
Citation: Amyot, R.; Kodera, N.;

Flechsig, H. Atom Filtering Algorithm

and GPU-Accelerated Calculation of

Simulation Atomic Force Microscopy

Images. Algorithms 2024, 17, 38.

https://doi.org/10.3390/

a17010038

Academic Editor: Frank Werner

Received: 7 December 2023

Revised: 31 December 2023

Accepted: 12 January 2024

Published: 17 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Atom Filtering Algorithm and GPU-Accelerated Calculation of
Simulation Atomic Force Microscopy Images
Romain Amyot *,† , Noriyuki Kodera and Holger Flechsig

Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi,
Kanazawa 920-1192, Ishikawa, Japan; flechsig@staff.kanazawa-u.ac.jp (H.F.)
* Correspondence: romain-amyot@staff.kanazawa-u.ac.jp
† JSPS International Research Fellow.

Abstract: Simulation of atomic force microscopy (AFM) computationally emulates experimental
scanning of a biomolecular structure to produce topographic images that can be correlated with
measured images. Its application to the enormous amount of available high-resolution structures, as
well as to molecular dynamics modelling data, facilitates the quantitative interpretation of experimen-
tal observations by inferring atomistic information from resolution-limited measured topographies.
The computation required to generate a simulated AFM image generally includes the calculation of
contacts between the scanning tip and all atoms from the biomolecular structure. However, since
only contacts with surface atoms are relevant, a filtering method shall highly improve the efficiency
of simulated AFM computations. In this report, we address this issue and present an elegant solution
based on graphics processing unit (GPU) computations that significantly accelerates the computa-
tion of simulated AFM images. This method not only allows for the visualization of biomolecular
structures combined with ultra-fast synchronized calculation and graphical representation of corre-
sponding simulated AFM images (live simulation AFM), but, as we demonstrate, it can also reduce
the computational effort during the automatized fitting of atomistic structures into measured AFM
topographies by orders of magnitude. Hence, the developed method will play an important role in
post-experimental computational analysis involving simulated AFM, including expected applications
in machine learning approaches. The implementation is realized in our BioAFMviewer software
(ver. 3) package for simulated AFM of biomolecular structures and dynamics.

Keywords: atomic force microscopy (AFM); simulated AFM; protein topography; molecular graphics;
computer graphics; software application; graphic card computation; GPU shader

1. Introduction

Atomic force microscopy (AFM) allows us to visualize the surface of biomolecular
structures, and high-speed AFM allows us to follow conformational dynamics in real
time under near-physiological conditions [1–6]. A major limitation of AFM is that only
morphological changes within the probed molecular surface can be detected, missing
information required to fully explore functional mechanisms from imaging alone. Fur-
thermore, since the scanning tip is too large to resolve structural detail, the interpretation
of measured AFM topographic images including information below the sub nano-meter
range is generally difficult.

The atomistic-resolution equilibrium molecular structures of most proteins are either
known from a combination of experiments [7] or can be predicted by the artificial intelli-
gence AlphaFold program [8]. On the other hand, functional conformational dynamics can
be obtained from multi-scale molecular modelling [9–13]. The enormous amount of high-
resolution protein data offers a great opportunity to better understand resolution-limited
AFM scanning data. Simulation atomic force microscopy (S-AFM) is a computational
method that mimics the experimental tip-scanning of a biomolecule to transform its avail-
able atomistic structure into a simulated topographic image, which can be compared with

Algorithms 2024, 17, 38. https://doi.org/10.3390/a17010038 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010038
https://doi.org/10.3390/a17010038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-3316-8462
https://orcid.org/0000-0003-4880-8423
https://doi.org/10.3390/a17010038
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010038?type=check_update&version=1


Algorithms 2024, 17, 38 2 of 11

an experimental AFM image. A sufficiently high image similarity, quantified by correla-
tion scores, indicates that the unknown atomistic arrangement behind a measured AFM
topography may be best represented by the known template structure.

Various computational methods of systematically fitting atomistic-level or coarse-
grained structural templates into AFM images have been developed [14–19] and evidenced
to advance our understanding of molecular processes beyond resolution-limited experimen-
tal imaging (see the recent review [20]). For example, the method of rigid-body fitting relies
on the exhaustive sampling of molecular orientations of an atomistic template structure,
each time applying S-AFM, until eventually the molecular arrangement whose S-AFM
image has the highest image similarity with an experimental target is identified. The speed-
limiting process during fitting is the computation of the S-AFM image of each sampled
molecular orientation required for comparison to the target AFM image. This is because,
for a given molecular orientation, the computation generally involves evaluating the con-
tacts of the scanning tip with all the atoms in order to generate a topographic image of a
biomolecular structure. However, since the scanning tip can only contact the biomolecular
surface without penetrating the structure, the computation can be significantly acceler-
ated by filtering a set of relevant atoms. Here, we present a solution based on graphics
processing unit (GPU) computations [21], utilizing the workflow for rendering molecular
structures. The underlying idea is simple: for any arbitrary 3D molecular orientation of a
biomolecular structure, the set of atoms which are directly exposed to the scanning tip and
can potentially come into contact with it, contains exactly those which are displayed by
rendering the corresponding graphical 2D view.

The results are presented in the following way. We first explain our developed filtering
method, consisting of primitive filtering in the horizontal/vertical scanning directions and
an elegant GPU-based solution to atom filtering in the lateral scanning direction. Then, we
explain the GPU-based computation of simulated AFM images, considering the filtered
subset of atoms. To evaluate the efficiency gain of the developed methods, we apply
simulated AFM computations to various proteins with different size and shape geometry
and perform statistical analyses of the obtained data.

2. Materials and Methods

The S-AFM method typically rests on several approximations. The scanning tip is
viewed as a rigid cone-shaped object with a probe sphere at its end; the molecular structure
(sample) is represented by a static Van der Waals sphere atomic model placed on a solid
surface (AFM substrate), and tip-sample interactions are considered to be non-elastic
collisions. Within such approximations, S-AFM calculations are reduced to determine the
single-point intersection of the 3D tip model with an atomic sphere, for which an explicit
equation exists (from solving a second order polynomial equation, see [22] for details).
However, computing the height topography of the entire sample for a given molecular
orientation is still a time-consuming process. This is because for each cell along the scanning
grid, generally, the contact points of the tip with all the atoms have to be evaluated in
order to determine the largest possible height value relative to the AFM substrate, roughly
corresponding to heights measured in an AFM experiment. In fact, a ubiquitous situation
is that the tip collides first with atoms that are beyond those belonging to the scanned
grid cell. On the other hand, it is obvious that the tip can only contact atoms which are
exposed at the molecular surface. Therefore, the time required to compute a topographic
image can in principle be reduced by introducing a method which, for a given molecular
orientation, can filter surface atoms relevant for the S-AFM scanning process. The challenge
is to construct a filtering algorithm that is fast enough to actually speed up the computation
of the S-AFM image. For example, if filtering is more time consuming than the filter-free
computation described above (for which just algebraic expressions must be evaluated),
there is no efficiency gain.



Algorithms 2024, 17, 38 3 of 11

For the following explanation of the filtering method and simulated AFM computation,
we consider the Van der Waals representation of a biomolecular structure in an arbitrary
molecular orientation.

2.1. Primitive X-Y Filtering

We refer to primitive filtering as a selection method of relevant atoms in the horizontal
and vertical (X, Y) scanning directions. For any arbitrary orientation of the biomolec-
ular structure within the fixed screen canvas, first the tip scanning grid is obtained by
determining the farthest possible tip contacts with the atomistic structure in the east and
west directions (scanning range X), and those in the south and north directions (scanning
range Y). We provide an illustration in Figure 1. The size of grid cells corresponds to the
given scan step. As a next step, it would be reasonable to consider each individual grid cell
with the tip placed at its center and calculate the tip contacts with all the atoms to select the
largest height value of the structure relative to the AFM substrate.

Algorithms 2024, 17, x FOR PEER REVIEW 3 of 11 
 

than the filter-free computation described above (for which just algebraic expressions 
must be evaluated), there is no efficiency gain. 

For the following explanation of the filtering method and simulated AFM computa-
tion, we consider the Van der Waals representation of a biomolecular structure in an arbi-
trary molecular orientation. 

2.1. Primitive X-Y Filtering 
We refer to primitive filtering as a selection method of relevant atoms in the horizon-

tal and vertical (X, Y) scanning directions. For any arbitrary orientation of the biomolecu-
lar structure within the fixed screen canvas, first the tip scanning grid is obtained by de-
termining the farthest possible tip contacts with the atomistic structure in the east and 
west directions (scanning range X), and those in the south and north directions (scanning 
range Y). We provide an illustration in Figure 1. The size of grid cells corresponds to the 
given scan step. As a next step, it would be reasonable to consider each individual grid 
cell with the tip placed at its center and calculate the tip contacts with all the atoms to 
select the largest height value of the structure relative to the AFM substrate. 

 
Figure 1. Primitive X-Y filtering. (A) The atomistic Van der Waals representation of a biomolecular 
structure is displayed in the scanning view perspective within the visible screen canvas (X, Y) out-
lined in black. The relevant scanning grid is shown in red, with the cell size corresponding to the 
given scan step. The four tip shapes illustrate the farthest possible tip contacts with the structure in 
the north, east, south, and west directions required to determine the scanning grid size. For a se-
lected atom (blue circle), the computed tip contact grid is shown in blue. (B) The biomolecular struc-
ture is placed on the AFM substrate in a front view perspective. For a selected atom (blue circle), the 
contact range of a cone-shaped scanning tip is illustrated for the X direction. 

We replace this generally inefficient procedure by looping just once over all the atoms 
instead. For each atom, a contact grid which covers the (X, Y) area from which the tip can 
touch this atom is determined as a sub-grid of the scanning grid (Figure 1). Its size appar-
ently depends on the tip shape geometry and the distance of the atom to the AFM sub-
strate. Then, for each cell of the contact grid, the collision height of the tip with this atom 
is computed (see Ref. [22] for details) and compared with previous height values com-
puted from a tip collision with other atoms, always storing the larger height value. Thus, 
after looping over all the atoms, each cell of the scanning grid is assigned a single value 
which represents the sample height relative to the AFM substrate, as resulting from a con-
volution of the tip shape with the biomolecular surface. Simulated AFM using only prim-
itive X-Y filtering (we refer to as the XY-F method) is obviously still highly inefficient. 

Nonetheless, we will later apply this method simply to demonstrate the supremacy 
of the more sophisticated filtering method and computation of simulated AFM described 
next. 

Figure 1. Primitive X-Y filtering. (A) The atomistic Van der Waals representation of a biomolecular
structure is displayed in the scanning view perspective within the visible screen canvas (X, Y) outlined
in black. The relevant scanning grid is shown in red, with the cell size corresponding to the given
scan step. The four tip shapes illustrate the farthest possible tip contacts with the structure in the
north, east, south, and west directions required to determine the scanning grid size. For a selected
atom (blue circle), the computed tip contact grid is shown in blue. (B) The biomolecular structure is
placed on the AFM substrate in a front view perspective. For a selected atom (blue circle), the contact
range of a cone-shaped scanning tip is illustrated for the X direction.

We replace this generally inefficient procedure by looping just once over all the atoms
instead. For each atom, a contact grid which covers the (X, Y) area from which the tip
can touch this atom is determined as a sub-grid of the scanning grid (Figure 1). Its size
apparently depends on the tip shape geometry and the distance of the atom to the AFM
substrate. Then, for each cell of the contact grid, the collision height of the tip with this
atom is computed (see Ref. [22] for details) and compared with previous height values
computed from a tip collision with other atoms, always storing the larger height value.
Thus, after looping over all the atoms, each cell of the scanning grid is assigned a single
value which represents the sample height relative to the AFM substrate, as resulting from
a convolution of the tip shape with the biomolecular surface. Simulated AFM using only
primitive X-Y filtering (we refer to as the XY-F method) is obviously still highly inefficient.

Nonetheless, we will later apply this method simply to demonstrate the supremacy of
the more sophisticated filtering method and computation of simulated AFM described next.



Algorithms 2024, 17, 38 4 of 11

2.2. GPU-Based Lateral Z Direction Filtering of Surface Atoms

We developed an efficient method to filter the surface atoms in the lateral Z direction
(i.e., in the vertical scanning direction of a biomolecular structure) based on graphics
processing unit (GPU) computations. The underlying idea is that for any arbitrary 3D
molecular orientation of a biomolecular structure, the set of atoms which are directly
exposed to the scanning tip and can potentially come into contact with it, contains exactly
those which are displayed by rendering the corresponding graphical 2D view.

To visualize objects on the computer screen, graphic cards work with vertices and
primitives. A primitive is the smallest unit used to build geometrical forms. Four main
primitives are generally used: points, lines, triangles, and quads. To visualize atoms of
a biomolecular structure as spheres (with corresponding Van der Waals radii) we use
triangles as primitives. Spheres are therefore represented by a set of triangles, each of them
having three vertices with attributes such as spatial position (x, y, z), orientation normal
vector, color, etc.

In the first step, the GPU processes all vertices with their attributes via the vertex
shader [23,24] (Figure 2A). The vertex shader places the vertices relative to each other in the
clip space, a GPU internal 3D coordinate system with coordinates ranging from −1 to 1 that
can be viewed as a 3D version of what will become the visible screen. Vertices having clip
coordinates beyond this range will be later clipped out of the scene. The vertex shader is
programmable, and the programmer has full control of it. After processing all vertices, the
GPU groups them to form the corresponding triangles in the clip space, and then proceeds
with rasterization.

Rasterization is the process by which the GPU transforms the 3D clip space into what
will become the visible screen space, i.e., a 2D canvas of pixels (Figure 2A). Rasterization
consists of determining which pixels are covered by a particular triangle and generates so
called fragments accordingly. A fragment is characterized by the 2D position of the pixel
it belongs to, plus the attributes inherited from the vertices of the triangle including the
interpolated clip space z-coordinate interpreted as the depth value of the fragment by the
GPU. During the processing of all triangles, many fragments will obviously share the same
pixel position. However, an early depth test allows us to compare the depth of a newly
generated fragment with that of the current fragment for a given pixel position, keeping
only the least deep fragment. In such a situation, the result of the rasterization process is a
pixel grid which consists of filtered fragments, each fragment representing the least deep
position for a given pixel.

Finally, all remaining fragments from the previous rasterization process undergo
fragment shading to determine a color for the processed fragment (Figure 2A). The normal
and color attributes are usually used to compute light effects, and the 4D output vector from
the fragment shader (RGB values plus opacity) will be interpreted by the GPU as a color
for a particular pixel. In the context of visualizing a biomolecular structure, completed
fragment shading would result in rendering the Van der Waals representation on the
computer screen (render to screen pathway). That is, for a given molecular orientation,
only the visible atoms are displayed and separated from the hidden non-visible atoms.
Obviously, this separation would exactly correspond to filtering the subset of atoms that
would be accessible to the scanning tip in that particular 3D orientation. Since, similar to the
vertex shader, the fragment shader is programmable, we are able to implement the desired
atom filter algorithm for S-AFM. This is possible by bypassing the rendering process and
directing the fragment shader output to a texture (render to texture pathway), which can be
viewed as an off-screen grid of pixels that can be read on the central processing unit (CPU).
Therefore, the atom filtering procedure for an arbitrary orientation of the biomolecular
structure to facilitate the computation of the corresponding S-AFM image can be performed
independently from visualizing the 3D molecular structure (Figure 2B).

Like in the XY-F method, simulated AFM calculations can now be performed using
the largely reduced set of filtered atoms to obtain the simulated AFM image (Figure 2C).



Algorithms 2024, 17, 38 5 of 11

We refer to this method as the XYZ-F method, and evaluate its performance against the
XY-F method and the ultimate method described next.

Algorithms 2024, 17, x FOR PEER REVIEW 4 of 11 
 

2.2. GPU-Based Lateral Z Direction Filtering of Surface Atoms 
We developed an efficient method to filter the surface atoms in the lateral Z direction 

(i.e., in the vertical scanning direction of a biomolecular structure) based on graphics pro-
cessing unit (GPU) computations. The underlying idea is that for any arbitrary 3D molec-
ular orientation of a biomolecular structure, the set of atoms which are directly exposed 
to the scanning tip and can potentially come into contact with it contains exactly those 
which are displayed by rendering the corresponding graphical 2D view. 

To visualize objects on the computer screen, graphic cards work with vertices and 
primitives. A primitive is the smallest unit used to build geometrical forms. Four main 
primitives are generally used: points, lines, triangles, and quads. To visualize atoms of a 
biomolecular structure as spheres (with corresponding Van der Waals radii) we use trian-
gles as primitives. Spheres are therefore represented by a set of triangles, each of them 
having three vertices with attributes such as spatial position (x, y, z), orientation normal 
vector, color, etc. 

In the first step, the GPU processes all vertices with their attributes via the vertex 
shader [23,24] (Figure 2A). The vertex shader places the vertices relative to each other in 
the clip space, a GPU internal 3D coordinate system with coordinates ranging from −1 to 
1 that can be viewed as a 3D version of what will become the visible screen. Vertices hav-
ing clip coordinates beyond this range will be later clipped out of the scene. The vertex 
shader is programmable, and the programmer has full control of it. After processing all 
vertices, the GPU groups them to form the corresponding triangles in the clip space, and 
then proceeds with rasterization. 

 
Figure 2. GPU workflow for the lateral Z direction filtering of surface atoms. (A) For demonstra-
tion purposes, an example system of just five atoms is considered. Left, vertex processing: every 
vertex is placed in the clip space coordinate system by the vertex shader. Its attributes are transferred 
to the next step. The attributes used in classical rendering are written in blue. The attribute used in 
our filtering method, an index for tracking the atom, is written in red. Middle, rasterization: for each 
triplet of vertices, a triangle is formed, and fragments are generated based on the pixels covered by 
the triangle. The attributes of newly generated fragments result from the interpolation (or not) of 
the attributes of the three vertices. The depth test is applied to distinguish fragments in the front 
from others behind. Right, fragment processing: all fragments, which can now be viewed as pixels, 

Figure 2. GPU workflow for the lateral Z direction filtering of surface atoms. (A) For demonstration
purposes, an example system of just five atoms is considered. Left, vertex processing: every vertex is
placed in the clip space coordinate system by the vertex shader. Its attributes are transferred to the
next step. The attributes used in classical rendering are written in blue. The attribute used in our
filtering method, an index for tracking the atom, is written in red. Middle, rasterization: for each
triplet of vertices, a triangle is formed, and fragments are generated based on the pixels covered by
the triangle. The attributes of newly generated fragments result from the interpolation (or not) of the
attributes of the three vertices. The depth test is applied to distinguish fragments in the front from
others behind. Right, fragment processing: all fragments, which can now be viewed as pixels, enter
the fragment shader. In classic rendering, the color is computed and rendered to the screen. In our
filtering method, the index attribute of the fragment, inherited from the vertex of the atom covering
this fragment, is written in a grid texture which can further be read on the CPU. The final grid texture
contains, for each pixel, the tracking index of the atom closest to the viewer within this pixel position.
(B) Left: molecular structure of the Cas9 endonuclease protein (from PDB 4OO8) in the scanning view
perspective showing the atoms that are probed by the AFM scanning tip. Right: molecular structure
in the front view perspective. The AFM substrate surface is indicated by the thick gray line. The
surface atoms remaining after filtering (~24% of total atoms) are shown in red color. (C) Simulated
AFM image for the scanning view in (B), computed from the set of filtered atoms.

2.3. GPU-Based Computation of Simulated AFM Images

Finally, we developed a method which takes into account the filtered set of atoms
to efficiently compute the simulated AFM image employing an adaptation of the GPU
workflow described above. We refer to this method as the XYZ-F2 method.

The lateral Z direction filtering uses the normal rendering process of the graphic card to
output the indices of visible atoms. The simulated AFM calculation method we developed
manipulates the workflow of the GPU from its original purpose to let the GPU parallelize
the calculations with a minimal coding effort and without having to handle problems
related to parallel computations. That is, there is no need to code a complicated program
for parallelization and to take care of all related problems (such as concurrency access).



Algorithms 2024, 17, 38 6 of 11

For this method, each atom is represented by a point primitive with the 3D position
and corresponding Van der Waals radius as attributes. The rendering texture corresponds
to the scanning grid (Figure 1A, red grid) in which each cell represents one pixel. The
vertex shader operates in the same way as during filtering, i.e., vertices (in this case points)
are mapped onto the clip space. Before the rasterization, vertices are intercepted by the
geometry shader. The geometry shader is an optional programmable shader which takes a
primitive as an input and outputs one or more primitives (which can be of a different type
from the input primitive). For our purpose, we employ the geometry shader to generate
for each filtered atom the corresponding tip contact sub-grid (Figure 1A, blue grid). That
is, for each point primitive used as the input, the shader generates as an output a quad
primitive with the size and position of the tip contact sub-grid for the corresponding atom.
During the rasterization process, the obtained quads are mapped onto the pixel screen
space and fragments are generated. Each fragment encodes the (X, Y) pixel position and
the attributes of the point primitive it originated from, i.e., the corresponding atom position
(x, y, z) and Van der Waals radius. The early depth test is inactivated such as all generated
fragments resulting from all previously filtered atoms will be processed by the fragment
shader. Generally, many fragments with different attributes share the same pixel position.
The fragment shader is used to compute for each fragment the contact height of the tip
(located over the corresponding pixel position) and the corresponding atom with respect to
the AFM substrate surface, and the obtained height values are stored in the texture. The
depth test takes place at this stage, keeping for each pixel of the texture only the fragment
with the largest height value. Hence, the resulting texture contains for each pixel the largest
height value obtained from simulating the scanning of the atomistic biomolecular structure
in an arbitrary 3D orientation relative to the fixed AFM surface with a cone-shaped tip over
the scanning grid with a prescribed spacing according to the experimental scan step. The
corresponding simulated AFM image is visualized by mapping height values to a given
color scale and coloring all pixels accordingly (Figure 2C).

We remark here on the tip-shape geometry for simulated scanning. In the XY-F and
XYZ-F atom filtering methods, the computation of simulated AFM images was not based
on the GPU workflow, and corresponded to the computation applied in our previous
work [18,22]. That is, collisions of the cone-shaped tip with a spherical probe sphere at
its end (characterized by apex angle and sphere radius parameters) and the filtered set of
atoms in the respective methods were evaluated to generate the simulated AFM image
(see Ref. [22] for modeling the tip–atom collisions). For the GPU-based computation of
simulated AFM images in the XYZ-F2 method, the GPU requires knowledge of the tip
shape—at the stage of the geometry shader to generate the tip contact sub-grid for each
atom, and for the fragment shader to compute the contact heights of the tip with respect to
the AFM substrate. The two tip-shape parameters are provided to the shader as so-called
uniform variables. They are sent from the CPU and read for each execution of the shader,
i.e., for each vertex by the geometry shader and for each fragment by the fragment shader
at the running time. This means that, if our method is applied in a recursive scheme
which requires changing the tip geometry, the two parameters can be modified on the CPU
without having to recompile the GPU shaders, which would delay computations.

3. Results
Quantification of the Computational Efficiency Gain

To quantify the efficiency gain of the developed atom-filtering methods and GPU
calculations, we considered exhaustive sampling, which is a procedure employed during
the fitting of structural data into AFM topographic images. This method samples rigid-
body orientations of a given structural template in 3D space, each time computing the
corresponding simulated AFM image, which is compared with an experimental target
image. As structural templates, we used proteins which differ in size and shape:

• The hepatitis B virus capsid cryo-EM ball-shaped structure with a diameter of ~36 nm
and a total of 270,960 atoms (constructed from PDB 6BVF);



Algorithms 2024, 17, 38 7 of 11

• A model of the actin filament structure containing 24 subunits and having a rod-shape
with ~10 nm diameter, ~70 nm length, and a total of 70,464 atoms (from Ref. [25]);

• The rotor-less F1-ATPase motor cube-like structure with lengths of ~10 and ~12.5 nm
and a total of 21,867 atoms (PDB 1SKY);

• The small global-shaped relaxin protein with lengths of ~3 nm and ~5 nm with just
755 atoms (PDB 6RLX).

The molecular structures are shown in Figure 3A. For the four different protein struc-
tures, rigid-body orientations were sampled uniformly in 3D space along a grid with a
5 degree spacing, resulting in (360/5)3 = 373,248 conformations that were placed on a
fixed plate and scanned in the lateral direction by the scanning tip across the XY scanning
grid. For each orientation, we then recorded the computation time required to execute the
filtering method and to calculate the corresponding simulated image (without visualizing
it). We considered the three filtering methods described before, i.e., primitive XY filtering
(XY-F), filtering including the lateral scanning direction Z (XYZ-F), and the latter with
GPU calculations (XYZ-F2). The corresponding distributions of computation times for the
four proteins are shown in Figure 3A and discussed below.

For the virus capsid structure, the calculation of an S-AFM image by the XYZ-F method
(238 ± 12 ms) is faster than the XY-F method (1438 ± 61 ms) by a factor larger than 5 and is
further enhanced by the XYZ-F2 method (19 ± 0.8 ms) by a factor larger than 10. To put
those numbers into perspective, this means that the computation of S-AFM images during
the rigid-body fitting of the capsid structure into an actual AFM image (with our chosen
parameters and hardware setup) would on average take ~149 h (i.e., 6.2 days) using the
inefficient XY-F methods, versus only ~2 h required with the XYZ-F2 implementation.

For the F-actin structure, the computation time of an S-AFM image by the XY-F
method shows a very wide distribution (499 ± 386 ms), which is due to the special rod-
shape of the molecule. For upright orientations with respect to the AFM substrate, the XY
contact grid of the tip for each atom is generally large, because most atoms are located
far from the substrate, hence resulting in a large number of tip–atom collisions to be
calculated. In contrast, for orientations placed flat on the substrate, the XY contact grids of
atoms have much smaller sizes, and computation is therefore faster. In such cases, speed
improvements by additional Z-filtering are less relevant—distributions of the XY-F and
XYZ-F methods even overlap—whereas, for filament positions oriented towards the upright
shape, Z-filtering becomes increasingly important and the XYZ-F method significantly
enhances the computation speed, as shown by the time distribution (117 ± 63 ms). The
XYZ-F2 method supersedes others by improving the computation speed further by one
order of magnitude (9.5 ± 1.5 ms).

For the relatively small F1-ATPase protein, the calculation of a simulated AFM image
by the XYZ-F method (8.8 ± 0.7 ms) is faster than the XY-F method (34 ± 6 ms) by a factor
of about four, and is further enhanced by the XYZ-F2 method (4 ± 2 ms) by a factor of
about two. This means that the computation of S-AFM images during the rigid-body
fitting of the F1 structure into an actual AFM image (with our chosen parameters and
hardware setup) would on average take 212 min, versus only 25 min required with the
XYZ-F2 implementation.

The results of the computation times obtained for the relaxin protein, i.e., (1.88 ± 1.03 ms)
for the XY-F method, (1.46 ± 0.66 ms) for the XYZ-F method, and (2.47 ± 2.04 ms) for the
XYZ-F2 method, clearly demonstrate the irrelevance of atom filtering for the simulated
AFM of very small molecular structures.

The numerical investigations lead us to the following conclusions. Generally, our
developed atom-filtering methods significantly speed up the calculation of simulated
AFM images. The efficiency gain depends on the size and shape of proteins, and is
apparently larger for cases in which the number of surface atoms is small, as compared
to the total number of atoms. To clearly illustrate this aspect, we represent in Figure 3B
the results discussed above, employing the ratio of surface atoms and all protein atoms as
a coordinate. We emphasize again that for very large protein structures, the calculation



Algorithms 2024, 17, 38 8 of 11

time of a simulated AFM image can be reduced by about two orders of magnitude by the
application of the developed filtering method. While, for proteins with typical sizes of
~10 nm, a significant speed up in calculation can be realized, the filtering methods become
irrelevant for very small proteins with a generally larger surface atom ratio.

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 11 
 

corresponding simulated AFM image, which is compared with an experimental target im-
age. As structural templates, we used proteins which differ in size and shape: 
• The hepatitis B virus capsid cryo-EM ball-shaped structure with a diameter of ~36 

nm and a total of 270,960 atoms (constructed from PDB 6BVF); 
• A model of the actin filament structure containing 24 subunits and having a rod-

shape with ~10 nm diameter, ~70 nm length, and a total of 70,464 atoms (from Ref. 
[25]); 

• The rotor-less F1-ATPase motor cube-like structure with lengths of ~10 and ~12.5 nm 
and a total of 21,867 atoms (PDB 1SKY); 

• The small global-shaped relaxin protein with lengths of ~3 nm and ~5 nm with just 
755 atoms (PDB 6RLX). 
The molecular structures are shown in Figure 3A. For the four different protein struc-

tures, rigid-body orientations were sampled uniformly in 3D space along a grid with a 5 
degree spacing, resulting in (360/5)3 = 373,248 conformations that were placed on a fixed 
plate and scanned in the lateral direction by the scanning tip across the XY scanning grid. 
For each orientation, we then recorded the computation time required to execute the fil-
tering method and to calculate the corresponding simulated image (without visualizing 
it). We considered the three filtering methods described before, i.e., primitive XY filtering 
(XY-F), filtering including the lateral scanning direction Z (XYZ-F), and the latter with 
GPU calculations (XYZ-F2). The corresponding distributions of computation times for the 
four proteins are shown in Figure 3A and discussed below. 

 
Figure 3. Quantification of the computational efficiency gain by atom filtering methods. (A) Mo-
lecular structures of the investigated proteins are shown in the Van der Waals representation on the 

Figure 3. Quantification of the computational efficiency gain by atom filtering methods. (A) Molecular
structures of the investigated proteins are shown in the Van der Waals representation on the left side.
The number of atoms is given, and their sizes are indicated. For each protein, distributions of the
computation time required to execute the filtering method and to calculate the simulated AFM image
for molecular orientations obtained from exhaustive sampling are shown as histograms for the XY-F
(orange color), XYZ-F (blue color), and XYZ-F2 (green color) atom filtering methods on the right
side. (B) The same results are represented, employing the surface atom ratio as a coordinate. For
each filtering method, the data are shown as mean values and standard deviations of its computation
time distribution (solid circle and error bar). For the upper row data (virus capsid, F1-ATPase,
F-Actin (avg), relaxin), the surface atom ratio was obtained as an average of all considered molecular
orientations. The bottom row data are for the actin filament considered in the upright, diagonal, and
flat orientations with respect to the AFM substrate surface. For all plots of F-actin, data of the same
scale were used for better comparisons.



Algorithms 2024, 17, 38 9 of 11

4. Discussion

The post-experimental analysis of biomolecular dynamics visualized by AFM experi-
ments employing computational methods plays an increasingly important role. In this situ-
ation, simulated atomic force microscopy is the cornerstone method allowing us to correlate
atomistic resolution biomolecular data with resolution-limited measured topographies.

The application of simulated AFM allows us to employ the enormous amount of
available structural data, as well as data obtained from molecular dynamics simulations, to
facilitate the interpretation of resolution-limited imaging towards an atomistic-level under-
standing of measured nanoscale processes. For example, rigid-body fitting by exhaustive
sampling molecular orientations of a structural template [16,18], or flexible fitting methods
resolving conformational changes [14,15,17], are based on the execution of simulated AFM
in each iteration step towards finding the atomistic conformation that best matches with
the target experimental AFM image. As we demonstrate, our developed method based on
the GPU workflow can accelerate the computation of simulated AFM images by orders of
magnitude, which can make a difference between several days versus a couple of hours
required for fitting. Hence, this method will play an important role in computational
analysis involving the calculations of simulated AFM (e.g., [26–28]), including expected
applications in machine learning approaches.

We postulate that our developed method of atom filtering and the GPU-acceleration of
simulated AFM images presents the algorithm of ultimate efficiency, and further efficiency
gain can only be achieved by exploiting faster hardware. It would be interesting to further
consider simulated AFM computations with more complex tip shape geometries. While,
in this case, the calculation of tip–atom contacts will be more difficult, the presented
atom-filtering algorithm and an adapted GPU-based computation are applicable.

The developed method is implemented in our BioAFMviewer software package for
the simulated AFM of biomolecular structures and dynamics [22,29], where it allows for the
visualization of biomolecular structures (of potentially massive sizes) combined with ultra-
fast synchronized calculations and graphical representations of corresponding simulated
AFM images (live simulated AFM).

Author Contributions: Conceptualization, R.A. and H.F.; methodology, R.A.; software, R.A.; valida-
tion, R.A.; formal analysis, R.A. and H.F.; investigation, R.A.; resources, N.K. and H.F.; data curation,
R.A.; writing—original draft preparation, H.F.; writing—review and editing, R.A., N.K. and H.F.; visu-
alization, R.A. and H.F.; supervision, H.F.; project administration, N.K. and H.F.; funding acquisition,
R.A., N.K. and H.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Education, Culture, Sports, Science and
Technology (MEXT, https://www.mext.go.jp, accessed on 15 January 2024), Japan, through the
World Premier International Research Center (WPI) Initiative (R.A., N.K. and H.F.), by the Japanese
Society for Promotion of Science (https://www.jsps.go.jp, accessed on 15 January 2024) Grant-
in-Aid for JSPS Fellows No. 22KF0153 (R.A.), and by the Japan Science and Technology Agency
(https://www.jst.go.jp, accessed on 15 January 2024) CREST No. JPMJCR1762 (N.K. and H.F.).

Data Availability Statement: For the implementation of our method, we used the OpenGL library [30,31].
The methods were tested on a Precision 3630 Tower with Intel® Xeon® E-2224 CPU@ 3.40 GHz 3.41
GHz (4 cores and 16 GB RAM) and a NVIDIA Quadro P620 (2 GB VRAM) graphic card. The pro-
gramming code of the developed methods, together with explanations, are available via the GitHub
repository https://github.com/RomainAmyot/ (accessed on 1 December 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.mext.go.jp
https://www.jsps.go.jp
https://www.jst.go.jp
https://github.com/RomainAmyot/


Algorithms 2024, 17, 38 10 of 11

References
1. Müller, D.J.; Dufrêne, Y.F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotech.

2008, 3, 261–269. [CrossRef] [PubMed]
2. Ando, T.; Uchihashi, T.; Scheuring, S. Filming biomolecular processes by high-speed atomic force microscopy. Chem. Rev. 2014,

114, 3120–3188. [CrossRef] [PubMed]
3. Ando, T. Directly watching biomolecules in action by high-speed atomic force microscopy. Biophys. Rev. 2017, 9, 421–429.

[CrossRef] [PubMed]
4. Uchihashi, T.; Ganser, C. Recent advances in bioimaging with high-speed atomic force microscopy. Biophys. Rev. 2020, 12, 363–369.

[CrossRef] [PubMed]
5. Casuso, I.; Redondo-Morata, L.; Rico, F. Biological physics by high-speed atomic force microscopy. Philos. Trans. R. Soc. A 2020,

378, 20190604. [CrossRef] [PubMed]
6. Ando, T. High-Speed Atomic Force Microscopy in Biology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–319. [CrossRef]
7. wwPDBconsortium. Protein data bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019,

47, D520–D528. [CrossRef] [PubMed]
8. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.;

Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]
[PubMed]

9. Kenzaki, H.; Koga, N.; Hori, N.; Kanada, R.; Li, W.; Okazaki, K.; Yao, X.-Q.; Takada, S. CafeMol: A coarse-grained biomolecular
simulator for simulating proteins at work. J. Chem. Theory Comput. 2011, 7, 1979–1989. [CrossRef]

10. Takada, S.; Kanada, R.; Tan, C.; Terakawa, T.; Li, W.; Kenzaki, H. Modeling structural dynamics of biomolecular complexes by
coarse-grained molecular simulations. Acc. Chem. Res. 2015, 48, 3026–3035. [CrossRef]

11. Pak, A.J.; Voth, G.A. Advances in coarse-grained modeling of macromolecular complexes. Curr. Opin. Struct. Biol. 2018, 52,
119–126. [CrossRef]

12. Togashi, Y.; Flechsig, H. Coarse-grained protein dynamics studies using elastic network models. Int. J. Mol. Sci. 2018, 19, 3899.
[CrossRef] [PubMed]

13. Flechsig, H.; Mikhailov, A.S. Simple mechanics of protein machines. J. R. Soc. Interface 2019, 16, 20190244. [CrossRef] [PubMed]
14. Niina, T.; Fuchigami, S.; Takada, S. Flexible fitting of biomolecular structures to atomic force microscopy images via biased

molecular simulations. J. Chem. Theory Comput. 2020, 16, 1349–1358. [CrossRef] [PubMed]
15. Dasgupta, B.; Miyashita, O.; Tama, F. Reconstruction of low-resolution molecular structures from simulated AFM force microscopy

images. Biochim. Biophys. Acta—Gen. Subj. 2020, 1864, 129420. [CrossRef]
16. Niina, T.; Matsunaga, Y.; Takada, S. Rigid-body fitting to atomic force microscopy images for inferring probe shape and

biomolecular structure. PLoS Comput. Biol. 2021, 17, e1009215. [CrossRef]
17. Dasgupta, B.; Miyashita, O.; Uchihashi, T.; Tama, F. Reconstruction of three-dimensional conformations of bacterial ClpB from

high-speed atomic-force-microscopy images. Front. Mol. Biosci. 2021, 8, 704274. [CrossRef]
18. Amyot, R.; Marchesi, A.; Franz, C.M.; Casuso, I.; Flechsig, H. Simulation atomic force microscopy for atomic reconstruction of

biomolecular structures from resolution-limited experimental images. PLoS Comput. Biol. 2022, 18, e1009970. [CrossRef]
19. Ogane, T.; Noshiro, D.; Ando, T.; Yamashita, A.; Sugita, Y.; Matsunaga, Y. Development of hidden Markov modeling method for

molecular orientations and structure estimation from high-speed atomic force microscopy time-series images. PLoS Comput. Biol.
2022, 18, e1010384. [CrossRef]

20. Flechsig, H.; Ando, T. Protein dynamics by the combination of high-speed AFM and computational modeling. Curr. Opin. Struct.
Biol. 2023, 80, 102591. [CrossRef]

21. Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU computing. Proc. IEEE 2008, 96, 879–899. [CrossRef]
22. Amyot, R.; Flechsig, H. BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and

dynamics. PLoS Comput. Biol. 2020, 16, e1008444. [CrossRef] [PubMed]
23. Maughan, C.; Wloka, M. Vertex Shader Introduction; Technical report; NVIDIA Corporation: Santa Clara, CA, USA, 2001.
24. Ebner, M.; Reinhardt, M.; Albert, J. Evolution of vertex and pixel shaders. In Genetic Programming. EuroGP 2005. Lecture Notes

in Computer Science; Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2005; Volume 3447. [CrossRef]

25. Pirani, A.; Vinogradova, M.V.; Curmi, P.M.G.; King, W.A.; Fletterick, R.J.; Craig, R.; Tobacman, L.S.; Xu, C.; Hatch, V.; Lehman,
W. An atomic model of the thin filament in the relaxed and Ca2+-activated states. J. Mol. Biol. 2006, 357, 707–717. [CrossRef]
[PubMed]

26. Fuchigami, S.; Niina, T.; Takada, S. Particle filter method to integrate high-speed atomic force microscopy measurements with
biomolecular simulations. J. Chem. Theor. Comput. 2020, 16, 6609–6619. [CrossRef] [PubMed]

27. Fuchigami, S.; Niina, T.; Takada, S. Case report: Bayesian statistical interference of experimental parameters via biomolecular
simulations: Atomic force microscopy. Front. Mol. Biosci. 2021, 8, 636940. [CrossRef]

28. Matsunaga, Y.; Fuchigami, S.; Ogane, T.; Takada, S. End-to-end differentiable blind tip reconstruction for noisy atomic force
microscopy images. Sci. Rep. 2023, 13, 129. [CrossRef]

29. Amyot, R.; Kodera, N.; Flechsig, H. BioAFMviewer software for simulation atomic force microscopy of molecular structures and
conformational dynamics. J. Struct. Biol. X 2023, 7, 100086. [CrossRef]

https://doi.org/10.1038/nnano.2008.100
https://www.ncbi.nlm.nih.gov/pubmed/18654521
https://doi.org/10.1021/cr4003837
https://www.ncbi.nlm.nih.gov/pubmed/24476364
https://doi.org/10.1007/s12551-017-0281-7
https://www.ncbi.nlm.nih.gov/pubmed/28762198
https://doi.org/10.1007/s12551-020-00670-z
https://www.ncbi.nlm.nih.gov/pubmed/32172451
https://doi.org/10.1098/rsta.2019.0604
https://www.ncbi.nlm.nih.gov/pubmed/33100165
https://doi.org/10.1007/978-3-662-64785-1
https://doi.org/10.1093/nar/gky949
https://www.ncbi.nlm.nih.gov/pubmed/30357364
https://doi.org/10.1038/s41586-021-03819-2
https://www.ncbi.nlm.nih.gov/pubmed/34265844
https://doi.org/10.1021/ct2001045
https://doi.org/10.1021/acs.accounts.5b00338
https://doi.org/10.1016/j.sbi.2018.11.005
https://doi.org/10.3390/ijms19123899
https://www.ncbi.nlm.nih.gov/pubmed/30563146
https://doi.org/10.1098/rsif.2019.0244
https://www.ncbi.nlm.nih.gov/pubmed/31213170
https://doi.org/10.1021/acs.jctc.9b00991
https://www.ncbi.nlm.nih.gov/pubmed/31909999
https://doi.org/10.1016/j.bbagen.2019.129420
https://doi.org/10.1371/journal.pcbi.1009215
https://doi.org/10.3389/fmolb.2021.704274
https://doi.org/10.1371/journal.pcbi.1009970
https://doi.org/10.1371/journal.pcbi.1010384
https://doi.org/10.1016/j.sbi.2023.102591
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1371/journal.pcbi.1008444
https://www.ncbi.nlm.nih.gov/pubmed/33206646
https://doi.org/10.1007/978-3-540-31989-4_23
https://doi.org/10.1016/j.jmb.2005.12.050
https://www.ncbi.nlm.nih.gov/pubmed/16469331
https://doi.org/10.1021/acs.jctc.0c00234
https://www.ncbi.nlm.nih.gov/pubmed/32805119
https://doi.org/10.3389/fmolb.2021.636940
https://doi.org/10.1038/s41598-022-27057-2
https://doi.org/10.1016/j.yjsbx.2023.100086


Algorithms 2024, 17, 38 11 of 11

30. Kessenich, J.; Sellers, G.; Shreiner, D. OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4.5 with SPIR-V;
Addison-Wesley Professional: Glenview, IL, USA, 2016.

31. Rost, R.J.; Licea-Kane, B.; Ginsburg, D.; Kessenich, J.; Lichtenbelt, B.; Malan, H.; Weiblen, M. OpenGL Shading Language; Pearson
Education: London, UK, 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Materials and Methods 
	Primitive X-Y Filtering 
	GPU-Based Lateral Z Direction Filtering of Surface Atoms 
	GPU-Based Computation of Simulated AFM Images 

	Results 
	Discussion 
	References

