.67 151 80 45 24 225 166 84 38

Algorithms 2024, 17, 48 14 of 23

In Table 7, we demonstrate the pruning percentage before and after the retraining of
pruned networks. We specify the rank of each hidden layer before and after retraining.
The percentage of pruning of model M before training was 80%, which implies that 80% of
the matrix weights were initialized to a 0 value. Hence, the matrix of weights for model
M before training was sparse. The column Rank Before Training illustrates the rank of
each hidden layer of model M to be full rank. Networks pruned using activation-based
pruning and, subsequently, retrained produced weight matrices that were sparse and low
rank. Model M recovered a training accuracy close to 95%, but utilized the complete
network weights, resulting in the pruning percentage being 0.11%. This is illustrated
under the heading Percentage of Pruning with sub-heading After Training. However,
retraining networks pruned with activation-based pruning was able to achieve comparable
training accuracy while maintaining a certain level of sparsity and low-rank approximation
for each hidden layer. The networks that were pruned using activation-based pruning
and, subsequently, retrained contained 20–50% of the weights with zero value. This
demonstrated that, if we trained a network pruned using activation-based pruning, it will
try to maintain sparsity and a low-rank structure for each hidden layer in the network. We
observed that, after retraining, pruning based on Neurons maintained a larger percentage
of sparsity and a lower rank for each hidden layer compared to pruning based on Neurons
& Weights.

Figure 6 illustrates the heatmap representing the weight matrix of the first hidden
layer of the network. The darker regions represent the non-zero weight, and lighter regions
represent zero weight values, respectively. The figure contains two sets of heatmaps. The
set on the left represents weight matrices for pruned networks, and the set on the right
represents weight matrices for networks retrained after pruning. Figures A9–A11 in the
Appendix B correspond to heatmaps for the remaining hidden layers of the network.

The figures on the left, titled Pruned network, demonstrate that magnitude-based
pruning occurred uniformly across the entire matrix weights, while activation-based prun-
ing occurred along the columns of the matrix. This is evident in the way the lighter
region is scattered in the heatmap of the respective prunings. The figures on the right,
titled Retrained after pruning, demonstrate that, after retraining the pruned network,
activation-based pruning still contained lighter regions across the columns of the matrix,
while magnitude-based pruning utilized almost all the weights of the matrix uniformly.

0 100 200

0

100

200

300

400

500

600

700

Activation-based

0 100 200

0

100

200

300

400

500

600

700

Magnitude-based

(a)
0 100 200

0

100

200

300

400

500

600

700

Activation-based

0 100 200

0

100

200

300

400

500

600

700

Magnitude-based

(b)

Figure 6. Heatmap for matrices of layer 1. (a) Pruned network. (b) Retrained after pruning.

Our empirical findings led us to hypothesize that activation-based pruning selectively
targets weights that contribute minimally to the network’s training process. This pruning
strategy resulted in the formation of sparse, low-rank matrix approximations, effectively re-
ducing the full-rank matrices of a trained network. When such pruned networks underwent
retraining, they tended to preserve the low-rank characteristics of these matrices, especially
when previously pruned (zeroed) weights were allowed to be reutilized. In contrast, our
observations with magnitude-based pruning indicated a different behavior: during the
retraining phase, this method tended to engage nearly the entire spectrum of weights

Algorithms 2024, 17, 48 15 of 23

within the network. This distinction highlighted the unique impact of activation-based
pruning on the network’s weight optimization during retraining.

5.4. Comparative Analysis

A broad range of metrics are utilized to assess pruning techniques, including accu-
racy [2,8], the compression rate [7,21], and parameter reduction [17,18]. Pruning evaluation
results are also sensitive to the properties of the network architecture and dataset com-
plexity. Moreover, many pruning algorithms contain hyperparameters, which influence
the performance; hence, comparisons under fixed values cannot fully characterize the
respective method potential. In response to variations in the evaluation metrics, we con-
ducted two forms of comparative analysis—first, an in-depth ablation of activation-based
pruning techniques and, second, under a fixed neural architecture and dataset. We provide
assessments between our method and related the prior state-of-the-art, facilitating a fair
contrast under similar experimental configurations.

5.4.1. Activation-Based Pruning Methods

We analyzed activation-based pruning methods including both global and local prun-
ing, as well as the influence of importance scores assigned to Neurons and Neurons &
Weights. A thorough discussion of these results is presented in Sections 5.1 and 5.2.

Tables 8 and 9 demonstrate the superior performance of local pruning in achieving
significantly higher pruning percentages while simultaneously preserving test accuracy
at an equivalent level compared to global pruning. The importance score computed
for Neurons & Weights consistently yielded better results compared to considering only
Neurons in both global and local pruning scenarios. The combination of the local pruning
strategy with the importance score Neurons & Weights significantly outperformed other
combinations.

Table 8. Global vs. local pruning.

Pruning Type Pruning Iterations Pruning % Top 5% Test Accuracy

Global 5 75.03 71.49
Global 10 78.50 75.94
Local 4 82.37 74.90

Table 9. Importance-based scoring.

Importance Type Pruning Type Pruning % Top 5% Test Accuracy

Neurons Global 74.68 70.64
Neurons & Weights Global 78.82 76.79

Neurons Local 82.37 69.38
Neurons & Weights Local 82.38 80.47

5.4.2. Activation-Based Pruning against Similar Models

In Table 10, we present a comparative analysis of different pruning methods that
were tested under similar settings. All reference results used magnitude-based pruning on
the LeNet-300-100 model using the MNIST dataset. The compression rate was calculated
using the formula Wtotal/Wrem, where Wtotal is the total number of weights of the model
before pruning and Wrem is the remaining number of weights after pruning. Sparsity %
and Remaining Weights % are complements of each other. We present both of these data as
some tests refer to Sparsity % and others to Remaining Weights %. Remaining Weights %
and Required FLOPS % are quantitatively equal in value, but render different meaning to
the numbers. We included both as different pruning methods presented either or both of
these results.

Algorithms 2024, 17, 48 16 of 23

Table 10. Comparative analysis of different models.

Paper Compression Rate Sparsity % Remaining
Weights%

Required
FLOPS%

Activation-based 94× 98.94 1.06 1.06
Han et al. [2] 12× 92 8 8
Han et al. [7] 40× 92 8 8
Guo et al. [6] 56× 98.2 1.8 1.8

Fankle and Carbin [5] 7× 86.5 13.5 13.5
Molchanov et al. [17] 7× 86.03 13.97 13.97

Han et al. [2] presented an unstructured, iterative pruning method that uses magnitude-
based pruning to achieve a 12-fold reduction in model size. Han et al. [7] employed an
iterative pruning technique, where pruning occurred after training and achieved a 40-fold
reduction in model size. Guo et al. [6] presented an iterative pruning method where prun-
ing occurred before training and achieved a 56-fold reduction in model size. Frankle and
Carbin [5] used the lottery ticket hypothesis in the context of pruning small fully connected
nets on MNIST. It is a structured pruning technique with importance scoring based on
the weight magnitude. It achieved a seven-fold reduction in model size. Molchanov et
al. [17] presented an unstructured pruning, where pruning occurred during training. It
achieved a compression rate of seven-fold. Activation-based pruning is an unstructured,
iterative-based pruning method. The results demonstrated that activation-based pruning
achieved an impressive 94-fold reduction in the model size.

5.5. Principal Component Analysis of Hidden Layers

Table 11 demonstrates the description of each model, the percentage of pruning
achieved, and the ranks for the hidden layers of each model after using activation-based
pruning. Compared to assigning Neurons & Weights as the importance score, Neurons
achieved a substantial reduction in the rank for the matrix corresponding to each layer
of the neural network. Table 12 demonstrates the test results of a fully trained model (S).
Table 13 demonstrates the test accuracy of models whose ranks were reduced using PCA
and activation-based pruning, respectively. We applied PCA on the hidden layers of the
fully trained models and reduced the ranks to the corresponding ranks of the hidden layers.
The ranks of the hidden layers are specified in Table 11 under the column Rank of each layer.
In Table 13, column Low-rank approximation using PCA, demonstrated the test accuracy of
models whose ranks were reduced using PCA, and the column Activation-based pruning,
demonstrates the test accuracy of models pruned using activation-based pruning. Models
subjected to activation-based pruning demonstrated better test accuracy compared to those
whose hidden layers were rank-reduced through PCA.

Table 11. PCA analysis: model description and ranks of each layer.

Model Pruning
Type

Target
Prune %

Pruning
Achieved Rank of Each Layer

Layer 1 Layer 2 Layer 3 Layer 4

S 300 200 100 50
G1 Neurons 80.00 70.25 78 80 40 21
G2 Neurons 85.00 74.64 60 68 56 29
G3 Neurons & Weights 80.00 70.25 225 163 74 36
G4 Neurons & Weights 85.00 85.00 207 143 83 38
G5 Neurons 80.00 74.59 61 74 50 25
G6 Neurons 85.00 79.25 48 64 38 26
G7 Neurons & Weights 80.00 77.59 243 161 79 36
G8 Neurons & Weights 85.00 82.44 205 156 84 43

Algorithms 2024, 17, 48 17 of 23

Table 12. Test results of the fully trained model.

Model Test Accuracy Top-1% Accuracy Top-5% Accuracy

S 84.35 8.22 69.40

Table 13. PCA analysis: test results

Model Low-Rank Approximation Using PCA Activation-Based Pruning

Test
Accuracy

Top-1%
Accuracy

Top 5%
Accuracy

Test
Accuracy

Top 1%
Accuracy

Top 5%
Accuracy

G1 81.79 8.85 63.73 87.90 10.16 65.69
G2 80.47 8.57 61.93 87.48 9.54 71.67
G3 84.75 8.24 68.75 87.12 9.66 81.83
G4 84.50 8.02 68.44 88.19 9.46 66.77
G5 78.01 9.24 65.08 87.83 9.57 80.24
G6 74.67 6.41 53.91 86.69 9.69 64.99
G7 84.52 8.26 69.05 88.07 12.30 79.23
G8 84.35 8.34 69.34 88.67 11.58 79.31

5.6. Analysis of Singular Value Changes in Each Layer

The experimental setup was similar to the setup outlined in Section 4.1. The final
training accuracy was set at 98%; the total pruning to be achieved was set to 80%; the total
number of pruning cycles was 10; the pruning was initiated when the network reached
70% training accuracy. At every stage of pruning, the singular values of the weight matrix
were calculated before and after pruning. Figure 7 demonstrates the percentage variation
in the singular values of the weight matrix, comparing values before the first pruning cycle
to those after the completion of the final pruning cycle. Figures A1–A8 demonstrate the
percentage variation in the singular values for each pruning cycle.

0 10 20 30 40 50

50

0

Layer 1, Total Neurons:300, Remaining Neurons:49

0 10 20 30 40

0

50

Layer 2, Total Neurons:100, Remaining Neurons:48

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

50

Layer 3, Total Neurons:50, Remaining Neurons:20

0 2 4 6 8

50

75

Layer 4, Total Neurons:10, Remaining Neurons:10

Ratio Before and After Pruning, Accuracy:92.53%, Total Pruning:80.00%

Singular Values

P
c
t.

 C
h
a
n
g
e

Figure 7. Ratio of singular values before and after pruning.

We observed that the singular values were reduced by a weighted amount. We also
observed that, during the initial phase of pruning, the singular values with smaller magni-
tudes experienced a greater reduction in value than singular values with larger magnitudes.
This corresponds to the notion that activation-based pruning results in removing the basis
vectors that contain relatively little information about the data. As pruning progresses, the
basis vectors that hold the least amount of information are removed successively. After a
while, we are left with basis vectors that contain equally important amounts of informa-
tion. At this stage, the rate of reduction in the magnitude of singular values shifts from a

Algorithms 2024, 17, 48 18 of 23

weighted reduction to a uniform reduction. This is equivalent to stating that a reduction
in the magnitude of the singular values shifts from a weighted nuclear norm minimiza-
tion (WNNM) to nuclear norm minimization (NNM). Gu et al. [26] demonstrated that
WNNM is better than NNM for low-rank matrix approximation problems. Zha et al. [27]
demonstrated that NNM and WNNM are equivalent to L1-norm and weighted L1-norm
minimization, respectively. Inspired by the superiority of weighted L1-norm minimization
for sparse coding, they explained that WNNM is more effective than NNM for low-rank
approximation. Their analysis provides a theoretical justification for WNNM’s empirical
effectiveness over NNM. To the best of our knowledge, our work is the first of its kind to
analyze the effect of pruning on the singular values of hidden layers and provides empirical
data to support the hypothesis that activation-based pruning results in a weighted nuclear
norm minimization of the hidden layers. We hypothesize that, in a feedforward neural
network using SGD as the optimization algorithm and ReLU as the activation function,
activation-based pruning is equivalent to introducing the weighted nuclear norm as a
regularization parameter to the original cost function.

6. Conclusions

We demonstrated the effectiveness of activation-based pruning in successfully reduc-
ing the size of a feedforward network. This pruning technique can be applied with either
labeled or unlabeled data, as long as the data are drawn from the same distribution used to
train the original feedforward network. Consequently, we hypothesized that activation-
based pruning is adaptable to supervised, semi-supervised, or unsupervised learning
algorithms. Furthermore, our results showed that each layer of the pruned network served
as a sparse low-rank matrix representation of the fully trained original network. We pro-
vided empirical evidence supporting the hypothesis that activation-based pruning can be
interpreted as introducing a regularization parameter of the weighted nuclear norm of the
hidden layers. Additionally, considering the architectural and implementation characteris-
tics of activation-based pruning, we proposed that this technique has the potential to be
applied to various types of neural networks.

In our study, the focus was specifically on image classification tasks utilizing smaller
datasets, namely FashionMNIST and MNIST, and employing compact network architec-
tures, such as the fully connected feedforward model. This initial scope was chosen to
facilitate a controlled analysis of the methods involved. Moving forward, we will aim to ex-
tend our investigation to encompass activation-based pruning applications on larger-scale
models and more-extensive datasets. This planned expansion of our research is expected
to provide a more-comprehensive understanding of the pruning method’s efficacy across
diverse neural network architectures.

The code can be found here: https://github.com/tusharganguli/PrunedNetwork,
accessed on 18 December 2023. The code has the following dependencies: anaconda—2022.10,
python—3.9.15, TensorFlow—2.10.0, pandas—1.5.1, matplotlib—3.5.3, seaborn—0.12.1, and
openpyxl—3.0.10.

Author Contributions: Conceptualization, T.G.; methodology, T.G.; software, T.G.; validation, T.G.;
formal analysis, T.G.; investigation, T.G.; resources, T.G.; data curation, T.G.; writing—original draft
preparation, T.G.; writing—review and editing, E.K.P.C.; visualization, T.G.; supervision, E.K.P.C.;
project administration, E.K.P.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data
can be found here: https://www.tensorflow.org/datasets/catalog/fashion_mnist (accessed on 18
December 2023) and https://www.tensorflow.org/datasets/catalog/mnist (accessed on 18 December
2023).

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/tusharganguli/PrunedNetwork
https://www.tensorflow.org/datasets/catalog/fashion_mnist
https://www.tensorflow.org/datasets/catalog/mnist

Algorithms 2024, 17, 48 19 of 23

Abbreviations
The following abbreviations are used in this manuscript:

SVD singular-value decomposition
WNNM weighted nuclear norm minimization
NNM nuclear norm minimization
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
PCA principal component analysis

Appendix A. Singular-Value Minimization

Figures A1–A8 show the relative percentage change in singular values before and after
each pruning cycle.

0 50 100 150 200 250

50

0
Layer 1, Total Neurons:300, Remaining Neurons:275

0 20 40 60 80 100

0.05

0.00

0.05
Layer 2, Total Neurons:100, Remaining Neurons:100

0 10 20 30 40 50

0.05

0.00

0.05
Layer 3, Total Neurons:50, Remaining Neurons:50

0 2 4 6 8

0.05

0.00

0.05
Layer 4, Total Neurons:10, Remaining Neurons:10

Relative Ratio, Accuracy:75.52%, Total Pruning:8.00%

Singular Values

P
c
t.

 C
h
a
n
g
e

Figure A1. Relative ratio of singular values at 8% pruning.

0 50 100 150 200 250

50

0
Layer 1, Total Neurons:300, Remaining Neurons:252

0 20 40 60 80

10

0
Layer 2, Total Neurons:100, Remaining Neurons:90

0 5 10 15 20 25 30 35 40

20

0
Layer 3, Total Neurons:50, Remaining Neurons:40

0 2 4 6 8

0.05

0.00

0.05
Layer 4, Total Neurons:10, Remaining Neurons:10

Relative Ratio, Accuracy:82.71%, Total Pruning:16.00%

Singular Values

P
c
t.

 C
h
a
n
g
e

Figure A2. Relative ratio of singular values at 16% pruning.

Algorithms 2024, 17, 48 20 of 23

0 50 100 150 200

50

0
Layer 1, Total Neurons:300, Remaining Neurons:225

0 20 40 60 80

0.05

0.00

0.05
Layer 2, Total Neurons:100, Remaining Neurons:90

0 5 10 15 20 25 30 35

5

0
Layer 3, Total Neurons:50, Remaining Neurons:39

0 2 4 6 8

0.05

0.00

0.05
Layer 4, Total Neurons:10, Remaining Neurons:10

Relative Ratio, Accuracy:84.46%, Total Pruning:24.00%

Singular Values

P
c
t.

 C
h
a
n
g
e

Figure A3. Relative ratio of singular values at 24% pruning.

0 25 50 75 100 125 150 175 200

50

0
Layer 1, Total Neurons:300, Remaining Neurons:200

0 20 40 60 80

10

0
Layer 2, Total Neurons:100, Remaining Neurons:84

0 5 10 15 20 25 30 35

20

0
Layer 3, Total Neurons:50, Remaining Neurons:36

0 2 4 6 8

0.05

0.00

0.05
Layer 4, Total Neurons:10, Remaining Neurons:10

Relative Ratio, Accuracy:85.42%, Total Pruning:32.00%

Singular Values

P
c
t.

 C
h
a
n
g
e

Figure A4. Relative ratio of singular values at 32% pruning.

0 20 40 60 80 100 120 140

20

10

Layer 1, Total Neurons:300, Remaining Neurons:147

0 10 20 30 40 50 60 70

10

0
Layer 2, Total Neurons:100, Remaining Neurons:75

0 5 10 15 20 25 30

10

0
Layer 3, Total Neurons:50, Remaining Neurons:33

0 2 4 6 8

0.05

0.00

0.05
Layer 4, Total Neurons:10, Remaining Neurons:10

Relative Ratio, Accuracy:86.44%, Total Pruning:48.00%

Singular Values

P
c
t.

 C
h
a
n
g
e

Figure A5. Relative ratio of singular values at 48% pruning.

Algorithms 2024, 17, 48 21 of 23

0 20 40 60 80 100 120

50

0
Layer 1, Total Neurons:300, Remaining Neurons:123

0 10 20 30 40 50 60 70

10

0
Layer 2, Total Neurons:100, Remaining Neurons:68

0 5 10 15 20 25 30

20

10

Layer 3, Total Neurons:50, Remaining Neurons:30

0 2 4 6 8

0.05

0.00

0.05
Layer 4, Total Neurons:10, Remaining Neurons:10

Relative Ratio, Accuracy:86.66%, Total Pruning:56.00%

Singular Values

P
c
t.

 C
h
a
n
g
e

Figure A6. Relative ratio of singular values at 56% pruning.

0 20 40 60 80 100

50

25

Layer 1, Total Neurons:300, Remaining Neurons:100

0 10 20 30 40 50 60

10

5

Layer 2, Total Neurons:100, Remaining Neurons:60

0 5 10 15 20

20

10

Layer 3, Total Neurons:50, Remaining Neurons:23

0 2 4 6 8

0.05

0.00

0.05
Layer 4, Total Neurons:10, Remaining Neurons:10

Relative Ratio, Accuracy:87.79%, Total Pruning:64.00%

Singular Values

P
c
t.

 C
h
a
n
g
e

Figure A7. Relative ratio of singular values at 64% pruning.

0 10 20 30 40 50 60 70

50

25

Layer 1, Total Neurons:300, Remaining Neurons:75

0 10 20 30 40 50

15

10

5

Layer 2, Total Neurons:100, Remaining Neurons:53

0 5 10 15 20

0.05

0.00

0.05
Layer 3, Total Neurons:50, Remaining Neurons:23

0 2 4 6 8

0.05

0.00

0.05
Layer 4, Total Neurons:10, Remaining Neurons:10

Relative Ratio, Accuracy:90.30%, Total Pruning:72.00%

Singular Values

P
c
t.

 C
h
a
n
g
e

Figure A8. Relative ratio of singular values at 72% pruning.

Algorithms 2024, 17, 48 22 of 23

Appendix B. Heat Map for Pruned and Retrained Network

0 25 50 75 100 125 150 175

0

50

100

150

200

250

Activation-based

0 25 50 75 100 125 150 175

0

50

100

150

200

250

Magnitude-based

(a)
0 25 50 75 100 125 150 175

0

50

100

150

200

250

Activation-based

0 25 50 75 100 125 150 175

0

50

100

150

200

250

Magnitude-based

(b)

Figure A9. Heatmap for the matrices of layer 2. (a) Pruned network. (b) Retrained after pruning.

0 20 40 60 80

0

25

50

75

100

125

150

175

Activation-based

0 20 40 60 80

0

25

50

75

100

125

150

175

Magnitude-based

(a)
0 20 40 60 80

0

25

50

75

100

125

150

175

Activation-based

0 20 40 60 80

0

25

50

75

100

125

150

175

Magnitude-based

(b)

Figure A10. Heatmap for matrices of layer 3. (a) Pruned network. (b) Retrained after pruning.

0 10 20 30 40

0

20

40

60

80

Activation-based

0 10 20 30 40

0

20

40

60

80

Magnitude-based

(a)
0 10 20 30 40

0

20

40

60

80

Activation-based

0 10 20 30 40

0

20

40

60

80

Magnitude-based

(b)

Figure A11. Heatmap for matrices of layer 4. (a) Pruned network. (b) Retrained after pruning.

References
1. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Inference.

arXiv 2017, arXiv:1611.06440.
2. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both Weights and Connections for Efficient Neural Network. In Advances in

Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2015; Volume 28.

3. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep
Architectures. arXiv 2016, arXiv:1607.03250.

4. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. arXiv 2017, arXiv:1608.08710.
5. Frankle, J.; Carbin, M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. In Proceedings of the

International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
6. Guo, Y.; Yao, A.; Chen, Y. Dynamic Network Surgery for Efficient DNNs. In Advances in Neural Information Processing Systems;

Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29.

Algorithms 2024, 17, 48 23 of 23

7. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. arXiv 2016, arXiv:1510.00149.

8. Zhu, M.; Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv 2017,
arXiv:1710.01878.

9. Shlens, J. A Tutorial on Principal Component Analysis. arXiv 2014, arXiv:1404.1100.
10. Swaminathan, S.; Garg, D.; Kannan, R.; Andres, F. Sparse low rank factorization for deep neural network compression.

Neurocomputing 2020, 398, 185–196. https://doi.org/10.1016/j.neucom.2020.02.035.
11. Yang, H.; Tang, M.; Wen, W.; Yan, F.; Hu, D.; Li, A.; Li, H.; Chen, Y. Learning Low-Rank Deep Neural Networks via Singular

Vector Orthogonality Regularization and Singular Value Sparsification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, Virtually, 14–19 June 2020.

12. He, Y.; Zhang, X.; Sun, J. Channel Pruning for Accelerating Very Deep Neural Networks. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1398–1406. https://doi.org/10.1109/
ICCV.2017.155.

13. Gray, S.; Radford, A.; Kingma, D.P. GPU Kernels for Block-Sparse Weights. arXiv 2017, arXiv:1711.09224.
14. Kalchbrenner, N.; Elsen, E.; Simonyan, K.; Noury, S.; Casagrande, N.; Lockhart, E.; Stimberg, F.; van den Oord, A.; Dieleman,

S.; Kavukcuoglu, K. Efficient Neural Audio Synthesis. In Proceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, 10–15 July 2018; Dy, J., Krause, A., Eds.; Proceedings of Machine Learning Research; Volume 80,
pp. 2410–2419.

15. Frankle, J.; Dziugaite, G.K.; Roy, D.M.; Carbin, M. Stabilizing the Lottery Ticket Hypothesis. arXiv 2020, arXiv:1903.01611.
16. Yu, R.; Li, A.; Chen, C.F.; Lai, J.H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.Y.; Davis, L.S. NISP: Pruning Networks Using Neuron

Importance Score Propagation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 9194–9203. https://doi.org/10.1109/CVPR.2018.00958.

17. Molchanov, D.; Ashukha, A.; Vetrov, D. Variational Dropout Sparsifies Deep Neural Networks. In Proceedings of the
34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.;
Proceedings of Machine Learning Research; Volume 70, pp. 2498–2507.

18. Mariet, Z.; Sra, S. Diversity Networks: Neural Network Compression Using Determinantal Point Processes. arXiv 2017,
arXiv:1511.05077.

19. Lee, N.; Ajanthan, T.; Torr, P. SNIP: Single-Shot Network Pruning Based on Connection Sensitivity. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

20. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the Value of Network Pruning. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

21. Yuan, X.; Savarese, P.; Maire, M. Growing Efficient Deep Networks by Structured Continuous Sparsification. arXiv 2020,
arXiv:2007.15353.

22. Wang, C.; Zhang, G.; Grosse, R. Picking Winning Tickets Before Training by Preserving Gradient Flow. arXiv 2020,
arXiv:2002.07376.

23. Tanaka, H.; Kunin, D.; Yamins, D.L.; Ganguli, S. Pruning neural networks without any data by iteratively conserving synaptic
flow. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.;
Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 6377–6389.

24. Frantar, E.; Alistarh, D. SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot. arXiv 2023,
arXiv:2301.00774.

25. Sun, M.; Liu, Z.; Bair, A.; Kolter, J.Z. A Simple and Effective Pruning Approach for Large Language Models. arXiv 2023,
arXiv:2306.11695.

26. Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted Nuclear Norm Minimization with Application to Image Denoising. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869.
https://doi.org/10.1109/CVPR.2014.366.

27. Zha, Z.; Wen, B.; Zhang, J.; Zhou, J.; Zhu, C. A Comparative Study for the Nuclear Norms Minimization Methods. In Proceedings
of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2050–2054.
https://doi.org/10.1109/ICIP.2019.8803145.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.neucom.2020.02.035
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/CVPR.2018.00958
https://doi.org/10.1109/CVPR.2014.366
https://doi.org/10.1109/ICIP.2019.8803145

	Introduction
	Related Work
	Low-Rank Matrix Approximation
	Structured/Unstructured Pruning
	Importance-Based Pruning
	Iterative/One-Shot Pruning
	When to Prune

	Methodology
	Global Activation-Based Pruning
	Local Activation-Based Pruning
	Activation- vs. Magnitude-Based Pruning
	Principal Component Analysis of Hidden Layers
	Effect of Pruning on Singular Values of Matrices of Hidden Layers

	Experiment Settings
	Common Setting
	Global Activation-Based Pruning Setting
	Local Activation-Based Pruning Setting

	Results and Discussion
	Global Activation-Based Pruning
	Local Activation-Based Pruning
	Activation- vs. Magnitude-Based Pruning
	Comparative Analysis
	Activation-Based Pruning Methods
	Activation-Based Pruning against Similar Models

	Principal Component Analysis of Hidden Layers
	Analysis of Singular Value Changes in Each Layer

	Conclusions
	Singular-Value Minimization
	Heat Map for Pruned and Retrained Network
	References

