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Abstract: Quantum computing has opened up various opportunities for the enhancement of computa-
tional power in the coming decades. We can design algorithms inspired by the principles of quantum
computing, without implementing in quantum computing infrastructure. In this paper, we present
the quantum predator–prey algorithm (QPPA), which fuses the fundamentals of quantum computing
and swarm optimization based on a predator–prey algorithm. Our results demonstrate the efficacy of
QPPA in solving complex real-parameter optimization problems with better accuracy when compared
to related algorithms in the literature. QPPA achieves highly rapid convergence for relatively low-
and high-dimensional optimization problems and outperforms selected traditional and advanced
algorithms. This motivates the application of QPPA to real-world application problems.

Keywords: metaheuristic optimization; discrete optimization; quantum computing

1. Introduction

Metaheuristic optimization algorithms [1] have gained attention as a promising al-
ternative to traditional optimization methods such as linear programming, nonlinear
programming, and dynamic programming [2,3]. Metaheuristic algorithms have the ability
to explore large solution spaces efficiently and handle complex problems that are difficult
to model mathematically or have a large number of variables and constraints [4]. These
algorithms aim to solve optimization problems by mimicking the behavior of natural pro-
cesses such as biological evolution [5,6]. Some of the most prominent examples include
genetic algorithms [6], which are inspired by biological evolution and natural selection,
and particle swarm optimization, inspired by the behavior of a swarm of birds [7]. Another
widely used form of swarm optimization is ant colony optimization, based on the behavior of
ants as they forage for food [8]. Metaheuristics repeatedly create new solutions through
operators such as crossover and mutation and combine them to obtain better solutions
over the course of evolution (optimization) [6]. Metaheuritics are typically gradient-free
optimization methods and hence suitable for models where gradient information is difficult
to obtain, such as geoscientific models [9]. Since metaheuristic algorithms do not rely on
gradient information, one of the major limitations is slow convergence; however, parallel
implementations have been shown to address this limitation partly, for certain types of
problems [9–11].

Apart from inspiration from biology and natural science, physics and mechanics
have also inspired the design of metaheuristic optimization algorithms. Physics-based
optimization algorithms are inspired by physical phenomena such as gravity, electricity,
and magnetism [12,13]. These algorithms simulate the physical behavior of particles
or agents in the search space to find optimal solutions. The gravitational search algorithm
(GSA) [14] is based on the law of gravity and mass interactions where agents are a collection
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of masses that interact with each other based on Newtonian laws of motion. GSA has the
advantage of being fast and easy to implement, and it is also computationally efficient
when compared to related algorithms. The magnetic optimization algorithm (MOA) has a
measure of the mass and magnetic field according to its fitness [15]. The fitter magnetic
particles are those with larger magnetic fields and a higher mass. These particles are
located in a lattice-like environment that uses the force of attraction onto their neighbors.
The electromagnetism-like mechanism algorithm (EMO) is based on an attraction–repulsion
mechanism to move the sample points toward optimality [16]. The chaos-based optimization
algorithm (COA) [17] employs a search within nonlinear, discrete-time dynamical systems
to optimize complex functions of multiple variables. It generates chaotic trajectories to
systematically explore the search space, effectively seeking global minima for intricate
criterion functions, and provides a dynamic strategy for nonlinear optimization challenges.

Quantum computing [18,19] has opened up various opportunities the enhancement
of computational power in the coming decades. Quantum computing has the potential to
provide better infrastructure for artificial intelligence [20] and also pose threats when it
comes to cyber-security, as the current security systems, such as as quantum computers
with enhanced computational power, are anticipated to break encryption in the future [21].
However, major challenges in the implementation of quantum computing remain [22].
Even with an implementation that is functional, the design of algorithms for quantum
computing would need to be revisited [23]. There has been a growing trend in devel-
oping quantum-inspired optimization algorithms, such as the quantum genetic algorithm
(QGA) [24], quantum particle swarm optimization (QPSO) [25], quantum teaching–learning-
based optimization (QTLBO) [26], and the quantum marine predator algorithm (QMOA) [27].
These algorithms have shown promising results in solving optimization problems that are
beyond the capabilities of classical optimization algorithms. The development of quantum
optimization algorithms is expected to have a significant impact on the knapsack problem [25]
and related engineering problems [26].

In this study, the term “quantum” in the algorithm’s name is attributed to its inspiration
from quantum mechanics, following a naming convention employed previously [24–27],
with the understanding that the algorithm is not intended for execution on real quantum
computers. Inspired by quantum mechanics, we can design algorithms that do not necessar-
ily need to wait for the development of quantum computing infrastructure. In this paper, we
present the quantum predator–prey algorithm, which fuses the fundamentals of quantum com-
puting and swarm optimization by featuring a predator–prey algorithm for real-parameter
optimization. We evaluate our algorithm for sixteen benchmark real-parameter optimiza-
tions and compare prominent metaheuristic algorithms from the literature. We also provide
a statistical analysis and sensitivity analysis of our results.

The rest of the paper is presented as follows. In Section 2, we provide an overview of
related algorithms, and Section 3 provides the details of our proposed algorithm. Section 4
provides a discussion, and Section 5 concludes the paper.

2. Related Work

The field of metaheuristic optimization has grown rapidly with inspiration from vari-
ous processes in nature. Cat swarm optimization (CSO) is a population-based optimization
technique that mimics the foraging behavior of cats as they search for prey [28]. The tunicate
swarm algorithm (TSA) imitates the jet propulsion and swarm behaviors of tunicates during
the navigation and foraging process [29]. Bee colony optimization (BCO) [30] features the
actions of individuals in various decentralized systems and is applicable to complex combi-
natorial optimization problems. Bacterial foraging optimization (BFO) mimics how bacteria
forage over a landscape of nutrients to perform parallel non-gradient optimization [31]. Ar-
tificial bee colony (ABC) [32] is inspired by the foraging behavior of honey bees and consists
of three essential components: (1.) employed foraging bees, (2.) unemployed foraging bees,
and (3.) food sources. ABC has simple implementation and efficient exploration capabili-
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ties, but can become stuck in local optima and requires fine-tuning due to its sensitivity to
hyperparameters [33,34].

Zervoudakis et al. [35] introduced the mayfly optimization (MO) algorithm, where
the swarm of individuals are categorized as male and female mayflies and each gender
exhibits distinct swarm (population) updating behavior. In the MO algorithm, individuals
situated far from the best candidate or historical best trajectories move toward the optimal
position at a reduced speed. On the contrary, when individuals are close to the global
best candidate or historical trajectories, they move at a faster pace, which slows down
the convergence rate [36]. The firefly algorithm (FA) [37] mimics the flashing behavior of
fireflies to solve complex optimization problems. It suffers from some drawbacks, such as
a slow convergence rate, becoming stuck in local optima, and sensitivity to the choice of
hyperparameters. The dragonfly algorithm (DA) [38] originates from the static and dynamic
swarming behaviors of dragonflies in nature. It can solve complex and multi-objective
optimization problems and can handle constraints, while searching for diverse solutions.

The cuckoo search (CS) [39] optimization is inspired by the brood parasitism of cuckoo
species with the behavior of laying eggs in the nests of other bird species. The grasshopper
optimization algorithm (GOA) [40] is a multi-objective algorithm inspired by the navigation
of grasshopper swarms that features the interaction of individuals in the swarm, including
the attraction force, repulsion force, and comfort zone. The whale optimization algorithm
(WOA) [41] mimics the social behavior of humpback whales, inspired by the bubble-net
hunting strategy. The grey wolf optimizer (GWO) [42] mimics the leadership hierarchy and
hunting mechanism of grey wolves in nature. Jaya [43] is a simple and parameter-less
optimization algorithm designed for both constrained and unconstrained optimization. It
does not require the tuning of hyperparameters, making it user-friendly. The sine cosine
algorithm (SCA) [44] balances exploration and exploitation, with promising results across
various domains.

In general, most of these metaheuristic optimization algorithms have the advantage
of being easy to implement and providing gradient-free optimization and are suitable in
problems where gradient information is not theoretically available or is computationally
difficult to obtain. These are population-based algorithms that have a pool of individuals
that compete and collaborate to form new solutions over time. However, they have some
drawbacks, such as slow convergence, low precision in solving problems, hyperparameter
tuning, and a limited ability to perform local searches. The algorithms presented earlier
focus on continuous parameter optimization and can be extended to apply to discrete-
parameter and constraint-parameter optimization problems.

3. Quantum Predator–Prey Algorithm

We again note that our quantum predator–prey algorithm (QPPA) combines the
principles of quantum computing and swarm-based optimization. QPPA has the potential
to significantly reduce the computational time, i.e., the number of iterations required to
find the optimal solution, making it a promising alternative in solving computationally
intensive problems.

3.1. Algorithm

We present QPPA in the framework shown in Figure 1, which is further described
in Algorithm 1, featuring a population and predator and prey subpopulations. The predator
subpopulation represents a process that actively seeks to improve a solution. Similar to a
predator in an ecological setting hunting for prey, the predator creates better solutions by
exploiting the prey subpopulation. During the process of the creation of new individuals
in the population, in the first phase, we model the movement of the quantum predator
toward the prey through Equations (14)–(32). We provide further details on how we
derived Equation (7) in Section 3.2. Similar to an ecological setting where the prey tries to
avoid capture, as shown in Figure 1, the prey hides in the shelter that is represented as a
subpopulation in transition, leading to further improvement.
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Figure 1. QPPA framework highlighting the different stages of the evolution process with predator
and prey subpopulations.

We begin with population X of N individuals with M decision variables (parameters)
that are initialized randomly as shown in Equation (1), where xi,d signifies the d-th decision
variable of the i-th member of the population.

X =



x1
...

xi
...

xN

 =



x1,1 · · · x1,d · · · x1,M
...

...
...

xi,1 · · · xi,d · · · xi,M
...

...
...

xN,1 · · · xN,d · · · xN,M

 (1)

We then select each individual from population X and compute the fitness score Fi
based on the objective function. We represent the set of fitness values for the entire population
as shown in Equation (2).

F =



F1
...
Fi
...

FN

 (2)

We then sort population X based on the fitness values in increasing order. X∗ and
F∗ correspond to the sorted population matrix and the sorted fitness vector, respectively,
as shown in Equations (3) and (4).
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X∗ =



x∗1
...

x∗i
...

x∗N

 =



x∗1,1 · · · x∗1,d · · · x∗1,M
...

...
...

x∗i,1 · · · x∗i,d · · · x∗i,M
...

...
...

x∗N,1 · · · x∗N,d · · · x∗N,M


(3)

F∗ =



F∗
1 min(F)

...
F∗

i
...

F∗
N max(F)

 (4)

We then update the predator subpopulation Ω of Npd individuals and prey subpopu-
lation Σ of Npy individuals by dividing the sorted population X∗. The prey subpopulation
consists of solutions with lower fitness values (Equation (5)), while the predator population
consists of solutions with higher fitness values (Equation (6)), as highlighted in Algorithm 1
and Figure 1.

Algorithm 1 Pseudocode of QPPA

Input: decision variables, fitness function, and problem constraints.
* Define hyperparameters, i.e., size of population N, maximum iterations T, and the
number of parameters M
* Generate an initial population by drawing from a uniform distribution
* Evaluate the population X using the objective function(.)
for t = 1 : T do

(i.) Sort population X based on fitness values obtained from the objective function
(ii.) Create a prey subpopulation Ω from the sorted population (lower-ranked individ-
uals)
(iii.) Create a predator subpopulation Sigma from the sorted population (higher-ranked
individuals)
Quantum Predator Phase:
for j = 1 : Npd do

Get new predator subpopulation P using Equations (7) to (10).
end for
Prey Phase:
for j = 1 : Npy do

Create shelter subpopulation for the ith prey using Equation (11).
Get new prey subpopulation R using Equations (12) to (13).

end for
end for
Output: Get the best solution from R and P

Ω =



Ω1 = x∗1
...

Ωi = x∗i
...

ΩNpy = x∗Npy


=



x∗1,1 · · · x∗1,d · · · x∗1,M
...

...
...

x∗i,1 · · · x∗i,d · · · x∗i,M
...

...
...

x∗Npy ,1 · · · x∗Npy ,d · · · x∗Npy ,M


(5)
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Σ =



Σ1 = X∗
Npy+1

...
Σi = X∗

Npy+i
...

ΣNpd = X∗
Npy+Npd


=



x∗Npy+1,1 · · · x∗Npy+1,d · · · x∗Npy+1,M
...

...
...

x∗Npy+i,1 · · · x∗Npy+i,d · · · x∗Npy+i,M
...

...
...

x∗Npy+Npd ,1 · · · x∗Npy+Npd ,d · · · x∗Npy+Npd ,M


(6)

We now execute the quantum predator phase (Figure 1), where we update the predator
subpopulation using Equation (7). In this update, we implement the analogy wherein
the individuals in the predator subpopulation are chasing the individuals in the prey
subpopulation. The quantum mechanism implies that an individual from the predator
subpopulation can feature two copies of itself to attack the individuals from the prey
subpopulation.

The constants c1 and c2 employed in Equations (7) and (8) are random variables within
the range of 0–1. In the new predator subpopulation Pj,d, d denotes the decision variable of
the j-th population. Similarly, in the new prey subpopulation Rj,d, d denotes the decision
variable of the j-th population. Additionally, Sj,d represents the shelter subpopulation that
hosts the random individuals from the X selected by the j-th prey.

Pnew
j : pdnew

j,d = p ± |pyk,d − c1 · pdj,d|ln(
1
c2

) (7)

where
j = 1 : Npd, d = 1 : m, k ∈ 1 : Npy

p =
c1.Pdj,d + c2.Pyk,d

c1 + c2
, (8)

c1, c2 ∈ rand() (9)

Pdj =

{
Pdnew

j , Fpd,new
j < Fpd

j

Pdj, else
(10)

In the prey phase (Figure 1), the escape of the prey to the shelter subpopulation takes
place, where random individuals are taken from the predator and prey subpopulations.
Note that the shelter subpopulation is the same size as the prey subpopulation, where the
shelter gives a space for every individual in the prey subpopulation for refuge from the
predators. It is mathematically modeled using Equations (11)–(13).

Si : si,d = xl,d, i = 1 : Npy, d = 1 : m, l ∈ 1 : N, (11)

Pynew
i : pynew

i,d = pyi,d + E · r(si,d − pyi,d) (12)

where
i = 1 : Npy, d = 1 : m

E = random(−2, 2)

Pyi =

{
Pynew

i , Fpy,new
i < Fpy

i
Pyi, else

(13)

The population continues updating using Equations (1)–(13) until the termination
criteria are met.
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3.2. Quantum Formulation

We give further details of the equations that have been used to create new individuals
from the population in QPPA through quantum formulation via the predator and prey
subpopulations. We use the foundations of quantum mechanics to formulate the quantum
predator phase shown in Algorithm 1 and Figure 1.

A wave function can be solved using the Schrödinger equation [45]:

ih̄
∂Ψ
∂t

=
−h̄2

2m
∂2Ψ
∂2t

+ VΨ (14)

V is the representation of the potential energy function, h-cross (h̄) is Plank’s constant
divided by 2π, and i represents an iota that gives the imaginary part of a complex number.

In order to find the probability of a particle at point x and time t, we solve |Ψ(x, t)|.
Therefore, |Ψ(x, t)|2dx gives the probability of finding the particle between x and (x + dx)
at time t. The variable separation method [] is used to solve the Schrödinger equation.

Ψ(x, t) = ψ(x).φ(t) (15)

The variable separation method creates two different functions dependent on x and t,
respectively. Therefore, the Schrödinger equation can be written as in Equation (16):

ih̄
1
φ

∂φ

∂t
=

−h̄2

2m
1
ψ

∂2ψ

∂2t
+ V (16)

The second part of the above equation is dependent on x and independent of t and is
therefore called the time-independent Schrödinger equation. The specification of the
potential function V(x) is important to solve the Schrödinger equation. Some of the most
common potential functions are the one-dimensional delta potential well, the harmonic
oscillator, and the square potential well. In our algorithm, we use the delta potential
function, and therefore we define the Dirac delta function δ(x) as in Equation (17).

δ(x) =

{
0, x ̸= 0
∞, x = 0

, with
∫ +∞

−∞
δ(x)dx = 1 (17)

δ(x − c) is a similar function that has the same properties at position c as the origin in
δ(x). If we multiply δ(x − c) by an ordinary function f (x), it is the same as multiplying
f (c).

f (x)δ(x − c) = f (c)δ(x − c) (18)

Integrating both sides from -∞ with ∞, we obtain f (c), where c is a constant.∫ −∞

+∞
f (x)δ(x − c)dx =

∫ −∞

+∞
f (c)δ(x − c)dx (19)

We can consider the potential of the form of Equation (20):

V(x) = −cδ(x). (20)

Replacing the potential function in a time-independent Schrödinger equation, we have
Equation (21):

−h̄2

2m
1
ψ

∂2ψ

∂2t
− cδ(x)ψ = Eψ (21)

which can be written in the form given in Equation (22):

1
ψ

∂2ψ

∂2t
+ k2ψ = 0. (22)
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where

k =

√
−2mE

h̄2 . (23)

This potential yields both bound states (E < 0) and scattering states (E > 0). In the
region x< 0, V(x) = 0, and E is negative by assumption, so k is real and positive, and hence
we obtain Equation (24).

ψ = Aekx, x < 0 (24)

In Equation (24), we assume that the pre-exponential factor is kept at 0 for the negative
x part, for which the power of exponential would be −kx, as it would blow up when
x → −∞.

In the region x> 0, V(x) = 0, we obtain Equation (25):

ψ = Be−kx, x > 0 (25)

The above equation does not include the term whose power of exponential is kx
because it would blow up as x → ∞, so the pre-exponential factor is kept at 0. On keeping
A = B, we obtain a general formula:

ψ(x) =

{
Bekx, x < 0
Be−kx, x > 0

(26)

We assume that the particle is present in a one-dimensional space. We refer to point p
as the local attractor that is at the center of the potential well. Equation (27) represents the
potential energy of the particle in a one-dimensional delta potential well.

ψ(x) = −aδ(x − p) = −aδ(y) (27)

Let m denote the mass of the particle and x − p = y. Below are the steps involved in
integrating the Schrödinger equation from −ε to +ε.

∫ +ε

−ε
(

h̄
2m

d2ψ(y)
dy2 − aδ(y)ψ(y))dy =

∫ +ε

−ε
(Eψ(y))dy = 0

taking the limit as ε goes to 0,

ψ,(0+)− ψ,(0−) = −α
2m
h̄2 ψ(0)

2Bk = −α
2m
h̄2 B

E = Eo = − h̄2k2

2m
= − a2m

2h̄2

We integrate |ψ(x)|2 to determine the constants∫ +∞

−∞
|ψ(y)|2dx =

B2

k
= 1

B =
√

k, L =
1
k
=

h̄2

2m
(28)

where L is the length of the potential well; therefore, the ψ(y) represents the normalized
wave function as given in Equation (29).

ψ(y) =
1√
L

e−
|y|
L (29)
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We assume that s is a random number in the range (0, 1/L) and s is the probability of
the existence of a quantum body in a particular position p, as given in Equation

s = random(0,
1
L
) =

1
L

random(0, 1) = u.
1
L

u is a random number in the interval (0,1).

s = |ψ(x)|2 =
1
L

e−
|2y|

L

u = e−
|2y|

L → |y| = ± L
2

ln(
1
u
)− p = ± L

2
ln(

1
u
) (30)

where p is the local attractor used to define a new random location between the best and
current solution for better diversification in each iteration, which increases the exploratory
tendency of the optimization technique.

L = 2|py − c1 · pd| (31)

c1 ∈ rand()

We substitute Equation (30) with Equation (31) and obtain the following equation to
update the position of the particles.

pdnew = p ± |py − c1 · pdold|ln( 1
c2

) (32)

pdold and pdnew are the solutions before and after updating, respectively.

4. Empirical Evaluation
4.1. Experimental Settings

We assess the efficacy of QPPA for selected real-parameter optimization benchmark
problems and compare it with related algorithms from the literature. We first outline
the experimental configuration employed to evaluate the performance of the selected
algorithms. We select a set of fourteen benchmark objective functions, as shown in Table 1,
which provides the function name, formulation, and search space. We compare QPPA with
established optimization methods from the literature using the hyperparameters given in
their original papers, as shown in shown in Table 2. We make an exception for the case
of PSO for the F7 objection function (HGBat) given in Table 1, where we fine-tune the
hyperparameters in trial experiments.

In our algorithmic analysis, we investigate two different settings. In Setting 1, we focus
on evaluating the algorithm’s efficiency and convergence behavior in a lower-dimensional
solution space. Hence, in Setting 1, we use a population size (Np = 30), maximum iterations
(T = 1000), and dimension (D = 10). In Setting 2, we maintain a consistent population size
(Np = 30 and iteration count (T = 1000) and consider a much higher-dimensional space
(D = 100). This choice allows us to showcase the algorithm’s scalability and robustness
when solving more complex, high-dimensional optimization problems. By systematically
varying these settings, we aim to comprehensively understand the algorithm’s strengths
and limitations across a wide range of optimization scenarios.
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Table 1. Benchmark objective functions from Congress on Evolutionary Computation, 2022.

Function Name Formulation Search Space

F1 Zakharov ΣD
i=1x2

i + (ΣD
i=10.5ixi)

2 + (ΣD
i=10.5ixi)

4 [−100, 100]

F2 Rosenbrok ΣD−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2] [−10, 10]

F3 Exp. Schaffer g(x, y) = 0.5 + (sin2(
√

x2+y2)−0.5)
(1+0.001(x2+y2))2 [−100, 100]

f (x) = g(x1, x2) + g(x2, x3) + . . . + g(xD−2, xD−1) + g(xD−1, xD)

F4 Rastrigin 10D + ΣD
i=1[x

2
i − 10 cos(2πxi)] [−100, 100]

F5 Levy sin2(πw1) + ∑D−1
i=1 (wi − 1)2[1 + 10 sin2(πwi − 1)

]
+ (wD − 1)2[1 + sin2(2πwD)

]
[−30, 30]

wi = 1 + xi−1
4 , ∀i = 1, . . . , D

F6 Bent Cigar x2
i + 106 ∑D

i=2 x2
i [−100, 100]

F7 HGBat
∣∣∣∣(∑D

i=1 x2
i

)2
−

(
∑D

i=1 xi

)2
∣∣∣∣0.5

+
0.5 ∑D

i=1 x2
i +∑D

i=1 xi
D + 0.5 [−1.28, 1.28]

F8 High Conditioned Elliptic ∑D
i=1

(
106) i−1

D−1 x2
i [−500, 500]

F9 Happycat
∣∣∣∑D

i=1 x2
i − D

∣∣∣1/4
+

(0.5 ∑D
i=1 x2

i +∑D
i=1 xi)

D + 0.5 [−32, 32]

F10 Modified Schwefel 418.9829 × D − ∑D
i=1 g(zi) [−50, 50]

zi = xi + 4.209687462275036E + 002

F11 Ackley −20 exp
(
−0.2

√
1
D ∑D

i=1 x2
i

)
− exp

(
1
D ∑D

i=1 cos(2πxi)
)
+ 20 + e [−50, 50]

F12 Discus 106x2
1 + ∑D

i=2 x2
i [−65.536, 65.536]

F13 Griewank ΣD
i=1

x2
i

4000 − ΠD
i=1cos( xi√

i
) + 1 [−5, 5]

F14 Schaffer
[

1
D−1 ∑D−1

i=1

(√
si ·

(
sin(50.0s0.2

i ) + 1
))]2

, [−5, 5]

si =
√

x2
i + x2

i+1

Table 2. Hyperparameters for the selected optimization algorithms from the literature.

Algorithm Hyperparameters Values

PSO [7] Cognitive and social constant (c1, c2) ∈ (2, 2)
Inertia weight 0.99
Velocity limit Dimension range

GA [6] Type Real coded
Mutation rate 0.1
Crossover Whole arithmetic

GSA [14] Control parameter 100
Alpha 20
RNorm 2
RPower 1

SCA [44] Constant hyperparameter 2
Probability switch 0.5

Jaya [43] No Parameters

GWO [42] Convergence parameter (a) a: Linear reduction from 2 to 0.
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Table 2. Cont.

Algorithm Hyperparameters Values

MA [35] Inertia Weight 0.8
Inertia Weight Damping Ratio 1
Personal Learning Coefficient a1 = 1
Global Learning Coefficient a2 = 1.5, a3 = 1.5
Random Flight 1
Distance Sight Coefficient 2

LSA [46] Channel Time 0

4.2. Results

We report the performance results of the respective optimization algorithms using
two indicators: the fitness score of the average of the best (quasi-optimal) solutions and the
standard deviation (st. dev) of the best solutions. We present the results in Table 3, which
compares our QPPA with well-known optimization methods, including PSO [7], real-coded
GA [6], GSA [14], SCA [44], Jaya [43], GWO [42], MA [35], and LSA [46]. The reported
mean and standard deviation values are outcomes derived from five independent runs.

Table 3. Results of optimization algorithms on objective functions in Setting 2 (D = 10). We highlight
the best results in bold.

Function QPPA PSO GA GSA SCA Jaya GWO MA LSA

F1 0.00E+00 1.17E+04 5.01E−21 5.93E−18 1.73E−22 1.89E+04 1.50E−109 9.79E−105 8.06E−84
St. dev 0.00E+00 3.51E+03 7.43E−21 1.81E−18 4.88E−22 7.37E+03 4.58E−109 3.10E−104 2.55E−83
F2 8.45E−02 9.60E+01 8.15E+00 5.45E+00 7.07E+00 2.02E+00 6.57E+00 1.03E−10 9.62E+00
St. dev 2.06E−01 1.55E+04 1.31E+00 2.72E−01 2.39E−01 1.47E+00 6.95E−01 3.25E−10 1.92E+01
F3 0.00E+00 3.97E+00 4.51E−01 2.12E+00 4.99E−01 3.34E+00 4.63E−01 1.50E−02 1.39E+00
St. dev 0.00E+00 1.02E−01 4.72E−01 4.85E−01 5.21E−01 2.99E−01 5.38E−01 4.60E−02 6.33E−01
F4 0.00E+00 5.69E+01 0.00E+00 3.33E+01 4.15E−01 5.97E−01 1.80E+01 8.82E−01 1.47E+01
St. dev 0.00E+00 1.31E+03 1.91E+00 1.06E+01 1.31E+00 1.88E+00 1.43E+01 2.56E−01 1.12E+01
F5 1.50E−32 1.17E−01 7.42E−01 3.89E−19 3.24E−01 3.33E+01 3.13E−07 2.77E−30 3.98E+00
St. dev 0.00E+00 2.60E+01 2.07E−17 1.76E−19 1.74E−01 1.06E+01 1.29E−07 8.76E−30 4.10E+00
F6 0.00E+00 3.84E−07 2.31E−17 2.84E+02 1.65E−21 9.49E−08 8.85E−113 8.36E−112 3.71E−106
St. dev 0.0E+00 9.82E+08 4.24E−01 3.65E+02 5.20E−21 7.60E−08 1.20E−112 2.64E−111 1.17E−105
F7 4.59E−01 1.36E−02 4.20E−01 4.55E−01 2.58E−01 2.61E−01 3.75E−01 4.71E−02 3.53E−01
St. dev 8.17E−02 4.20E−02 6.65E−02 4.69E−02 5.21E−02 5.21E−02 7.94E−02 1.49E−01 6.54E−02
F8 0.00E+00 1.02E+07 3.86E−18 1.54E+06 6.19E−22 1.83E−08 1.50E−113 2.39E−96 2.84E−107
St. dev 0.0E+00 7.22E+08 5.13E−18 2.78E+06 1.92E−21 2.66E−08 1.71E−113 7.55E−96 8.89E−107
F9 2.78E−01 0.51E+01 0.32E+01 3.13E+00 3.02E+00 0.69E+02 3.11E+00 3.27E−01 2.96E+00
St. dev 4.68E−16 0.18E+02 8.10E−02 1.03E−01 2.32E−01 0.24E+02 2.75E−01 1.04E+00 2.14E−01
F10 3.77E+03 3.77E+03 3.77E+03 3.77E+03 3.77E+03 3.77E+03 3.77E+03 3.77E+02 3.77E+03
St. dev 0.00E+00 2.64E−06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.19E+03 0.00E+00
F11 4.44E−16 0.19E+02 3.21E−12 3.16E−09 1.99E+01 0.19E+02 2.01E+00 1.47E−15 1.30E+00
St. dev 0.00E+00 8.20E−02 3.01E−12 2.85E−10 4.60E−02 6.36E+00 4.63E−15 1.05E+00 6.53E−03
F12 0.00E+00 2.16E+00 4.31E−22 7.66E+02 5.73E−05 6.04E−13 6.46E−115 1.47E−15 1.66E−113
St. dev 0.00E+00 7.29E+03 6.31E−22 2.23E+02 4.35E−03 3.40E−13 1.90E−114 4.63E−15 5.24E−113
F13 0.00E+00 5.48E−02 3.00E−03 0.00E+00 3.36E−02 8.32E−02 1.79E−02 6.66E−17 5.83E−03
St. dev 0.00E+00 5.60E−02 1.00E−02 0.00E+00 3.11E−01 7.70E−02 2.16E−02 2.11E−16 1.36E−02
F14 1.48E−15 2.48E−04 1.70E−02 3.00E−03 9.89E−02 2.70E−04 2.23E−02 9.07E−32 5.87E−05
St. dev 4.68E−15 1.12E−04 3.60E−02 1.00E−02 5.11E−02 1.78E−04 3.11E−02 2.87E−31 1.85E−04

We find that QPPA is demonstrated to be the strongest performer in 12 out of 14 func-
tions in Setting 1, as shown in Table 3. The algorithm’s ability to adapt effectively and find
a balance between exploring new possibilities and exploiting promising ones allows it to
navigate complex search landscapes efficiently, which leads to optimal or near-optimal
solutions. Although MA stands out in problems such as HGBat, Katsuura, and Modi-
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fied Schwefel, QPPA’s widespread success across a diverse set of functions highlights its
potential as a versatile optimization method.

We further provide the results for a more complex case (Setting 2) in Table 4. In
Setting 2, we observe that QPPA demonstrates superior performance by outperforming all
other algorithms in 13 out of 14 functions. Notably, MA surpasses QPPA in optimizing the
Happycat function. These findings underscore the commendable performance of QPPA,
particularly in the realm of higher-dimensional problems.

Table 4. Results of optimization algorithms on objective functions in Setting 2 (D = 100). We highlight
the best results in bold.

Function QPPA PSO GA GSA SCA Jaya GWO MA LSA

F1 1.73E−304 2.77E+05 1.63E+03 1.13E+04 1.59E+05 1.64E+11 7.18E+04 1.07E+05 1.30E+05
F2 9.80E+01 2.61E+03 9.41E+05 1.61E+03 3.95E+05 1.55E+07 9.82E+01 9.69E+01 7.07E+02
F3 0.00E+00 4.45E+01 3.46E+01 1.79E+01 4.14E+01 4.85E+01 2.22E+01 3.21E+01 3.96E+01
F4 0.00E+00 2.68E+02 1.62E+03 1.43E+03 9.31E+03 2.73E+05 4.55E−13 1.27E+03 2.56E+02
F5 1.14E+01 9.19E+01 2.95E+02 2.22E+01 9.01E+02 7.67E+03 2.29E+01 4.34E+01 4.70E+02
F6 0.00E+00 3.49E+07 7.16E+08 7.68E+08 6.91E+08 2.92E+11 2.75E−24 8.26E+00 1.94E+06
F7 4.99E−01 8.57E−01 7.21E+02 7.04E−01 5.12E−01 4.53E+01 7.70E−01 1.55E−06 4.28E−01
F8 0.00E+00 3.09E+05 2.54E+07 4.53E+09 3.69E+07 4.91E+11 2.38E−25 1.47E+07 4.20E+05
F9 6.16E−01 6.15E+00 3.07E−01 5.61E−01 2.94E+00 3.26E+02 5.96E−01 5.58E−01 5.36E−01
F10 1.27E−03 5.19E+00 9.25E+01 8.20E+00 1.15E+02 8.22E+03 1.27E−03 1.27E−03 6.14E−03
F11 4.44E−16 3.31E+00 9.83E+00 4.56E+00 2.06E+01 1.99E+01 2.10E−13 8.06E+00 1.94E+01
F12 0.00E+00 3.52E+01 1.10E+03 3.55E+03 3.18E+03 4.58E+06 1.07E−29 6.70E−01 3.70E+01
F13 0.00E+00 3.94E−01 1.18E+00 2.36E+02 0.35E+00 1.17E+00 0.1E+00 5.01E−08 1.8E−03
F14 1.93E−91 9.53E−02 3.67E+00 5.36E−02 1.16E+00 2.63E−04 9.13E−04 4.15E−03 5.34E−02

We present a statistical analysis to evaluate the significance of QPPA using an unpaired
t-test [47] of the results from Setting 1. An unpaired t-test, also known as an independent
t-test, compares the means of two unrelated groups to determine whether there is a note-
worthy difference between them. We can determine whether the difference is statistically
significant or whether it occurs by chance alone. Table 5 presents the outcomes (p-values)
of the unpaired t-test performed between QPPA and the other algorithms, where we use a
threshold value of 0.02 to determine whether QPPA is significantly better. Based on the
results, we find that QPPA provides better performance than PSO, Real-GA, GSA, SCA,
Jaya, GWO, MA, and LSA.

Table 5. p-values for the t-test for the effectiveness of the respective algorithms coupled with QPPA
(e.g., PSO vs. QPPA) in Setting 1 (T = 1000, D = 10, Np = 30).

Function PSO GA GSA SCA Jaya GWO MA LSA

F1 2.61E−05 1.12E−19 1.33E−16 3.87E−21 4.23E−05 3.35E−108 2.19E−103 1.80E−82
F2 1.03E−06 1.80E−02 1.19E−02 1.56E−02 4.33E−01 1.45E−02 1.88E−01 2.13E−02
F3 8.87E−01 1.01E−01 4.74E−01 1.12E−01 7.46E−01 1.03E−01 3.29E−01 3.09E−01
F4 1.27E−05 0.00E+00 7.44E−02 9.27E−01 1.33E−01 4.03E−02 1.97E−01 3.29E−02
F5 2.61E−03 1.66E−01 8.70E−18 7.24E−01 7.45E−02 7.00E−06 6.16E−29 8.89E−01
F6 8.58E−10 5.17E−16 6.35E−03 3.69E−20 2.12E−06 1.98E−111 1.87E−110 8.30E−105
F7 7.22E−01 8.65E−01 9.63E−02 4.49E−01 4.41E−01 1.86E−01 9.21E−01 2.36E−01
F8 2.28E−10 8.63E−17 3.44E−07 1.38E−20 4.09E−07 3.35E−112 5.34E−95 6.35E−106
F9 1.07E−03 5.73E−01 3.29E−01 5.67E−01 1.48E−03 3.80E−01 6.59E−01 6.91E−01
F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.59E−04 0.00E+00
F11 5.90E−05 7.18E−11 7.07E−08 4.45E−02 4.47E−02 4.49E−01 2.29E−14 2.91E−01
F12 4.83E−05 9.64E−21 1.71E−04 1.28E−03 1.35E−11 1.44E−113 3.29E−14 3.71E−112
F13 1.22E−01 7.17E−02 0.00E+00 7.51E−01 1.86E−01 0.40E+00 1.49E−15 0.13E+00
F14 5.54E−03 3.79E−01 7.14E−01 2.21E−01 6.04E−03 4.98E−01 3.31E−14 1.31E−03
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Table 6 presents the iteration-wise outcomes of QPPA across the 14 objective functions,
maintaining consistent parameters with Setting 2. We provide the results for every 10th
percent of 1000 iterations. This detailed breakdown provides insights into the convergence
behavior of QPPA. Additionally, for a comprehensive comparative analysis, we include
results for PSO under identical settings, detailed in Table 7.

Table 6. Iteration-wise results for QPPA in Setting 2 (T = 1000, D = 100, Np = 30).

Func. Iter. 0 Iter. 100 Iter. 200 Iter. 300 Iter. 400 Iter. 500 Iter. 600 Iter. 700 Iter. 800 Iter. 900 Iter. 1000

F1 1.639E+11 2.33E−26 8.76E−60 3.35E−92 3.98E−125 2.68E−150 4.70E−170 4.14E−214 3.23E−242 2.00E−275 1.85E−302
F2 2.07E+03 9.82E+01 9.81E+01 9.73E+01 9.64E+02 9.55E+01 9.34E+01 9.32E+01 9.25E+01 9.24E+01 9.15E+01
F3 2.07E+03 1.73E−14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F4 2.02E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 2.08E+10 1.72E+01 1.35E+01 1.20E+01 1.12E+01 1.12E+01 1.11E+01 1.11E+01 1.04E+01 0.00E+00 0.00E+00
F6 2.08E+10 1.86E−29 7.17E−68 2.16E−105 2.05E−144 3.54E−177 3.43E−214 3.45E−254 7.71E−289 0.00E+00 0.00E+00
F7 2.27E+03 5.00E−01 4.30E−01 4.30E−01 4.30E−01 4.30E−01 4.30E−01 4.30E−01 4.30E−01 4.30E−01 4.30E−01
F8 2.27E+03 5.91E−29 7.95E−68 1.80E−109 1.62E−163 2.76E−216 1.56E−258 7.65E−292 0.00E+00 0.00E+00 0.00E+00
F9 2.27E+03 7.56E−01 6.95E−01 6.05E−01 5.45E−01 5.45E−01 5.45E−01 5.45E−01 5.45E−01 5.45E−01 5.45E−01
F10 2.27E+03 1.20E−03 1.20E−03 1.20E−03 1.20E−03 1.20E−03 1.20E−03 1.20E−03 1.20E−03 1.20E−03 1.20E−03
F11 2.04E+01 4.44E−16 4.44E−16 4.44E−16 4.44E−16 4.44E−16 4.44E−16 4.44E−16 4.44E−16 4.44E−16 4.44E−16
F12 6.37E+05 1.37E−37 3.93E−73 4.14E−107 3.83E−147 5.75E−183 4.93E−225 5.22E−260 0.00E+00 0.00E+00 0.00E+00
F13 1.11E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F14 2.91E+00 9.85E−08 2.47E−09 1.72E−09 7.05E−20 1.01E−31 1.02E−45 9.11E−59 2.85E−75 2.87E−89 2.87E−89

Table 7. Iteration-wise results for PSO in Setting 2 (T = 1000, D = 100, Np = 30).

Func. Iter. 0 Iter. 100 Iter. 200 Iter. 300 Iter. 400 Iter. 500 Iter. 600 Iter. 700 Iter. 800 Iter. 900 Iter. 1000

F1 5.02E+06 6.80E+05 6.80E+05 6.80E+05 6.80E+05 6.80E+05 6.80E+05 6.80E+05 6.80E+05 6.80E+05 6.80E+05
F2 1.50E+07 1.50E+07 1.50E+07 1.50E+07 1.50E+07 1.50E+07 1.50E+07 1.50E+07 1.50E+07 1.50E+07 1.50E+07
F3 4.87E+01 4.83E+01 4.83E+01 4.83E+01 4.83E+01 4.83E+01 4.83E+01 4.83E+01 4.83E+01 4.83E+01 4.83E+01
F4 2.71E+05 2.71E+05 2.71E+05 2.71E+05 2.71E+05 2.71E+05 2.71E+05 2.71E+05 2.71E+05 2.71E+05 2.71E+05
F5 7.57E+03 7.07E+03 7.07E+03 6.68E+03 6.68E+03 6.68E+03 6.68E+03 6.68E+03 6.68E+03 6.68E+03 6.68E+03
F6 2.78E+11 2.78E+11 2.78E+11 2.78E+11 2.78E+11 2.78E+11 2.78E+11 2.78E+11 2.78E+11 2.78E+11 2.78E+11
F7 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01
F8 4.47E+10 3.83E+10 2.98E+10 2.98E+10 2.98E+10 2.98E+10 2.98E+10 2.98E+10 2.98E+10 2.98E+10 2.98E+10
F9 3.17E+02 3.17E+02 3.17E+02 3.17E+02 3.17E+02 3.17E+02 3.17E+02 3.17E+02 3.17E+02 3.17E+02 3.17E+02
F10 7.83E+03 7.83E+03 7.83E+03 7.83E+03 7.83E+03 7.83E+03 7.83E+03 7.83E+03 7.83E+03 7.83E+03 7.83E+03
F11 2.15E+01 2.00E+01 2.00E+01 9.83E+00 9.83E+00 9.83E+00 9.83E+00 9.83E+00 9.83E+00 9.83E+00 9.83E+00
F12 7.05E+05 3.44E+05 3.44E+05 2.28E+05 2.28E+05 1.10E+03 1.10E+03 1.10E+03 1.10E+03 1.10E+03 1.10E+03
F13 1.18E+00 1.18E+00 1.18E+00 1.18E+00 1.18E+00 1.18E+00 1.18E+00 1.18E+00 1.18E+00 1.18E+00 1.18E+00
F14 4.56E+00 2.61E−04 2.52E−04 2.52E−04 2.52E−01 2.52E−01 2.52E−01 2.52E−01 2.52E−01 2.52E−01 2.52E−01

4.3. Sensitivity Analysis

We finally present the sensitivity analysis of QPPA focusing on two parameters, the
number of iterations and the number of members in the population, using Setting 1. We
evaluate QPPA using Np = 20, Np = 50, and Np = 100. We assess the results for
a maximum of 100 iterations for the sensitivity analysis on the maximum number of
iterations. We opt for 100 instead of the 1000 iterations due to the faster convergence of
QPPA. In Figure 2, we provide visual representations of the sensitivity analysis for the
objective functions (F1–F4) that suggest that the population size has a significant impact
on the performance of QPPA. Specifically, increasing the population size from Np = 20
to Np = 50, and Np = 100 leads to improved convergence (fitness). We notice that the
algorithm takes a longer time than usual for the Exp. Schaffer problem (F3). We notice a
similar trend in terms of an improvement in convergence for a larger population size for
the rest of the objective functions, as shown in Figures 3–5. It is also noticeable that the
Ackley function shows a slightly different trend, taking more time than the others. We also
note that the fitness score values of HGBat are less than 1, and functions such as Griewank
have a smaller range of fitness values. Furthermore, Modified Schwefel has the highest
fitness values being reduced, and they are no lower than 3770. These differences are due to
the nature of the objective functions according to the properties of their fitness landscapes.
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(a) Zakharov (b) Rosenbrok

(c) Exp. Schaffer (d) Rastrigin

Figure 2. Sensitivity analyses of QPPA for the population size (Np).

(a) Levy (b) Bent Cigar

(c) HGBat (d) High Conditioned Elliptic

Figure 3. Sensitivity analyses of QPPA for the population size (Np).
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(a) Katsuura Function (b) Happycat

(c) Modified Schwefel (d) Ackley

Figure 4. Sensitivity analyses of QPPA for the population size (Np).

(a) Discus (b) Griewank

Figure 5. Sensitivity analyses of QPPA for the population size (Np).

4.4. Further Comparisons

Cooperative coevolution [48] leverages a divide-and-conquer paradigm in evolution-
ary algorithms to effectively decompose intricate problems into subcomponents (subpopula-
tions) that collaborate and compete among themselves. The collaboration is implemented in
terms of fitness evaluations, since the subcomponents feature partial solutions. Cooperative
coevolution has been prominent for global optimization problems [49] and neuroevo-
lution [50,51]. There have been a number of extensions of the cooperative coevolution
framework [52], including the multi-island competitive cooperative coevolution (MICCC) [53],
which used a real-coded genetic algorithm in the subpopulations. Bali and Chandra [54]
demonstrated significant improvements in MICC when compared to earlier counterparts,
and hence we use it to further compare our results for Setting 2 (D = 100).
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In Table 8, we present the results of QPPA against MICCC-6 and MICCC-7 across four
benchmark functions, where 6 and 7 refer to the number of islands used for competition.
Additionally, we include the number of iterations when QPPA achieves the required
minimum fitness threshold. We observe the rapid convergence of QPPA in the optimization
process. In Figure 6, we present the convergence plots of QPPA for selected objective
functions from the 2nd to the 100th iteration. The results of the first iteration, denoting the
initial performance, are explicitly reported in the figure captions for a better understanding.

Table 8. Optimization results compared to MICCC (T = 15, 000, D = 100, Np = 100).

Function QPPA MICCC-6 [54] MICCC-7 [54]

Ellipsoid 0.00E+00 4.25E−89 0.00E+00
Rosenbrock 5.37E+01 3.47E+01 8.12E+01

Schwefel’s Problem 1.2 0.00E+00 0.00E+00 0.00E+00
Rastrigin 0.00E+00 1.13E−13 0.00E+00

(a) Ellipsoid (Iter. 1 fitness = 1.02E + 04) (b) Rosenbrock (Iter. 1 fitness = 1.43E + 05)

(c) Schwefel’s Problem 1.2 (Iter. 1 fitness =

1.63E + 03) (d) Rastrigin (Iter. 1 fitness = 1.18E + 03)

Figure 6. Convergence graphs of QPPA for selected functions for Setting 2 (D = 100).

5. Discussion

In summary, QPPA demonstrates superiority over existing algorithms due to the incor-
poration of quantum principles and predator–prey dynamics. One of the key features is the
utilization of a quantum predator mechanism, which enhances the exploration capabilities
and enables QPPA to overcome local minima. Instances of this can be seen in Table 3,
where QPPA finds the global minima for multiple functions, including Zakharov, Schaffer,
Rastrigin, Bent Cigar, High Conditioned Elliptic, Discus, and Griewank. The convergence
of QPPA can also be seen in Figures 2–5, where it approximately takes 10–20 iterations to
converge for simpler problem instances and more iterations for larger problem instances
(Figure 2). Moreover, note that in specific cases (D = 100), as shown in Figure 2b for the
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Rosenbrock function, we see that there is convergence with a fitness value of less than
100, remaining in a local minimum for a large period of time that exceeds 1000 iterations
(Table 6—F2). In Table 8, we note that the results are shown for 15,000 iterations, where
QPPA achieves 5.37E+01 for Rosenbrock and MICCC achieves 3.47E+01. However, we
note that MICCC uses 1,500,000 function evaluations with a population size of 100, which
is equivalent to 150,000 iterations. Hence, we can conclude that QPPA achieves similar
convergence to MICCC at a fraction of the time.

Although QPPA performs exceptionally well in general, there are some limitations in
certain situations. QPPA in some cases is not able to achieve the same level of performance
as algorithms that contain more hyperparameters, which are specifically tuned for the prob-
lems. For example, as shown in Table 3, the mayfly optimization algorithm outperforms
QPPA in the HGBat, Katsuura, and Modified Schwefel functions, suggesting that QPPA
may not be able to adapt to certain problem domains.

In future work, QPPA can be extended by leveraging parallel computing, investigating
hybridization strategies, and applying it to the training of machine learning models. Incorpo-
rating parallel computing techniques could enhance the efficiency and scalability of QPPA,
enabling it to handle larger-scale optimization tasks [55,56]. There are several promising direc-
tions for adaptations of QPPA to solve complex problems in the area of discrete parameter
optimization. Exploring hybridization strategies for QPPA with other metaheuristic algo-
rithms and for the training of machine learning models could yield enhanced performance,
which has been demonstrated for hybrid metaheuristic algorithms in the literature [57–60].
Finally, machine learning models [61,62] such as deep learning models could enable better
performance with the automatic design of network architectures via QPPA-based neuroevo-
lution [63]. Furthermore, QPPA can be implemented using parallel computing and also be
applied to large dimensions for the same or similar functions [64], i.e., 1000 dimensions, for it
to be compared to large-scale global optimization benchmarks from the literature [65].

Metaheuristic optimization algorithms have drawn criticism in terms of novelty due to
an overemphasis on renaming similar processes in nature [66], e.g., there is not a significant
difference between the firefly and dragonfly algorithms, and an objective evaluation of their
properties remains to be performed. Rajwal et al. [67] reported that more than 500 new
metaheuristic algorithms have been introduced in the past few decades. Moreover, many
population-based metaheuristics have similar properties, and, over time, many benchmark
problems have been defined by researchers, with minimal changes [67]. Hence, it is important
to take into account these factors while designing new algorithms, since they could be simply
re-implementations of existing algorithms on newer optimization function benchmarks. There
has been less focus on parallel implementations and the open sharing of code and resources,
which makes the field’s progress challenging. In our study, we try to address some of these
shortcomings through a comprehensive study and the open sharing of the code and resources.

6. Conclusions

We demonstrate empirically that QPPA provides a significant contribution to the area
of metaheuristic optimization. QPPA features predator–prey interactions and principles
of quantum computing, where it emulates the behavior of predators chasing prey. QPPA
demonstrated superior performance when compared to eight other algorithms across 14
benchmark optimization functions. Our results demonstrate that QPPA has the ability
to reach global minima about 8 - 10 times faster when compared to related algorithms
for a wide range of problems. Additionally, it can handle high-dimensional optimization
problems and provides better solutions compared to traditional optimization algorithms.
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