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Abstract: Background: The development and application of machine learning (ML) methods have
become so fast that almost nobody can follow their developments in every detail. It is no wonder
that numerous errors and inconsistencies in their usage have also spread with a similar speed
independently from the tasks: regression and classification. This work summarizes frequent errors
committed by certain authors with the aim of helping scientists to avoid them. Methods: The
principle of parsimony governs the train of thought. Fair method comparison can be completed
with multicriteria decision-making techniques, preferably by the sum of ranking differences (SRD).
Its coupling with analysis of variance (ANOVA) decomposes the effects of several factors. Earlier
findings are summarized in a review-like manner: the abuse of the correlation coefficient and proper
practices for model discrimination are also outlined. Results: Using an illustrative example, the
correct practice and the methodology are summarized as guidelines for model discrimination, and for
minimizing the prediction errors. The following factors are all prerequisites for successful modeling:
proper data preprocessing, statistical tests, suitable performance parameters, appropriate degrees
of freedom, fair comparison of models, and outlier detection, just to name a few. A checklist is
provided in a tutorial manner on how to present ML modeling properly. The advocated practices are
reviewed shortly in the discussion. Conclusions: Many of the errors can easily be filtered out with
careful reviewing. Every authors’ responsibility is to adhere to the rules of modeling and validation.
A representative sampling of recent literature outlines correct practices and emphasizes that no
error-free publication exists.

Keywords: machine learning; artificial neural networks; performance parameters; degree of freedom;
fair method comparison; QSAR; nonlinear; standards for modeling

1. Introduction

János Máttyus Nepomuk published a book entitled Horse Science in 1845 [1]. One of
its figures includes a sick horse, on which all the external and internal horse diseases are
indicated that can affect the animal during its life (Figure 1). Naturally, such an animal
cannot exist; still, it is used figuratively in the Hungarian language (“állatorvosi ló”, i.e.,
“veterinary horse”). One cannot find a scientific article that commits all possible (known)
errors, but a recent, highly cited paper [2] can be used as a prototype for illustrative
purposes. In this paper, I will summarize the correct practice and the methodology to be
followed for model discrimination.

The existence of any “scientific method” is seriously questioned by the appearance of
Kuhn’s book, The Structure of Scientific Revolutions [3]. However, there are many rules, and
standards which govern scientific investigation, e.g., the principle of parsimony (Occam’s
razor) [4] declares: “Entities should not be multiplied beyond necessity”. Consequently, if
we have different explanations of the observed data, the simplest one should be preferred.
In other words: if two models provide the same description (prediction) in the statistical
sense, the simpler one should be accepted. Occam’s razor is a sort of universal feature
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pervading nearly all fields of science. Machine learning, deep learning, etc. might violate
the principle of parsimony on a large scale, while they usually provide state-of-the-art
predictive performance on large datasets. Over- and underdetermined models are routinely
used for prediction. Breiman called attention to the two cultures in statistics (and generally
in data science) [5]: one is based on a stochastic data model, whereas the other is based on
algorithmic models and assumes that the data mechanism is unknown. Ardabilli et al.’s
paper [2] belongs to the latter culture definitely. Hence, rigid adherence to Occam’s razor
cannot be expected. However, algorithmic modeling should only be used on large, complex
datasets, but not for “small” datasets.
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Figure 1. The so-called “veterinary horse”, with all the diseases that, in practice, cannot occur in a 
single horse at the same time. This figure derived from ref. [1]; the letters indicate the various dis-
eases. 

Let us return to Earth from the philosophical heights. Consistent notation is a prereq-
uisite in scientific communication, as described in detail in ref. [6]. 

The proper method comparison has been pioneered by Frank and Friedman [7] using 
simulated datasets (five algorithms, 36 situations, the performance was measured by the 
distance to the true model and by the average squared prediction error). 

A recent review (personal reminiscences) [8] summarizes the modeling procedure 
according to the OECD principles and regulations, with a detailed discussion on the steps 
of modeling procedure, genetic algorithm, rigorous validation, external test sets, perfor-
mance parameters, variable selection, avoiding chance correlations, giving the applicabil-
ity domain, consensus modeling and alike. Quantitative Structure–Activity Relationship 
modeling is analogous to ML modeling completely in this sense. 

After the above short summary on how to perform statistical modeling, it is high time 
to define the aims of the present work: (i) collecting the frequent errors committed by 
certain authors with the intention of helping scientists to avoid them and by no means 
humiliate people, who are not aware of the present status of knowledge. (ii) Specifically, 
the following goals can be formulated for forecasting the epidemic: Can the progress of 
the COVID-19 epidemic be modeled with machine learning (ML) algorithms? Can useful 
predictions be made? Which algorithm is the best? Of course, the answer is yes to all ques-
tions, it is possible, and it can be. The best model can be selected, and even the models can 

Figure 1. The so-called “veterinary horse”, with all the diseases that, in practice, cannot occur in a single
horse at the same time. This figure derived from ref. [1]; the letters indicate the various diseases.

Let us return to Earth from the philosophical heights. Consistent notation is a prereq-
uisite in scientific communication, as described in detail in ref. [6].

The proper method comparison has been pioneered by Frank and Friedman [7] using
simulated datasets (five algorithms, 36 situations, the performance was measured by the
distance to the true model and by the average squared prediction error).

A recent review (personal reminiscences) [8] summarizes the modeling procedure
according to the OECD principles and regulations, with a detailed discussion on the steps
of modeling procedure, genetic algorithm, rigorous validation, external test sets, perfor-
mance parameters, variable selection, avoiding chance correlations, giving the applicability
domain, consensus modeling and alike. Quantitative Structure–Activity Relationship
modeling is analogous to ML modeling completely in this sense.

After the above short summary on how to perform statistical modeling, it is high
time to define the aims of the present work: (i) collecting the frequent errors committed
by certain authors with the intention of helping scientists to avoid them and by no means
humiliate people, who are not aware of the present status of knowledge. (ii) Specifically,
the following goals can be formulated for forecasting the epidemic: Can the progress of
the COVID-19 epidemic be modeled with machine learning (ML) algorithms? Can useful
predictions be made? Which algorithm is the best? Of course, the answer is yes to all
questions, it is possible, and it can be. The best model can be selected, and even the models
can be ranked in a rigorous manner. The question remains how, and how to do it properly
in a scientifically sound manner.

The gathered errors and recommendations have far-reaching consequences: The
publisher MDPI should revise its editorial policy, and rejection should be default if the
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results/discussion and conclusions contradict each other or a certain level (number) of
errors found. The above and similar crucial errors indicate that the reviewers have NOT
read the manuscripts entirely. Sloppy reviewers should be banned from further reviewing
at least for a certain period (e.g., for five or ten years). Reviewers and authors alike should
go through the checklist (Section 3.11) to help optimal progress in science.

New, multicriteria optimization (SRD) calculations and ANOVA have been made
(Sections 3.3, 3.6 and 3.7) to reveal outliers and to illustrate that even a wrong starting
point may lead to an appropriate conclusion. Moreover, this work aims to gather the
correct practices of model discrimination, usage of performance parameters, fair model
comparison, and alike.

2. Materials and Methods
2.1. Data

The cumulative number of cases [number of infected persons] for five countries over
30 days served as the basis of investigation (Figure 2). The starting date and evolution are
different. There is no reason given why the time interval is limited when wider ranges
are readily available. The outcome of the investigations does not justify urgency; several
months of waiting would be warranted.
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Figure 2. Cumulative number of COVID-19 cases [number of infected persons] for five countries
over 30 days from ref. [2]. The starting times and the duration of the observation period are different.
Something happened around 12 February (China), which cannot be explained by the epidemic, but
by political/regulatory reasons.

2.2. Models to Be Compared

Eight models have been compared; see Figure 3, including logistic (Lgs), linear (Lin),
logarithmic (Lgt), quadratic (Qad), cubic (Cub), compound (Cop), power (Pow), and
exponential (Exp) equations, respectively, where A, B, C, µ, and L are parameters (constants)
to be fitted.

It should be noted that the exponential equation has been proven inappropriate in a
previous part of ref. [2]: Equation (4) of ref. [2] has been derived from differential equations
and contains a misprint; the time (t) is missing from the right-hand side.
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The number of constants to be fitted varies between two to four and the equations cover linear and
nonlinear (convex and concave) ones. The notation of R is not explained there.

2.3. Algorithms for Searching Global Minimum

Perhaps the first one was the simulated annealing [9] followed by tabu search [10]
dating back to the 1980s. A series of nature-inspired algorithms were elaborated after
that, including genetic algorithm (GA) [11] and particle swarm optimization (PSO) [12].
Year to year, a novel framework was found for nature-inspired optimizations: e.g., Ant
Colony Optimization (ACO) [13]. Honey Bee Optimization (HBO) was inspired by the
foraging behavior of honey bees, and thus it uses employed bees, onlooker bees, and scout
bees to explore the search space [14]. It was immediately developed into the Artificial
Bee Colony Algorithm (ABC) [15]. Firefly Algorithm (FA) copied the flashing behavior of
fireflies [16]; Cuckoo Search (CS) involves a population of nests (solutions) where cuckoos
lay their eggs (candidate solutions) [17]. Krill Herd Optimization [18] was followed by grey
wolf optimizer (GWO), which mimics the hunting behavior of grey wolves and involves
three types of wolves (alpha, beta, and delta) that simulate the leadership hierarchy in
a wolf pack [19], not to speak about many more. All the above are search algorithms
aimed at finding the proximity of the global minimum. All have some “tricks” to escape
local minima. They do not give one single best solution, but a population of candidate
(good) solutions. They tend to be hybridized, i.e., coupled with other techniques to find the
exact global minimum. All have some kind of hierarchical organization and regularization
(meta) parameters, and their initial choice greatly determines their performance. It is worth
running the computer codes multiple times with random initialization.

2.4. Fair Method (Model) Comparison

A proven algorithm for fair model comparison is called the sum of ranking differ-
ences (SRDs) as described in ref. [20]; its extension to input matrices containing equal
numbers (ties) has been published in 2013 [21]. A link to a downloadable program can be
found here [22]. Two validation options are available: randomization test [23] and cross-
validation [23] with the application of the Wilcoxon test [24]. Although SRD was primarily
developed to solve model comparison problems, it realizes multicriteria optimization [25],
as long as the input matrix is arranged as such: alternatives in the columns and features
(criteria) in the rows.
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3. Results and Discussion
3.1. Contradictions in Abstract, Discussion and Conclusion

Let us start with the abstract of ref. [2] (Figure 4).
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Figure 4. The abstract of ref. [2]. Color coding: grey—preliminaries, background, and results of
earlier investigations; white—filler text, without information content; turquoise—dubious meaning
because of the English understatement [26]; yellow—untrue statements, not the results of present
investigations or in contradiction with the discussion section.

The guidelines of MDPI journals suggest the partitioning of the abstract into four parts
(background, methods, results, and conclusions). Figure 4 shows unbalanced partitioning,
to say the least. There are few or no results written in the middle gray part (starting at
sentence five): SIR and SEIR do not embody the results of the authors’ work, and only
two machine learning algorithms, MLP and ANFIS, were examined there. It is simply
impossible to generalize these findings to the “wide range of machine learning models”.
The models provided in Figure 3 are not ML, but causal ones or their approximations. Al-
gorithms for finding the global minimum (Section 2.3) are not machine learning algorithms,
either. It should be noted that physicists tend to confuse ML and deep learning, although
ML is not a method of artificial intelligence (AI).

The authors are probably not aware of the English understatement. Science is in-
ternational and binds different cultures together. It is not appropriate to hurt anybody,
and cautious formulation is mandatory. As a consequence, “promising results” and great
“potential” mean just the opposite, c.f., ref. [26]. The advocated policy is to express the
results explicitly, preferably with numbers and without quality terms, e.g., “successful”
modeling means nothing. The reader should decide whether the modeling is successful or
rudimentary. Dubious formulations should be avoided.

It is difficult to decide the truthfulness of the statements marked by yellow. I am
deeply convinced that properly applied machine learning algorithms can effectively model
the outbreak of the epidemic. However, the results of these investigations [2] indicate the
opposite as was stated in the discussion section: “Extrapolation of the prediction beyond
the original observation range of 30 days should not be expected to be realistic considering
the new statistics” [2] and “The fitted models generally showed low accuracy and also
weak generalization ability for the five countries” [2].

Another point is whether to publish negative results. Many scientists advocate against
it, while others find them useful for the scientific community: we can avoid reproducing
experiments with hopeless outcomes, thereby saving money and energy for new exper-
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iments and calculations. Therefore, it is a matter of opinion whether to report negative
results. I am inclined to say yes, but in the context of a failure only; in that case, the
conclusions should have been read as the following: “. . . advancement of global models
with generalization ability would not be feasible” and “. . . it is not possible to select the
most suitable scenario” [2]. The authors honestly admit the fallacious modeling in the
discussion section, but then they conclude that “machine learning [is] an effective tool to
model the outbreak”. Why? Why did the editor and the reviewers not notice this? Even
less understandable is the next statement that occurs twice in the paper: “a genuine novelty
in outbreak prediction can be realized by integrating machine learning and SEIR models”,
especially if we see that no such integration was involved in the study.

The only plausible explanation for such contradictions can be that neither the editor nor
the reviewers read the manuscript fully, if the authors. The authorship is to be determined
by the Vancouver criteria [27] (see Appendix A) as prescribed by the ethical guide of MDPI
(https://www.mdpi.com/ethics#_bookmark2 (accessed on 9 January 2024)).

3.2. Model Comparison

Ref. [2] clearly defines the aim: “This paper aims to investigate the generalization
ability of the proposed ML models and the accuracy of the proposed models for different
lead times”. Figure 3 collects the models to be compared: all models (with one exception)
are linear or linear in parameters (curvilinear), or easily linearizable by logarithmic transfor-
mation. That is, the normal equations can be solved easily in closed form. For example, the
estimated parameters of Equation (7) in Figure 3 by maximum likelihood (Â and B̂) can be
calculated without any minimum search (using the notations of Equation (7) in Figure 3):

Â =
n∑n

i xiRi − ∑n
i xi∑n

i Ri

n∑n
i x2

i − (∑n
i xi)

2 (1)

And
B̂ = bx − R (2)

What is the need to apply search algorithms when solutions are readily available? Why
is it necessary to fit the models by global optimization algorithms (which are developed
for complicated problems, implicit dependent variables, and many hundreds or even
thousands of parameters and variables)? Similarly, all parameters of other models (except
the logistic one) can be derived easily by solving the normal equations (eventually after
logarithmic transformation). Logistic regression can also be solved by iteration easily
without the usage of global optimization algorithms. In other words, the principle of
parsimony was neglected or overlooked without any justification.

3.3. Model Comparison by Sum of Ranking Differences

Let us be good natured (benevolent) and assume that estimating the course of the
epidemic in five countries starting at different times is a reasonable goal. (I personally
disagree, but we can assume it). Eight models (summarized in Figure 3) were compared
by using three minimum search algorithms (GA, PSO, and GWO), for 24 combinations
altogether. Why just these algorithms were selected from the plethora of available ones (c.f.,
Section 2.3) is unknown. Fortunately, the authors provided detailed tables (Tables 3–10
in ref. [2]) with two evaluation (performance) criteria: correlation coefficient (r) and root
mean square error (RMSE).

A data table can be constructed from r and RMSE in the rows and algorithm combina-
tions to be compared in the columns. Row maxima for r and row minima for RMSE served
as the benchmark reference. Such a benchmark realizes the hypothetical best combination:
the largest correlation coefficients and the smallest residual errors. The proximity of the
different alternatives to the hypothetical best combination is measured by SRD.

Figure 5 shows the SRD values and the cumulated relative frequencies of random ranking.

https://www.mdpi.com/ethics#_bookmark2
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probability ranges are also given as 5% (XX1), Median (Med), and 95% (XX19). The explanation of
capital letters A, B, . . . F can be found in Table 1.

Table 1. Contains the grouping pattern of algorithm combinations (color coding corresponds to that
of Figure 5).

Cluster Abbreviation Cluster Abbreviation

A Lgs_GWO B Pow_PSO
A Cop_GWO B Qad_GA
A Exp_GWO C Qad_GWO
B Lgs_PSO C Cub_PSO
B Lin_GA C Cop_PSO
B Lin_PSO C Pow_GWO
B Lin_GWO C Exp_PSO
B Lgt_GA D Lgs_GA
B Lgt_PSO E Qad_PSO
B Lgt_GWO E Cop_GA
B Cub_GWO F Cub_GA
B Pow_GA F Exp_GA

Notations: Lgs—logistic, Lin—linear, Lgt—logarithmic, Qad—quadratic, Cub—cubic, Cop—compound,
Pow—power, and Exp—exponential equations; after underscore: GA—genetic algorithm, PSO—particle swarm
optimization, GWO—grey wolf optimizer.

Even a superficial evaluation reveals that something is not in order. No clear winner
can be established, neither from the models nor from the minimum search algorithms,
though some tendencies are observed. Why could not all minimum search algorithms
find the global minimum? They should! The possible reasons might be stopping too early,
wrong starting values, running into local minima, the presence of outliers, or a combination
of these reasons.

3.4. Visual Inspection

Let us see Figure 6 (Figure 10 of ref. [2]), where the performance of all models (in
Figure 3) was compared for the description of the epidemic data of Germany by GWO.
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Although a residual picture would be better, even a layman can judge that all models
are inadequate except the logistic one. Why are they aiming to test them? Some of the mod-
els are completely worthless (linear, quadratic, cubic, and logarithmic ones), where negative
numbers of infected persons are predicted. The authors should have paid attention to the
positivity constraint. Similarly disappointing is the description of a monotone increasing
(concave) curve with a convex one or one that exhibits a minimum. The same statements
are valid for all the countries examined. The exponential and logistic functions run together;
they are indistinguishable from each other in a visual evaluation. Both models have similar
theoretical backgrounds; they can be derived from differential equations. Which one is
better and/or adequate? The adequacy can be determined by visual assessment, too. If
both models seem to be adequate, then a decision can be made by penalization of models
using more fitting parameters: the logistic function uses four, while the exponential has
two parameters only. Whether their difference is significant can, and should, be tested by
setting null and alternative hypotheses, H0 and Ha, respectively. How to do it—will be
discussed in the next section.

3.5. Performance Parameters (Merits) and Model Discrimination

Two performance parameters (r and RMSE) are not sufficient. Eight to twelve pa-
rameters are commonly used in the recent literature [28–30]. The usage of performance
parameters differently for training and test sets has not been mentioned, either. Train-
ing and testing were used in the context of artificial neural networks (ANN), which are
superfluous there, as parameter estimation can be completed without them. The de-
scription of MLP and ANFIS is no less than breaking a butterfly in a wheel. Similarly,
over- and underfitting have not even been mentioned, along with bias-variance trade-
off, although online course(s) are also available [31]. It should be mentioned that many
performance parameters would provide a more sophisticated evaluation, and they are
recommended below:

Mean absolute error (MAE) is a straightforward metric because it is simple and easily
interpretable to estimate the accuracy of predictive models.
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The Bayesian Information Criterion (BIC) is applied for model selection from among
several rival models. It takes into account the degrees of freedom and penalizes more
complex models with the number of parameters to avoid overfitting [32].

Akaike’s Information Criterion (AIC) is also a measure of the goodness of fit. AIC
(similarly to BIC) is widely used for model selection from among numerous models [33].
BIC penalizes complex models more heavily than AIC does.

Instead of the number of point pairs (N) used in the denominator of the RMSE formula
in ref. [2], the degrees of freedom would have been the proper choice: (N–p), where p is the
number of parameters in the models. As the number of parameters in all models is known
(c.f., Figure 3), one can only wonder why the degrees of freedom were not considered, at all.

There are some unorthodox behaviors of the simple correlation coefficient as defined
between independent (input) variables and dependent (output) variables. It can measure
linear relations only, but some of the models—Equations (11)–(13) in ref. [2]—are highly
nonlinear. On the other hand, a simple quadratic relation (parabola y = x2) would provide
exactly r = 0 (if all plus minus pairs are involved). Naturally, a multiple correlation
coefficient (index) can be defined, although differently, between the input y and output ŷ
variables (y is the mean of all yi-s):

R2
1 =

∑N
i (ŷi − y)2

∑N
i (yi − y)2 (3)

Equation (3) was suggested by Draper and Smith [34] and it can have values larger
than 1 for nonlinear equations (but not necessarily).

R2
2 = 1 − ∑N

i (yi − ŷi)
2

∑N
i (yi − y)2 (4)

Equation (4) is often called determination coefficient in analytical chemistry textbooks.
I found the first occurrence in ref. [35]. It cannot be larger than 1, but it can have negative
values, if the model is worse than a simple constant, the average of all yi-s.

R2
3 =

(
∑N

i (ŷi − y)2
)2

∑N
i (yi − y)2∑N

i
(
ŷi − ŷ

)2 (5)

Equation (5) [36] also might suffer from being greater than 1 in the case of
nonlinear models.

R2
4 =

[
∑N

i (yi − y)∑N
i
(
ŷi − ŷ

)]2

∑N
i (yi − y)2∑N

i
(
ŷi − ŷ

)2 (6)

Equation (6) eliminates the inconsistent behavior detailed above for (R2
1, R2

2, R2
3). To

my knowledge, Prof. Rolf Manne (University of Bergen) derived Equation (6) but never
published it, and his equation is not used widely, if at all.

None of the above four equations has been applied in ref. [2] for model discrimination.
The comparison of correlation indices, their features, and idiosyncrasies were first summa-
rized in ref. [37]. It should be noted that adjusted (multiple) correlation coefficients should
be used for model discrimination when the degrees of freedom are available (present case).

What remains is the residual error. Its examination reveals whether the modeling is
adequate or not. It is suitable for comparing linear and nonlinear methods; even statistical
testing is possible (F test can be applied as a variance ratio test). Three variants of F-tests
might be feasible (practicable) [38].

(i) Ratio of residual variances (sum of squares, if the degree of freedom is equal,
or known):

Fc =
s2

1
s2

2
(7)
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where s2
1, s2

2 are the residual variances for model 1 and model 2 to be compared, respectively.
The residual variance is to be calculated using the degree of freedom (υ = N − p), where p
is the number of parameters (two to four, c.f., Figure 3):

s2 =
RSS

υ
=

∑N
i (yi − ŷi)

2

N − p
(8)

Fc should be compared to the tabulated F value: Ftab(υ1, υ2, 0.95 ), if the Fc is larger than
the tabulated F value, then the null hypotheses should be rejected (H0, i.e., no significant
differences are in the variances of the models). The power of Fc is “small”, i.e., only large
differences are detected (also called conservative estimation) so, a better option might be
the following:

(ii) Partial F test:

Fp =
(RSS(extended)− RSS(simpler))

s2(simpler)
(9)

where RSS is the residual sum of squares (nominator of Equation (8)). Strictly speaking,
the partial F test has been developed to add in and remove variables from a linear model.
Formally, linear, and nonlinear models can also be compared (if the numbers of parameters
are the same) as if “curvature” was introduced in the model. Fp should be compared to the
tabulated F value: Ftab(1, υ2, 0.95 ), where υ2 is the degree of freedom of the simpler model.

(iii) The termination criteria were suggested for models having nonlinearity [39]. Two
models termed 2 and 1 can be compared using the sequential probability ratio:

SPR =

[
s2

s1

]N
(10)

The SPR value must be compared with the numbers A and B from critical tables. If
SPR ≥ A, then model 1 is to be accepted. If SPR ≤ B, then model 2 is to be accepted. If
B < SPR < A, then no decision can be made (more information is needed, i.e., more data
and more measurements). For a double 95% significance level, an approximation is highly
useful: A ≈ 19 and B ≈ 0.0526 [39].

3.6. Variance Analysis of RMSEs

A prerequisite of any data analysis is to survey the data. No data preprocessing was
carried out in ref. [2]. Calculation of means, median, skewness, and kurtosis could help to
judge the residua normal behavior. A simple matrix plot suggests serious outliers in the
data (Figure 7):

At least two outliers can be observed: 1.534 × 107 (Germany, compound model and
genetic algorithm) and 5.208 × 107 (Italy, exponential model, and particle swarm optimiza-
tion). After filtering the two outliers, a formal variance analysis (factorial ANOVA) can be
completed for the RMSE data of Tables 3–10 of ref. [2]. Three factors can be decomposed:
F1, countries (five levels: Italy (I), China (C), Iran (P), USA (U), Germany (G)); F2, models
(eight levels; see abbreviations in the notations for Table 1); and F3, techniques of global
optimum search algorithms (three levels: GA, PSO, and GWO, resolved in the notations
of Table 1). One factor should be hidden as no repeated measurements are possible. The
best candidate is F1 (countries) because the assumption is reasonable that the pandemic
has similar trajectories in all five countries.

Neither F2 nor F3 (nor their coupling F2*F3) is significant, but the intercept only. The
interaction of F2 and F3 can be seen in Figure 8.
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The nonlinear models exhibit four more outliers at least. The post hoc tests (Bonferroni,
Scheffé, and Tukey’s honest significant difference) show no significant differences between
models and optimization algorithms either, because of the heavy outliers present. This calls
for careful data preprocessing.

However, it is interesting to know whether useful information can be obtained with
wrong inputs or from inappropriate starting data. The quote “garbage in, garbage out”
is commonplace in modeling: if the input data used to build a model is biased (blemish),
the predictions are likely to be unreliable and deceptive. On the other hand, the history of
science is full of brilliant discoveries from mistaken standpoints (Columbus miscalculated
the distance, Bohr’s atomic model has unrealistic postulates, Transition State Theory (TST)
assumes that reactions occur at equilibrium, but frequency of collisions is set to one,
Gregor Mendel’s laws of inheritance were formulated whereas he neglected observations
not to cover expectations deliberately, Einstein’s theory of special relativity assumes the
luminiferous ether, an invisible substance, etc.). Let us see whether wrong standpoints can
lead to straightforward results.

3.7. ANOVA of SRD for Algorithm Combinations

Uncertainties can be rendered to the algorithm combinations of (Figures 1 and 5) if
the ranking is repeated ten times leaving one row from the input matrix out at a time
(each row once and only once). One new factor is introduced to factorial ANOVA: the
leave-one-out (LOO) cross-validation (ten levels), whereas the countries (F1, five levels)
disappear from the factors. LOO is a random factor and is, in fact, a repetition of ranking.
Only robust methods are suitable, as the input data (r and RMSE of Tables 3–10 in ref. [2])
are contaminated by heavy outliers, and they are on vastly different scales. As the key
step of SRD is a rank transformation, all SRD values placed on the same scale; namely,
they are measured in %. All factors are significant (F2, models to be compared, F3, global
optimization algorithms, and their coupling F2*F3). In Figure 9, F3 is shown only.
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It should be noted that the SRD results are in (partial) accordance with the original
authors’ findings: “GWO provided the highest accuracy (smallest RMSE and largest
correlation coefficient) and smallest processing time compared to PSO and GA for fitting the
logistic, linear, logarithmic, quadratic, cubic, power, compound, and exponential equations
for all five countries. It can be suggested that GWO is a sustainable optimizer. . .” [2].

3.8. Reproducibility and Precision

A typical error is to confuse the decimal digits and value digits. Figure 10 is identical
of Table 12 from ref. [2]:
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Figure 10. (Table 12 in ref. [2]): yellow markings show the different number of value precisions.
Meaning of superscripts: A—2 value-, 3 decimal digits; B—3 value-, 2 decimal digits; C—3 value-, 3
decimal digits; D—4 value-, 2 decimal digits; E—5 value-, 2 decimal digits; F—6 value-, 2 decimal
digits; G—7 value-, 2 decimal digits; H—7 value-, 3 decimal digits.

Contrary to the general belief, not the decimal digits but the value digits determine
the precision. The bottleneck is the minimum value digits: the end results cannot be more
precise than the minimum value digits. Giving more decimal and value digits gives the
false impression of obtaining and handling more precise data. A fair comparison of models
is simply impossible if the fitted equations are given in different precision.

3.9. Consistent Notations, Physical Dimensions and Units

Consistent notations are required for two purposes: (i) within the manuscript (MS),
they suggest that the concept was well thought-out, and the readers’ interest has also
been taken into account, and (ii) outside the MS, those notations are to be used, which are
common in the given (sub)field of science. Common notations enhance the understanding
and citation rate. Different notations for the same variable or quantity point to sloppy work
and lead to rejection eventually. Furthermore, it reveals that the authorship was not set
according to the Vancouver criteria [27] (see Appendix A).

The SI standard physical dimensions are as follows (corresponding symbols are in
brackets): time (T), length (L), mass (M), etc. The time is widely and unambiguously
denoted by “t”, or “T”; the authors of ref. [2] use x, without any reason.

“Scalars are denoted by lower case letters x, and vectors. . . as bold lower-case letters:
x = [x1, x2,. . . xn]. Matrices are denoted by bold capital letters M,. . .” [40].

Contrary to the common notations the authors use capital letters with arrows on the

top for vectors (
→
X) and indexed scalars for the same x (time) variable, units are not given.

Even worse, the match of x would be y, but the authors of ref. [2] used either R or Es and
T as estimated and target values in their Equations (6)–(13) and Equation (14), respectively.
Moreover, Equations (14) and (23) should be identical according to the explanation, yet the
left-hand sides of the equations are different (MSE and RMSE, respectively). A summa is
missing from Equation (14) and an index (i) is missing from both.
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Consistency within a document or a specific context is crucial. If you are writing or
editing a document, it is advisable to pick one form and stick with it throughout the MS to
maintain consistency.

The correlation coefficient is a dimensionless quantity, hence its popularity: it is
suitable for comparing quantities measured on different scales. In contrast, mean squared
error and residual error have physical dimensions and, consequently, units. Ref. [2] never
mentions physical dimension and [units], e.g., course of infection [number of infected
persons], time [days].

3.10. Data Preprocessing

It is also called data curation, descriptor thinning, etc. Data reduction is unsupervised,
it involves the elimination of constant and near-constant variables [41]. Similarly, highly
correlated variables carry the same or highly similar information. One of them should be
discarded from the input variables [41]. Even a threshold can be found by optimization [42].
Practical advice can be found in ref. [43]. No such activity has been reported in ref. [2]. Out-
liers can deteriorate the original distribution; their removal is also essential. Alternatively,
robust methods diminish their effects; see Section 3.7.

A superficial glance at Figure 2 suggests an orange-banana comparison. The epi-
demy starts at different initial times. Many zeros could deteriorate models, especially
the nonlinear ones. A proper shift or alignment in data processing could eliminate this
error source.

The series can be continued endlessly. As our aim was to help scientists not committing
such mistakes, a table was collected in binary form and color coding in the next section.

3.11. Orientation Table (Checklist)

Frequent errors committed during modeling are collected in Figure 11, apropos of
ref. [2], but with general relevance.

1 
 

 

Figure 11. Important issues while writing a manuscript simplified to binary “yes” and “no” answers.
Black text in column 2 means a negative contribution, whereas red (bold) means a positive one
(orange—grey fields indicate not unambiguous meaning, non-binary answers). This figure is available
as Supplementary Material in MS Excel format for free extension and individual checks.

The columns yes (exists) and no (don’t exist) correspond to ref. [2]. The green symbol
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14 Principle of parsimony (Occam's Razor)  35 Correct split of training and test sets 
15 Linear and non-linear models by r  36 Different depths, style, format 
16 Correlation coefficient for non-linear model  37 Superfluous, inadequate or unfair references 
17 Usage of statistical tests  38 Communication of negative results ?
18 Significance test, H0  39 Good (?) ranking if comparing bad methods ?

19 Notation of vectors as matrix, scalar  40

Mitigation of the facts, euphemism, 
diplomatic phrasing according to English 
understatement

?

20 Detailed explanation of known methods  41 Outlook, plans for the future ?
21 Specifying detailed result tables  42 Fashionable topic, core problem of humanity ?

means ‘required activity in general’ in any modeling paper and the red symbol
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form, e.g., line No. 32 can be asked fully: Have the authors defined the applicability
domain for which a prediction is feasible? The red color in bold indicates that the activity
is required (essential), while the red field in the no (don’t exist) column indicates that
this issue is missing from ref. [2], though it should be present. Similarly, a black text in
column 2 indicates a mistaken standpoint, e.g., line No. 12 can be formulated as such: Was
the accuracy and precision insufficient to a given problem? The red field shows in the

yes (exists) column that ref. [2] failed in this respect. The symbol
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in the fifth and the
last columns advise against such usage. A question of line 3 can be written in general
form: Does the start of any time evolution (decay) set properly? Can an inhibition period
be assumed?

All issues can be transferred to a question similarly. I admit the enumeration of
errors is not complete and the issues have some redundancies. The wording of lines 15
and 16 are similar; line 15 objects to equal usage of correlation coefficient for linear and
nonlinear models, whereas line 16 concentrates on the abuse of correlation coefficient for
nonlinear ones.

The orange and gray marking indicates the advantageous and disadvantageous char-
acter of the same issue according to the intention of the writer. Mitigation or even falsifying
the facts are far away from science, whereas diplomatic formulation is warranted. Further
on, I concentrate fairly on the recommended practices.

4. Recommendations

There are epistemological reasons for there being no flawless scientific article or
manuscript. Even the most brilliant mind (or team) has limited rationality! Therefore, a
100% error-free manuscript cannot be expected. One crucial error in Figure 11 can lead to
a rejection right away. However, a 5% error is tolerable in most cases, i.e., the MS can be
accepted with minor revision. If the errors achieve a critical level, say 50%, the MS cannot
be accepted in its present form. A major revision is suggested above the 25% (but below
50%) error level. A revision is not adequate above the 75% level.

In any case, one should strive to produce a manuscript with a minimal number of
errors. After having produced more than 1500 detailed and competent reviews and handled
many hundreds of papers as an editor, the following experiences, errors, and guidelines
on how to avoid misleading practices are gathered below concentrating on instances not
covered in the guides of authors.

4.1. Reproducibility

A scientific paper should be fully reproducible with a detailed description of the
applied methods and all datasets should be provided, or eventually, should be retrievable.

4.2. Precision

The manuscript should be carefully written to convey confidence and care. Consistent
notations and correct usage of terms can help a lot. The numerical precision is determined
by value digits and not by decimal digits. As the old adage says: It is not enough to be
precise, you also have to appear so, e.g., Latin words and abbreviations should be set in
Italics including c.f., et al., post hoc, in situ, etc.

4.3. Validation

The findings should always be validated. Many options are available in the modeling
field: (i) The randomization test (y-scrambling or permutation test) is described in ref. [44].
(ii) There are many variants of cross-validation: row wise, pattern wise [45], Venetian blinds,
contiguous blocks, etc. [46]. The variants should also be disclosed to obtain reproducible
results [47], including proper usage of the various terms: leave-one-out, leave-many-out,
k-fold-, jackknife, and bootstrap with and/or without return in resampling. (iii) Double
cross-validation [48] and even repeated double cross-validation [49]. Some investigations
clearly favor cross-validation over a single external one [50,51].
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4.4. Training-Test Set Splits

A single split external test can by no means be considered ground truth. On the
contrary, single split and external validation are different [52]. Multiple external testing
is advised [29]. The advocated practice by statisticians is to divide the data set into three
parts: part I is to be used for model building (variable selection); part II is for the calibration
of parameters of the built model; and part III is reserved for testing the goodness of
predictions [53]. Many authors combine parts I and II and carry out cross-validation.
Cross-validation is perhaps the most widely used method for estimating prediction error:
“Overall, five- or tenfold cross-validation are recommended as a good compromise” [54].

The Kennard–Stone algorithm [55] is frequently applied to split training and test sets
based on the Euclidean distance between data points. The test set is approximately uni-
formly spaced i.e., mirrors the training set. However, it provides overoptimistic prediction
error as compared to random selection.

There are some “beatific” ratios of training and test sets, e.g., 80%, see Figure 10 in
ref. [56], or 50% (half sample cross-validation has advantageous features [57]).

The optimum depends on the objective; Kalivas et al. have recommended the selec-
tion of harmonious (and parsimonious) models [58] and suggest better models for ridge
regression over principal component regression (PCR) and partial least squares regression
(PLSR) contrary to the extended simulation results of ref. [7] and to the general belief. In
any case, PCR and PLSR have the smallest gap in performance parameters of calibration
and prediction; see Figure 2 in ref. [59].

4.5. Allocation

The fact that the allocation problem cannot be separated from performance parameters
has only now become the focus of interest [60,61]. Again, different optima can be found
by changing the performance parameters and the way to place the points to be measured
within the datasets.

The only reasonable conclusion is that the best model(s) differs from dataset to
dataset [51,62] and the optimization should be completed several times. There must
not be a problem with today’s computer facilities in most cases. Therefore, multicriteria
decision making (Pareto optimization) is a feasible choice considering the number of factors
(algorithms, performance parameters, allocation, validation variant, etc.). Todeschini et al.
have already defined a multicriteria fitness function to eliminate bad regression mod-
els [63]. The number of performance criteria is steadily increasing [20,63]. While it was
not its original purpose, it turned out that the sum of ranking differences (SRD) realizes
a multicriteria optimization [25,51]. Hence, SRD is recommended as the ultimate tool for
model comparison, ranking and grouping models, performance parameters, and other
factors. SRD is also suitable to be coupled with ANOVA, hence decomposing the effects of
factors [47].

4.6. Terminology

The applied terms and expressions should be explained, all abbreviations should be
resolved at the first mention, and one should not use the terms in the wrong context.

4.7. Title

It should be brief and concise (without not resolved abbreviations); definite articles
are not to be used.

4.8. Abbreviations

They should not be used in titles (of figures and tables, as well), in highlights, abstracts,
summaries, and conclusions. Numerous abbreviations make the MS unreadable, though a
list of terms, notations, and abbreviations might be of help.
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4.9. References

As a rule of thumb, never cite a paper (book chapter, etc.) if you have not read
it to the full extent. The references should always be retrievable, preferably in English.
Personal communication can only be accepted if the cited person provides written consent;
even then, the year should be indicated. Avoid the usage of “manuscript in preparation”,
or “submitted”. “Accepted” or “in press” is OK, if the source title, link, and DOI are
also given.

4.10. Language

The English usage should be understandable for all. English uses the word order
strictly: Object–predicate(verb)–subject–adverb of manner–locative–adverb of time. An
adverb of time might be placed in very long sentences at the beginning and a comma
should be used after that.

4.11. Out of Scope

The audience is not selected properly in most cases. One can imagine that in another
scientific field, the results are useful and welcomed. Chasing citations and impact factors
is not advisable. A proper journal leads to more understanding if the aimed audience
is adequate.

4.12. Novelty

It is also connected to experimental design, but the latter is rarely considered novel in
modeling journals. Nowadays, non-novelty is not a legitimate reason for rejection, if we
exclude plagiarism and self-plagiarism, as well.

4.13. Note Added in Proof

Two highly relevant papers appeared while composing this article. Both are about fore-
casting and its validation. An alternative estimator of the out-of-sample loss was proposed
using affine weights with some superior performances (it outperforms the conventional
estimator in terms of sampling variability) [64]. The second one concentrated on model
selection criteria: “models of different complexity may be favored, with possible negative
effects on the forecasting accuracy” [65].

Back to the philosophy, Michael Crichton, the most effective promoter of science of our
time, wrote [66]: “Most kinds of power require a substantial sacrifice by whoever wants the
power. . . You must give up a lot to get it. . . It is literally the result of your discipline. . . by
the time someone has acquired the ability to kill with his bare hands, he has also matured
to the point where he won’t use it unwisely. So that kind of power has a built-in control.
The discipline of getting the power changes you so that you won’t abuse it. But scientific
power is like inherited power: attained without discipline. You read what others have
done and you take the next step. You can do it very young. You can make progress very
fast. There is no discipline lasting many decades. There is no mastery: old scientists are
ignored. There is no humility before nature. There is only. . .make-a-name-for-yourself-fast
philosophy. . . No one will criticize you. No one has any standards. They are all trying to
do the same thing: to do something big, and do it fast. And because you can stand on the
shoulders of giants, you can accomplish something quickly. You don’t even know exactly
what you have done, but already you have reported it. . .”.

The words set in italics above refer to the Ortega hypothesis which says that aver-
age or mediocre experimental scientists contribute substantially to the advancement of
science [67]. Unfortunately, the false Ortega hypothesis spread and proliferated based
on citation count [68] and I fully agree with the final conclusion of ref. [68]: “. . .the im-
portance of correction work in science cannot be overestimated: after all, the validity
of the information disseminated must be regarded as more important than the speed of
the dissemination”.
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Unfortunately, artificial intelligence (AI) will enhance the speed and superficial sum-
mary of the expenses of validity, correctness, and precision.

5. Summary and Conclusions

This work enumerates the most frequent errors of statistical modeling on the pretext
of a prototype paper (ref. [2]). Proper usages of performance parameters (merits) are
enumerated and the role of degrees of freedom is emphasized. Correct ways of model
discrimination are also pointed out including the comparison of linear and nonlinear
models alike. Moreover, a multicriteria decision-making process has been completed to
compare the combinations of modeling equations and optimization algorithms using the
sum of ranking differences. Variance analysis revealed that heavy outliers were present and
accentuates the importance of data preprocessing. The number of value digits determines
the precision of the models. Finally, a detailed checklist was composed to help scientists
avoid errors committed frequently during the modeling process.

One should keep the standards of scientific investigations (e.g., Figure 11). The ethical
command prescribes that erroneous practice should be revealed and corrected, and its
propagation banned.

Manuscript rejection should be the default if the results, discussion, and conclusions
contradict each other or if a certain level (number) of errors is found.

Reviewers should be selected carefully from the expert pool; short reports or any sign
of not reading the full manuscript should lead to being banned from the decision process
and from further reviewing.

Science embodies the universal essence of humanity; let us not diminish its value by
chasing after articles and citations. Our pursuit should be deeper and more meaningful.

6. Other Approaches (Outlook, Perspective)

One of the reviewers pointed out that “article [2] . . . is by far not representative of
machine learning literature”. This statement is certainly true. So many errors cannot
usually be found in a single article; that is why ref. [2] was selected as a prototype case. On
the other hand, the ML literature is full of correct applications of algorithms, even if the
terminology is not yet fully matured. Ref. [31] provides a free downloadable scheme where
machine learning involves all modeling techniques including simple linear regression.
Others confuse ANN and deep learning or big data. Personally, I would not classify an
algorithm in the category of ML if the maximum likelihood solution exists in a closed form,
even if the amount of data is big.

Akshay et al. suggest [69] the holistic view, i.e., taking into account several perfor-
mance parameters (factors) instead of using one individual measure for accounting model
goodness in accordance with the earlier findings [56]. One of the “performance metric, ROC
Accuracy” is present in Figure 3G of ref. [69] but it does not exist; the authors mean the area
under the curve of receiver operating characteristic curves (AUC ROC) at all probability. A
polygon is formed when plotting the performance merits of the seven axes. Such a polygon
is especially suitable for pattern recognition. Its area amalgamates multiple evaluation
measures into a single score. The geometric properties of a seven-axes radar (web) plots
have already been utilized and the area perimeter ratio is recommended together with the
gravity point [70].

Di Lascio et al. have compared the local and global ML models systematically based
on several performance parameters (MAE, RMSE, relative values of MAE, MAE with
baseline correction and with MAE with random values, as well as Fisher scores for global
and local models) [71]. Datasets (10) and splitting the data into train (~74%) calibration
(~13%) and test (~13%) sets bestowed a reliable statistical analysis. The training set was also
partitioned in a cross-validation manner. The quantification of diversity is unclear. A shift
between training and test data occurred as expected and evaluated without mentioning the
Tikhonov regularization and model update [72]. The Spearman rank correlation coefficient
of 0.68 was claimed high, but the corresponding error level (1 minus significance) p = 0.055
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suggests the opposite. Their statement is very true: “the optimum choice [local or global
models] is often controversial”. The authors have not realized the conflicting character
of performance merits. The number of compounds for each dataset and the applicability
domains should have been given, too.

Weighted F1 score was applied as a single performance parameter (instead of accu-
racy), while the class balance was maintained in a prediction of profitability of European
companies by four algorithms: linear discriminant analysis (LDA), k-nearest neighbor
(kNN), decision tree (DT), and random forest (RF) [73]. Nested cross-validation wipes out
the arbitrary splits of training and test sets. Yet, not surprisingly, the authors admit that
“a complex algorithm does not always guarantee improved forecasting performance”. A
factorial ANOVA of their Tables 5 to 7 exemplifies the next order: LDA = kNN > DT > RF
contrary to basic knowledge (linear boundary and equal variance is a vital assumption of
LDA whereas DT and RF are inherently non-linear). The superiority of DT and stochastic
gradient boosting has been found over the logistic regression and professional analysts’
forecasts earlier (only one performance parameter (AUC ROC) was utilized in ref. [74].

The mainstream predictions of the COVID-19 pandemic have quickly diverted from
foretelling new cases to other, sophisticated topics:

(i) Numerous machine learning models were developed using plenty of performance
measures (90–98%) to forecast the length of stay (LOS) and mortality rate of a patient
admitted to hospital. Ensemble learning increases machine learning’s performance if
many classifiers provide contradictory findings [75]. The detailed review enumerates
data cleaning, outlier detection, standardization, handling of missing data, stratified k-
fold cross-validation, encoder handling, >eight performance parameters, etc. However,
the formula for the coefficient of determination is erroneous (Equation (20)), and the
frequent 100% performance suggests a probable overfit [75].

(ii) The predictive accuracy to predict the length of stay in a hospital has been com-
pared for four machine learning algorithms: DT classifier, RF, ANN, and logistic
regression [76]. While the data gathering, preprocessing, and feature selection can be
assumed as appropriate, the categorization, the way of split to train and test sets, the
usage of one performance merit, etc., leave a lot to be desired.

Figure 12 clearly shows the deficiencies. It provides accuracy values and not the
“training and test dataset (SIC!)“ contrary to the title. The length of stay in hospital is
a (quasi) continuous variable to be predicted: the classification information is missing.
The 100.0% accuracy realizes an overfit on the training set; no cross-validation was made;
the precision given by 16 decimal digits is overexaggerated, etc., as two numbers do not
constitute a figure, and not even a table, either. The best accuracy was claimed at 89%
(RF) and after hyperparameter tuning, 90% was achieved [76]. No statistical test showed
whether the betterment had been significant.
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Figure 12. Figure 12 from ref. [76] entitled “Train and Test Dataset for Random Forest”. With
permission of Springer Nature, License Number 5705470540586.

(iii) Another study [77] examined the “discrepancies” between AI suggestions and clin-
icians’ actual decisions on whether the patients should be treated in a spoke- or a
hub center. Here, five parameters were considered: accuracy (76%), AUC ROC (83%),
specificity (78%), recall (74%), and precision, i.e., positive predicted value (88%). The
enigmatic formulation of conclusions—“[the code] is in line or slightly worse than
those reported in literature for other AI driven tools” and “may help in selecting
patients”—just means the opposite c.f., as shown in ref. [26].
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(iv) Brain features prior to the COVID-19 epidemic are useful for predicting the later
emergence of distress [78]. Distress prediction was found significant by tenfold
cross-validation with linear regression (brain features were employed as independent
variables) [78].

The above small selection from among the plethora of ML applications for the COVID-19
epidemic and foretelling by ML methods proves the usefulness of ML techniques, and
at the same time, calls for better usage of available techniques and validation. However,
the real explosion in artificial intelligence has just started; ref. [79] is recommended to get
acquainted with the problem. Fairness and bias have been chosen as a topic from the point
of view of AI systems and the different domains (and subdomains) in AI were partitioned:
general machine learning, deep learning, and natural language processing [79].
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Appendix A

According to the Vancouver criteria, the authorship should be based on all of the
following four criteria:

• Substantial contributions to the conception or design of the work; or the acquisition,
analysis, or interpretation of data for the work.
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Further details including the usage of artificial intelligence (AI) can be found in ref. [27].
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