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Abstract: Fast growing e-commerce has a significant impact both on CEP providers and public
entities. While service providers have the first priority on factors such as costs and reliable service,
both are increasingly focused on environmental effects, in the interest of company image and the
inhabitants’ health and comfort. Significant additional factors are traffic density, pollution, and noise.
While in the past direct delivery with distribution trucks from regional depots to the customers might
have been justified, this is no longer valid when taking the big and growing numbers into account.
Several options are followed in the literature, especially variants that introduce an additional break in
the distribution chain, like local mini-hubs, mobile distribution points, or Automated Parcel Lockers
(APLs). The first two options imply a “very last mile” stage, e.g., by small electrical vehicles or
cargo bikes, and APLs rely on the customers to operate the very last step. The usage of this schema
will significantly depend on the density of the APLs and, thus, on the density of the population
within quite small regions. The relationships between the different elements of these technologies
and the potential customers are studied with respect to their impact on the above-mentioned factors.
A variety of scenarios is investigated, covering different options for customer behaviors. As an
additional important point, reported studies with APLs only consider the section up to the APLs
and the implied CO2 emission. This, however, fully neglects the potentially very relevant pollution
created by the customers when fetching their parcels from the APL. Therefore, in this paper this
impact is systematically estimated via a simulation-based sensitivity analysis. It can be shown that
taking this very last transport step into account in the calculation significantly changes the picture,
especially within areas in outer city districts.

Keywords: vehicle routing problem; discrete event simulation; automated parcel lockers; last-mile
delivery

1. Introduction

E-commerce is experiencing significant growth in various countries and sectors. This
increase in online sales presents never before seen unique logistical challenges for busi-
nesses, one of the most critical being the efficient management of the last mile—the final
stage of the delivery process that ends at the customer’s home or at a designated pickup
point [1]. Last-mile logistics (LML) plays a critical role in influencing service levels [2] and
contributes significantly to overall logistics costs [3].

In the search for innovative solutions to address these challenges, automated parcel
lockers (APLs) have emerged as a compelling option. APLs are boxes with automated locks,
clustered in structures. APLs are often found in public areas such as supermarkets or train
stations and serve multiple customers [4]. APLs are a promising alternative to traditional
direct delivery (DD) for several reasons: their ease of access to customers [2], their ability
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to handle higher delivery densities [5], and their significant reduction in the likelihood of
delivery failures [6]. Consequently, researchers and practitioners are both exploring the
potential benefits of APLs in the e-commerce delivery. Managers also have shown great
interest in understanding the economic impact of APLs compared to DD [7,8].

The current literature primarily emphasizes delivery cost benefits, but there is still a
scarcity of papers addressing vehicle kilometers traveled (VKT), emissions, and customer
trips for parcel pick-ups.

This work develops a simulation model that allows for a comparison between DD
and APLs as an LML scheme. Various factors are analyzed that distinguish between these
contexts, such as CO2 emissions and VKT, to gain a comprehensive understanding of their
implications, as well as taking additional transports for customers to pick up their parcels
at the APLs into account. In this context, the approach presented in this paper includes a
more detailed model to estimate the emissions of customers to reach APLs.

Moreover, previous work comparing delivery through APLs and DD is based on
an estimated demand of the delivery process that does not accurately reflect real-world
scenarios. This paper introduces a more realistic configuration. It investigates the case
of the city of Dortmund, which is located in the federal state North Rhine-Westphalia,
Germany. With a population of about 600,000 people, it is the seventh largest city in
Germany and the 34th largest city in the European Union. By addressing the described
weaknesses and taking a more comprehensive and realistic approach, the research aims
to provide valuable insights into the reductions of CO2 emission by using DD and APLs
for different delivery contexts and offering more-accurate and applicable conclusions.
Addressing all the identified issues will lead to a comprehensive and clear understanding
of the advantages that APLs offer over traditional DD. This goal is addressed through the
following research questions (RQs):

• RQ1. What is the average CO2 emission through APLs compared to traditional DD?
• RQ2. How does this comparison change under different demand scenarios and

different assumptions regarding customer behavior for picking up parcels?

To address these questions, the study uses a simulation approach that includes two
distinct stages. In the first stage, a comprehensive model has been developed to estimate
CO2 emissions for both APLs and DD. In the second stage, a simulation model was applied
to provide more-accurate numerical insights to effectively answer the RQs. This simulation-
based methodology ensures a thorough analysis of the environmental impact of APL and
DD and provides valuable information for informed decision-making.

The structure of this paper is as follows: First, the results of the literature review are
presented. The simulation model and its application are illustrated in the following two
sections. Finally, we summarize the conclusions of our work.

2. Related Work

In their comprehensive review of innovative LML solutions, the authors in [7] highlight
the importance of investigating the potential savings associated with APLs compared to
traditional DD. This research is critical for making informed management decisions and en-
couraging the adoption of APLs in logistics operations. In addition, a study by [9] highlights
the lack of scientific literature on APLs when it comes to the LML. This suggests that further
research and analysis is needed in this area to fully understand and exploit the benefits of
APLs as an alternative to DD.

The main research on APLs can be divided into two groups. The first, which is more
extensive, is devoted to the problem of operating distribution networks. This involves
finding optimal routes to efficiently serve customers within a given area, i.e., solving the
associated vehicle routing problems (VRPs). The second group focuses on determining
the optimal number and geographical locations of APLs, i.e., solving associated strategic
facility location problems (FLPs) for implementing APLs as a viable alternative to DD.
This line of research aims to investigate how APLs can effectively improve the last-mile
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delivery process by providing potential solutions to the challenges faced by traditional
delivery systems.

2.1. Vehicle Routing Problems

Given a set of transport orders and a fleet of vehicles with given capacities, the VRP
aims to minimize the total traveled distance; the number of tours; or—more generally—the
travel costs for fulfilling all transport orders meeting all given constraints, which due to
capacity constraints typically relate to the volume or weight of the given transport items.
For private entities, minimizing traveled distances is critical because it directly affects load
factors and costs. On the other hand, for the public actors reducing the traveled distance is
paramount as it directly affects pollution and city traffic.

The VRP was first introduced by [10] in the late 1950s. They formulated the mathematical
programming approach and algorithm to solve the problem of delivering gasoline to gas
stations. Over the years, the VRP has proven to be a valuable tool for optimizing transport
operations. Minimizing the total traveled distance or optimizing the number of vehicles
required can significantly improve transport costs.

Descriptions of VRP methods can be found in lecture books on logistics. A comprehen-
sive explanation of several algorithms and their function, including the enrichment towards
the team orientation problem (TOP), can be found, e.g., in [11].

In this context, ref. [12] provided a comprehensive and extended overview of the VRPs
for LML and its diverse applications, with a particular focus on incorporating the perspectives
of local authorities and companies. Additionally, several operational tools were introduced
by [13–16]. These studies offer valuable insights into practical solutions and strategies to
address the challenges posed by LML, thus enhancing the efficiency and sustainability of
transport operations in urban areas.

In the realm of alternative delivery locations, several notable studies have contributed
to the field. In [17], the authors presented an early work that addresses the vehicle routing
problem with roaming delivery locations. In their model, customers receive deliveries in
different non-overlapping time windows at different delivery points, e.g., by getting packages
delivered to their parked car throughout the day. The authors highlight the advantages of
roaming delivery over traditional home delivery and emphasize its cost-effectiveness.

Ref. [18] looked at a different facet of alternative delivery, considering direct-to-customer
delivery or delivery through pickup points. They framed this as a multi-depot two-echelon
vehicle routing problem. While their study examined various delivery options, it did not
consider capacity constraints at pickup points. In this regard, ref. [19] studied a distribution
system with capacitated locker stations and ignored home deliveries and customer time
windows. However, they considered different sizes for the APLs. Nevertheless, the restriction
to only one parcel per slot simplified the packing decisions. The work of [20] addressed the
inclusion of capacity constraints at alternative delivery locations. However, they did not
include time windows for customers at their home locations in the problem.

In addition, ref. [21] addressed the vehicle routing problem with private and shared
delivery locations, which is closely related to our problem. Their private locations represented
home delivery points, while the shared locations were APLs stations. However, they did
not consider the different parcel and slot sizes. Their approach uses a matheuristic based on
finding large neighborhoods, with a repair step using a mixed integer programming model
and integrated iterated local search to avoid getting stuck in local optima. A study by [22]
explored the concept of mobile APLs with dynamically changing locations. They focused on
optimally locating these mobile APLs so that customers stay within a certain range of their
assigned station during the planning horizon. The goal was to minimize the locker fleet.

Ref. [23] proposed a VRP with soft time windows for last-mile delivery and studied the
impact of the introduction of lockers. The problem aims at minimizing the variable transport
costs, the soft time windows penalty, the CO2 emission costs, and the fixed costs of labor and
vehicles. Once the lockers are introduced, the time window constraints are not considered
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anymore, but the locker renting costs and the new small vans’ acquisition costs are included
in the objective function.

2.2. Facility Location Problems

Facility location is an important and fundamental strategic decision that strongly in-
fluences tactical and operational aspects in any organization. Such location decisions are
common at various levels of human organizations, from individuals and households to
corporations, government agencies, and international organizations. The study of location
decisions has a long tradition in the literature. The FLP emerged in the 1960s in the field of
operations research [24] and was initially called the plant location problem.

The FLPs represent classical optimization problems that involve finding optimal lo-
cations for facilities. These problems involve determining the most appropriate locations
for one or many facilities to efficiently serve a set of demand points. The definition of the
“best” location varies depending on the nature of the specific problem, taking into account
constraints and optimality criteria [25]. FLPs have applications in a wide variety of settings
where strategic placement is required, including hospitals, fire stations, bus stops, train
stations, truck terminals, gas stations, blood bank centers, retail stores, libraries, parks, post
offices, airports, and landfills.

There are sufficient detailed descriptions of FLP algorithms in the literature. A concise
but detailed explanation, with an additional investigation of uncertainty and a focus on FLP
for supply chains, is provided by [26].

The versatility of FLPs makes them a mandatory tool for optimizing the location of
critical facilities and services in a variety of real-world scenarios. Various applications of
FLPs can be found in the context of LML [27–34]. Farahani et al. [35] have provided a
comprehensive overview of the applications of FLPs and explored future developments in
this field. In [5], the authors presented a remarkable application of FLP in APLs for static
situations. However, the dynamic aspects of the problem were largely ignored, such as
variability in customer willingness to use the service and operational setup costs.

Ref. [36] explored healthcare logistics and devised a solution that combines a facility
location problem with routing to efficiently supply medications to patients, while minimizing
delivery costs. Their study focused on serving patients within the service area of APLs,
leaving the remaining demand to be fulfilled through home delivery. Another study by [37]
explored using existing infrastructure like supermarkets and gas stations as potential APL
locations. While they determined optimal locations based on customer density, they over-
looked important factors such as costs and environmental aspects. In [38], the study focused
on maximizing profit by determining suitable APL locations. They used a threshold Luce
model to represent discrete customer choice, where APL users choose the closest facility or
select from a set of APLs. However, they overlooked shipping costs in their analysis, which
is a crucial aspect of efficient network design.

A dynamic approach was taken by [22]. They optimized the locations of mobile parcel
lockers that can adapt to recipients’ whereabouts during different time periods. Despite their
valuable contributions, these studies failed to consider a holistic LML network encompassing
both home and APL deliveries, which is essential for accurately representing the perspective
of a logistics service provider. Moreover, an important aspect overlooked in previous research
was the external impact, specifically CO2 emissions generated during the delivery process
and APL usage. In recent times, e-commerce retailers have been reshaping their strategies to
minimize CO2 emissions, making it crucial to incorporate environmental considerations when
designing APL networks. For example, the e-commerce retailer Zalando has already achieved
carbon-neutral in-house operations and carbon-neutral shipping and return processes [39].

The authors of [40] investigate APLs in two areas (rural and suburban) in an experi-
mental set-up. In their simulation, they measure the overall CO2 emissions from deliveries
and pickups and find a positive effect in most instances, with up to 40% CO2 savings using
APLs. The authors of [41] evaluate the impact of APLs on reducing several pollutants. They
study the effect in New York City and use bike-sharing stations as potential APL locations.
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Furthermore, they offer a comprehensive overview of research on emissions involving APLs.
Even though all of these studies consider emissions, e.g., [42–47], only some include customer
pickups explicitly [48–51].

The results presented by [47] indicate the substantial benefits from implementing APLs
for both the operator and the municipality. The overall VKT were cut by 90.9%, rendering
nearly 80% of the vehicle fleet unnecessary. The model architecture comprises three key
components: (i) customer location, specifying whether the customer’s house is in an urban
or extra-urban area; (ii) average distance needed to reach the APLs for customers; and (iii)
average distance between two APLs (density of APLs). The authors incorporated emission
factors within DD and APLs based on interviews with major logistics operators in Italy. The
model does not include detailed locations of customers and APLs or algorithms to solve
VRP instances.

Ref. [48] suggests that the environmental benefits of an APL remain valid for the
community, including couriers and customers, as long as the distance a customer must travel
by car to reach the APL is within 0.94 km in urban areas and 6 km in rural areas. On the
selected simulation day, five vehicles executed 70 delivery stops for DD in a given area
from 11:00 a.m. to 4:30 p.m. For a comparison with an APL network for the same area, the
estimation focused on the number of cars involved in collecting parcels from the APLs. The
simulation considered only the car option among various modes of transport to and from the
APLs, i.e., pedestrian movements, cycling, and public transport were not an integral part of
the model.

Refs. [49,50]’s findings accurately represent the daily operations of a carrier serving
West Sussex, extrapolating over a year with 62,400 deliveries. The authors look at a different
process, where customers only pick up parcels at so called collection-and-delivery points
(CDPs), in case that they were not at home when visited by a vehicle of the carrier on a DD
tour. The most significant savings in emissions, with a 44% reduction, occurred when local
post offices were utilized as CDPs. This outcome was based on the assumption that 50% of
the deliveries failed initially, and 30% of those unsuccessful deliveries resulted in consumers
collecting their packages from the carrier’s depot (87% by car). Emissions from both the
carrier and household were quantified for different CDP configurations and compared to
DD visiting customers a second or even a third or fourth time. The results showed that CDP
delivery systems led to a reduction in emissions ranging from 48% to 58% compared to the
traditional approach of only DD.

The findings outlined in [51] conducted an evaluation of the freight component in failed
deliveries. It was observed that the additional CO2 emitted during the second delivery
attempt resulted in an increase in emissions per drop, ranging from 9% to 75%. The pre-
dominant emissions (85% to 95%) from a failed DD result not from the subsequent van
re-delivery but from the individual customer traveling to collect a missed delivery from the
carrier’s local depot. Various CDPs (supermarkets, post offices, and railway stations) were
identified as effective at reducing the environmental impact of this personal travel. Notably,
post offices yielded the most significant savings in this context, accounting for only 13% of
the CO2 produced in comparison to a collection by car directly from a local depot. Again, the
presented research focuses solely on potential CO2 savings for failed deliveries.

In their study, the authors of [52] employed a multinomial logistic model to assess
the inclination of customers to utilize APLs, taking into consideration factors such as APL
availability at home and travel distance. Their analysis of various regional clusters revealed
that strategically locating APLs could yield cost savings of up to 11.0%. While APLs demon-
strated a positive impact on overall CO2 emission reduction in urban areas (up to 2.5%), they
concurrently led to additional emissions (4.6%) in less populated regions due to extended
travel distances during the pickup process.
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Building upon this, ref. [53] presented a location and routing problem formulation for
last-mile delivery services employing APLs. They introduced a mathematical model based on
mixed integer programming to optimize the environmental impact by minimizing distances
traveled by both the delivery company and consumers. The model incorporated consumer
behavior through two parameters: the maximum acceptable travel distance to reach an APL
using any means of transport and the maximum eco-friendly distance a consumer is willing
to travel by foot or bicycle, thus producing no CO2 emissions.

Furthermore, ref. [54] conducted an analysis of the CO2 impact associated with APLs
in last mile parcel delivery. Employing continuous approximation techniques, the paper
assessed the potential enhancement in delivery route efficiency. Multinomial logistic re-
gression was utilized to estimate travel distance and mode choice for customers collecting
their parcels. The study underscored the importance of weighing the efficiency gains for
the delivery vehicle against the environmental impact of customers traveling to the APL,
particularly when using private cars.

In summary, the research in the field has laid a solid foundation for the current study.
The extensive investigation of various aspects of alternative APL locations, including roaming
delivery, pickup points, lockers with capacity, and home and shared delivery locations, has
delivered valuable insights. Building upon these findings, the primary objective is to tackle
the challenges related to CO2 emissions while simultaneously optimizing the routing process.
The comprehensive analysis of alternative APL locations has provided a basis for further
exploration and refinement. With a focus on sustainability, the aim is to derive innovative
strategies to reduce CO2 during the delivery process. By implementing environmentally
friendly practices and leveraging state-of-the-art routing technologies, the overall efficiency
of APL systems should be enhanced. Therefore, this research is contributing significantly to
the field of LML and sustainable transport.

The final research goal is to develop a practical and environmentally conscious solution
that not only benefits businesses and consumers but also contributes positively to the en-
vironment. By addressing the critical issues associated with CO2 emissions in the delivery
sector, the way could be paved for a greener and more sustainable future.

3. System Configurations

For determining valid delivery plans for the last mile, typical instances of the VRP
need to be solved, especially if vehicles with limited capacity are considered. Different
system configurations are investigated with only one central depot or several depots, from
where all tours to the final customers start and end (Figure 1a). Furthermore, hubs can be
introduced to the distribution system with central depots serving all hubs, from where the
customers are served. In this case, VRP problems may also occur for serving the hubs from
the depot.

A customer within such a system could also be represented as an APL, where parcels
are buffered to be picked up by the final recipients. Figure 1b) reflects such an approach,
where the service provider plans routes to multiple recipients, including APLs. In extreme
cases, all recipients choose to utilize APLs (Figure 1c).

The key question is which approach is more efficient in terms of distance traveled
and CO2 emissions. A comparison of the different approaches can provide insight into the
respective advantages and disadvantages in optimizing delivery operations.
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Figure 1. Based on the work in [40], the schematic representation of possible scenarios is as follows:
(a) All recipients are directly served. The CEP service provider tries to find an optimal tour plan of
minimal total length serving all recipients. Here, instances of the VRP problem need to be solved.
(b) Some of the recipients employ the locker such that the CEP service provider does not need to visit
all of the recipients. However, the locker locations need to be served by the CEP service provider.
(c) Extreme case where all recipients employ APLs.

4. Modeling Approaches to Assess the Costs for the Last Mile for Direct Deliveries

This research is focused on systems with one central depot, from where customers (or
APLs) are served by a fleet of vehicles. Three different approaches (at different aggregation
levels) are discussed in the following sub-sections and compared to direct deliveries. The
capacity of each vehicle is restricted by a given number of parcels, which serves as a rough
abstraction of actually relevant weight or volume restrictions. Solving the underlying VRP
consists of two different problems:

• Defining clusters of customers (to be served on a single tour),
• Defining the sequence in which the customers are served on the tours.

Using mathematical optimization, these two problems are solved simultaneously.
However, as the VRP is an np-hard problem, only relatively small problem instances can
be solved to optimality within a reasonable amount of time. Therefore, usually heuris-
tic approaches are applied. Here, construction and improvement methods are further
distinguished [55].

The nearest neighbor construction method starts with a single node (from the set of
all nodes to be visited) as the current node i (usually the depot). The nearest node (from
the set of nodes not visited yet) to the current node i is chosen to be visited next and set as
the current node for the next iteration. Once all of the nodes have been visited, the tour is
closed by returning to the first node (depot).

Often, two well-known heuristic approaches, the sweep and the savings algorithm, are
applied to solve VRP instances and have also been implemented in this paper. Originally
introduced in the seminal work [56], the sweep algorithm operates as follows: starting from
the depot location as the origin, a sweeping line is extended outward in a predetermined
direction. As this line sweeps around the depot, it groups nodes within its vicinity for a
single tour until the capacity constraints are reached. Once the members of a tour have
been determined, the respective instance of the TSP is solved.

The savings algorithm is a construction heuristic that seeks to minimize the total
distance traveled by vehicles while serving a set of customers [57]. The algorithm starts with
the worst-case solution that each customer is served on a single tour. It calculates possible
savings for each pair of tours (customers), representing the potential reduction in distance
if the two tours are combined in a single tour. These savings are sorted, and the procedure
iteratively merges tours (if within the the capacity constraints), gradually forming the final
solution. The savings algorithm shows simplicity as well as effectiveness in generating
reasonable solutions [55]. While it might not always produce optimal solutions, its efficiency
and adaptability make it a valuable tool in practice.
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Moreover, such construction algorithms can be enhanced by integrating additional
heuristics or local search techniques to refine the initial solution, achieving improved
results in practice. A typical example for an improvement procedure is 2-Opt, where in
each iteration two edges are eliminated from the existing tour. The two remaining parts of
the original tour are reconnected after changing the direction of visiting the nodes of one of
the two parts, following a greedy approach resulting in a shorter tour.

For the purpose of the model described in this paper, it might not be necessary to
implement these methods in detail and to simulate the daily planning of tours, which
eventually leads to relatively long computational times. Instead, (simple) formulas from
the literature could also be applied for estimating the distance traveled for a given number
of transport orders. In conclusion, there are different levels of abstraction that are used for
estimating the costs for last-mile deliveries in this paper:

• estimation of the kilometers driven by a simple formula.
• estimation of the kilometers driven for (given) districts by solving instances of the TSP

for each district.
• estimation of the kilometers driven by solving the overall VRP problem in one step

(on the basis of the sweep or savings algorithm).

These approaches are discussed in detail in the following sub-sections. Results com-
paring these approaches are given in Section 6.

4.1. Estimation of the Kilometers Driven for Each Tour (Round Trip)

The input variables for estimating the distance d driven for each tour are the size of
the area A (Figure 2a) and the number of customers n to be visited (Equation (1)) [58,59]:

d = 0.765 ·
√
(A · n) (1)

Given the need to plan multiple round trips, the total area needs to be divided accord-
ing to the expected number of tours. Given the daily number of parcels and the number
of parcels per tour (the capacity of the vehicle), the area served within each tour could
be estimated by dividing the total area of the city by the total number of expected tours.
However, the assumption that the transport orders are evenly distributed over the city area
is not realistic. Typically, the number of orders correlates with the size of the population.

In this context, all of the necessary data are given for city districts for the example
of the city of Dortmund. From the associated data, the number of tours per district is
calculated. A possible estimation of the total distance traveled could be to simply divide
the area of the district by the number of necessary tours per district. Then, Equation (1)
could be applied to compute the average tour length, adding the distance from the depot
to the district and back for each tour. However, following this strategy leads to tours that
are usually not fully utilized. An alternative is to assume fully utilized tours. For each
district A, the remaining parcels for a last, not fully utilized tour are transferred to the next
(neighbor) district B to be planned, increasing the tour of the neighbor district B by the
respective ratio of left orders in relation to the total number of orders of district A.

More formally, the approach can be formulated as follows: The maximum capacity of
the vehicle is C, and the number of full-truck loads is f j, with f loor(nj/C) for district j. The
area Av

j to be visited by full truck tours is given by Aj × (nj/( f j × C). For each tour, an area
of Av

j / f j for C parcels is assumed. If parcels remain, these are transferred to a (previously
defined) neighbor district that has not been planned yet. Additionally, the remaining area
(Aj − Av

j ) is added to the total area of the neighbor district. An example with the detailed
areas and the neighborhood definition is given in Figure 2b. Here, the first districts to be
planned are on the outer districts of the city. The respective neighbor is indicated by a blue
line connecting the district centers. Here, a converging structure towards the city center is
assumed.
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Figure 2. (a) The area containing the potential customers. (b) The city of Dortmund districts. The
blue lines indicate the transfer sequence of surplus parcels, starting from the outer border of the city.
Area colors emphasize the districts and their borders from the outer ones to the very center.

4.2. Solving the Underlying Traveling Salesman Problem per Area

As stated above, solving VRP instances consists of two tasks. Once a cluster of
customers is given, the problem is reduced to solving the TSP for each cluster (as defined
for the sweep algorithm). For higher accuracy and in order to validate the approximation
formula, instances of the TSP could be solved for each tour (minimizing the distance
traveled). However, then geographical data for the locations of each transport order are
required. Customer locations could be determined randomly within the district area
(Figure 3a). As an alternative, real-world data from the open street map (OSM) could be
used (Figure 3b) for only importing nodes tagged as residential to obtain realistic points
in the area (http://overpass-turbo.eu/ accessed on 1 October 2023). Furthermore, nodes
that are too close to other nodes regarding a particular transportation method have been
eliminated. The minimum distance between nodes is set to 10 m.

A random selection in the area has the disadvantage that (again) a uniform distribution
of points in the area is assumed, which is also the assumption when using Equation (1). In the
experiments, the influence of the strategy to select customer locations is further analyzed.

Figure 3. City of Dortmund: (a) random nodes in area, (b) real-word data using OSM.

The VKT per area result from the solutions of the respective TSP instances and the
journeys from the depot to the respective district area and back (Figure 4). A similar
assumption concerning the utilization of tours as for the simple estimation approach needs
to be defined. If the number of customers within a district is insufficient to generate only
fully-utilized tours, the remaining n nodes are added to the defined neighbor district
(which of course has not been planned yet). Here, the closest n nodes are transferred before
executing the actual solution method. Only for the last district to be planned, tours not
fully utilized are planned. For solving the problem for each district, the following steps are
performed:

http://overpass-turbo.eu/
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1. the determination of the number of tours per area (according to the capacity of the
vehicles).

2. the allocation of customers to tours according to the sweep approach (“collecting”
customers until the maximum capacity of the vehicle is reached).

3. the solving of all TSP-Instances with the construction method Farthest Insertion and
the improvement method 2-Opt.

Figure 4. Illustration for (a) defined neighborhood structure and (b) the resulting TSP tours for the
city districts of Dortmund.

4.3. Solving the VRP for the Overall Problem

Both the sweep (Figure 5a) and the savings method (Figure 5b) have been applied.
The objective function applied is to minimize the distance traveled. In order to allow for
tackling large problem instances within a reasonable amount of time, the savings list has
been reduced to a maximum of four nodes for each node, with the closest node in each
direction (north, east, south, and west) being chosen.

Figure 5. Illustration of the VRP: (a) sweep method, (b) savings method.

5. Modeling APL Systems

For setting up APL systems, the number and geographical locations of APLs need to
be determined. In this context, the proposed solution approach consists of two steps: First,
the network configuration is determined solving the underlying FLP for a given number
of APLs, i.e., the number of APLs is given as a parameter. The objective function is to
minimize the sum of all distances of customers to the assigned APL, and the the result is a
list of APLs.
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In a second step, each APL configuration is evaluated using a simulation approach.
Here, each system configuration under consideration is analyzed by simulating daily
orders, the supply transports from the depot to the APLs, and the pickup of parcels by the
customers (see Figure 6 for the respective workflow).

Figure 6. Solution approach for determining and evaluation of APL system configurations.

5.1. Facility Location Problem

For the FLP, a Multi-Start Local Search has been implemented, i.e., the given number
of nodes has been randomly selected and a local search has been performed, where the
neighborhood is defined by the n closest nodes of each node. Assuming that each randomly
selected customer chooses the closest APL available, each customer is assigned to one of the
APL nodes. The objective function is to minimize the sum of all distances of customers to
the assigned APL. For each scenario with a given number of APLs, a related structure of an
APL system is obtained, which is further analyzed with respect to the operative transport
processes in the next step.

5.2. Evaluation of the Transport Processes

In the simulation model, each scenario with its specific APL configuration is further
analyzed by randomly generating customer orders for each district. Four different demand
scenarios are defined, ranging from about 12,000 to about 26,500 parcels per day in total. In
each replication, the given number of parcels is randomly assigned to the possible customer
locations derived from the OSM data.

Then, the number of parcels for each APL is determined, assuming that each randomly
selected customer chooses the closest APL available. In the next step, the number of full-
load transports to the APLs are computed. For the remaining transport quantities, an
instance of the respective VRP is formulated and solved using the savings algorithm with
the objective to minimize the total distance traveled.

5.3. Consideration of Customer Behavior

For an overall comparison with respect to GHG contribution, the behavior of the
customers, i.e., the emissions for picking up parcels at the APL, must also be taken into
account. Here, a model is proposed to roughly estimate the additional CO2 emissions.
Depending on the distance to the APL, customers walk, take a bike, use public transport, or
take a private vehicle to pick up their parcel at the APL. The behavior mainly depends on
the distance to the APL and additionally the availability or—more generally—the typical
usage of public transport within a certain area or district. Furthermore, a trip is either a
single trip from the customer to the APL and back or the customer integrates the stop at
the APL into an individual tour, also visiting other locations like shops, restaurants, or the
customer’s place of work.

For the options of walking, taking a bike, or using public transport, the assumption
is that no relevant additional CO2 emissions have to be considered. In the case of public
transport, of course emissions generally arise. In our model, however, we do not assume
that new bus or train lines are opened or serve at a higher frequency in order to manage
pickups at the APLs. Therefore, no additional CO2 emissions have to be considered for
public transport, and the focus lies on the usage of private vehicles. Here, an assumption
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is required about the percentage of single trips and individual tours. Furthermore, the
additional distance taken by the customer when visiting the APL on a tour with further
stops has to be estimated. Here, the assumption is that the customer’s tour is extended by
the fdt percent of the direct distance to the packing station on average.

The selection of the pickup option for the customers is implemented using a table
indicating the probabilities for each pickup option depending on the distance to the APL
(Table 1). Given the distance of the customer location to the assigned APL, the respective
row is chosen according to column until km. Given the percentage % foot or bike, it is
then randomly decided if the customer uses this option for picking up the parcel. If the
option is not chosen, it is randomly determined whether the customer uses public transport.
According to [60], from all customers that are not traveling by foot or bike, about 28%
use public transport. In the cases of tours with the customers’ own vehicles, it is finally
randomly determined if they visit the APL with a single trip only for this pickup or during
an individual tour combined with other tasks (column % individual tour). If an individual
tour is selected, the additional VKT are calculated using parameter fdt as stated above.
Otherwise, the VKT are twice the distance of the considered customer to the APL.

Table 1. Decision table for determining the pickup option of the customers.

Until km % Foot or Bike % Public Transport % Individual Tour fdt

0.3 100 - - -

1.5 50 28 50 30

else 10 28 50 30

As public transport is used to different degrees in the different districts within cities, a
correction factor ci for the percentage of customers using public transport in district i is
introduced. Here, the results of a study for the city of Dortmund are used that evaluate the
number of transportation methods people used per day (by foot, by bike, using individual
vehicles, and using public transport) [60].

The average percentage of public transport was calculated compared to individual
vehicles, and parameter cdi is set as the respective factor for the individual deviation
compared to the global average value of about 28%. Thus, the respective percentage in
Table 1 can be changed, without the necessity to change the individual values for all districts
for each scenario to be observed.

A second correction factor cck is introduced for modeling the influence of the distance
to the next public transport stop (bus or train) of a customer. Here, the respective data
from OSM are used to determine the distance to the nearest public transport stop ptk for
each customer k. The correction factor cck for each customer k is calculated on the basis of
ptk. The values cck are obtained by mapping ptk to the interval between 0.8 (representing
max_pt = max(ptk) of all customers k) and 1.2 (representing min_pt = min(ptk) of all
customers k) with

cck = 1.2 − ((ptk − min_pt)/(max_pt − min_pt)) · 0.4

A correction factor cck < 1 is needed for customers further away from a public
transport station as these are less likely to choose public transport in favor of their own
car. On the other hand, a correction factor cck > 1 for customers relatively close to a public
transport stop leads to a higher probability to choose public transport.

6. Computational Results and Discussion

Based on data for the city of Dortmund as a real-world case, a set of experiments
has been conducted. Four different scenarios with respect to the daily customer demand
for each of the city districts are distinguished. The first demand scenario, denoted as H,
is given as real-world data for the number of parcels delivered by the provider Hermes
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within one week [61]. The other three scenarios, denoted as S1, S2, and S3, correlate to the
population of the respective districts, with a growth rate of about 25% for S2 and 50% S3
compared to S1, based on demands presented by [62]. The distribution for the Hermes
data is pretty much in line with the other three demand scenarios, with the exception of
the inner city, where Hermes obviously does not deliver as many parcels as in the outer
districts (Figure 7). An additional assumption is that all customer orders are available at
the beginning of the day and transport routes are not re-optimized during the day.

Figure 7. Demand scenarios Hermes (H) and S1.

6.1. Direct Deliveries

In a first experiment, the indicator VKT for the distribution of all parcels is computed
for direct deliveries. Three different levels of aggregation have been presented in Section 4.
First, results are presented from comparing the estimation approach based on the sizes of
the area and solving TSP instances for customers within a given area.

6.1.1. Area-Based Approaches

As stated above, mainly full-truck loads are assumed, i.e., tours are sequentially
planned for all city districts. The results are given in Table 2. Column VKT DC to the Center
of the Districts and Back gives the distances for driving from the DC to the respective centers
of the districts and back to the DC. These distances need to be added to the distances
traveled on the tours within each district.

Table 2. Comparison of the number of tours and kilometers traveled daily to the start of the tours
within the districts and back to the DC.

Demand Number VKT DC to the Center
Scenario of Tours of the Districts and Back

H 49 946
S1 71 1,358
S2 88 1,698
S3 106 2,069

The kilometers traveled within each district are first estimated on the basis of
Equation (1) for each district, denoted as Approx. in Figure 8. In order to validate these
results, they are compared to actually solving the TSP for respective customer locations
and orders. Here, two different settings for the underlying data sets are distinguished, a
random selection of customer locations, denoted as TSP (RAND) and using nodes from
open street map, denoted as TSP (OSM).

The results show a high impact of the choice of data sets for the example of Dortmund
(see Figure 8). In all scenarios, the sum of VKT is about 23% less for the TSP approach with
fixed regions when using the OSM data compared to randomly generated data sets. This is
due to the relatively high degree of areas in Dortmund where no residents live.
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Figure 8. Comparison of the VKT daily within the districts for the three approaches for estimating
the lengths of TSP tours.

The choice of data for customer locations also has a significant effect when looking at
the results for the approximation approach, where Equation (1) either leads to too optimistic
(RAND) or pessimistic (OSM) results. When actually solving TSP instances in the respective
districts, a deviation of 11% is obtained when assuming OSM data, and −16% for randomly
generated customer locations compared to the simple approximation approach. As a result,
further studies should rely on more realistic data (as given by OSM), and one should always
carry out tests before possibly integrating approximation approaches. Here, the original
correction factor of 0.765 in Equation (1) could be changed in order to obtain more realistic
results.

6.1.2. Solving VRP Instances for All Customers under Consideration

The savings algorithm performs better than the TSP approach (presented in the previ-
ous section) with predefined areas and also better than the sweep algorithm for almost all
demand scenarios, mainly due to larger areas without residents, which have to be traveled
through on more tours using the sweep algorithms than for the savings algorithm (Table 3).

For all scenarios, the VKT are also about 23% less for the savings algorithm when
using the OSM data compared to randomly generated data sets. For the sweep algorithm,
only a reduction in VKT of 10 to 15% can be observed.

Table 3. Comparison of kilometers traveled daily for the approximation approach, the TSP approach,
and the two VRP approaches (sweep algorithm and savings algorithm).

Scenario
VKT VKT VKT VKT VKT
Sum Sum Sum Sweep Savings

(Approx.) (TSP)/RAND (TSP)/OSM OSM OSM

H 2314 2735 2122 1946 1982
S1 3003 3491 2685 2692 2483
S2 3540 4090 3116 3236 2923
S3 4088 4687 3562 3820 3344

6.2. APL Systems

To enable the experiments to analyze APL systems, six different scenarios for the
number of APLs have been defined ranging from 25 APLs (scenario A1) to 500 APLs
(scenario A6). For the possible locations of APLs, about 1500 nodes have been selected from
the given OSM data tagged as residential, ensuring that each APL has a minimum distance
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to all other possible APL locations of 200 m (Figure 9 for the resulting neighborhood
structure of the FLP).

Figure 9. Neighborhood structure for the FLP.

The resulting structures after solving the underlying FLP with about 10,500 randomly
selected customer locations from the OSM data set are illustrated in Figure 10 for all six
APL scenarios. In Figure 11, an evaluation of the distances to the APLs is presented. Only
4% of all customers are assigned to an APL within a distance of 300 m for scenario A1
(under the assumption that customers always walk or take a bike to the respective APL).
Even in scenario A6 with 500 APLs, only 72% of all customers are assigned to an APL
within a distance radius of 300 m. About 66% of the customers are within a radius of 1.5 km
to their nearest APL. For all other scenarios, A2 to A6, almost all customers are within that
radius, ranging from 97% (A2) to 100% (A5 and A6).

Figure 10. Resulting APL locations for all APL scenarios.
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Each APL configuration is further evaluated on the basis of the four given demand
scenarios H, S1, S2, and S3. Solving the VRP for all transports from the distribution center
(DC) to all APLs leads to the results given in the Appendix A (Table A1). Depending on the
capacity of the vehicles C, the numbers of tours are within a range of 46 (H–A1) to 110 tours
(S3–A6) for C = 250 and 20 to 55 tours for C = 500, respectively.

Figure 11. Distances of customers to nearest APL for six scenarios.

The sum of VKT from the DC to the APLs as full truck loads (FTL) and VKT of tours
serving more than one APL is typically much smaller than for DD. However, the VKT
of customers also needs to be considered when comparing the results for the different
scenarios. Following the approach presented with the parameter settings given in Table 1,
the DD (the minimum VKT of the respective results of the savings and the sweep algorithm)
leads to less VKT for all scenarios for a capacity of the vehicles C = 250 (Figure 12). Only
for scenarios H–A6 are nearly comparable results achieved with a deviation of about 2%.
If the capacity of the vehicles is set to C = 500, better results than for direct deliveries
are obtained for the APL scenario A6 for all four demand scenarios (Figure 13), ranging
from savings in VKT from 21% (H) to 15% (S3), compared to DD given in the Appendix A
(Table A2).

For demand scenario H, full trucks can only be planned for APL scenarios A1–A3. For
scenario A1, the ratio of the distance traveled as full-truck tours is 68%, while for A3 this ratio is
only 19%. For the largest demand scenario S3, 87% of the distance for serving APLs is completed
as full-truck tours for scenario A1 with 25 APLs, while for scenario A5 this ratio is 7%.

In Figure 14, the distances traveled by customers are given, which distinguish the
three different options of traveling to the APL. The more APLs are introduced, the lower
the total distances for customers are. Additionally, the ratio of distances traveled by private
vehicles is significantly reduced when introducing more APLs. For APL scenario A1 with
25 APLs, the ratio is 43.4% on average; for A4 with 150 APLs, the ratio is 23.6%; and for
A6 with 500 APLs, the ratio is 12.6%. The variance with respect to the different demand
scenarios is very small for all APL scenarios.

The VKT for each APL configuration has been evaluated for the four demand scenarios
H, S1, S2, and S3. Table A2 in appendix A provides detailed results. Figure 12 presents a
comparison of VKT metrics for APL systems, including VKT for private vehicles and DD,
with a value of C = 250. Our analysis clearly shows that in all scenarios the A1 configuration,
featuring 25 APLs within the urban setting, exhibits the highest VKT. This can be attributed
to the inadequacy of APLs for parcel pickup through more efficient means such as cycling
or walking, which forces customers to cover longer distances using private vehicles. When
assessing the A1 APL configuration, it becomes apparent that DD demonstrates remarkable
efficiency gains, with improvements of 480%, 517%, 566%, and 611% for the Hermes, S1, S2,
and S3 scenarios, respectively. Furthermore, across all additional configurations (A2, A3, A4,
A5, and A6), DD consistently exhibits lower VKT in comparison to using APLs in conjunction
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with private vehicles for parcel pickup. In Figure 13, we examine a comparison of VKT metrics
for APL systems, maintaining a value of C = 500. The trends persist consistently throughout
the analysis. Notably, it becomes evident that the maximum advantage peaking at 22% over
DD can be observed up to the A6 configuration, which comprises 500 APLs.

Figure 12. Comparison of VKT for APL systems (including VKT of private vehicles) and DD using a
van per day with C = 250.

Figure 13. Comparison of VKT for APL systems (including VKT of private vehicles) and DD using a
van per day with C = 500.
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Figure 14. Comparison of distances traveled by customers.

6.3. CO2 Results Comparison

In order to ensure the realism of our results, we have carefully calculated the fuel
consumption, taking into account the technical specifications of one of the most widely used
commercial vehicles for last-mile transport, namely, the Mercedes-Benz Sprinter Cargo
311 CDI kompakt van. This van has the same engine as its counterpart for passenger
transport. Based on the available technical data, the Mercedes-Benz Sprinter Cargo van
has fuel consumption and CO2 emissions of 9.6 l/100 km and 247 gCO2/km, respectively.
For more details on the official fuel consumption and specific CO2 emissions, refer to [63].
For calculating the fuel consumption of private cars, we have been guided by the average
consumption of regular gasoline and diesel in Germany (with a split of about two thirds
regular and one third diesel), which results in about 7.5 l/100 km on average [64,65]. As far
as emissions are concerned, the value is based on a baseline of 178 gCO2/km [66].

Building upon the previous section, we conduct an evaluation of each APL configu-
ration. This comprehensive assessment is rooted in the technical data related to both fuel
consumption and emissions, and it extends across the four specified demand scenarios H,
S1, S2, and S3.

The evaluation of CO2 emissions for the APL configurations has been conducted
for the four demand scenarios, with detailed results provided in Appendix A (Table A3).
Figure 15 offers a comparison of CO2 metrics for APL systems for private vehicles and
DD, with a constant parameter value of C = 250. Our analysis indicates a consistent trend
regarding CO2 emissions. In all scenarios, the A1 configuration, featuring 25 APLs, exhibits
the highest emissions. When assessing the A1 APLs configuration, it becomes evident that
DD demonstrates significant efficiency gains, with improvements of 334%, 375%, 399%,
and 422% for the Hermes, S1, S2, and S3 scenarios, respectively. Across configurations A2,
A3, A4, and A5, DD consistently results in lower CO2 emissions compared to using APLs
in conjunction with private vehicles for parcel pickup. However, it is noteworthy that only
in the A6 configuration is APL usage more efficient, with a maximum advantage of 4%.

Figure 16 presents a comparison of CO2 metrics for APL systems, maintaining a value
of C = 500 given in Appendix A (Table A4). The observed trends remain consistent for APL
scenarios A2, A3, and A4. Notably, it becomes evident that in scenarios A5 and A6, the
advantage of using APLs over DD ranges between 13% and 22%.

In comparing APLs and DD in terms of CO2 emissions, the results, considering
customer behavior, offer a comprehensive assessment. APL systems have operational
cost advantages, but to keep emissions comparable to DD, the city of Dortmund needs a
minimum of 250 APLs, as per the A5 and A6 scenario results.

In the last experiment, a sensitivity analysis has been conducted. For three different
parameters (ratio foot or bike, ratio public transport, and ratio individual tour) from Table 1,
an iterative increase in the parameter value (with an increment of one percentage point)
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is analyzed until a better result (in terms of CO2 emissions) than for direct deliveries is
achieved.

Figure 15. CO2 emissions by APLs and private vehicle per day for the different options with C = 250.

Figure 16. CO2 emissions by APLs and private vehicle per day for the different options with C = 500.

In Figure 17, the results for increasing the percentage of customers (with a distance
between 0.3 and 1.5 km to the nearest APL) picking up their parcels by foot or bike are
given. For scenario A1, no superior results can be obtained, even if the respective parameter
is set to 99% (as indicated in the figure). For all other APL configurations, a parameter
setting can be determined where the APL system leads to fewer CO2 emissions than DD.
The more APLs that are introduced and the higher the capacity of the vehicle serving the
APLs, the lower the respective break-even point for the considered parameter ratio by foot
or bike is. Furthermore, it can been observed that along with higher demand, the percentage
of customers picking up their parcel by foot or bike needs to be further increased (for all
APL configurations) to achieve better results than for direct deliveries.

With respect to the original assumption of 50% by foot or bike, for a vehicle capacity
of 250 parcels (serving the APLs) only the APL configuration A6 is below or within a
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closer range, with 36% for demand scenario H and up to 61% for scenario A6 (Figure 17a).
Increasing the vehicle capacity to 500 parcels leads to a different picture. Here, configuration
A6 would lead to better results than DD, even if only a very small percentage (at most, 9%
of the customers for scenario (S3) would walk or take a bike to pick up their parcel, with
a distance between 0.3 and 1.5 km (Figure 17b)). In this case, APL configuration A5 also
leads to comparable results with a percentage of customers, with a distance between 0.3
and 1.5 km to the nearest APL that pick up their parcels by foot or bike ranging between
47% (H) and 56% (S3) as a break-even point. When introducing less than 250 APL locations
(A1–A4), better results can only be obtained if the percentage is much higher than the
assumed 50%.

Figure 17. Sensitivity analysis for parameter ratio by foot or bike (distance between customer and
APL between 0.3 and 1.5 km).

Similar trends can be observed when increasing the ratio of customers choosing public
transport instead of a private vehicle (Figure 18). Here, the impact is higher than for the
first parameter observed, as for all APL system configurations a parameter setting can be
found that leads to superior results for all APL scenarios, with the exception of A1. For
ALP configuration A1 and demand scenario S3, however, 95% of customers (not already
walking or taking a bike to reach the APL location) would have to choose public transport
instead of a private car, which is not a realistic assumption. As currently only about 28% of
the citizens of Dortmund choose public transport instead of private vehicles, again only
scenario A6 is within a realistic range for a vehicle capacity of 250 parcels (Figure 18a), with
a parameter range between only 6% (H) and 40% (S3). For a vehicle capacity of 500 parcels,
APL configuration A5 also leads to comparable results, with the break-even point ranging
from 20% (H) to 35% (S3).

Figure 18. Sensitivity analysis for parameter ratio public transport.
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In Figure 19, the results for the sensitivity analysis for the parameter ratio of APL as a
stop on an individual tour are given. Here, the respective break-even points are relatively
high for most scenarios. For APL configuration A1, no comparable results can be obtained,
even if 100% of all customers picking up parcels at the APL location by car do this as part
of an individual tour (for both capacity configurations of the vehicles serving the APLs
from the central depot).

For demand scenario S3, superior results for the APL systems can be found for APL
configuration A6 for a vehicle capacity of 500 parcels. For a vehicle capacity of 250, for
demand scenarios S2 and S3 the percentage has to be higher than the originally assumed
50% to obtain better results for the APL configuration A6. For APL configuration A5,
comparable results can be obtained for a vehicle capacity of 500 parcels, with values
ranging from 45% (H) to 59% (S3). For all other APL configurations with 150 APL locations
or less, the percentage of customers picking up parcels as part of an individual tour needs
to be between 68% and 98% to reach the break-even point in comparison to direct deliveries
(depending on the respective scenario).

Figure 19. Sensitivity analysis for parameter ratio of stop on an individual vehicle tour of the customer.

7. Conclusions

In this paper, an approach has been presented to compare direct deliveries (DD) with
APL systems for last-mile deliveries in larger cities. For the evaluation of DD, three different
levels of detail have been compared. The results show that further studies should not
only rely on simple formulas to estimate the distances traveled for distribution. At least
correction factors should be verified or estimated anew for each given problem instance.
Such a verification should be performed on the basis of rather detailed models, with respect
to both the underlying data for customer locations and the planning methods applied
to generate tours. The results presented show that using data from the open street map
(OSM) leads to significantly different, here shorter, tour lengths than using random data
within the given areas. Furthermore, further studies should model the methods used for
planning tours for vehicles according to the actual situation for the given problem instance.
As in practical cases, often Vehicle Routing Problems are solved using heuristics; these
approaches, such as the savings algorithm and further improvements methods, which have
also been applied in this paper, should be implemented.

With respect to the comparison of APL systems and DD on the basis of CO2 emissions,
the results show that it is necessary to also model the customer behaviour to reach APL
locations for a fair and profound comparison. It is, of course, favorable for logistic providers
to use APL systems in terms of operational costs as less distance has to be traveled compared
to dropping off each parcel at the customer location. The savings range from 30% to 90%
for different scenarios, which are in line with the findings of previous works presented in
Section 2.2.
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However, also taking distances traveled by customers by car to reach the APLs into
account leads to a completely different picture. As a conclusion, APL systems are only
competitive with direct deliveries if a sufficient number of APLs are introduced and more
customers pick up their parcels with zero emission (by foot or bike). In the results presented,
a system with 250 APLs leads to lower emissions than DD for most demand scenarios, if
the capacity of the vehicle serving the APLs is set to 500. These findings are nearly in line
with the results presented by [47], who conclude that APL systems are competitive in urban
areas if the distance a customer must travel by car to reach the APL is within 0.94 km. As
shown in Figure 11, for APL configurations A5 and A6, which lead to better results than
direct deliveries in most demand scenarios, nearly 100% of all customers are within this
radius. In comparison, for A4 (150 APLs), only about 95% of all customers are within that
distance range, and direct deliveries lead to better results in all demand scenarios.

Setting the parameters correctly is one of the most challenging tasks for using the
proposed model as the ratios for the different means of transport for customers in de-
pendence of the distance to be traveled are only roughly estimated. Here, conducting a
sensitivity analysis is a possible way to check the robustness of the results. Our results
for the sensitivity analysis show that typically the different factors need to be increased
by a high—and rather unrealistic—degree to obtain different results than in the standard
parameter settings proposed. This leads to the conclusion that the results obtained can
be rated as robust, even though only one parameter has been analyzed at a time. Future
research could focus on a broader design of experiments, with two or more parameters
analyzed at the same time.

Besides the problem of valid parameter settings of the model, there are further limita-
tions set in the modeling approach. The possible positions of APLs have been determined
randomly, and the actual road network has not been modeled in detail. Instead, the dis-
tances between two locations have been approximated on the basis of the air-distance.
Along with that, dynamically occurring traffic delays, which typically lead to higher fuel
consumption, have not been considered. For direct deliveries, no-shows have not been
considered either, typically leading to a higher number of orders for the following day or
the need for a re-optimization on the same day.

Nonetheless, the model presented is a good basis for determining a reasonable number
of APLs to be set up such that CO2 emissions are comparable to direct deliveries. Of
course, combined delivery processes (as indicated in Figure 1b), where tours serve both
customers directly and APLs for areas where customers are relatively close to APLs, offer
the possibility to gain improvements compared to only serving customers directly. But as a
basis, it is highly interesting to also analyze the two distribution options DD and APL as
stand-alone options.

8. Further Research

The modeling approach and the resulting simulation model should be used to also
analyze other cities to further validate the model and compare the respective results. First
progress has been reported by [67] for the city of Pamplona (Spain).

For future research, different issues could be tackled. The OSM data could be analyzed
in greater detail in order to map the population to actual houses instead of nodes in the
road network. Here, even higher accuracy could be expected. Furthermore, for direct
deliveries, a more-detailed simulation model could be defined, including a re-optimization
of tours with respect to orders that have not been completed due to customers not being
at home.

For further research, the authors will also concentrate on combined tours including DD
and APL orders in order to gain more insight into efficient combinations of both delivery
types. For this purpose, the originally addressed facility location problem needs to be
redefined as only a subset of all customers would be assigned to APLs. Here, instances
of the Maximal Covering Location Problem could iteratively be defined (with different
parameter settings), such that nearly optimal numbers and geographical locations of APLs
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with respect to CO2 emissions could be determined on the basis of the different demand
scenarios.

For overall decisions on the configuration of APL systems, there are other factors
that are important to consider, such as delivery time, cost-effectiveness, and customer
satisfaction. In this context, analyzing CO2 emissions is only one part of the overall decision
process, and future research could also concentrate on defining respective multi-criteria
optimization models.
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Appendix A. Direct Deliveries and APL Systems: Comparative Results

Table A1. Comparison of VKT by customers per day for the different options.

Scenario VKT Cust. VKT Cust. VKT Cust. VKT Veh. VKT Veh. VKT Veh. Dev Dev
Foot/Bike Pub. Transp. Vehicle C = 250 C = 500 DD C = 250 [%] C = 500 [%]

H–A1 9000 4082 10,324 11,297 10,663 1946 480 448
H–A2 8107 1399 3693 4654 4153 1946 139 113
H–A3 7452 1206 3115 4221 3646 1946 117 87
H–A4 6438 925 2231 3391 3028 1946 74 56
H–A5 5408 604 1552 2778 2340 1946 43 20
H–A6 4441 280 686 1987 1527 1946 2 −22

S1–A1 13,002 5445 13,904 15,329 14,772 2483 517 495
S1–A2 11,279 1978 5009 6326 5813 2483 155 134
S1–A3 10,623 1592 4088 5505 4965 2483 122 100
S1–A4 9159 1261 3216 4712 3967 2483 90 60
S1–A5 7640 794 2146 3787 3018 2483 53 22
S1–A6 6430 374 1006 2734 1981 2483 10 −20

S2–A1 16,226 6947 17,701 19,470 18,063 2923 566 518
S2–A2 14,366 2374 5972 7711 7000 2923 164 140
S2–A3 13,280 2025 5146 6856 6092 2923 135 108
S2–A4 11,393 1566 4105 5826 5082 2923 99 74
S2–A5 9538 1042 2715 4698 3700 2923 61 27
S2–A6 8037 474 1213 3294 2448 2923 13 −16

S3–A1 19,902 8145 21,622 23,761 21,498 3344 611 543
S3–A2 17,333 2919 7405 9471 8138 3344 183 143
S3–A3 15,965 2447 6366 8327 7328 3344 149 119
S3–A4 13,800 1929 4851 6774 6015 3344 103 80
S3–A5 11,502 1305 3236 5486 4426 3344 64 32
S3–A6 9755 583 1492 3949 2901 3344 18 −13
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Table A2. Comparison of VKT and number of tours from the DC to the APLs.

Scenario
VKT to APLs VKT to APLs # Tours # Tours VKT to APLs VKT to APLs # Tours # Tours

VRP FTL VRP FTL VRP FTL VRP FTL
(C = 250) (C = 250) (C = 250) (C = 250) (C = 500) (C = 500) (C = 500) (C = 500)

H–A1 295 678 10 36 339 92 12 8
H–A2 699 262 32 10 608 0 25 0
H–A3 893 213 38 10 641 0 26 0
H–A4 1160 0 50 0 667 0 26 0
H–A5 1226 0 50 0 714 0 25 0
H–A6 1300 0 50 0 806 0 25 0

S1–A1 327 1098 11 57 333 375 12 22
S1–A2 754 563 34 28 774 0 35 0
S1–A3 959 458 42 24 807 17 35 1
S1–A4 1362 134 60 8 888 0 38 0
S1–A5 1641 0 73 0 919 0 37 0
S1–A6 1729 0 73 0 998 0 36 0

S2–A1 302 1467 10 76 321 496 11 29
S2–A2 709 1030 31 49 791 54 36 2
S2–A3 963 747 43 38 880 74 39 3
S2–A4 1425 296 63 16 1048 0 45 0
S2–A5 1922 61 86 4 1104 0 47 0
S2–A6 2081 0 91 0 1179 0 45 0

S3–A1 290 1849 11 94 271 821 10 42
S3–A2 726 1340 32 66 789 170 35 8
S3–A3 1011 950 43 50 964 149 42 7
S3–A4 1495 428 66 25 1197 15 53 1
S3–A5 2113 137 94 8 1301 0 55 0
S3–A6 2456 0 110 0 1357 0 55 0

Table A3. CO2 emissions by APLs and private vehicle per day for the different options with C=250.

Scenario
Fuel Consumption CO2 Emissions Fuel Consumption CO2 Emissions Dev

(l/100 km) (kg) (l/100 km) (kg) CO2
Veh. Sum. Veh. Sum. DD DD [%]

H–A1 868 2084 183 481 334
H–A2 295 863 183 481 79
H–A3 278 807 183 481 68
H–A4 234 700 183 481 46
H–A5 203 588 183 481 22
H–A6 163 445 183 481 −7

S1–A1 902 2915 233 613 375
S1–A2 402 1225 233 613 100
S1–A3 361 1092 233 613 78
S1–A4 320 928 233 613 51
S1–A5 276 763 233 613 24
S1–A6 221 608 233 613 −1

S2–A1 1143 3600 275 722 399
S2–A2 495 1549 275 722 115
S2–A3 447 1338 275 722 85
S2–A4 391 1173 275 722 62
S2–A5 340 973 275 722 35
S2–A6 266 735 275 722 2

S3–A1 1395 4309 314 826 422
S3–A2 606 1807 314 826 119
S3–A3 538 1622 314 826 96
S3–A4 451 1355 314 826 64
S3–A5 394 1113 314 826 35
S3–A6 318 862 314 826 4
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Table A4. CO2 emissions by APLs and private vehicle per day for the different options with C=500.

Scenario
Fuel Consumption CO2 Emissions Fuel Consumption CO2 Emissions Dev

(l/100 km) (kg) (l/100 km) (kg) CO2
Veh. Sum. Veh. Sum. DD DD [%]

H–A1 806 1950 183 481 306
H–A2 323 777 183 481 62
H–A3 286 691 183 481 44
H–A4 240 568 183 481 18
H–A5 189 456 183 481 −5
H–A6 130 323 183 481 −33

S1–A1 1114 2662 233 613 334
S1–A2 451 1073 233 613 75
S1–A3 388 940 233 613 53
S1–A4 314 784 233 613 28
S1–A5 244 598 233 613 −2
S1–A6 168 427 233 613 −30

S2–A1 1361 3378 275 722 368
S2–A2 540 1337 275 722 85
S2–A3 474 1153 275 722 60
S2–A4 401 972 275 722 35
S2–A5 299 751 275 722 4
S2–A6 206 510 275 722 −29

S3–A1 1618 4061 314 826 392
S3–A2 625 1589 314 826 92
S3–A3 568 1414 314 826 71
S3–A4 474 1200 314 826 45
S3–A5 357 895 314 826 8
S3–A6 243 599 314 826 −27
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