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Abstract: This study investigates the problem of decentralized dynamic resource allocation optimiza-
tion for ad-hoc network communication with the support of reconfigurable intelligent surfaces (RIS),
leveraging a reinforcement learning framework. In the present context of cellular networks, device-to-
device (D2D) communication stands out as a promising technique to enhance the spectrum efficiency.
Simultaneously, RIS have gained considerable attention due to their ability to enhance the quality of
dynamic wireless networks by maximizing the spectrum efficiency without increasing the power
consumption. However, prevalent centralized D2D transmission schemes require global information,
leading to a significant signaling overhead. Conversely, existing distributed schemes, while avoiding
the need for global information, often demand frequent information exchange among D2D users,
falling short of achieving global optimization. This paper introduces a framework comprising an
outer loop and inner loop. In the outer loop, decentralized dynamic resource allocation optimization
has been developed for self-organizing network communication aided by RIS. This is accomplished
through the application of a multi-player multi-armed bandit approach, completing strategies for
RIS and resource block selection. Notably, these strategies operate without requiring signal interac-
tion during execution. Meanwhile, in the inner loop, the Twin Delayed Deep Deterministic Policy
Gradient (TD3) algorithm has been adopted for cooperative learning with neural networks (NNs) to
obtain optimal transmit power control and RIS phase shift control for multiple users, with a specified
RIS and resource block selection policy from the outer loop. Through the utilization of optimization
theory, distributed optimal resource allocation can be attained as the outer and inner reinforcement
learning algorithms converge over time. Finally, a series of numerical simulations are presented to
validate and illustrate the effectiveness of the proposed scheme.

Keywords: reconfigurable intelligent surfaces; ad-hoc network; multi-player multi-armed bandit;
TD3; RIS selection; resource block selection; RIS phase shift; energy efficiency; reinforcement learning

1. Introduction

The upcoming wireless networks, including 5G/6G and beyond [1,2], are poised to
deliver markedly improved data rates, decreased latency, and expanded network coverage
in comparison to their predecessors. These advancements in wireless networks stem from
new design principles that enable them to support an extensive array of connected devices
concurrently, ensuring robust connectivity and efficient data exchange. This is particularly
crucial for burgeoning Internet of Things (IoT) applications, involving the integration
of billions of sensors and smart devices, as referenced in [3–5]. In ultra-dense networks
(UDN) [6], the signaling communication, specifically control commands, constitutes a
substantial portion of the overall network traffic. Moreover, the segregation of signaling
and data infrastructures places a considerable burden on base stations, negatively impacting
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both energy and spectrum efficiency [6]. Wireless ad-hoc networks emerge as a promising
solution to alleviate these challenges.

A wireless mobile ad-hoc network (MANET) [7] represents a decentralized form
of wireless network architecture wherein devices establish direct communication with
each other, bypassing the need for centralized controls at base stations or access points.
In the realm of wireless mobile ad-hoc networks, users make use of unlicensed and shared
spectrum resources. This not only reduces the signaling load on base stations but also
facilitates a higher number of user connections to base stations, especially in ultra-dense
networks (UDN) [8]. Nevertheless, the network’s capacity is constrained by environmental
uncertainties and resource limitations.

Simultaneously, reconfigurable intelligent surfaces (RIS) [9,10] represent a transforma-
tive technology in wireless communication and signal propagation, effectively mitigating
the limitations of conventional wireless ad-hoc networks. RIS comprise a two-dimensional
surface equipped with low-cost passive reflecting elements, which can be electronically
and adaptively controlled to manipulate the phase, amplitude, and direction of incom-
ing and outgoing electromagnetic waves. This capability significantly enhances the sig-
nal quality and coverage. RIS have gained considerable attention as one of the most
promising techniques, attracting interest from both research communities and industrial
enterprises [11,12].

2. Related Studies and the Current Contribution
2.1. Related Studies

In a notable work [13], deep reinforcement learning (DRL) is employed to dynamically
configure RIS phase shifts, resulting in improved signal coverage, reduced interference,
and enhanced spectral efficiency. Furthermore, another study [14] delves into the use
of deep Q-networks (DQN) to optimize RIS-assisted massive multi-input-multi-output
(MIMO) systems. The authors introduce an adaptive control mechanism that dynamically
adjusts the RIS phase shifts and beamforming weights, thereby boosting the system capacity,
coverage, and energy efficiency [11].

Furthermore, in the optimization of RIS-assisted communication systems, the Twin
Delayed Deep Deterministic Policy Gradient (TD3) [15] emerges as a particularly powerful
and promising tool. This reinforcement learning technique, introduced as an extension of
the Deep Deterministic Policy Gradient (DDPG) methodology, demonstrates significant
potential in enhancing performance and adaptability in dynamic network environments.

In a pioneering effort documented in [16], the application of Deep Deterministic
Policy Gradient (DDPG) is showcased as an effective strategy to address the challenges
posed by dynamic beamforming in RIS-assisted communication scenarios. The authors
leverage DDPG to formulate an intelligent policy capable of making real-time adjustments
to RIS phase shifts and beamforming vectors. This adaptive policy maximizes the signal
quality while simultaneously minimizing interference, providing a crucial advantage in the
ever-changing landscape of wireless communication.

Expanding the spectrum of reinforcement learning techniques, Proximal Policy Op-
timization (PPO) takes center stage in [17], where it is harnessed to optimize resource
allocation in RIS-assisted networks. By employing PPO, the authors craft an adaptive
policy that dynamically allocates power, subcarriers, and RIS phase shifts. This dynamic
allocation strategy aims to maximize network performance while adhering to user-specific
quality of service (QoS) requirements, illustrating the versatility and effectiveness of rein-
forcement learning in addressing the complexities of RIS-assisted communication systems.

Amidst various reinforcement learning techniques, TD3 emerges as a standout ap-
proach, offering distinctive advantages in optimizing RIS-assisted communication systems.
Twin Delayed Deep Deterministic Policy Gradient not only inherits the strengths of DDPG
but also introduces improvements that enhance its stability and sample efficiency. This
makes TD3 well suited for the intricacies of dynamic network environments, paving the
way for heightened performance and adaptability in RIS-assisted communication scenar-
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ios. As research in this field continues to evolve, the application of TD3 holds significant
promise in pushing the boundaries of what is achievable in the optimization of intelligent
communication systems.

2.2. Current Contribution

This paper introduces a hybrid outer loop and inner loop framework designed to
enhance the resource allocation efficiency in RIS-assisted mobile ad-hoc networks (MANET).
Specifically, within the outer loop, a multi-player multi-armed bandit (MPMAB) algorithm
is devised to determine the optimal selection of both the RIS and resource block (RB) for
different device-to-device pairs in the MANET. Drawing inspiration from the classic multi-
armed bandit (MAB) problem with a single player, as discussed in [18,19], we formulate a
novel type of decentralized multi-player multi-armed bandit problem. In this scenario, each
player represents a device-to-device pair, independently selecting the RB and accessing the
RIS-assisted channel without coordination among users. The combination of RB and RIS
selection is treated as an ‘arm’ for each player.

By addressing the decentralized multi-player multi-armed bandit (Dec-MPMAB) prob-
lem, each device-to-device pair in the MANET can significantly enhance the spectrum and
energy efficiency. The developed framework represents a novel approach to optimizing re-
source allocation in RIS-assisted MANETs, offering a promising avenue towards improving
the overall performance of wireless networks.

Assuming that all arms exhibit rewards with independent and identically distributed
properties across all users, the Upper Confidence Bound algorithm (UCB) becomes relevant.
The UCB algorithm [20] strategically balances the exploration of new actions and the
exploitation of previously discovered actions. This equilibrium is achieved by assigning
confidence intervals to each potential action, derived from observed data. At each step,
the algorithm selects the action with the highest upper confidence bound, optimizing
the trade-off between exploration and exploitation. As time progresses, the algorithm
dynamically adjusts its confidence intervals, thereby enhancing the overall performance.

Nevertheless, conflicts may arise when two or more players simultaneously learn the
optimal RIS and RB selections. To mitigate the communication costs and fully unleash the
potential of RIS phase shifting, a departure from [21] is introduced. Following the players’
RIS selections, communication sections inform the RIS about the number of users connected
to it. Subsequently, the RIS divides its elements evenly. In the inner loop optimization
process, each user optimizes only the portion assigned to them. The inner loop aims to fully
harness the capabilities of the chosen RIS, and reinforcement learning (RL) [22] algorithms
have gained prominence as an effective approach to adaptively controlling RIS elements.
Building on this, recent research endeavors have explored innovative applications of RL
algorithms to optimize wireless communications in RIS contexts.

In this study, a Twin Delayed Deep Deterministic Policy Gradient (TD3) framework is
employed for inner-loop resource allocation to determine the optimal energy efficiency for
each device-to-device (D2D) pair. This is achieved through controlling the phase shifting of
the RIS and power allocation of the D2D pair’s transmitter, considering RB selection, RIS
selection, and the provided partition information. The primary contributions of this paper
are outlined as follows.

• It formulates a time-varying and uncertain wireless communication environment to ad-
dress dynamic resource allocation in RIS-assisted mobile ad-hoc networks (MANET).
A model has been constructed to depict the dynamic resource allocation system within
a multi-mobile RIS-assisted ad-hoc wireless network.

• The optimization problems encompassing RIS selection, spectrum allocation, phase
shifting control, and power allocation in both the inner and outer networks have
been formulated to maximize the network capacity while ensuring the quality of
service (QoS) requirements of mobile devices.
As solving mixed-integer and non-convex optimization problems poses challenges,
we reframe the issue as a multi-agent reinforcement learning problem. This trans-
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formation aims to maximize the long-term rewards while adhering to the available
network resource constraints.

• An inner–outer online optimization algorithm has been devised to address the opti-
mal resource allocation policies for RIS-assisted mobile ad-hoc networks (MANET),
even in uncertain environments.
As the network exhibits high dynamism and complexity, the D-UCB algorithm is
employed in the outer network for RIS and spectrum selection. In the inner network,
the TD3 algorithm is utilized to acquire decentralized insights into RIS phase shifts
and power allocation strategies. This approach facilitates the swift acquisition of
optimized intelligent resource management strategies. The TD3 algorithm features an
actor–critic structure, comprising three target networks and two hidden layer streams
in each neural network to segregate state–value distribution functions and action–
value distribution functions. The integration of action advantage functions notably
accelerates the convergence speed and enhances the learning efficiency.

3. System and Channel Model
3.1. System Model

Consider a wireless mobile ad-hoc network comprising N pairs of device-to-device
(D2D) users with the assistance of M RIS and utilizing J RBs, as illustrated in Figure 1.
Each D2D pair consists of transmitters (Tx) and receivers (Rx), equipped with NT and NR
antennas, respectively. Additionally, each RIS is equipped with R electronically controlled
elements, serving as passive relays in the network.

Figure 1. Multi-RIS-assisted ad-hoc wireless network.

In this scenario, the N pairs of D2D users possess no information about the RISs or
other D2D pairs beyond themselves. At each time slot, the i-th D2D pair has the flexibility
to select any RIS or RB. Let Dr

i and Dt
i represent the receiver and transmitter of the i-th D2D

pair, respectively. The received signal at Dr
i from Dt

i with the assistance of RIS m on RB j
can be expressed as follows:

yi(t) = hH
i,j(t)xi(t) + fH

i,m,j(t)Θi,m,j(t)gi,m,j(t)xi(t)+ni(t), (1)

where hH
i,j(t) represents the direct wireless channel from the i-th transmitter (Tx) to the i-th receiver

(Rx) using the j-th RB. The phase shift matrix Θi,m,j(t) corresponds to the m-th RIS and is utilized for
the i-th pair of transmitter–receiver using the j-th RB. It is defined as Θi,m,j(t) = diag[ejθ1(t), ejθ2(t), . . . ,
ejθR(t)] ∈ CR×R. Here, fi,m,j(t) ∈ CM×1 and gi,m,j(t) ∈ CM×NTx represent the wireless channels
between the i-th transmitter and the m-th RIS, as well as between the m-th RIS and the i-th
receiver, respectively, both using the j-th RB. The received signal yi(t) at the i-th receiver is
affected by noise ni(t), where ni(t) follows an additive white noise distribution CN (0, σ2

k ).
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The transmitted signal is given as

xi(t) =
√

pi(t)qi(t)si(t) (2)

where pi(t), qi(t), and si(t) denote the transmit power, the beamforming vector at the
transmitter (Tx), and the transmitted data to the receiver (Rx), respectively. Combining
these elements, let W i =

√
pi(t)qi(t), representing the power of the transmit signal.

Considering the maximum transmit power constraint, the expression for the power of
the transmit signal is given by

E[|x|2] = tr(W H
i W i) ≤ Pmax (3)

3.2. Interference Analysis

There are two types of dynamic wireless channels that need to be modeled in the
context of communication within an RIS-assisted multi-user ad-hoc network. It includes
the wireless channel between i-th transmitter (Dt

i ) to m-th RIS using j-th RB, gimj(t), with
i ∈ [1, 2, . . . , N], m ∈ [1, 2, . . . , M], j ∈ [1, 2, . . . , J], and the wireless channel from m-th RIS
to i-th receiver (Dr

i ) using j-th RB fH
imj(t). Specifically, these two types of dynamic wireless

channels can be modeled mathematically as follows.
Dt

i -RIS wireless channel model:

gimj(t) =
√

βim(t)× a(ϕRIS, θRIS, t)× aH(ϕDt
i
, θDt

i
, t) (4)

where
√

βim(t) denotes the time-varying Dt
i -RIS channel gain; a(ϕDt

i
, θDt

i
, t) and a(ϕRIS, θRIS,

t) represent the multi-antenna array response vectors that are used for data transmission
from Dt

i to RIS, respectively, with a(ϕDt
i
, θDt

i
, t) = [a1(ϕDt

i
, θDt

i
, t), . . . , aN(ϕDt

i
, θDt

i
, t)]T ∈

CN×1 and a(ϕRIS, θRIS, t) = [a1(ϕRIS, θRIS, t), . . . , aM(ϕRIS, θRIS, t)]T ∈ CM×1 .
RIS-Dr

i wireless channel model:

fimj(t) =
√

βmi(t)× aH(ϕmi, θmi, t) (5)

where
√

βmi(t) describes the time-varying channel gain from RIS to Dr
i at time t; a(ϕmi, θmi, t)

is the multi-antenna array response vector used for data transmission from the RIS to Dr
i

with a(ϕmi, θmi, t) = [a1(ϕmi, θmi, t), . . . , aM(ϕmi, θmi, t)]T ∈ CM×1.
Then, the time-varying signal-to-interference-plus-noise ratio (SINR) at the i-th re-

ceiver (Rx) with the assistance of the m-th RIS on RBj is obtained as Equation (6). Here,
DJ represents the set of device-to-device (D2D) pairs to which RBj is allocated. Only D2D
pairs that share the same j-th RBj will be interfered with by each other, and there are a total
of K D2D pairs in the set Dj.

γi,j,m(t) =
|Wi(t)(h

H
i,j(t) + fH

i,m,j(t)Θi,m,j(t)gi,m,j(t))|2

∑K
dk∈DJ ,k ̸=i |Wk(t)(gH

k,i,j(t) + fH
k,i,m,j(t)Θi,m,j(t)gk,i,m,j(t))|2 + σ2

i

, (6)

Additionally, the instantaneous sum rate of the entire mobile ad-hoc network (MANET)
can be formulated as

R(t) =
N

∑
i=1

Ri(t) =
N

∑
i=1

Bilog2(1 + γi,j,m(t)), (7)

with Bi being the bandwidth of RBj.
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4. Problem Formulation

The objective of this research is to maximize the aggregate data rate, as defined in
Equation (7), through a comprehensive optimization strategy involving both outer and
inner loop optimizations. This optimization process takes into account various constraints,
including the power limitations of all D2D pairs, the phase shifting constraints of the RIS,
and the signal-to-interference-plus-noise ratio (SINR) requirements specific to each D2D
pair. These constraints are expressed as follows:

(P) max
SRIS ,SRB ,Θ,W

R(SRIS, SRB, Θ, W)

s.t. γi ≥ γth
i

0 < tr(WHW) ≤ Pmax

θi,m,j ∈ [0, 2π)

(8)

where SRIS and SRB represent the selections of the RIS and the RB, respectively. The matrix
Θ corresponds to the phase-shifting control of the RIS, while W represents the power
control at the transmitter. The parameter γi denotes the signal-to-interference-plus-noise
ratio (SINR) requirement specific to the i-th D2D pair, and the i, m, j are constraints with
the total number of D2D pairs N, total number of RIS M, and total number of RB H,
with i ∈ [1, 2, . . . , N], m ∈ [1, 2, . . . , M], j ∈ [1, 2, . . . , J].

The optimization problem (P) is characterized as a mixed-integer programming prob-
lem [23], which is inherently non-convex and poses challenges for direct solution methods.
Due to the intricate coupling between phase-shifting control and power allocation, we
propose an innovative outer and inner loop optimization algorithm. The outer loop em-
ploys a multi-player multi-armed bandit approach to determine the optimal selection of the
RIS and RB. Meanwhile, the inner loop focuses on solving the jointly coupled challenges
of phase-shifting control and power allocation. This two-tiered approach facilitates an
effective strategy addressing the complexities of the optimization problem and enhancing
the overall performance of the communication system.

4.1. Outer Loop of Dec-MPMAB Framework
4.1.1. Basic MAB and Dec-MPMAB Framework

The multi-armed bandit (MAB) framework is a classical model designed to address
scenarios characterized by decision making under uncertainty, exploration, and exploitation.
In the context of the MAB problem, an agent is presented with a set of “arms”, where each
arm represents a distinct choice or action that the agent can take. The primary objective
of the agent is to maximize its cumulative reward over time, all while contending with
uncertainty regarding the rewards associated with each individual arm. The challenge lies
in finding an optimal strategy that balances exploration (trying different arms to learn their
rewards) and exploitation (choosing the arm believed to yield the highest reward based on
current knowledge) to achieve the overall goal of maximizing the cumulative rewards.

Decentralized multi-player multi-armed bandit (Dec-MPMAB) problems [24] extend
the traditional multi-armed bandit (MAB) framework to encompass situations where mul-
tiple players interact with a shared set of arms or actions. In the Dec-MPMAB framework,
multiple players engage in decision making simultaneously, and they may either compete
or cooperate in the allocation of limited resources. In the upcoming section, we present the
Dec-MPMAB formulation tailored to address the challenges posed by our specific problem.

4.1.2. Dec-MPMAB Formulation of RIS and RB Selection Problem

Assume that, at time slot t, the allocation of an RIS and an RB to a specific device-to-
device (D2D) pair is decentralized. Let the set A = [a1, a2, . . . , aMJ ] denote the arm set for
the Dec-MPMAB framework, where M represents the total number of RIS, J is the total
number of RB, and M represents the set of all possible reconfigurable intelligent surfaces
(RIS). M ∈ 1, 2, . . . , M, where M is the total number of available RIS. Each element in set
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M corresponds to a unique RIS. J represents the set of all possible resource blocks (RB).
J ∈ 1, 2, . . . , J, where J is the total number of available RB. Each element in set J corresponds
to a unique RB. Mathematically, it can be expressed as

M⊗ J = (m, j)|m ∈ M, j ∈ J (9)

Here, (m, j) represents a specific pair consisting of an element from set M (RIS) and an
element from set J (RB). an ∈ M⊗ J, and ⊗ signifies the Cartesian product of the RIS set
and RB set. Therefore, the Cartesian product of sets M and J represents all possible pairs of
RIS and RB. Each an corresponds to a combination of a specific RIS and RB allocated to a
device-to-device (D2D) pair in the decentralized allocation process.

In this setup, multiple players make decisions simultaneously, and each player selects
an arm from the common set without having information about the choices made by other
players. The set of arms can be expressed as a combination of RIS and RB choices, with each
player having independent rewards. It is important to note that more than one player can
choose the same arm without consideration of collision situations, as the reward is defined
for each specific player, and any influence of collisions can be captured in the resulting
rewards. Further clarification and illustration will be provided below.

4.1.3. Illustration of Reward for i-th D2D Pair

Consider R1
i,a(t) as the instantaneous reward sampled by selecting arm a for the i-th

device-to-device (D2D) pair at time t, considering the phase shifting Θ and power allocation
W. In the initial stage, the problem formulation for the i-th D2D pair is expressed as

(P1) max
SRIS ,SRB

R1
i (SRIS, SRB|Θ, W)

s.t. γi ≥ γth
i

(10)

In the subsequent discussion, the notion of regret is employed to quantify the performance
loss incurred when players select suboptimal arms instead of the optimal arm in the multi-
player multi-armed bandit (MPMAB) problem. As previously defined, the joint RIS and RB
selection profile is represented by A = [a1, a2, . . . , aMJ ]. In the initial stage, the objective is
to address the following problem:

a∗ = arg max
a

N

∑
i=1

r̂1
i (11)

where a∗ = a∗1 , a∗2 , . . . , a∗N is the optimal strategy set. Then, the expression of accumulated
regret is given by

Reg =
T

∑
t=1

N

∑
i=1

r1
i,a∗i

(t)−
T

∑
t=1

N

∑
i=1

r1
i,ai

(t) (12)

4.2. Inner Loop of Joint Optimal Problem Formulation
4.2.1. Power Consumption

To begin, by utilizing the defined system and channel models, the power consumption
model for the i-th device-to-device (D2D) pair can be expressed as

Pi(t) = Ptrans,i(t) + PRIS,i(t) + PDt
i
+ PDr

i
(13)

The power consumption model for the i-th device-to-device (D2D) pair is given by

Ptrans,i(t) = µWH
i (t)Wi(t) (14)

where Ptrans,i(t) represents the transmission power of the i-th pair’s transmitter (Tx), where
µ denotes the efficiency of the transmit power amplifier. Additionally, PDt

i
and PDr

i
denote
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the circuit power of the i-th pair’s transmitter and receiver, respectively. PRIS,i represents
the power consumption of the selected RIS for the i-th pair.

4.2.2. Joint Optimal Problem Formulation for RIS-Assisted MANET

To jointly optimize the beamforming for the receivers W = [WTR,1, . . . , WTR,NT ]
and the phase shifts for the RIS Θ = [Θ1, . . . , ΘR], the optimal design problem for an
RIS-assisted mobile ad-hoc network (MANET) can be formulated to maximize the follow-
ing expression:

max
Θi ,Wi

TF

∑
t=1

[
N

∑
i=1

ηEE,i(t)

]
(15)

where Θ and W represent the controlling variables for RIS phase shifting and transmission
power allocation, respectively, and g(·) is a positive definite function; the objective function
aims to maximize a certain expression.

Here, ηEE,k(t) signifies the energy efficiency of pair k, which is defined as the ratio of
the instantaneous data rate Rk(t) to the corresponding power consumption Pk(t) at time t.
Utilizing Equations (7) and (13), ηEE,k(t) can be expressed more explicitly as

ηEE,i(t) =
Bilog2(1 + γi(t))

(µWH
i Wi + PRIS,i)(t) + PDt

i
+ PDr

i

(16)

With the optimization problem formulated in (15), the optimal policies can be obtained as

[Θ∗, W∗] = argmax
TF

∑
t=1

[
N

∑
i=1

ηEE,i(t)

]
(17)

5. Outer and Inner Loop Optimization Algorithm with Online Learning

A Decentralized Upper Confidence Bound (UCB) algorithm is given to tackle the decen-
tralized multi-player multi-armed bandit (Dec-MPMAB) problem outlined in Equation (11).
While Twin Delayed Deep Deterministic Policy Gradient (TD3) is employed to optimize
the actions of individual players within a continuous action space, we have developed
an algorithm based on TD3 to address Equation (15) with the control derived from (17).
The overall structure of the proposed algorithm is depicted in Figure 2.

Figure 2. Overall outer and inner network structure 1.

5.1. Outer Loop Optimization: Novel Dec-MPMAB Algorithm
5.1.1. General Single Player MAB Algorithm

In our scenario, when there is only one device-to-device (D2D) pair serving as a player,
the multi-armed bandit (MAB) problem simplifies to a situation where the player seeks to
maximize their reward among multiple options, referred to as “arms”. The fundamental
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goal of the MAB problem is to identify and select, within a restricted number of attempts,
the arm that results in the greatest long-term rewards. This problem assumes that the
rewards associated with each arm follow independent and identical distributions (i.i.d.),
and these distributions are unknown to the player.

At the outset, the player initiates an exploration phase by experimenting with as many
arms as possible to gather information about each arm’s characteristics. There are MJ
potential actions, denoted as a ∈ a1, a2, . . . , aMJ , and a total of T rounds. In each round t,
the algorithm chooses one of the available arms a(t) ∈ a1, a2, . . . , aMJ and receives a reward
associated with this arm, denoted as ra(t). This information is then utilized to refine the
player’s strategy for the selection of actions in subsequent rounds.

After this exploration phase, the player shifts to exploitation, concentrating on in-
teracting with the arm that seems to offer the highest expected reward. The accuracy
of this estimation process is contingent on the duration of the estimation period. If the
estimation time is sufficiently long, the player can make precise estimations of the expected
rewards for each arm. Conversely, if the estimation time is too short, the player may not
collect enough data, potentially leading to the selection of an arm with a lower reward and
yielding imprecise results.

Various multi-armed bandit (MAB)-based algorithms have been devised to strike
a balance between exploration and exploitation. Notable examples include the upper
confidence bound (UCB) and Thompson sampling (TS) algorithms [25]. In the subsequent
section, we introduce a distributed UCB algorithm based on the current work to address
the multi-player MAB problem.

5.1.2. Decentralized-UCB (D-UCB) Algorithm

The UCB is a renowned multi-armed bandit (MAB) algorithm that adeptly manages
the exploration–exploitation trade-off. This is achieved by associating an upper confidence
bound with each arm’s estimated reward and choosing the arm with the highest upper
confidence bound at each time step. The UCB systematically boosts the confidence in the
selected actions by mitigating their uncertainty.

Similar to the single-player multi-armed bandit (MAB) discussed earlier, in the multi-
player MAB [26], there are two phases referred to as the exploration phase and exploita-
tion phase.

Exploration phase: The input parameters for the algorithm include the number of
players (N), the total number of arms (JM), the exploration parameter (C), and the time
horizon (T). To initialize the algorithm, each player i initializes the following. 1. An array
of length JM to store the number of times that arm a ∈ a1, a2, . . . , aMJ has been selected,
denoted as ni,MJ(t). 2. An array of length JM to store the sample mean of rewards from arm
a, denoted as Xi,MJ(t). 3. An array of length JM to store the distributed upper confidence
bounds, denoted as D-UCBi,MJ(t). From t = 1 until t = T, for each player i, the algorithm
proceeds to select RIS m and RB j. A D-UCB index is defined at the end of frame t as follows:

D-UCBi,a(t) := Xi,a(t) +

√
Clog(ni(t))

ni,a(t)
(18)

where Xi,a(t) denotes the sample mean of rewards from action a for player i at time t;√
C log(ni(t))

ni,a(t) represents the exploration term, where ni(t) denotes the number of times that

player i plays the game in frame t; and ni,a(t) denotes the number of times that player i
selects action a up to time t.

The update of the estimated action value for the multi-armed bandit (MAB), denoted
as Xi,a(t), is calculated using the following formula:

Xi,a(t) = Xi,a(t) + (1/ni,a(t)) ∗ [Ri,a(t)− Xi,a(t)] (19)
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The D-UCB algorithm is employed to select the corresponding action, and the design
is articulated as follows:

Ai(t) ≡
{

argmax
a

(D-UCBi,a) (20a)

randomly choose untried arm A (20b)

If all arms have been tried, the agent will follow (20a) to select the arm; otherwise, it
will follow (20b). After selecting action A at time t and obtaining its corresponding reward
Xi,a, the average achievable data rate E[Xi,a] and selection count ni,a(t) are updated in
steps 11 and 12 of Algorithm 1.

Algorithm 1 D-UCB Algorithm

1: Input: Number of agents N and arms A.
2: Initialization: Initialize the following variables:
3: for i = 1 to N do
4: Initialize array Xi,a, ni,a and D-UCBi,a (initialize to 0 for all arms)
5: end for
6: Choose exploration parameter C = 2
7: for t = 1 to T do
8: for i = 1 to N do
9: Select the arm following the rules from Equation (20)

10: Execute arm Ai(t) and observe the reward Ri,A(t), where Ri,A(t) is obtained from
the inner loop Algorithm 2

11: Update estimated mean reward Xi,A(t) for the selected arm Ai(t) using
Equation (19)

12: Update the selection number for arm Ai(t):
ni,A = ni,A + 1

13: Calculate the D−UCBi,A index using (18)
14: end for
15: end for

Exploitation phase: After the exploration phase, which may occur after a certain time or
a specified number of rounds, players transition to the exploitation phase.

Each player i selects an arm a that maximizes the estimated mean reward, i.e., selects
arm a∗ = argmax(Xi,a(t)) among all available arms a. Subsequently, each player i plays
the selected arm a∗ and receives a reward Ri, a∗(t).

In Algorithm 1, the initialization step involves setting up arrays for each agent and
each arm. The time complexity of this step is O(N * A), where N is the number of agents
and A is the number of arms. The outer loop runs for T time steps. Therefore, the time
complexity of the outer loop is O(T). There is a nested loop for each agent. The time
complexity of the agent loop is O(N ∗ . . .), where . . . represents the complexity of the
operations inside the agent loop, which is presented in the inner loop in the following
section. The time complexity of selecting an arm depends on the rules from Equation (20).
If the selection process involves constant time operations, the time complexity is O(1).
Executing the selected arm and observing the reward involves constant time operations, so
the time complexity is O(1). Updating the estimated mean reward involves constant time
operations, resulting in time complexity of O(1). Updating the selection number involves
constant time operations, resulting in time complexity of O(1). Calculating the D-UCB
index involves constant time operations, resulting in time complexity of O(1).
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Algorithm 2 TD3-based RIS phase shifting and power allocation algorithm

1: Input: CSI: {hi, fi, gi}, γ, τ, Td, replay buffer capacity D, batch size B
2: Output: Optimal phase shifting of RIS θ and power allocation matrix W
3: Initialization: Initialize the following variables:

Actor network: π(s|θπ) with weight θπ

Critic networks: Qi,π(s, a|θqi), i = 1, 2, with weights θqi

Corresponding target networks Q′i,π′ and π′ with weights θπ′ ← θπ , θπ′ ← θπ

4: for i = 1 to N (num of D2D pairs) do
5: Collect current system state s(1)

6: for t = 1, 2, . . . , T(timesteps) do
7: Select action a(t) = π(s(t)|θπ + ϵ1, ϵ ∼ N (0, σ2)

8: Execute action a(t) to obtain instant reward r(t) and next state s(t+1)

9: Store (s(t), a(t), r(t), s(t+1) in the replay buffer D
10: Sample mini-batch B from replay buffer
11: for j=1,2,. . . ,B do
12: Compute target action from Equation (24)
13: Compute the target Q value according to Equation (25)
14: end for
15: Update the critic network by minimizing the loss function defined in Equation (26)
16: if t mod Td then
17: Update the actor policy by using the sampled policy gradient of Equation (27),

i.e.,
18: Update the target networks by Equation (29)
19: end if
20: end for
21: end for

5.2. Inner Loop Optimization: A TD3-Based Algorithm for RIS Phase Shifting and
Power Allocation

The Twin Delayed Deep Deterministic Policy Gradient (TD3) is fundamentally an
off-policy model that is well suited for continuous high-dimensional action spaces. Similar
to DDPG, TD3 adopts an actor–critic structure. The actor network is responsible for
approximating the policy function π(s, θπ), where the weights θπ are trained to return
the best action for a given state. Concurrently, the critic network assesses the value of the
chosen action through the value function approximation q(s, a, θq1) based on the neural
network, with its weights θq1 trained to represent the long-term reward function q(·).

TD3 is primarily an off-policy model suitable for continuous high-dimensional action
spaces. Similar to DDPG, TD3 follows an actor–critic structure. The actor network approx-
imates the policy function π(s, θπ), with weights θπ trained to return the best action for
a given state. Simultaneously, the critic network assesses the value of the chosen action
through the value function approximation q(s, a, θq1) based on the neural network, with its
network weights θq1 trained to represent the long-term reward function q(·). In comparison
to DDPG, TD3 offers the following advantages [27].

Reduced Overestimation Bias: TD3 introduces a second critic network (θq2) and a
second target critic network (θ̂q2) to address the overestimation bias that can occur in
DDPG. By considering the minimum of the value estimates from the two critics, TD3 aims
to provide more accurate value estimates and is less susceptible to overestimating Q-values.

Clipped Double Q-Learning: TD3 incorporates a second critic network to enhance
the stability of the learning process. This clipped double Q-learning approach contributes
to improving the learning stability.

Delayed Policy Updates: TD3 updates the actor network and all target networks at
a lower frequency than the critic network. This decoupling of actor and critic updates
reduces the interdependence between the networks, resulting in more stable learning and
fewer oscillations in the policy.
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In this section, an intelligent resource allocation algorithm is proposed based on the
TD3 framework. For this inner loop problem, each device-to-device (D2D) pair has selected
RIS m and obtained the partition if more than one player has chosen the same RIS and RB in
time t. Then, the transmitter (Tx) controller of the D2D pair is treated as the agent, and the
RIS-assisted ad-hoc communication is considered as the environment.

Building upon the settings of the TD3 network, we first define the state, action,
and reward settings for our problem and then provide an illustration of the proposed
solution. These are outlined as follows.
(1) Problem Reformulation Based on MDP

The MDP problem includes the agent, state, action, reward, and environment. The ele-
ments of the MDP are illustrated as follows.

• State space: Let S be the state space, which contains the following components:
(i) information about the current channel conditions, denoted as ht

i , f t
i and gt

i ; (ii) the
positions and statuses of device-to-device (D2D) pairs pi; (iii) the actions, including
the phase-shifting settings of the RIS elements and power allocation of Txi taken at
time t− 1; (iv) the energy efficiency at time t− 1. Thus, S comprises

s(t) = {{ht
i , f t

i , gt
i}i∈N , pi, a(t−1), {ηt

EE,i}i∈N} (21)

• Action space: Denote A as the action space, which consists of the actions that the
agent can take. In this case, it includes the phase shifting of each RIS element and
the transmission power of the transmitter (Tx) of the device-to-device (D2D) pair.
The action a(t) is given by

a(t) = {Θ, {Wi}i∈N} (22)

• Reward function: The agent receives an immediate reward rt
i , which is the energy efficiency

defined in Equation (16). This reward is affected by factors such as the channel conditions,
RIS phase shifts, and device-to-device (D2D) power allocations, i.e.,

rt
i = ηt

EE,i (23)

(2) Phase Shifting and Power Allocation Algorithm Based on TD3
In the architecture of our TD3 deep reinforcement learning (DRL) model, the actor

network plays a pivotal role in action selection, while the critic network is responsible for
evaluating actions. Parameterized by θπ , θq1, and θq2, the actor and two critic networks
are illustrated in Figure 3. The actor network selects actions denoted as a = π(s|θπ)
based on the current state s. On the other hand, the critic networks take the current
state s and action a as input, producing the Q value of the action under the policy π as:
Qπ(s, a) = r(s, a) + γ ∗ E[Qπ(s′, a′)], where s′ and a′ represent the next state and action,
with a′ sampled from policy πs′ . The immediate reward is denoted as r(s, a), and γ signifies
the discount factor.

Figure 3. TD3 network structure.
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The critic networks approximate the Q value as Q(s, a|θqi), with i = (1, 2). The target
networks mirror the structure of the main networks. This innovative model architecture
significantly enhances the learning capabilities and overall performance.

In our approach, a replay memory is employed to archive experience pairs s, a, r, s′,
and we adopt the strategy of random batch sampling from this memory to compute the
loss value and subsequently update the critic networks. The initial step involves using the
target actor network to determine actions for the state s′, expressed as a′ = π′(s′|θπ′). Then,
we introduce noise to the target action a′, with target policy smoothing regularization:

a′ = a′ + ϵ = π′(s′|θπ′) + ϵ (24)

where ϵ ∼ clip(N(0, σ),−c, c) represents clipped noise with bounds of −c and c. This strat-
egy enhances the robustness of the learning process, promoting stability and convergence
in the model.

Persisting with the concept of utilizing dual networks, the computation of the target
value follows a meticulous procedure. Specifically, the target value is determined as

y = r + γmini=1,2Q′i(s
′, a′|θqi) (25)

Ultimately, we employ the gradient descent algorithm to minimize the loss function
associated with the critic networks. This loss function is defined as

Lci = (Qi(s, a|θqi)− y)2 (i = 1, 2) (26)

After completing d steps of updating the critic1 and critic2 networks, we start the
update of the actor network. We utilize the actor network to compute the action for the state
s as anew = π(s|θπ). Then, we perform the evaluation of the state–action pair (s, anew) using
either the critic1 or critic2 network, assuming, in this context, the use of the critic1 network.

qnew = Q1(s, anew|θq1) (27)

Finally, we apply a gradient ascent algorithm to maximize qnew, thereby finalizing the
update process for the actor network.

The process of updating the target networks incorporates a soft update technique. This
method introduces a learning rate or momentum parameter τ, which calculates a weighted
average between the previous target network parameters and the new network parameters.
The result is then assigned to the target network. The update is performed as follows:

θqi′ = τθqi + (1− τ)θqi′ (i = 1, 2) (28)

θ′π = τθπ + (1− τ)θ′π (29)

The analysis of the time complexity of the proposed algorithm is described in the following.
Initialization: Initialization involves setting up neural networks and related parame-

ters. The time complexity for initialization is typically constant, denoted as O(1).
Data Collection: The first loop runs for N D2D pairs. Inside this loop, we collect data

for T time steps. The time complexity for data collection is O(N * T).
Training (Nested Loops): There are nested loops within the data collection loop for the

selection of actions, execution of actions, storage of experiences, and updating of networks.
This loop involves operations that depend on the size of the mini-batch B. If the size of the
mini-batch is B, the time complexity for the inner loops would be O(B).

Update Critic and Actor Networks: The critic and actor networks are updated period-
ically based on the time step and the replay buffer size. The time complexity for updating
networks depends on the specific operations in the update equations and the size of the
neural networks.
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Time Complexity Analysis: The overall time complexity is influenced by the number
of D2D pairs (N), the time steps (T), and the mini-batch size (B). The total time complexity
is approximately O(N * T * B * . . . ), where . . . represents the complexity of operations inside
the loops and network updates.

Conditional Updates: The conditional updates involving the actor policy and target
networks depend on the time step and are performed periodically. The time complexity of
these updates is O(T/Td).

Executing the procedures detailed in Algorithm 2 leads to the maximization of the
achievable energy efficiency within the communication scenario.

6. Simulation

In this segment, we showcase the simulation outcomes of our novel optimization
algorithm, addressing joint RIS-RB selection and resource allocation for a multi-RIS-
assisted MANET.

At the outset, we compared the performance of the U-DCB algorithm with that of
the conventional MAB approach. Subsequently, we conducted a comparative analysis
involving the TD3 algorithm and two alternative reinforcement learning techniques: Q-
learning and the deep Q-network (DQN).

In this simulation scenario, we configured the number of reflecting intelligent surfaces
(RIS) and resource blocks (RB) as (10, 20), respectively, with 10 transmitters (Tx) and
10 receivers (Rx) randomly positioned in a 1000 m × 1000 m map. The channel matrices,
HBR and HRR, adhered to a dynamic Rayleigh distribution. Each device-to-device (D2D)
user pair was assigned one RB and one RIS, and both the RB and RIS were potentially
shared among multiple D2D pairs. To ensure sufficient resources, the number of RB and RIS
was set equal to or greater than the number of D2D user pairs. The experience replay buffer
had a capacity of 1,000,000. The spatial distribution of RIS and D2D pairs was randomized
within the cell, and additional parameters are detailed in Table 1.

Table 1. Simulation parameters.

Parameter Value

Number of D2D pairs 10

Number of RIS (10, 20)

Number of RB (10, 20)

Tx transmission power 20 dBm

Rx hardware cost power 10 dBm

RIS hardware cost power 10 dBm

Path loss in reference distance (1 m) −30 dBm

Target SINR threshold 20 dBm

Power of noise −80 dBm

D-UCB time steps 500

D-UCB exploration parameter C 2

TD3 time steps 1000

Reward discount factor γ 0.99

Network update learning rate τ 0.005

Target network update frequency Td 2

Policy noise clip ϵ 0.5

Max replay buffer size 100,000

Batch size 256
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The efficacy of the inner–outer actor–critic-based reinforcement learning (RL) algo-
rithm is demonstrated through the following performance metrics.
(1) RIS selection

In Figure 4, the D-UCB algorithm demonstrates its effectiveness as agents dynamically
choose the most suitable RIS over time. This strategic selection significantly contributes to
enhancing the overall quality of the RIS-assisted wireless ad-hoc network. The adaptability
of the online learning algorithm proves invaluable in efficiently capturing temporal varia-
tions in the wireless environment. Through dynamic RIS selection, the algorithm effectively
ensures the continual maintenance of high-quality network performance.

(a) (b)

(c) (d)

Figure 4. (a) RIS selection of agent 1. (b) RIS selection of agent 2. (c) RIS selection of agent 3. (d) RIS
selection of agent 4.

(2) Regret of D-UCB algorithm vs. MAB algorithm with different number of arms
In Figure 5, a comparison of the network regret under various scenarios and method-

ologies is presented. The observed trend indicates that the control policy performs ad-
mirably, with the regret converging as training steps increase. Notably, the D-UCB algo-
rithm outperforms the conventional multi-armed bandit (MAB) algorithm, showcasing its
superior properties in optimizing the system performance over time.
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(a) (b)

Figure 5. (a) Average EE compared with different methods. (b) Average SE compared with differ-
ent methods.

To conduct the hypothesis testing in this simulation, we focus on the comparison
between the D-UCB algorithm and the conventional multi-armed bandit (MAB) algorithm
in terms of network regret. The null hypothesis (H0) is that there is no significant difference
between the two algorithms, while the alternative hypothesis (H1) is that the D-UCB
algorithm outperforms the MAB algorithm.

Below is the formulation.
Null Hypothesis (H0): The average network regret of the D-UCB algorithm is not

significantly different from the average network regret of the MAB algorithm.
Alternative Hypothesis (H1): The average network regret of the D-UCB algorithm is

significantly lower than the average network regret of the MAB algorithm.
The next steps for hypothesis testing are as follows.
Data Collection:
We gather the network cumulative regret data for both the D-UCB and MAB algorithms

from the simulation outcomes over 500 times.
Selection of significance level (α):
We select a significance level α = 0.05 to determine the threshold for statistical significance.
Selection of the Test Statistic:
We choose the t-test statistic to compare means.
Data Analysis:
We calculate the test statistic using the collected data. The result is shown in Table 2,

where the variable n represents the experiment number, which is the sample size (number
of data points); sd is the standard deviation; skew is skewness; se is the standard error.
The calculated T-statistic = −22.029, p-value = 9.66× 10−40.

Making a Decision:
Comparing the test statistic with the critical value(s), it can be decided to reject the null

hypothesis. We conclude that there is evidence that the D-UCB algorithm has significantly
lower average network regret than the MAB algorithm. Similarly, for the regret of MAB vs.
D-UCB with 40 arms, the result is shown in Table 3, The calculated T-statistic = −20.953,
p-value = 5.611× 10−38.
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Table 2. Statistics for cumulative regret of D-UCB and MAB algorithms with 20 arms.

Variables n Mean SD Median Skew Kurtosis SE

D-UCB 500 300.379 12.658 300.964 −0.019 −1.452 1.808

MAB 500 352.055 10.459 353.225 −0.199 −1.106 1.494

Table 3. Statistics for cumulative regret of D-UCB and MAB algorithms with 40 arms.

Variables n Mean SD Median Skew Kurtosis SE

D-UCB 500 97.801 5.541 97.691 0.344 −0.945 0.792

MAB 500 118.593 4.189 119.456 −0.532 −0.703 0.598

(3) Online Learning Performance
In Figure 6, the learning dynamics of energy efficiency (EE) and spectrum efficiency

(SE) concerning the maximum power (P(t)) are illustrated. The results demonstrate an
increasing trend in both EE and SE as P(t) rises. Remarkably, the TD3 RL-based optimal
resource allocation algorithm exhibits the capability to learn and converge towards the
optimal solution within a finite time, even in the presence of a dynamic environment.

(a) (b)

Figure 6. An illustration of the variation in EE and SE with varying transmit power using various
methods. (a) Average EE versus time steps under Pmax = 20 dBm, 22 dBm, 24 dBm. (b) Average SE
versus time steps under Pmax = 20 dBm, 22 dBm, 24 dBm.

7. Conclusions

This paper introduces an innovative two-loop online distributed actor–critic reinforce-
ment learning algorithm designed to optimize multi-RIS-assisted mobile ad-hoc networks
(MANETs) within a finite time, particularly in the presence of uncertain and time-varying
wireless channel conditions. Unlike conventional approaches, this algorithm maximizes
the potential of multi-pair MANETs and RIS by dynamically learning optimal RIS selection
and resource allocation policies through online training. Leveraging the two-loop online
distributed actor–critic reinforcement learning and decentralized multi-player multi-armed
bandit (Dec-MPMAB) algorithm, the developed method not only identifies the most suit-
able RIS to support communication between distributed MANET transmitters and receivers
but also learns the optimal transmit power and RIS phase shift. This real-time optimiza-
tion enhances the wireless MANET network quality, including factors such as energy
efficiency, even in the face of uncertainties arising from time-varying wireless channels.
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The simulation results, when compared with existing algorithms, attest to the efficacy of
our proposed approach.
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