
Citation: Hojas-Mazo, W.;

Maciá-Pérez, F.; Berná Martínez, J.V.;

Moreno-Espino, M.; Lorenzo Fonseca,

I.; Pavón, J. Framework Based on

Simulation of Real-World Message

Streams to Evaluate Classification

Solutions. Algorithms 2024, 17, 47.

https://doi.org/10.3390/a17010047

Academic Editor: Nuno Fachada

Received: 30 December 2023

Revised: 18 January 2024

Accepted: 19 January 2024

Published: 21 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Framework Based on Simulation of Real-World Message Streams
to Evaluate Classification Solutions
Wenny Hojas-Mazo 1 , Francisco Maciá-Pérez 2 , José Vicente Berná Martínez 2 , Mailyn Moreno-Espino 3 ,
Iren Lorenzo Fonseca 2 and Juan Pavón 4,*

1 Departamento de Inteligencia Artificial e Infraestructura de Sistemas Informáticos, Facultad de Ingeniería
Informática, Universidad Tecnológica de La Habana, José Antonio Echeverría, Calle 114 #11901, entre 119 y
127, CUJAE, Marianao, La Habana 19390, Cuba; whojas@ceis.cujae.edu.cu

2 Department of Computer Science and Technology, University of Alicante, 03690 Alicante, Spain;
pmacia@ua.es (F.M.-P.); jvberna@ua.es (J.V.B.M.); iren.fonseca@ua.es (I.L.F.)

3 Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
mmorenoe2022@cic.ipn.mx

4 Instituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, 28040 Madrid, Spain
* Correspondence: jpavon@fdi.ucm.es

Abstract: Analysing message streams in a dynamic environment is challenging. Various methods and
metrics are used to evaluate message classification solutions, but often fail to realistically simulate
the actual environment. As a result, the evaluation can produce overly optimistic results, rendering
current solution evaluations inadequate for real-world environments. This paper proposes a frame-
work based on the simulation of real-world message streams to evaluate classification solutions. The
framework consists of four modules: message stream simulation, processing, classification and evalu-
ation. The simulation module uses techniques and queueing theory to replicate a real-world message
stream. The processing module refines the input messages for optimal classification. The classification
module categorises the generated message stream using existing solutions. The evaluation module
evaluates the performance of the classification solutions by measuring accuracy, precision and recall.
The framework can model different behaviours from different sources, such as different spammers
with different attack strategies, press media or social network sources. Each profile generates a
message stream that is combined into the main stream for greater realism. A spam detection case
study is developed that demonstrates the implementation of the proposed framework and identifies
latency and message body obfuscation as critical classification quality parameters.

Keywords: classification; evaluation; non-stationary message streams; simulation

1. Introduction

Information exchange through multiple communication channels (mail, SMS, internal
applications, RSS, etc.) from different senders and to one or more recipients plays a key
role in institutions [1] and companies [2] and generates a large, dynamic message stream.
An example context of relevance to institutions and companies is to better understand how
rational and emotional postings on social media influence customer behaviour [3,4].

The underlying characteristics of these dynamic message streams pose some serious
challenges to effective classification, such as concept drift, concept evolution, latency and
adversarial attacks [5,6]. First, the concepts embedded in a stream change over time. This
is known as concept drift and requires a classifier to adapt to the current concepts. For
example, a reader’s topic of interest may change over time after reading a large number of
messages with different topics. Second, a message stream usually consists of a large number
of objects (instances), and these objects are characterised by a high-dimensional feature
space (e.g., the message topics referred to in a message stream are described by a large
vocabulary). Third, latency, verification latency or delay, is the time between the availability

Algorithms 2024, 17, 47. https://doi.org/10.3390/a17010047 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8298-3439
https://orcid.org/0000-0002-2516-4728
https://orcid.org/0000-0002-9007-6054
https://orcid.org/0000-0002-7613-3382
https://orcid.org/0000-0003-3597-4836
https://orcid.org/0000-0002-9553-8123
https://doi.org/10.3390/a17010047
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010047?type=check_update&version=1


Algorithms 2024, 17, 47 2 of 15

of an unlabelled instance and its actual labelling [7]. This period can be measured in terms
of time or number of instances. Since most benchmark datasets do not have time stamps, the
number of instances is usually used in the literature as a measure of latency. The occurrence
of such latencies has a direct impact on the model update strategy during drift events,
which can lead to a decrease in classifier accuracy [8]. The latency can be divided into
null latency, extreme latency and intermediate latency [8]. At null latency, the real labels
of the instances are always available immediately after classification. At extreme latency
the real labels are never available to the classifier, requiring an unsupervised approach or
an incremental update of the model over time. At intermediate latency, an intermediate
delay time L, where 0 < L < ∞, is considered until the real labels are available. This time
can be constant (the same for all stream instances) or variable. If the delay is variable, the
time of availability of the real labels may differ from the arrival order of the examples, and
therefore, the classifier may receive the label of the instance −→x t+5 before receiving the label
of −→x t+2. Fourth, the adversarial attacks in the context of the message stream are carried out
by the adversarial character known as the spammer. Spammers try to evade the classifier
while maintaining the readability of the message content, for example, by including certain
misspellings or authentic words in the message [9]. As a result, spam messages may contain
malicious information strategically inserted by spammers to corrupt the data used to train
classifiers. In [6], a detailed analysis is made of the tricks used by spammers to evade spam
filters, such as text poisoning, obfuscated words or hidden text salting.

In order to evaluate the performance of classifiers on dynamic message streams,
different corpus [6,10], different measures [6,10] and evaluation methods [6,11] have been
published. In general, most models show high accuracy when evaluated on known and
relevant public datasets [6,11]. This situation contributes to the generation of overly
optimistic results and makes the actual deployment of message classification solutions
uncertain, since the problems of adversarial data manipulation by spammers and concept
drift are often ignored [6,11]. However, some proposals have presented forms of evaluation
that take these aspects into account [6,11–15].

Proposals for evaluating adversarial data manipulation by spammers in the message
stream context have not been found. However, proposals have been identified in other
contexts that attempt to measure classifier stability in the face of adversarial attacks [12,13].
In [12], the stability of the classifier under adversarial contamination of the training data
is quantified by introducing a metric to classify its robustness. In [13], frameworks for
security analysis and evaluation of classification algorithms are proposed by simulating
attack scenarios.

Regarding the evaluation of concept drift in the message stream context, two were
found, specifically in spam detection [6,11]. In [11], the SDAI methodology is proposed,
based on the measurement of classifier accuracy in four different but complementary sce-
narios: static, dynamic operations, adaptive capabilities and internationalisation. The static
scenario evaluates the overall performance of the classifier in a controlled environment,
while the dynamic operation scenario measures its behaviour under automatic updating
schemes. The adaptive capabilities scenario simulates the operation of the classifier in a
server context, categorising messages from multiple senders and covering different subject
areas, and the internationalisation scenario evaluates the ability of the classifier to classify
incoming messages in different languages, whether in standalone or server mode. In [6],
a strategy very similar to the adaptive scenario of [11] is proposed, where the classifier
is trained on a corpus (SpamAssassin corpus) and tested on another corpus (Ling-Spam
corpus), which covers different topics than the training corpus. The main differences of
the variant in [6] are the algorithms used to process and classify the messages and the
corpora used for training and testing. In [6], four spam filters trained on five email datasets
collected from different sources at different times are evaluated to see if the spam filters
maintain their generalisation performance. Both proposals essentially try to deal with
concept drift and spammer influence, ref. [11] in the dynamic scenario and both in the
adaptive scenario. However, in the dynamic scenario, the following perspective is oriented



Algorithms 2024, 17, 47 3 of 15

towards the action of the classifier rather than the generation of the stream. The stream
is generated using cross-validation by segmenting the base corpus into 10 partitions and
selecting 9 for training and 1 for testing. This procedure does not allow adequately mod-
elling environments with intermediate and extreme latency; the behaviour of the different
spammers and other message sources that may exist is limited to what is reflected in the
messages of the corpus used and does not allow adapting the behaviour by adjusting
parameters such as spammer strategies, message sending ratio, message batch size and
other parameters that make the stream more realistic; and the configuration to evaluate
different types of message processing services, classifiers or a combination of both can
become complex.

In addition, several frameworks have been proposed to assist users in carrying out
specific aspects of the stream classification process [16]. These frameworks allow the in-
tegration of different stream classification tasks, improve interoperability and include all
necessary components for algorithm development [17]. A stream classification framework
may include data generators or real-world datasets for benchmarking, data processing,
classifier algorithms, and testing of classification results [16]. Existing frameworks that
have been used to classify text messages include Jubatus [14] and Massive Online Analysis
(MOA) [15]. Jubatus, a framework that emerged from a Japanese research project [14],
emphasises distributed processing and features a model-sharing architecture to support
practical training and collaboration of classification models. This aims to reduce the network
costs and latency associated with distributed environments. The framework incorporates
test datasets from various sources and includes features for feature space simplification and
textual data preprocessing. It also integrates basic stream classification algorithms, provides
minimal evaluation and monitoring functionality, and is compatible with the Spark analyt-
ics engine or the Python sci-kit-learn library [18]. MOA [15] is derived from WEKA, the
Waikato Environment for Knowledge Analysis framework, written in Java and accessible
via a graphical user interface (GUI) or command line. Originally developed to assess stream
classification performance and manage algorithm speed, memory usage and accuracy MOA
includes numerous datasets, preprocessing approaches, stream-classification-related al-
gorithms and evaluation methods. Advanced applications include extensions for tweet
collection, sentiment analysis and data reduction techniques in evolving streams. Both
frameworks do not allow adequate modelling of environments where multiple message
stream generators are simultaneously configured to emulate the behaviour of spammers
and other message sources that may exist and contribute to the main message stream
(limited to what is reflected in the messages of the corpus used).

This research hypothesises that the modelling of the sources of message emission to
the main stream as profiles with configurable behaviours, and the modelling of the stream
according to simulation techniques and queueing theory, will provide a message stream
to evaluate message processing and/or classification solutions closer to the real one, thus
allowing to detect in advance possible problems of processors and/or classifiers and to
avoid degradation of their performance during their operation.

This paper presents a framework that simulates real-world message streams to eval-
uate classification solutions. The framework consists of four modules: message stream
simulation, processing, classification and evaluation. The first module uses simulation
techniques and queueing theory to replicate real-world message streams. The next module
enhances the input messages for effective classification. The third module applies existing
classification solutions to categorise the generated stream. Finally, the fourth module
evaluates the performance of the classification solutions by measuring various metrics.

The rest of the paper is structured as follows: Section 2 describes the details of the
proposed framework. Section 3 develops a case study in the spam detection environment
to evaluate the proposed framework. Finally, Section 5 summarises the main conclusions.



Algorithms 2024, 17, 47 4 of 15

2. Proposed Framework

This paper proposes a framework based on the simulation of real message streams
for the evaluation of classification solutions. The proposed framework aims to provide
researchers (especially data scientists) in the area of text stream classification with an
environment that facilitates the evaluation of text message processing and/or classification
solutions. The proposal is designed to facilitate the integration of existing processing
and/or classification solutions, mainly in the form of web services, for evaluation with
the generated message streams or as a basis for comparison with other solutions. Figure 1
shows a view of the framework architecture, which aims to make this framework as
versatile as possible, with the ability to adapt and readjust the technological resources to
the changing situation at any time, and which follows a similar scheme to the architecture
proposed in [19]. An architectural style based on n-layer architectures has been used,
structuring the elements into levels.

Front-End Level API Level Service Level Data Level

Framework User Interface

Data Scientist

Framework
Front-EndGUI

Ev
en

t b
ro

ke
r

Framework Core

Core API
Gateway

Con�gure Processing

Con�gure Classi�cation

Message Processing

Message
Processing

Agent

tsPrer 1

...

tsPrer N

Message Stream Simulation

Message
Datasets

Setting

Setting...

Pro�les

Setting

Con�gure Simulation

Con�gure Evaluation

Setting

Metrics

Con�gure Pro�les

Con�gure Global

Simulate

Stream
Simulation

Agent

Setting

Evaluation

Evaluation
Results

Calculate Metrics

Get Evaluation
Results

Classi�cation

Classi�cation
Agent

Classi�er 1

Classi�er N

Evaluation
Agent

Figure 1. Framework architecture view.

The front-end level defines the elements needed to interact with end users, grouped
under the concept of the framework user interface and organised according to the model,
view, controller (MVC) architectural pattern. The framework front-end is intended for the
data scientists, and is based on a graphical user interface (GUI). The API level contains
the service that acts as an application programming interface (API) for the other of the
services. This allows for the centralised exposure of all the endpoints defined in the backend.
This level is the core of the solution and consists of five main modules: Framework Core,
Message Stream Simulation, Message Processing, Classification, and Evaluation. Each of
the modules in the service level accesses the data level through the persistence services in
the service layer (Figure 1 shows the relationship between the services and their main data
sources, with dashed lines to indicate that this relationship is indirect). The following is a
description of each of the core-level modules that make up the proposed framework.

2.1. Framework Core

The Framework Core consists of a set of services that provide the basic functionality
of the Framework Service: Configure Simulation, Configure Processing, Configure Classifi-



Algorithms 2024, 17, 47 5 of 15

cation and Configure Evaluation. All these services are connected to the Gateway and to
each other via an Event Broker that manages the messages.

2.2. Message Stream Simulation

Message Stream Simulation, using the simulation technique [20] and the queueing
theory [21], attempts to mimic the generation of a message stream, similar to a real-world
environment. The goal of this module is to generate a message stream S that is as close
as possible to a real scenario. To achieve this goal, profiles are modelled. A profile p is
considered in this paper as an abstract entity that can have n instances, each of which
generates a message stream Spn . Profiles can be used to model thematic sources and/or
user profiles. A thematic source generates a message stream about one or more topics
such as Computers, Science, Society and others. A user profile generates a message
stream with similar characteristics to user/entity types of the web such as Spammer, Social
Network, Personal, Marketing, Information and others. A profile instance is defined as
pn = (name, svb, mc, Spn), where name is the identifier of each instance profile, svb is a set
of variable behaviours that can be different for each profile instance, mc is a message corpus
and Spn is the generated message stream.

The set of variable behaviours (svb) are parameters that can change the way a profile
instance generates a message stream. When simulating non-stationary message streams
to closely emulate message sending sources, the variables message send rate, message
batch size, message size and message obfuscation play an essential role. The message
send rate represents the frequency with which messages are sent by the source, and in a
non-stationary environment, the message send rate can fluctuate over time. By adjusting
this variable in the simulation, one can capture the varying intensity of message traffic.
Similarly, the message batch size, which refers to the number of messages sent together
as a batch, affects the burstiness and temporal patterns of the message streams. In non-
stationary scenarios, batch size can change, and adjusting this variable in the simulation
allows for the replication of such dynamics. Message size refers to the size in digital units
of the content of each message. In non-stationary message streams, the size distribution
of messages may change, and incorporating this variability into the simulation will affect
the processing of message content, as the content and size of the context to be analysed
by the word processor will vary. In addition, message obfuscation is one of the tricks
used by spammers to evade spam filters and is relevant to the evaluation of solutions to
be developed in the context of spam detection. Future versions of the framework could
include the modelling of other tricks used by spammers. Based on that, the svb Message
Send Rate (msr), Message Batch Size (mbs), Message Size (ms) and Message Obfuscation
(mo) are defined. msr is equal to mean arrival rate λ, which is the time between sending
messages. λ can be a constant or a random value that can change in a constant time tλ. In
mbs, the size s of the message batch mb can be a constant, or it can change randomly in a
constant time tmb. To change s, an integer uniform random number is generated with an
interval [0, z], where z is the maximum value of the size for mb. In mbs, before forming each
mb, the input source can be filtered by a minimum message size ms that changes in constant
time tms. This reduces the input source to form the mb to the message with a size equal to
or greater than ms. To change ms, a uniform integer random number is generated with an
interval [1, k], where k is the maximum value of KB for ms. The mo consists of replacing the
letters i and l in the body of the message with the characters ¡ and 1, respectively. Before
sending each mb, q message from the batch of messages can be selected and obfuscated.
To select the q messages, an integer uniform random number with an interval [0, v] is
generated, first to select the set of messages to be obfuscated, and second to select the q
messages to be obfuscated (the last time with an interval [1, v] without repetitions).

The mc form a message corpus about the profile class, which can receive messages
from the public corpus or from personal sources (e.g., emails from a mailbox). A message
corpus is defined as mc = {m1, m2, . . . , mn}, where mi is the i-th message in the corpus.

Spn is defined as:



Algorithms 2024, 17, 47 6 of 15

Spn =


m1,1, m1,2, · · · m1,r1 ;
m2,1, m2,2, · · · m2,r2 ;
· · · ;
mn,1, mn,2, · · · mn,rn ;
· · · ;


Here, mi,j represents the j-th text at the i-th time. The union of the message streams gen-

erated by each profile instance forms the message stream, so it is defined as
S = ∪l

p=1Sp | p ∈ P, where Sp = ∪q
n=1Spn .

The general modelling of profile behaviour is based on simulation concepts [20]
and the M/M/1 queueing model (Poisson input, exponential service times and single
server) [21]. To summarise the physical operation of the system, incoming messages enter
the queue, are eventually served, and then leave. It is therefore necessary for the simulation
model to describe and synchronise the arrival of messages and the serving of messages.
The general behaviour of the profile instance is shown in Figure 2.

Input 
source Queue Service 

mechanism
Customers

Queueing system

Served 
customers

Figure 2. General behaviour of profile instance.

Starting at time 0, the simulation clock records the (simulated) time t that has elapsed
during the simulation run so far. The information about the queueing system that defines
its current status, i.e., the state of the system, is N(t) = number of messages in the system
at time t. The events that change the state of the system are the arrival of messages or a
service completion for the messages currently in service (if any). The values of mean arrival
rate λ and mean service rate µ are tms/h ∗ r and tms, respectively. Each profile instance has
independent tms, r and h values. The state transition formula is:

Reset N(t) =
{

N(t) + n if the arrival of n texts occurs at time t
N(t)− n if service completion of n messages occurs at time t

The event generation method consists in forming a message batch mb = {m1, m2, . . . , mr},
where mi represents the i-th message in the batch, selecting from n messages of the input
source by generating an integer uniform random number for each message and sending
it to the queue. The random numbers have an interval of [1, n]. This method of event
generation allows us to assume that the input source is infinite, since n messages can be
selected from each element of mb, generating nr batches, which tend to be infinite. In
the queue system, the queue discipline is first-come-first-served. The service mechanism
consists in sending a message batch mb = {m1, m2, . . . , mr} in a µ.

The training examples profile will have a single instance that generates a message
stream by selecting message examples and their real classes from the messages sent by
the created profile instances. The examples in this stream can be used by the evaluated
solutions in the learning process. The latency lat is the time between the prediction of an
unlabelled instance by a classifier and the availability of its real label by the environment,
and is classified as either null, intermediate or extreme latency.

2.3. Message Processing

Message Processing transforms the message input into a high-quality one that is suit-
able for the learning process to follow, using techniques such as integration, normalisation,
cleaning, transformation and reduction. Data processing [22] stands out as a crucial stage
in the knowledge discovery process. Although often overlooked in comparison to other
phases such as data mining, data processing typically requires a greater investment of



Algorithms 2024, 17, 47 7 of 15

time and effort, accounting for more than 50% of the overall undertaking [23]. Raw data
typically contain numerous imperfections, including inconsistencies, missing values, noise
and redundancies. Consequently, the effectiveness of successive learning algorithms is
inevitably compromised in the presence of poor data quality [24]. It follows that the ap-
plication of appropriate processing measures has a significant impact on the quality and
reliability of the resulting automated insights and decisions.

The message stream processing module consists of a set of text stream preprocessors,
denoted as TsPre = {tsPre1, tsPre2, . . . , tsPren}|n ≥ 1, which typically employ natural
language processing techniques and feature analysis (lexical terms). Commonly used
natural language processing techniques include text content extraction, tokenisation and
part-of-speech tagging. Following the application of natural language processing tech-
niques, feature analysis is used to reduce the dimensionality of the set of features present
in the texts through selection and/or reduction, with the aim of representing the content
in a structure that is amenable to classification solutions. This module can be used for the
following purposes:

• Evaluate the message stream processing solutions to be developed. To perform this
evaluation, several processing solutions are selected that will process the same message
stream to obtain the feature sets that will then be used by one or more classification
algorithms. Since what would vary in the classification process is the way the message
stream is preprocessed, the better the quality of the results, the better the processing
solution used.

• Focus the evaluation on the classification process. One of the solutions available in
the module is used for all classification solutions used, which means that the quality
of the result depends on the classification algorithm used. Therefore, this approach
allows the comparison of classification algorithms without the need to preprocess the
message stream.

• Identifying the correlation between variants of text processing solutions and classifica-
tion algorithms. This makes it possible to identify the best-performing combinations
of classification algorithms and text stream processing solutions.

The use of this module is optional, as classification solutions may internally include
a message stream processing component. This variant is also taken into account in the
proposed evaluation framework by disabling the use of this module. The main value of
this module is not the text processing algorithms it uses, but the possibility of integrating
existing or developing text processing algorithms into the framework through the use
of web services and their joint evaluation. This variant makes it possible to distribute
the execution load of the sorting processing algorithms to different computing nodes,
which process the messages of the stream sent to them and return the sorting result to the
framework.

2.4. Classification

Based on learning algorithms, Classification classifies the messages of the generated
stream. The classification module can aggregate different classification solutions that exist
in the literature or are proprietary. The module consumes these solutions as web services
that are available and comply with an input and output format. The solutions of the module
to be evaluated classify the generated message streams into different categories. The same
message stream can be classified by more than one classification solution, which allows
comparing the performance of n solutions with the same message stream generated in
the simulation. In this framework, classification solutions that include a text processing
component can be evaluated. To train these classifiers, 90% of a set of messages, such as the
messages in the SpamAssassin corpus, is used. The main value of this module is not the
classification algorithms it uses, but the possibility of integrating existing or developing
classification algorithms into the framework through the use of web services and their joint
evaluation. This approach allows the execution load of sorting and classification algorithms



Algorithms 2024, 17, 47 8 of 15

to be distributed across different computing nodes. These nodes process the messages
within the stream sent to them and then send the sorting results back to the framework.

2.5. Evaluation

Evaluation evaluates the performance of the learners used to classify the stream
by measuring accuracy, precision, recall, positive true, positive false, negative true and
negative false. The evaluation module receives the output of the classifiers used and the real
classes of each message in the stream generated in the simulation. From this information,
measures of accuracy, precision, recall, true positives, false positives, true negatives and
false negatives are applied to obtain the performance of the different classification solutions.
This allows comparisons to be made with other classifiers using the same input parameters.

The evaluation module allows you to design and run experiments to evaluate message
stream analysis solutions and analyse the results. Designing experiments involves organ-
ising the following initial elements: setting the simulation time, configuring the message
stream generator, configuring text processing (if enabled), configuring classification and
configuring the evaluation process.

By setting the simulation time it is possible to regulate the duration of the experiment
to be carried out. The configuration of the message stream generator consists of defining
and/or creating the profile instances that will constitute the source that generates the
message streams to be processed in the simulation. Instances may exist previously or be
created in the same design of the experiment, although the instance of training examples is
unique, as explained in the description of the Message Stream Simulation module. Existing
instances can be selected without further adjustment of the sub parameters, although they
can be changed at the experimenter’s discretion. To create a profile instance, it is first
named, classified according to profile types, and it is decided which messages will form
the corpus. Parameter values are then set to adjust the various sub of the profile instance to
suit the experimenter.

In the processing configuration, you can choose whether to use the processing module
or not. The classification solutions to be evaluated may include the processing stage and
therefore the use of this module would not be necessary. On the other hand, the choice to
use the processing module may be due to the use of a basic processing that allows to focus
only on the evaluation of the classification process, or to evaluate a processing solution by
comparing it with other solutions and seeing the classification behaviour when receiving
the outputs of the different preprocessors that can be compared by one or more available
classification solutions.

3. Case Study: Spam Email Detection

This section presents a case study, Spam Email Detection, where an implementation
(https://github.com/Cujae-IF/FrameworkToEvaluateMessageClassification.git accessed
on 16 January 2024) of the proposed framework is used to evaluate solutions in spam
detection scenarios. The Spam Email Detection case study aims to measure the influence of
email streams on the quality (accuracy, precision and recall) of spam email detection. For
this purpose, the proposed framework will be implemented to generate mail streams from
the SpamAssassin corpus [25] using the Message Stream Simulation module, to classify
them using a built-in test classifier (LearningAntiSpamServer) in the Classification module,
and finally to evaluate the quality of the classification using the Evaluation module.

While email recipients may have historically viewed spam as nothing more than
an annoying intrusion, unwanted advertising or a waste of time, they now commonly
associate it with complex and potential threats to their online security, integrity and trust-
worthiness [26]. Approximately 50% to 85% of the world’s daily email traffic is now
generated by spam [6], although spam is not exclusive to email and can also be found in
other contexts such as social networks [27]. The negative impact of spam has resulted in
billions of dollars of economic loss every year. Several proposed spam detection techniques
have been developed to determine the authenticity of the emails [6,10,28]. To evaluate the

https://github.com/Cujae-IF/FrameworkToEvaluateMessageClassification.git


Algorithms 2024, 17, 47 9 of 15

performance of the filters, various corpus, measures and evaluation methods have been
published [6,10]. Although the evaluation of spam filters seems to be quite consolidated
from an academic point of view, the current methods do not simulate the real environment
correctly. Among the factors that are often not taken into account when evaluating spam
filters are the combination in the stream of email clusters with different characteristics (e.g.,
social networking, marketing and informational), the arrival frequency of the emails to be
filtered, the size of the emails, the number of emails per arrival, and the obfuscation of the
email body by spammers.

3.1. Materials and Methods

In order to perform an analysis of the features included in the evaluation frame-
work, the Spam Email Detection case study was performed in the Spam Email Detection
scenario. The case study focuses on running simulations to analyse the performance be-
haviour with respect to the factors involved in the generation of the email stream. The
LearningAntiSpamServer classifier is initially trained on 500 spam and 500 ham mails from
the SpamAssassin corpus [25] in all simulation runs.

In the case study the factors considered for the simulation are Message Send Rate
(MSR), Message Batch Size (MBS), Message Size (MS), Message Obfuscation (MO) and
Latency (LAT). The levels for each of these factors are MSR: 1-constant or 2-random;
MBS: 1-constant or 2-random; MS: 1-Without limit or 2-With lower limit; MO: 1-Without
obfuscation or 2-With obfuscation; and LAT: 1-Null, 2-Intermediate or 3-Extreme. Spammer
(SP), Social Network (SNP), Personal (PP), Marketing (MP) and Informational (IP) profiles
are modelled for the spam detection environment; however, the proposed solution allows
the modelling of other profiles for this and other message analysis contexts. These profiles
form clusters in which you can group different types of emails that occur in real-world
scenarios. The characterisation of the email corpus used by each profile modelled for the
spam detection environment is shown in Table 1.

Table 1. Characterisation of email records by profile.

Profile Source Instances Spam Ham

Spammer Personal email accounts 150 150 0
Social Network Personal email accounts 300 300 0
Personal Personal email accounts 450 425 25
Marketing Personal email accounts 500 500 0
Informational Personal email accounts 500 240 260

In order to determine the constant values of the message send rate and message batch
size factors to be used in the experiment, a small study was conducted with 30 university
students. These students were asked how many emails they had received per hour during
the day from sources associated with the defined profiles. In addition, the category other
sources (Others) were included for those emails that were not included in the profiles.
From the data, we obtained the average number of emails received per hour for each of the
sources, which is shown in Table 2.

Table 2. Average number of emails received per hour.

SNP IP MP PP SP Others

Mean 30 14 36 2 6 1

As can be seen, social networks and news media have the highest average email traffic.
Taking into account the data collected, the following values of the levels were tested in the
simulation for the experiment with the highest number of emails in the shortest time:

• Message send rate constant: 5 min.



Algorithms 2024, 17, 47 10 of 15

• Message batch size constant: The average number of emails received per hour from
each source. In the case of source Others it was not taken into account as it was not
covered by the profiles.

In addition, the lower limit value of the MS factor was chosen to be 10 KB.
Obfuscation, which is applied to the body of the mail, models one of the behaviours

of a spammer and is only applied to mails with a real spam class. The time variation
in the sending of training instances aims to evaluate the quality of the response as the
arrival time of the [instance, class] pair increases. In the experiment, the time variation
has two possible values: higher frequency (sending training instances with a random
frequency between [0:1] min) and lower frequency (sending training instances with a
random frequency between [5:20] min). This variable is a fundamental aspect for semi-
supervised learning solutions. The duration of each of the simulations will be 1 h. Given
the factors and their levels, Table 3 represents the experimental units in arrays, where the
value is the treatment given to the factor. For example, the value 2 in MO means that the
treatment for the variable “Message Obfuscation” will be “With Obfuscation”. In addition,
changes from one experimental unit to another are highlighted.

Table 3. Description of the experimental units.

Unit Number

Factors 01 02 03 04 05 06 07 08 09 10 11 12 13

MSR 1 2 1 1 1 1 2 1 1 1 1 1 1
MBS 1 1 2 1 1 1 1 2 1 1 1 1 1
MS 1 1 1 2 1 1 1 1 2 1 1 2 1
MO 1 1 1 1 2 1 1 1 1 2 1 1 2
LAT 1 1 1 1 1 2 2 2 2 2 3 3 3

The combination of the extreme level of the Latency factor with the random levels
of the Message Send Rate and Message Batch Size factors was not included in these
experimental units. These combinations were not included on the assumption that by not
learning during classification, the frequency of mail arrivals or the amount of mail received
by the classifiers would not affect the quality of classification and would be similar to using
the constant level.

3.2. Analysis of the Results

The aim of this section is to analyse the results obtained by classifying the generated
email streams into spam and ham. Based on the analysis of the traces generated by the
13 simulations, the email streams are characterised in Table 4.

Figures 3 and 4 show the results obtained for accuracy, precision and recall for each
experimental unit.

In Figure 4, it can be seen that as latency decreases, so do the values of all the measures.
This suggests an influence of latency on the quality of results, which may be due to a
low ability to adapt to possible concept drift with few training instances of the used
processor and/or message classifier. A variation of this may be the use of semi-supervised
or unsupervised learning approaches to learn from unlabelled instances. On the other
hand, in Experimental Units 5, 10 and 13, there is a significant decrease that coincides
with the introduction of obfuscation in the emails, suggesting its significant influence on
the classification quality. One of the reasons for this reduction in the quality of results
may be that terms that the user recognises as having similar or the same meaning, even
if they have different spellings, are not recognised by the processor used and are treated
as different terms. In addition, the other three factors have a similar level of influence,
regardless of the level of sending training instances. For a better understanding of the
results, the experimental units are divided into the three levels of the Latency factor as
shown in Figure 4 and detailed below:



Algorithms 2024, 17, 47 11 of 15

• Experimental Units 1–5: Null.
• Experimental Units 6–10: Intermediate.
• Experimental Units 11–13: Extreme.

Table 4. Characterisation of simulated email streams.

Profiles Training Total

Stream SNP IP MP PP SP Instances Emails

S01 360 168 432 24 72 1284 2340
S02 270 168 324 18 72 2126 2978
S03 57 168 96 42 72 2713 3148
S04 360 168 432 24 72 905 1961
S05 360 168 432 24 72 1388 2444
S06 360 168 432 24 72 410 1466
S07 390 168 468 26 72 321 1445
S08 48 168 74 56 72 115 533
S09 360 168 432 24 72 86 1142
S10 360 168 432 24 72 529 1585
S11 360 168 432 24 72 - 1056
S12 360 168 432 24 72 - 1056
S13 360 168 432 24 72 - 1056
Total emails 4005 2184 4850 358 936 9877

0.58

0.94

0.73

0.55

0.89

0.74

0.53

0.80

0.69

0.40

0.78

0.70

0.30

0.38

0.41

0.51

0.82

0.72

0.51

0.79

0.71

0.50

0.75

0.66

0.48

0.73

0.68

0.26

0.34

0.36

0.29

0.71

0.56

0.36

0.67

0.51

0.20

0.29

0.33

Recall

Precision

Accuracy

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13

Experimental Units

M
et

ric
s

0.2

0.4

0.6

0.8

value

Figure 3. Heat map of general results of the experiment.

1 2 3 4 5 6 7 8 9 10 11 12 13
Null Intermediate Extreme

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy
Precision
Recall

Figure 4. Graphical representation of the overall results of the experiment.

To better see the influence of the factors for each level of the Latency factor, separate
analyses are performed. Figure 5 illustrates the behaviour of the quality measures for the
experimental units corresponding to the null level.

The first experimental unit is taken as the baseline, as none of the first four factors are
changed. In almost all cases there is a tendency for the quality of the result to decrease with
respect to the baseline, except for accuracy, where Factor 1 (Experimental Unit 2) shows a
slight increase. On the other hand, for most measures, the order of influence of the factors
is Factor 4, 3, 2 and 1, with Factor 4 (obfuscation of the body of the mail) having the most
significant influence. This order is not true for the accuracy of Factors 2 and 3 (Experimental
Units 3 and 4, respectively).

Figure 6 illustrates the behaviour of the quality measures for the experimental units
corresponding to the intermediate level.



Algorithms 2024, 17, 47 12 of 15

Accuracy Precision Recall
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
2
3
4
5

Figure 5. Graphical representation of the null level latency results.

Accuracy Precision Recall
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6
7
8
9
10

Figure 6. Graphical representation of the intermediate level latency results.

The sixth experimental unit is taken as the baseline, as none of the first four factors are
changed. In almost all cases there is a tendency for the quality of the result to decrease with
respect to the baseline, except for recall, where Factor 1 (Experimental Unit 7) is the same.
On the other hand, for most of the measures, the order of influence of the factors is Factor
4, 3, 2 and 1, with Factor 4 (obfuscation of the body of the mail) having the most significant
influence. Factors 2 and 3 (Experimental Units 8 and 9, respectively) do not follow this
order for accuracy.

Figure 7 illustrates the behaviour of the quality measures for the experimental units
corresponding to the extreme level.

Accuracy Precision Recall
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

11
12
13

Figure 7. Graphical representation of the extreme level latency results.

The eleventh experimental unit is taken as the baseline, as none of the first four factors
are changed. In almost all cases there is a tendency for the quality of the result to decrease
with respect to the baseline, except for recall, where Factor 3 (Experimental Unit 12) shows
an increase with respect to the baseline. On the other hand, for all measures, the order of
influence of the factors is Factor 4 and 3, with Factor 4 (obfuscation of the body of the mail)
having the most significant influence. Overall, the experimental results show that in most
cases the second levels of the identified factors tend to decrease the classification quality
values. Factor 1, however, exceeds the baseline in one case and is equal to the baseline in
another, and Factor 3 exceeds the baseline in one case. On the other hand, the order of
influence of the first four factors is almost always Factor 4, 3, 2 and 1. From the results
obtained, it could be said that the factors with the most notable influence are Factors 4 and
5 (message obfuscation and latency, respectively).



Algorithms 2024, 17, 47 13 of 15

4. Discussion

Current approaches focus on evaluating classification solutions with message streams
generated from a cross-validation strategy or with different message corpora. This reduces
the ability to adequately model dynamic environments with varying latency and limits the
representation of different behaviours of message sources such as spammers. In contrast,
the present proposal generates the message streams following a profiling approach of the
message sending sources together with the use of simulation techniques and queueing
theory. This gives the possibility to model the different behaviours that different sources
may have, be it different spammers with different adversarial attack strategies, press media
or social network sources. Each of these profile instances generates its own stream of
messages, which are then combined into the main stream, which is closer to the real stream.
For example, in the study case presented, it was found that the evaluated classification solu-
tion degrades in its quality results as the latency increases and when message obfuscation
strategies are used by spammers. This suggests that the classification solution should be
improved to better adapt to message streams where training message latency increases and
spammers use message obfuscation strategies. A possible solution to the latency problem
could be the use of a semi-supervised or unsupervised classification approach and, for
obfuscated messages, the improvement of the text processor used by means of a term
similarity approach. However, these sources may have social and proactive behaviours that
influence the generation of the stream and are not covered by the proposed solution. An
example of this is the spammers themselves, who may proactively vary their attack strategy
so that their target cannot evade them, sometimes forming communities of spammers.
Furthermore, the proposed solution only considers obfuscation of the message body as an
adversarial attack strategy for this type of source, and there are others.

On the other hand, in the developed study case, the latency in sending training
instances and the obfuscation of the body of the messages were identified as the parameters
with the greatest impact on the quality of the classification. This case study demonstrated
the performance of the proposed framework. However, the dataset used for the evaluation
was small, as were the processing and classification solutions used, suggesting a larger-scale
evaluation at the level of the volume of messages used and a wider range of classifiers and
text processors. Furthermore, the framework was only evaluated in the context of spam
detection, although it can be used in other contexts, such as news analysis, where sources
are modelled as thematic profiles that may constitute digital news media.

5. Conclusions

In this work, we present a framework based on message stream simulation to evaluate
solutions of classification. The use of the queueing theory in the modelling of the user
profiles contributed a bigger formalism to the proposed solution. The incorporation of
randomness in some of the events of the simulation allowed approximating the generation
of the message stream to a real scenario. The evaluation module provides the ability to
apply the evaluation measures to analyse the behaviour of the classifiers under the same
input conditions. The case study demonstrates an evaluation design that allows identifying
the factors present in real contexts that most influence the quality of classification solutions,
and thus knowing how to adapt the solution. For the evaluated solution, the factors
that most influenced the quality were message obfuscation and latency. Future work is
planned to perform a robustness or sensitivity analysis to better understand how changes
in simulation parameters affect the reliability of the proposed framework; to develop
new test cases and/or scenarios in contexts such as news analysis, unanswered message
identification, social media message classification, and others that demonstrate greater
versatility and applicability of the proposed framework to a wider range of message
classification challenges; to use the proposed framework to evaluate and compare solutions
from the literature for semi-supervised text classification in intermediate and extreme
latency scenarios; and to make social modelling of message delivery sources to identify



Algorithms 2024, 17, 47 14 of 15

social and proactive behaviours, which can then be implemented using an intelligent
multi-agent approach.

Author Contributions: Conceptualization, W.H.-M. and M.M.-E.; methodology, F.M.-P. and J.V.B.M.;
validation, M.M.-E., F.M.-P. and J.V.B.M.; formal analysis, W.H.-M., F.M.-P. and M.M.-E; writing—
original draft preparation, W.H.-M.; writing—review and editing, I.L.F. and J.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in http://mlkd.csd.auth.
gr/datasets.html.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bularca, M.; Nechita, F.; Sargu, L.; Motoi, G.; Otovescu, A.; Coman, C. Looking for the Sustainability Messages of European

Universities’ Social Media Communication during the COVID-19 Pandemic. Sustainability 2022, 14, 1554. [CrossRef]
2. Bui, Q.; Lyytinen, K. Aligning adoption messages with audiences? priorities: A mixed-methods study of the diffusion of

enterprise architecture among the US state governments. Inf. Organ. 2022, 32, 100423. [CrossRef]
3. Hemker, S.; Herrando, C.; Constantinides, E. The Transformation of Data Marketing: How an Ethical Lens on Consumer Data

Collection Shapes the Future of Marketing. Sustainability 2021, 13, 11208. [CrossRef]
4. Anastasiei, B.; Dospinescu, N.; Dospinescu, O. The impact of social media peer communication on customer behaviour—Evidence

from Romania. Argum. Oecon. 2022, 1, 247–264. [CrossRef]
5. Zheng, X.; Li, P.; Wu, X. Data Stream Classification Based on Extreme Learning Machine: Review. Big Data Res. 2022, 30, 100356.

[CrossRef]
6. Jáñez Martino, F.; Alaiz-Rodríguez, R.; González-Castro, V.; Fidalgo, E.; Alegre, E. A review of spam email detection: Analysis of

spammer strategies and the dataset shift problem. Artif. Intell. Rev. 2023, 56, 1145–1173. [CrossRef]
7. Marrs, G.; Hickey, R.; Black, M. The impact of latency on online classification learning with concept drift. In Proceedings of the

Knowledge Science, Engineering and Management 2010 (KSEM 2010), Belfast, Northern Ireland, UK, 1–3 September 2010; Bi, Y.,
Williams, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6291, pp. 459–469. [CrossRef]

8. Souza, V.; Pinho, T.; Batista, G. Evaluating Stream Classifiers with Delayed Labels Information. In Proceedings of the 7th Brazilian
Conference on Intelligent Systems (BRACIS), Sao Paulo, Brazil, 22–25 October 2018; pp. 408–413. [CrossRef]

9. Biggio, B.; Roli, F. Wild Patterns: Ten Years after the Rise of Adversarial Machine Learning. Pattern Recogn. 2018, 84, 317–331.
[CrossRef]

10. Dada, E.; Bassi, J.; Chiroma, H.; Abdulhamid, S.; Adetunmbi, A.; Ajibuwa, O. Machine learning for email spam filtering: Review,
approaches and open research problems. Heliyon 2019, 5, e01802. [CrossRef] [PubMed]

11. Pérez-Díaz, N.; Ruano-Ordás, D.; Fdez-Riverola, F.; Méndez, J. SDAI: An integral evaluation methodology for content-based
spam filtering mode. Expert Syst. Appl. 2012, 39, 12487–12500. [CrossRef]

12. Nelson, B.; Biggio, B.; Laskov, P. Understanding the Risk Factors of Learning in Adversarial Environments. In Proceedings of the
4th ACM Workshop on Security and Artificial Intelligence; AISec ’11, Chicago, IL, USA, 21 October 2011; ACM: New York, NY,
USA, 2011; pp. 87–92. [CrossRef]

13. Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndić, N.; Laskov, P.; Giacinto, G.; Roli, F. Evasion Attacks against Machine
Learning at Test Time. In Proceedings of the Machine Learning and Knowledge Discovery in Databases, Prague, Czech Republic,
23–27 September 2013; Blockeel, H., Kersting, K., Nijssen, S., Železný, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 387–402.

14. Jubatus: Distributed Online Machine Learning Framework. Available online: http://jubat.us/en/ (accessed on 16 January 2024).
15. Bifet, A.; Holmes, G.; Kirkby, R.; Pfahringer, B. MOA: Massive Online Analysis. J. Mach. Learn. Res. 2010, 11, 1601–1604.
16. Clever, L.; Pohl, J.; Bossek, J.; Kerschke, P.; Trautmann, H. Process-Oriented Stream Classification Pipeline: A Literature Review.

Appl. Sci. 2022, 12, 9094. [CrossRef]
17. Gartner IT Glossary. Frameworks. 2021. Available online: https://www.gartner.com/en/information-technology/glossary/

framework (accessed on 5 September 2022).
18. Apache Software Foundation. Apache Spark—Unified Analytics Engine for Big Data; Apache Software Foundation: Forest Hill, MD,

USA, 2021.
19. Pérez, F.M.; Fonseca, I.L.; Martínez, J.V.B.; Maciá-Fiteni, A. Distributed Architecture for an Elderly Accompaniment Service Based

on IoT Devices, AI, and Cloud Services. IEEE MultiMedia 2023, 30, 17–27. [CrossRef]
20. Hiller, F.; Lieberman, G. Introduction to Operations Research; Raghothaman Srinivasan; McGraw-Hill Science: New York, NY, USA,

2010; Chapter Simulation, pp. 934–990.
21. Hiller, F.; Lieberman, G. Introduction to Operations Research; Raghothaman Srinivasan; McGraw-Hill Science: New York, NY, USA,

2010; Chapter Queueing Theory, pp. 759–827.

http://mlkd.csd.auth.gr/datasets.html
http://mlkd.csd.auth.gr/datasets.html
http://doi.org/10.3390/su14031554
http://dx.doi.org/10.1016/j.infoandorg.2022.100423
http://dx.doi.org/10.3390/su132011208
http://dx.doi.org/10.15611/aoe.2022.1.11
http://dx.doi.org/10.1016/j.bdr.2022.100356
http://dx.doi.org/10.1007/s10462-022-10195-4
http://dx.doi.org/10.1109/ICBDA50157.2020.9289802
http://dx.doi.org/10.1109/BRACIS.2018.00077
http://dx.doi.org/10.1016/j.patcog.2018.07.023
http://dx.doi.org/10.1016/j.heliyon.2019.e01802
http://www.ncbi.nlm.nih.gov/pubmed/31211254
http://dx.doi.org/10.1016/j.eswa.2012.04.064
http://dx.doi.org/10.1145/2046684.2046698
http://jubat.us/en/
http://dx.doi.org/10.3390/app12189094
https://www.gartner.com/en/information-technology/glossary/framework
https://www.gartner.com/en/information-technology/glossary/framework
http://dx.doi.org/10.1109/MMUL.2022.3206398


Algorithms 2024, 17, 47 15 of 15

22. García, S.; Luengo, J.; Herrera, F. Data Preprocessing in Data Mining, 1st ed.; Springer: Cham, Switzerland, 2015. [CrossRef]
23. Pyle, D. Data Preparation for Data Mining, 1st ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1999.
24. Ramírez-Gallego, S.; Krawczyk, B.; García, S.; Woźniak, M.; Herrera, F. A survey on data preprocessing for data stream mining:

Current status and future directions. Neurocomputing 2017, 239, 39–57. [CrossRef]
25. Katakis, I.; Tsoumakas, G.; Banos, E.; Bassiliades, N.; Vlahavas, I. An adaptive personalized news dissemination system. J. Intell.

Inf. Syst. 2009, 32, 191–212. [CrossRef]
26. Gangavarapu, T.; Jaidhar, C.; Chanduka, B. Applicability of machine learning in spam and phishing email filtering: Review and

approaches. Artif. Intell. Rev. 2020, 53, 5019–5081. [CrossRef]
27. Ali, S.; Islam, N.; Rauf, A.; Din, I.; Guizani, M.; Rodrigues, J. Privacy and Security Issues in Online Social Networks. Future

Internet 2018, 10, 114. [CrossRef]
28. Yang, H.; Liu, Q.; Zhou, S.; Luo, Y. A Spam Filtering Method Based on Multi-Modal Fusion. Appl. Sci. 2019, 9, 1152. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-319-10247-4
http://dx.doi.org/10.1016/j.neucom.2017.01.078
http://dx.doi.org/10.1007/s10844-008-0053-8
http://dx.doi.org/10.1007/s10462-020-09814-9
http://dx.doi.org/10.3390/fi10120114
http://dx.doi.org/10.3390/app9061152

	Introduction
	Proposed Framework
	Framework Core
	Message Stream Simulation
	Message Processing
	Classification
	Evaluation

	Case Study: Spam Email Detection
	Materials and Methods
	Analysis of the Results

	Discussion
	Conclusions
	References

