
Citation: Haque, S.A.; Parvez, M.T.;

Hossain, S. GPU Algorithms for

Structured Sparse Matrix

Multiplication with Diagonal Storage

Schemes. Algorithms 2024, 17, 31.

https://doi.org/10.3390/a17010031

Academic Editors: Charalampos

Konstantopoulos and Grammati

Pantziou

Received: 10 December 2023

Revised: 26 December 2023

Accepted: 4 January 2024

Published: 12 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

GPU Algorithms for Structured Sparse Matrix Multiplication
with Diagonal Storage Schemes †

Sardar Anisul Haque 1,*, Mohammad Tanvir Parvez 2 and Shahadat Hossain 3

1 School of Computing and Data Science, Oryx Universal College in Partnership with Liverpool John Moores
University (UK), Doha P.O. Box 12253, Qatar

2 Department of Computer Engineering, College of Computer, Qassim University,
Buraydah 52571, Saudi Arabia; m.parvez@qu.edu.sa

3 Department of Computer Science, University of Northern British Columbia,
Prince George, BC V2N 4Z9, Canada; shahadat.hossain@unbc.ca

* Correspondence: sardar.h@oryx.edu.qa
† A preliminary version of this work was presented in the following paper: Haque, S.A.; Choudhury, N.;

Hossain, S. Matrix Multiplication with Diagonals: Structured Sparse Matrices and Beyond. In Proceedings of
the 2023 7th International Conference on High Performance Compilation, Computing and Communications,
Jinan, China, 17–19 June 2023; pp. 69–76. https://doi.org/10.1145/3606043.3606053.

Abstract: Matrix–matrix multiplication is of singular importance in linear algebra operations with a
multitude of applications in scientific and engineering computing. Data structures for storing matrix
elements are designed to minimize overhead information as well as to optimize the operation count.
In this study, we utilize the notion of the compact diagonal storage method (CDM), which builds
upon the previously developed diagonal storage—an orientation-independent uniform scheme to
store the nonzero elements of a range of matrices. This study exploits both these storage schemes
and presents efficient GPU-accelerated parallel implementations of matrix multiplication when the
input matrices are banded and/or structured sparse. We exploit the data layouts in the diagonal
storage schemes to expose a substantial amount of fine-grained parallelism and effectively utilize the
GPU shared memory to improve the locality of data access for numerical calculations. Results from
an extensive set of numerical experiments with the aforementioned types of matrices demonstrate
orders-of-magnitude speedups compared with the sequential performance.

Keywords: matrix multiplication; optimization method; diagonal storage; banded matrix; structured
sparse matrix; GPU; massively multithreaded parallelism

1. Introduction

The ubiquitous matrix multiplication operation is an essential component of many
problems arising in combinatorial and scientific computing. It is considered an inter-
mediate step in a myriad of scientific, graph, and engineering applications including
computer graphics, network theory, algebraic multigrid solvers, triangle counting, mul-
tisource breadth-first searching, shortest path problems, colored intersecting, subgraph
matching, and quantized neural networks [1–6]. The data structures for storing large
matrices optimize the memory used for storage and the performance of the multiplication
operation. However, the design and selection of storage formats for matrices depend on
several issues, like intended applications, functions to be implemented, and the structures
of the matrices [7].

For the multiplication of two general dense matrices, it is common to store two-
dimensional matrices by rows (like row-major order used in C/C++ 20 and Java 18) or by
columns (column-major order used in FORTRAN 2018 and MATLAB R2023b). There exist a
wide variety of storage formats to match various features of sparse matrices [8]. In the case
of general sparse matrices, a traditional triple-loop matrix multiplication algorithm employs

Algorithms 2024, 17, 31. https://doi.org/10.3390/a17010031 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.1145/3606043.3606053
https://doi.org/10.3390/a17010031
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010031?type=check_update&version=1

Algorithms 2024, 17, 31 2 of 18

row-wise access with Compact Row Storage (CRS) or transposed access with Compact
Column Storage (CCS). However, numerical solutions to partial differential equations
often give rise to a class of structured sparse matrices in engineering applications known
as banded/band matrices. When exploited, the banded structures of these matrices provide
some advantages, in contrast to unstructured sparse matrices, as they reduce not only
the number of arithmetic operations but also the storage of and cache-friendly access to
the matrix elements [9]. The storage of the subdiagonals and superdiagonals of banded
matrices in consecutive memory locations supports a compact storage format, providing a
trade-off between minimizing storage and enabling a cache-friendly access pattern of the
matrix elements [10].

Compared to either CCS or CRS for the vectorized matrix multiplication of banded
matrices, Madsen et al. [11] demonstrated that storage via diagonals and direct usage of
these diagonals as vectors in matrix multiplication can be advantageous and computation-
ally effective. Additionally, CCS/CRS does not allow transposes of matrices to be readily
available for use in vector forms. Similarly, Tsao and Turnbull [12] demonstrated through
numerical experiments that the algorithm developed by Madsen et al. was capable of rewrit-
ing the multiplication such that contagious elements from the diagonals were multiplied
rather than the elements from rows and columns. This alleviated the problem associated
with irregular access and yielded significant improvements in terms of both storage cost
and computation time for the multiplication of matrices with smaller bandwidths.

Researchers [13] also focused on improving the performance of linear algebra opera-
tions on a variety of modern many-core architectures. The inherent challenging issues of
linear algebra computations (e.g., load balancing, the irregular nature of the computations,
and difficulty in predicting the output size) are further complicated in many-core systems’
(e.g., GPU) architectural constraints (e.g., memory access, limited shared memory, strict
SIMD, and thread execution). Benner et al. [14] identified a number of reasons for the
progressive adoption of modern graphics processing units (GPUs). These reasons include
the following: (i) the availability of an application programming interface (e.g., CUDA [15],
OpenCL [16]), (ii) affordable price, (iii) notable raw performance improvement, and (iv) fa-
vorable power–performance ratio. In particular, for dense matrix multiplication, many
studies [17–19] demonstrated the benefits of GPU computing for achieving high efficiency.

Sparse matrices vary greatly in terms of their sizes, densities, and structures. Therefore,
special storage formats were reasonably sought for matrices with certain characteristics to
obtain better performance in terms of computation time. The current study utilizes a novel
compact diagonal storage structure adopted from the work of Hossain and Mahmud [20].
The advantages of their approach along with efficient cache usage and reduced storage
requirements, as identified in [21], are (i) a one-dimensional storage alternative without
padding improving the previous storage schemes that utilized a two-dimensional array to
store the diagonals, (ii) efficient scaling over the increased bandwidth of the matrices and
the parallel processing of the independent diagonal calculations, and (iii) space efficiency
for diagonal matrices and stride-1 access to the matrix elements avoiding any form of
indirect referencing required in CRS and CCS. However, the above study did not address
the multiplication operations using the transpose of dense matrices and special sparse
matrices where the nonzeros are confined to diagonals while these nonzero diagonals are
distributed arbitrarily in the matrix. An example of the sparsity pattern of a matrix is
shown in Figure 1. We call these sparse matrices structured sparse matrices.

Note that, for the rest of this study, we refer to the compact diagonal storage structure as
CDM and its predecessor, developed by Hossain and Mahmud, as the HM storage structure.

The objectives of this study are to develop GPU algorithms and explore the impact
of this novel storage scheme including the aforementioned diagonal storage scheme [20]
(i.e., CDM and HM, respectively) on the product of (i) banded matrices with varying
bandwidth and (ii) structured sparse matrices with varying numbers of diagonals.

The contributions of the current study can be summarized as follows:

Algorithms 2024, 17, 31 3 of 18

1. We introduce GPU algorithms, for the first time, to multiply banded and structured
sparse matrices, where the sparse matrices are stored as the CDM and HM schemes,
respectively;

2. Explore the performance of both the CDM and HM storage schemes in the multiplica-
tion of banded matrices with varying bandwidth and of structured sparse matrices
with varying numbers of diagonals, respectively;

3. Compare the performances of the proposed GPU algorithms with their CPU imple-
mentations.

Figure 1. Sparsity pattern of arbitrarily distributed nonzero diagonals.

The work presented in this paper is a significantly extended version of [22]. For ease
of presentation, we borrow the central concepts of diagonal storage from [22].

The rest of the paper is organized in the following way. Section 2 presents a brief
overview of the literature on the matrix multiplication problem in GPU architectures.
Section 3 reviews the diagonal storage schemes HM [20] and CDM [22], while general
matrix multiplication with matrices stored in CDM is described in Section 4. With a short
discussion on GPU architecture in Section 5, we provide a detailed description of the
new GPU algorithms for banded and structured sparse matrix multiplication in Section 6.
Section 7 presents the results of numerical experiments with the GPU algorithms. Finally,
in Section 8, we give our concluding remarks.

Algorithms 2024, 17, 31 4 of 18

2. Related Work

In the area of dense matrix multiplication, achieving high efficiency via GPU com-
puting is well studied [9,23–25]. Early work [26] on dense matrix multiplication using
GPUs framed the computation as a multitexture multiplication and blending operation.
The user-programmable shared memory provided by subsequent GPU architectures en-
abled higher-performing data-parallel schemes via shared memory and registers [27,28].
The evolution of GPU math libraries employed more sophisticated code generation and
kernel selection components to improve the performance of dense matrix multiplication.
NVIDIA’s cuBLAS library provides an extended cublasGemmEx interface where carefully
trained heuristics allow the caller to select from among 24 different dense matrix multipli-
cation algorithms. For the purpose of optimization, it is common for cuBLAS to consider a
wide range of data-parallel and fixed-split [29] variants implemented via these algorithms
and assemble each variant into its own architecture-specific kernel program.

Unlike dense matrix multiplication, the implementation of sparse matrix multiplication
in the current generic architectures is significantly more challenging. Among others, as
identified by Matam et al. [30], variations in the nature of the sparsity introduce (i) load
balancing problems among threads, (ii) optimization problems associated with irregular
memory access patterns, and (iii) memory management problems due to the difficulties
associated with the prediction of the output size. The authors also pointed out that GPU
implementation poses further challenges in sparse matrix multiplication. In addition to
the serious workaround required for the limited amount of shared memory available in
GPU architecture, any divergence in the execution paths of a warp of threads against
the single-program, multiple-data (SPMD) nature of GPU thread execution contributes to
performance hindrance.

The GPU-based implementation of sparse matrix multiplication is available in CUS-
PARSE [31] and CUSP [32]. CUSP is termed an “expansion, sorting, and compression
(ESC) method” due to the nature of its operation where it expands all values arising from
scalar multiplication, sorts them, and finally compresses the entries with duplicate column
indices. Consequently, the computational load is shifted to finding an efficient parallel
sorting algorithm for the GPU (i.e., Radix-sort). This library routine stores the entire output
on the GPU itself. Consequently, it only works on instances whose output size fits in the
available global memory [33]). In addition, due to great variability in size, density, and
structure, researchers [8] pointed out that it is reasonable to design special storage formats
for matrices with certain characteristics to achieve better computational performance in
the GPU.

3. Storage Schemes

In this section, we define the terminologies and notations used throughout the paper.
Also, we discuss the storage schemes used in this work.

Let A ∈ Rn×n be a banded matrix, where kl and ku are lower and upper bandwidths,
respectively. Here, aij = 0 if i− j > kl or j− i > ku, where aij refers to an element of matrix
A and i, j denote the row index and column index of matrix A, respectively. Note that both
indices i and j start with 0. Define Ak =

{
aij|j− i = k

}
and Ak =

{
aij|i− j = k

}
as the kth

superdiagonal and kth subdiagonal of A, respectively.
Figure 2a displays a banded matrix where ku = 2 and kl = 1. Figure 2b displays the

two-dimensional array representation used in BLAS (Basic Linear Algebra Subroutine),
where ∗ represents a placeholder that is neither initialized nor referenced by any routine.
The diagonals are placed in the following order: superdiagonals (i.e., A2 = [a02, a13] and
A1 = [a01, a12, a23]), main diagonal (i.e., A0), and subdiagonals (i.e., A1 = [a10, a21, a32]),
preserving the column indexing. Figure 2c presents a variant of banded matrix storage by
diagonals, where the nonexisting elements are pushed to the right such that the column
indexing in the original matrix is not preserved.

Unless kl + ku << n, the superfluous padding required along with the nonzero entities
of super- and subdiagonals will outweigh the benefit of these compact storage schemes.

Algorithms 2024, 17, 31 5 of 18

Not only does the data structure become more complicated due to the additional storage
needed for the nonexisting elements, but accessing the true matrix elements requires testing
for sentinels, thereby fragmenting the control flow. This latter issue can become a significant
performance bottleneck in contemporary many-core computer architectures.

Figure 2. (a) A banded matrix, (b) column-major storage scheme for diagonals of (a), and (c) alterna-
tive column-major storage for (a). Here “*” means the the absence values as the diagonal size is equal
or less than the dimensions of the matrix.

3.1. Diagonal Storage Scheme

The diagonal storage scheme proposed by Hossain and Mahmud [20] (called the
HM scheme) for banded matrices is free from the aforementioned extraneous padded
storage. It also supports a uniform representation of different kinds of structured matrices
(e.g., diagonal, banded, triangular, symmetric, and fully dense matrices) and is independent
of any orientation. In this section, we describe the diagonal storage scheme presented
in [20]. From now on, we will use the terms “diagonal storage” and “HM” interchangeably
to denote the storage scheme presented in [20].

For a dense matrix A, the HM diagonal storage scheme uses a one-dimensional array of
size n(ku + kl + 1)− ku(ku+1)

2 − kl(kl+1)
2 . Note that, for a dense matrix A, kl = ku = (n− 1).

Likewise, for an upper triangular matrix, we have kl = 0 and ku = n − 1, whereas for
a lower triangular matrix, ku = 0 and kl = n− 1. The nonzero elements are ordered by
diagonals as follows: (A0; A1; A2; . . . Aku ; A1; A2; . . . Akl

). For example, considering this
storage scheme, the elements of the matrix in Figure 2a can be stored as

(a00, a11, a22, a33 | a01, a12, a23 | a02, a13 | a10, a21, a32)

where the symbol | is used to denote the boundary of the diagonals. According to the
authors of [20], some elementary arithmetic calculations are required to access the elements
of a specific diagonal in the HM scheme. For example, the index of the first element of the
kth superdiagonal is calculated as x + nk− k(k−1)

2 , where x is the starting index of the first
element of the main diagonal A0.

The indices of the diagonals that we follow in this paper are as follows. The index of
the principle diagonal A0 is 0. Ai, a superdiagonal, and Aj, a subdiagonal, are indexed as i
and −j, respectively, where i, j < n.

3.2. Compact Diagonal Storage Scheme

In this section, we will describe our proposed compact diagonal storage scheme.
For the rest of the study, the two terms “Compact Diagonal” and “CDM” will be used
interchangeably to denote our proposed storage scheme.

Rather than computing the super- and subdiagonals of the product C = AB separately,
we can pack compatible pairs of super- and subdiagonals in a vector of length n. The kth
superdiagonal for k = 1, 2, . . . , n− 1 of matrix A is a vector Ak of length n− k,

Algorithms 2024, 17, 31 6 of 18

Ak =

a0,k
a1,k+1
...
a(n−k−1,n−1)

.

Likewise, the kth subdiagonal is a vector Ak of length n− k,

Ak =

ak,0
ak+1,1
...
a(n−1,n−k−1)

.

We define the kth compact diagonal as

Ak =

(
Ak
An−k

)
where the kth superdiagonal is stacked on top of the (n− k)th subdiagonal. In the case of
dense matrices, we store each of these compact diagonals as a row of a matrix. For sparse
matrices, all compact diagonals are kept in one long one-dimensional array, and we store
some auxiliary arrays to represent the boundary between two diagonals.

It follows that each compact diagonal is a vector of length n. For example, the third
compact diagonal (for n = 4) is the vector A3 of length 4:

A3 =

(
A3
A1

)
=

a0,3
a1,0
a2,1
a3,2

where A3 is above the thick horizontal line and A1 is below it. The reverse of the kth compact
diagonal is defined as

Ãk =

(
Ak

An−k

)
by swapping the position of the superdiagonal and subdiagonal pair.

Figure 3 presents a visualization of a matrix of size n = 4 (Figure 3a), the diagonal
storage suggested in [20] (Figure 3b), and the compact diagonal storage (Figure 3c) proposed
in the current study.

(a) (b) (c)
Figure 3. Visualizations of (a) an original matrix, (b) HM (i.e., diagonal) storage, and (c) CDM
(i.e., compact diagonal) storage.

Algorithms 2024, 17, 31 7 of 18

4. Compact Diagonal Matrix Multiplication

We are now ready to express the matrix multiplication operation

C ← C + AB (1)

using compact diagonals. The main diagonal of the product matrix C is computed as

C0 = C0 + A0B0 +
n−1

∑
k=1

Ak B̃k

For n = 4,
C0 = C0 + A0B0 + A1 B̃1 + A2 B̃2 + A3 B̃3
c0,0
c1,1
c2,2
c3,3

 =

c0,0
c1,1
c2,2
c3,3

+

a0,0
a1,1
a2,2
a3,3

 ∗

b0,0
b1,1
b2,2
b3,3

+

a0,1
a1,2
a2,3
a3,0

 ∗

b1,0
b2,1
b3,2
b0,3

+

a0,2
a1,3
a2,0
a3,1

 ∗

b2,0
b3,1
b0,2
b1,3

+

a0,3
a1,0
a2,1
a3,2

 ∗

b3,0
b0,1
b1,2
b2,3

The kth compact diagonal for k = 1, 2, . . . , n− 1 of the product matrix C is computed

as

Ck = Ck + AkB0
rk +

n−1

∑
i=1

A(k+i) mod n B̃i
rk

where the superscript rk indicates an upward shifting of the elements of vector B̃i with
wrap-around by k positions. To illustrate, consider

B̃3 =

b3,0
b0,1
b1,2
b2,3

.

For k = 1, we have

B̃3
r1 =

b0,1
b1,2
b2,3
b3,0

.

Then, the first compact diagonal of the product matrix C is obtained as

C1 = C1 + A1Br1
0 + A2 B̃1

r1 + A3 B̃2
r1 + A0 B̃3

r1
c0,1
c1,2
c2,3
c3,0

 =

c0,1
c1,2
c2,3
c3,0

+

a0,1
a1,2
a2,3
a3,0

 ∗

b1,1
b2,2
b3,3
b0,0

+

a0,2
a1,3
a2,0
a3,1

 ∗

b2,1
b3,2
b0,3
b1,0

+

a0,3
a1,0
a2,1
a3,2

 ∗

b3,1
b0,2
b1,3
b2,0

+

a0,0
a1,1
a2,2
a3,3

 ∗

b0,1
b1,2
b2,3
b3,0

.

Algorithms 2024, 17, 31 8 of 18

Matrix transposition is an algorithmic building block for algorithms such as Fast
Fourier Transform (FFT) and K-means clustering [34]. The MKL implementation of BLAS
provides transposed matrix multiplication,

C ← C + A⊤B, C ← C + AB⊤,

as well as symmetric rank-k (SYRK) and rank-2k (SYR2K) updates,

C ← AA⊤ + C, C ← AB⊤ + BA⊤ + C

respectively. With traditional row-major (or column-major) storage, the naive in-place
transposition incurs Ω(n2) I/O operations. In a computer with multilevel hierarchical
memory, this translates to Ω(n2) cache misses, resulting in an unacceptably high penalty
for performance. Both CDM and HM almost entirely avoid performance degradation due
to transposed access to matrix elements. To see this, consider an arbitrary element ai,j of
matrix A. Without loss of generality, assume that i < j and that k = (j− i). It follows that
ai,j is stored in compact diagonal k which has the form

Ak =

(
Ak
An−k

)
and that ai,j is an element of superdiagonal Ak. Now, consider the reverse Ãk of the kth
compact diagonal

Ãk =

(
Ak

An−k

)
Element ai,j of matrix A is located in row j and column i in the transposed matrix

B = A⊤. We claim that ai,j is stored in the kth compact diagonal Bk of matrix B and
that Bk = Ãk. It is clear that in the transposed matrix we have i > j so that k = (i − j).
By definition,

Bk =

(
Bk
Bn−k

)
=

(
Ak

An−k

)
,

thereby establishing that transposed access with diagonal storage is obtained without any
data movement.

Basic linear algebra operations with compact diagonals (CDM) can be viewed as a
specialization of HM [20] in that common types of square structured matrices such as
symmetric, triangular, banded, and Hessenberg matrices can be treated in a uniform way
using HM.

One final note about the actual computer implementation of matrix operations with
HM or CDM is concerned with the apparent matrix nonzeros being shuffled around

in the diagonal or compact diagonal vectors Ak =

(
Ak
An−k

)
, Ãk =

(
Ak

An−k

)
, and

B̃i
rk . However, it is not difficult to see that access to the relevant nonzero elements of

diagonal vectors during iterative computation can be provided through the loop variables
so that once the diagonals are laid out as vectors, no further data movement is needed in
their access.

5. GPU Programming

Owing to their high performance-to-price and performance-to-energy ratios, graphics
processing units (GPUs) have been increasingly used in recent years on a broad range
of computationally demanding and complex problems. These programmable parallel
processors are designed to achieve higher throughput with computing power exceeding
multicore CPUs by deploying thousands of relatively light-weight compute threads in

Algorithms 2024, 17, 31 9 of 18

parallel [35]. NVIDIA’s GPU with the CUDA (Compute Unified Device Architecture) envi-
ronment supports a standard high-level language (i.e., C language) interface to manipulate
the compute cores. It also supports the models of computations that explicitly combine
both task-based parallelism and data-based parallelism [36].

The code running on the GPU is traditionally called the kernel. CUDA threads are
grouped into thread blocks. Threads in a thread block reside on the same streaming multi-
processor (SM) of a GPU that can share data using shared memory and synchronize. Each
thread in a thread block has a unique identification number. Each group of 32 consecutive
threads from the same thread block is called a warp. It is the primary unit of execution in
an SM. Each SM contains a warp scheduler that is responsible for scheduling the warps to
the underlying cores on the SM.

6. Algorithms
6.1. Banded Matrix–Matrix Multiplication

We implemented banded matrix–matrix multiplication using the CDM data structure.
Banded matrices that arise in real-life applications usually have narrow bands compared to
their dimensions [37], which means that the CDM representation of the nonzero diagonals of
narrow banded matrices are packed with only a small number of zeros. Thus, the compact
diagonal scheme is more suitable for this case. On the other hand, we implemented
structured sparse matrix–matrix multiplication using the HM data structure, which is
described in the next section. As a banded matrix is a special kind of structured sparse
matrix, the implementation that we are going to describe in the next subsection can also
be used for banded matrix–matrix multiplication. In the case that the width of a banded
matrix is large with respect to n, the number of zeros for padding increases, so the HM data
structure is more suitable than CDM.

In our GPU algorithm, a thread will compute one entry of matrix C. As matrix C is
also a banded matrix, it is natural to assign a 2-D thread block of size T × T to compute
T2 entries of C. So, the total number of threads in a thread block is T2, which should be a
multiple of warp size. We choose T = 2d, where d = 4.

Before describing GPU multiplication in greater detail, we first provide a high-level
overview of the overall algorithm.

Figure 4 displays the logical mapping of GPU threads to the computed entries of
the product matrix C. A row corresponds to a compact diagonal of matrix C, while the
entries of matrix C are computed in blocks (tiles) as shown. Suppose the elements in the
highlighted tile of the C matrix of Figure 5 are to be computed using the corresponding
thread block. The tiles marked 0, 1, 2, 3 from matrix A are needed to compute the elements
in the highlighted tile of C. The GPU algorithm works in a block-iterative manner. In the
i-th block iteration, where 0 ≤ i < 4, of Figure 5, a thread block brings the i-th tile of matrix
A to the shared memory, performs all required multiplications between the tile elements
from A and the nonzeros from B, such that the multiplications contribute to the elements
in the highlighted tile of matrix C. The algorithm terminates once all the tiles of matrix Cb
are computed.

A banded matrix X is represented by the following two lists and one integer. Here, a
diagonal of X will be stored as a row in the CDM data structure. As all the diagonals in X
are centered around the principal diagonal, in the CDM storage scheme, the (short) diagonal
of zeros can be appended either at the beginning or at the end of the nonzero diagonals.

1. Integer dgX representing the number of compact diagonals in X.
2. List of integers DsX of length dgX, which is the list of the indices of the diagonals

of X.
3. Xlist: One-dimensional list of length dgX× n containing the values of X.

We use nzX to denote the number of nonzeros in matrix X.
Given two banded matrices A and B, matrix C will also be a banded matrix whose

compact diagonals are computed via the following formula. Compact diagonal i of C
is computed by multiplying the k-th compact diagonal of A and the (i − k)-th compact

Algorithms 2024, 17, 31 10 of 18

diagonal of B, where 0 ≤ k < n and (i− k) are computed as moduli of n. That the indices
of the compact diagonals of C can be computed before numerically computing the product
AB enables us to preallocate memory for product matrix C.

Figure 4. Depiction of GPU algorithm for banded matrix multiplication. Here “*” refers to matrix
multiplication operator.

Figure 5. Mapping of thread blocks.

As depicted in Figure 5, threads in a 2-D thread block of size T × T know the identity
of the elements of the block of C, in the CDM representation, that they are computing. The
band size of C may or may not be divisible by T. Consequently, some threads from the
thread blocks that are computing the compact diagonals near the bottom edge in Figure 5
may remain idle. In an outer (i.e., block) iteration, each thread block uses shared memory to
bring a block of entries of the same size (T× T) (that can contribute to compute the assigned
block of C) and store it in the shared memory. Then, the algorithm uses a thread block
synchronization to make sure all threads can complete their computational contributions.

The shared memory will be filled with entries from A in blocks (of size T× T) from top
to bottom, as shown in Figure 4. As each thread is computing one entry of C, the number of
possible multiplications that contribute toward that entry and involve entries from A in the
shared memory is T. So, during each iteration, each thread will perform T multiplications.
The entries from B are accessed via the global memory. For each multiplication, a thread
needs to know the indices of the diagonals of the entries from both A and C. So, it also
needs to know the index of the diagonal of the entry from matrix B. To accelerate this

Algorithms 2024, 17, 31 11 of 18

process, we store the starting index of each diagonal in Blist in a dense format. We pass
this information as a separate array called BdiagDense to our algorithm. The algorithm is
given in Algorithm 1.

Algorithm 1: CUDA Algorithm for Banded Matrix–Matrix Multiplication

__global__ void sparseBandedMatMulDiag
(Matrix A, Matrix B, Matrix C,
int* BdiagDense) {

__shared__ entry daS[T][T];
int myX = blockIdx.x * T + threadIdx.x;
int myY = blockIdx.y * T + threadIdx.y;
entry result = 0;
int maxLoop = ceil(A diagonal size/ T);
for (int j = 0; j < maxLoop; ++j){

Store the 'myY'-th entry from
the (T*j+threadIdx.x)-th diagonal
of A to
daS[threadIdx.x][threadIdx.y]
__syncthreads();

for (int j = 0; j < T; j++) {
update 'result' by multiplying
between one element from
daS[0...T-1][threadIdx.y] and

the corresponding element from B
if both exist
}

}
C[myX][myY]=result;

}

We observe that for a thread block, in one iteration, in general, all threads access the
shared memory T times. That means that each entry of A will be used T times. This gives
us an advantage in terms of the “data reuse” of shared memory. The number of entries
from B that need to be accessed for these multiplications is more than T2. But, to know the
exact number, we need to specify the diagonal indices from both A and B.

During an iteration of the algorithm, to compute an entry from block C[i1 . . . i2][j1 . . . j2]
of C, where i2 − i1 = j2 − j1 = T, we bring a block of size T × T from A (denoted by
A[k1 . . . k2][j1 . . . j2], k2 − k1 = T) into the shared memory. So, the indices of the diagonals
of matrix B from which the other entries come are in the set {i1 − k2 . . . i2 − k1}. For
simplicity, we assume that all diagonals whose indices are given in the set exist in B. From
the above information, we can compute the number of entries of matrix B which need to be
accessed to perform T3 multiplications.

Unlike the entries of A, we do not bring the entries of B into the shared memory during
multiplication to avoid high memory traffic. To see this, assume the entries from matrix
B are to be brought into the shared memory for T3 multiplications. As the total number
of diagonals in B required in any iteration for a thread block is 2T− 1 and the maximum
number of entries in any of those diagonals is 2T − 1, it is a good idea to bring a block of
size (2T− 1)× (2T− 1) ≈ 4T2 of B into the shared memory to avoid code divergence in
performing these T3 multiplications. So, the average number of times an entry of B will be
reused (if brought into shared memory) is T/4. As T is small (ranging from 4 to 16), T/4 is
also small. This observation is true for dense matrix multiplications, where the matrices are
stored in the CDM storage scheme.

Algorithms 2024, 17, 31 12 of 18

6.2. Structured Sparse Matrix–Matrix Multiplication

We consider two main techniques for designing a structured sparse matrix–matrix
parallel multiplication algorithm targeting GPU architecture: (i) each entry of C is computed
using one thread, and (ii) all multiplications that are associated with an entry of either A or
B are performed using one thread.

Both of the above approaches have a similar outlook from a data locality point of view.
That is, we expect that multiple threads in a warp are accessing entries from matrices A, B,
or C that are physically stored closely in the global memory. The first approach is a pure par-
allel approach. The second approach requires atomic operations since two different threads
might contribute to the same entry of C at the same time. In this work, we implement this
second approach and claim that the second approach minimizes computational overhead.

Let i and j be two diagonal indices of matrices A and B, respectively, where−n < i, j < n.
The multiplications between the elements of the i-th diagonal of A with the elements of the
j-th diagonal of B will contribute to the (i + j)-th diagonal of C, where −n < (i + j) < n.
From this observation, we can expect that C is potentially more dense compared to A or B.

The number of multiplications required to compute an entry of C varies widely due to
the irregular distribution of nonzero diagonals in matrices A and B. In the first approach,
such disproportionate thread workload creates code divergence in thread blocks, affecting
the performance negatively. Moreover, a thread that is assigned to compute an entry from
C needs to examine every possible pair of diagonals from A and B. If a pair of diagonals
from A and B exist (i.e., nonzero), then a multiplication is performed and the associated
entry of matrix C is updated. As both A and B are sparse, there will be fewer nonzero
diagonal pairs compared to the quadratic search space, thereby increasing the overhead.

In the second approach, a thread is assigned to perform all multiplications associated
with one entry from one of the operands A or B. Without loss of generality, let A be the
selected operand. The number of threads required to compute the matrix product C = AB
is equal to the number of nonzeros in matrix A (i.e., nzA). A thread first computes the
index of the entry from each nonzero diagonal in B with which the entry from A will be
multiplied. After multiplication, the thread also updates the corresponding entry in C via
an atomic operation. In this approach, we expect to experience less code divergence than
that of the first approach.

In summary, we conclude that although both approaches have similar data locality
challenges and disadvantages, we prefer the second approach due to its favorable (expected)
code divergence compared with the first approach.

A structured sparse matrix (say, X) is represented by the following three lists and one
integer value. Here, a diagonal of X will be treated as a diagonal in the HM data structure.

1. An integer value dgX that represents the number of HM diagonals in X. In structured
sparse matrices, we know that only some of the diagonals have nonzeros. We will
store those diagonals only.

2. A list of integers DsX (of length dgX) that stores the indices of the diagonals of X. The
first element of this array is 0 if the principal diagonal is dense. It stores the indices of
the super diagonals first, followed by those of the subdiagonals. For superdiagonal
indices, those are stored in ascending order. For subdiagonal indices, those are stored
in descending order.

3. Xlist: This is a one-dimensional array that stores the entries of X. The entries from
the same diagonal are kept together according to their column indices.

4. A list of integers StartDgX (of length dgX) that stores the indices of the entries in
Xlist for each diagonal of X.

We use nzX to present the number of nonzeros in sparse matrix X.
A thread that handles all multiplications associated with an entry from A will run in

a loop for each diagonal of B. An entry from A can be from a super-, sub-, or principal
diagonal of A. In the same way, a diagonal from B can also be a super-, sub-, or principal
diagonal of B. We enumerate thirteen different cases based on the different choices of the
diagonals of A and B. These thirteen different cases are grouped into three categories. In

Algorithms 2024, 17, 31 13 of 18

each of the thirteen cases, given an entry from A and a diagonal from B, our objective is
to find the entry in the diagonal of B that can be multiplied with the entry of A. After a
multiplication, the thread will find the entry in C to which this multiplication will contribute.
In our descriptions of the thirteen cases below, we will use three index variables i, j, k, where
n > i, j, k ≥ 0. For an entry of A, it is possible that there might be no entry from a particular
diagonal of B with which it can be multiplied. In short, we describe the situation by saying
that such an entry in B does not exist.

In the first category of cases, we describe the cases that can arise while computing the
principal diagonal of C.

1. The multiplications between the principal diagonals of A and B contribute to the
principal diagonal of C. Each multiplication can be described in the following way,
with the left index 0 indicating the (principal) diagonal:

C[0][i] = A[0][i] ∗ B[0][i].

2. The entries of A and B are from the i-th superdiagonal and (−i)-th subdiagonal,
respectively. Each of the multiplications can be described in the following way:
C[0][j] = A[i][j] ∗ B[−i][j].

3. The entries of A and B are from the (−i)-th subdiagonal and i-th superdiagonal,
respectively. Each of the multiplications can be described in the following way:
C[0][i + j] = A[−i][j] ∗ B[i][j].

In the second category, we have five different cases that arise while computing the
entries in the superdiagonals of C.

1. Let A[i][k] and j be an entry from A and an index of a diagonal from B, respectively. If
B[j][i + k] exists, then B[j][i + k] will be multiplied with A[i][k], and this multiplication
will contribute to C[i + j][k].

2. Let A[0][i] and j be an entry from the principle diagonal of A and an index of a
diagonal from B, respectively. A[0][i] will be multiplied with B[j][i] (if it exists), and
their multiplication will contribute to C[j][i].

3. Let A[i][j] be an entry from A. It can be multiplied with B[0][i + j] (if it exists), and
the multiplication result will contribute to C[i][j].

4. Let A[i][k] and −j be an entry from A and an index of a diagonal from B, respectively.
Assume i > j and B[−j][i + k− j] exist. Then, B[−j][i + k− j] will be multiplied with
A[i][k], and the multiplication result will contribute to C[i− j][k].

5. Let A[−i][k] and j be an entry from A and an index of a diagonal from B, respectively.
Here, j > i. If B[j][k] exists, then B[j][k] will be multiplied with A[−i][k], and the
multiplication result will contribute to C[j− i][k + i].

In the third category, we have five different cases that arise while computing the
entries in the subdiagonals of C. These five cases are obtained from the second category by
switching the super- and subdiagonals of matrices.

All of the above thirteen cases can be obtained from the following two rules.

1. Rule for matrix multiplication with coordinate matrix data structure: Let Ac and Bc
be two matrices of size n × n stored in a coordinate storage scheme. We want to
compute Cc = Ac × Bc. An element Ac[i][j] will be multiplied with Bc[j][k], where
n > i, j, k ≥ 0, and Ac[i][j]× Cc[j][k] will contribute to Cc[i][k].

2. Assume that we convert Ac to matrix A stored in an HM structure. Let Ac[i][j] be an
entry in Ac. This element will be A[j− i][min(i, j)] in the HM storage scheme.

As an example, let Ac[i][j] and Bc[j][k] be two elements of Ac and Bc, respectively, in
the coordinate scheme. Their multiplication will contribute to Cc[i][k] (also in the coordinate
storage scheme). Without loss of generality, let i < j < k. Clearly, A[j− i][i], B[k− j][j],
and C[k− i][i] are the corresponding elements of Ac[i][j], Bc[j][k], and Cc[i][k] in the HM
storage scheme, respectively. This is an example where two superdiagonal elements (from

Algorithms 2024, 17, 31 14 of 18

A and B) contribute to a superdiagonal of C (second category case 1). In the same way, by
changing the inequality among i, j, and k, we can verify the rest of the 12 cases.

Algorithm 2 has a number of nested if. . . else blocks, which in practice can increase the
code divergence among threads in the same thread block. In the worst case, this code diver-
gence might significantly affect performance. One effective solution to overcome this code
divergence issue is to have a few threads (for example, k, where 1 < k ≤ 13) per nonzero
entry of A that will take care of all multiplications associated with that nonzero entry of A.
The if. . . else part of the code can be restructured such that each of the if(condition){. . . }s will
be mapped to one of the k threads exclusively. As all threads in a thread block will take
care of the same if(condition){. . . }, we expect to have lower code divergence.

Algorithm 2: CUDA Algorithm for Structured Sparse Matrix–Matrix Multiplication

__global__ void sparseStructured(
Matrix A, Matrix B, Matrix C) {

int i = blockIdx.x * T + threadIdx.x;
// nzA is the number of nonzeros in A
if (i < nzA) {

// FindDiagonalByBS uses binary search
Ad = FindDiagonalByBS(StartDgA, i)
//Aind is the index of Alist[i]
//in Ad-th diagonal
for (each diagonal Bd of B) {

Cd = Ad + Bd
// compute the nonzero indices
// i and j
j = FindBInd(Ad, Aind, Bd)
k = FindCInd(Ad, Aind, Bd, j)
//the following update is performed
//via an atomic operation.
CList[k] += AList[i]*BList[j]

}
}

}

7. Experimental Results

In this section, we examine the performance of our GPU algorithms for matrix multi-
plication where the matrices are stored using the HM and CDM schemes. We conducted all
of our experiments on a desktop computer that has an Intel i7-7700K processor (4.20 GHz)
with four cores and 16 GB of RAM. Its L1, L2, and L3 cache sizes are 256 KB, 1.0 MB, and
8.0 MB, respectively. The GPU card that we used for our CUDA code execution is NVIDIA
TITAN XP with 12 GB of memory of type GDDR 5X.

The computational study is divided into two parts. The first part is concerned with ex-
perimentation with banded matrices, and in the second part, we experiment with structured
sparse matrices. The sparsity patterns (i.e., nonzero diagonals) are randomly generated.
The calculations are performed in double precision.

7.1. Banded Matrix Multiplication

We employed nine different problem dimensions n = 1024, 2048, 3072, 4096, 5120,
6144, 7168, 8192, 9216 with four different bandwidths 5, 10, 15, 20. Figure 6 displays the
running times of sequential (CPU) and parallel (GPU) implementations. It is clear that the
GPU implementation yields significant acceleration over the sequential version, giving
the highest acceleration factor with the largest matrix dimension. More importantly, the

Algorithms 2024, 17, 31 15 of 18

rate of improvement scales nicely with the band size and matrix dimension. To investigate
the scaling further, we conduct separate experiments with a fixed matrix dimension while
varying the band size. The comparative running times of the experiment are displayed in
Figure 7. The GPU speedup obtained vs. CPU, order of improvement, is quite evident and
scales well with the increasing band size.

Figure 6. Comparison of CPU and GPU times for banded matrix multiplications.

Figure 7. Relative improvements for GPU timings compared to CPU timings for banded matrix
multiplication (matrix size 10,240).

7.2. Structured Sparse Matrix Multiplication

In this section, we evaluate GPU matrix–matrix multiplication algorithms for struc-
tured sparse matrices, i.e., matrices where the nonzero diagonals are arbitrarily distributed
instead of being confined within a narrow band around the main diagonal. In other words,
the class of banded matrices can be considered as a special case of the class of structured
sparse matrices. Numerical methods for solving partial differential equations using finite-
difference discretization give rise to linear systems where the coefficient matrices display
structured sparsity patterns. Standard banded matrix storage schemes including the one
specified using BLAS are not directly applicable to structured sparse matrices. Conse-
quently, structured sparse matrices can be treated as general sparse matrices and be stored,
for example, in a compressed sparse row (CRS) requiring auxiliary data structures. Thus,
the class of structured sparse matrices presents an interesting case study on its own.

Algorithms 2024, 17, 31 16 of 18

In Tables 1 and 2, we present the running time of CPU and GPU structured sparse
matrix multiplication experiments. The nonzero diagonals are randomly picked for the
argument matrices A and B. We include the number of diagonals (dgA, dgB) as well as
the total number of nonzeros (nzA, nzB) for arguments A and B, respectively. It is to be
emphasized that the product C need not have a structured sparse form. In fact, C may
contain partially filled (with nonzeros) diagonals. In Table 1, we vary both matrix size and
number of diagonals in the generated test matrices A and B. The running times for the CPU
and GPU implementations exhibit relative performance profiles similar to that for banded
matrices. The running time performance of CPU and GPU improves with the matrix size
and the number of diagonals because of the increase in the computational work and the
improved data locality. Moreover, the relative performance (the ratio of CPU and GPU
running time) shows good scalability, yielding a speedup of 65 times. In Table 2, the matrix
dimension is held constant at 10,000 × 10,000, while the number of nonzero diagonals in
matrices A and B are increased from 200 to 600. In this case, the GPU algorithm exhibits a
better performance gain, yielding a top speedup of 100 times.

Table 1. Comparison of computational times for computing structured sparse matrix multiplication
between CPU and GPU.

Matrix dgA, dgB, nzC CPU CUDA Time
Size nzA nzB (ms) (ms) Ratio

1000 9, 7446 5, 3968 33,824 4.33 0.16 27

2000 9, 15,003 15, 25,201 203,935 2.12 0.21 10

3000 29, 75,336 15, 39,207 990,791 11.66 0.39 30

4000 29, 97,958 35, 120,652 2,816,485 38.60 0.88 44

5000 59, 256,918 35, 150,005 6,625,325 99.52 1.89 52

6000 89, 473,743 75, 381,842 17,999,054 440.61 6.78 65

7000 99, 615,376 75, 451,559 23,585,358 560.69 8.92 63

8000 109, 767,508 35, 247,865 18,893,371 307.67 5.26 5 8

9000 59, 470,354 75, 593,612 24,161,386 444.00 7.09 63

10,000 109, 938,979 35, 310,455 24,738,090 365.51 6.34 58

Table 2. Comparison of computational times for computing structured sparse matrix multiplications
of dimension 10,000 between CPU and GPU by varying their diagonal numbers.

dgA, nzA dgB, nzB nzC CPU CUDA Time
(ms) (ms) Ratio

200, 1,746,454 200, 1,734,514 69,689,071 4812.40 66.62 72

300, 2,574,174 300, 2,599,683 76,317,794 11,031.72 141.86 78

400, 3,462,833 200, 3,499,657 75,463,181 19,733.96 241.23 82

500, 4,358,737 500, 4,372,825 75,504,513 31,817.91 358.39 89

600, 5,237,042 600, 5,233,209 75,281,188 46,549.84 468.83 99

8. Summary and Concluding Remarks

In this paper, we have explored a diagonally structured storage scheme, the CDM,
where pairs of compatible superdiagonals and subdiagonals are packed together in vectors
of uniform length. This compact scheme avoids storing and computing with short vectors
(diagonals). As its predecessor, the diagonal storage scheme, the CDM provides orien-
tation (row/column)-independent stride-1 access to matrix elements and enables vector
arithmetic wherever the underlying CPU architecture admits. We have presented, for the
first time, GPU algorithms to perform matrix multiplication using the recently proposed

Algorithms 2024, 17, 31 17 of 18

diagonal storage schemes HM and CDM. An extensive set of numerical experiments with
banded and structured sparse matrices convincingly established the advantage of our
diagonally structured storage mechanism in implementing matrix–matrix multiplication, a
computational workhorse in scientific computation. The experiments clearly demonstrate
that the implemented GPU algorithms are highly scalable and give significant parallel
speedups, up to two orders of magnitude.

The storage scheme based on matrix diagonals, as opposed to rows/columns, provides
an alternative approach to implementing linear algebraic kernel operations in the BLAS
specification. More specifically, this new storage scheme avoids explicit matrix transposition
and thereby has the potential to improve the performance of BLAS level-2 and level-3
operations. We are currently developing sequential, multicore, and many-core parallel
algorithms for general sparse matrix multiplication.

Author Contributions: S.A.H.: Conceptualization, methodology, writing—original draft preparation,
software, ; M.T.P.: validation, writing—review and editing, visualization; S.H.: Conceptualization,
methodology, writing—review and editing. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: Shahadat Hossain’s work was supported in part by the Natural Sciences and
Engineering Research Council of Canada Discovery Grant (Individual, Development) and the Uni-
versity of Northern British Columbia. Mohammad Tanvir Parvez would like to thank the Deanship
of Scientific Research, Qassim University, for funding the publication of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abdullah, W.M.; Awosoga, D.; Hossain, S. Efficient Calculation of Triangle Centrality in Big Data Networks. In Proceedings of

the 2022 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 19–23 September 2022; pp. 1–7.
[CrossRef]

2. Gao, J.; Ji, W.; Chang, F.; Han, S.; Wei, B.; Liu, Z.; Wang, Y. A systematic survey of general sparse matrix-matrix multiplication.
ACM Comput. Surv. 2023, 55, 1–36. [CrossRef]

3. Kepner, J.; Gilbert, J. Graph Algorithms in the Language of Linear Algebra; SIAM: Philadelphia, PA, USA, 2011.
4. Kepner, J.; Jananthan, H. Mathematics of Big Data: Spreadsheets, Databases, Matrices, and Graphs; MIT Press: Cambridge, MA,

USA, 2018.
5. Shen, L.; Dong, Y.; Fang, B.; Shi, J.; Wang, X.; Pan, S.; Shi, R. ABNN2: Secure two-party arbitrary-bitwidth quantized neural

network predictions. In Proceedings of the 59th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 10–14 July
2022; pp. 361–366.

6. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.W.; Keutzer, K. A survey of quantization methods for efficient neural
network inference. In Low-Power Computer Vision; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022; pp. 291–326.

7. Gundersen, G. The Use of Java Arrays in Matrix Computation. Master’s Thesis, University of Bergen, Bergen, Norway, 2002.
8. Yang, W.; Li, K.; Liu, Y.; Shi, L.; Wan, L. Optimization of quasi-diagonal matrix–vector multiplication on GPU. Int. J. High Perform.

Comput. Appl. 2014, 28, 183–195. [CrossRef]
9. Benner, P.; Dufrechou, E.; Ezzatti, P.; Igounet, P.; Quintana-Ortí, E.S.; Remón, A. Accelerating band linear algebra operations on

GPUs with application in model reduction. In Proceedings of the Computational Science and Its Applications–ICCSA 2014: 14th
International Conference, Guimarães, Portugal, 30 June–3 July 2014; Proceedings, Part VI 14; Springer: Cham, Switzerland, 2014;
pp. 386–400.

10. Dufrechou, E.; Ezzatti, P.; Quintana-Ortí, E.S.; Remón, A. Efficient symmetric band matrix-matrix multiplication on GPUs. In
Proceedings of the Latin American High Performance Computing Conference, Valparaiso, Chile, 20–22 October 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 1–12.

11. Madsen, N.K.; Rodrigue, G.H.; Karush, J.I. Matrix multiplication by diagonals on a vector/parallel processor. Inf. Process. Lett.
1976, 5, 41–45. [CrossRef]

12. Tsao, A.; Turnbull, T. A Comparison of Algorithms for Banded Matrix Multiplication; Citeseer: Vicksburg, MS, USA, 1993.
13. Vooturi, D.T.; Kothapalli, K.; Bhalla, U.S. Parallelizing Hines matrix solver in neuron simulations on GPU. In Proceedings of the

2017 IEEE 24th International Conference on High Performance Computing (HiPC), Jaipur, India, 18–21 December 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 388–397.

http://doi.org/10.1109/HPEC55821.2022.9926324
http://dx.doi.org/10.1145/3571157
http://dx.doi.org/10.1177/1094342013501126
http://dx.doi.org/10.1016/0020-0190(76)90077-6

Algorithms 2024, 17, 31 18 of 18

14. Benner, P.; Dufrechou, E.; Ezzatti, P.; Quintana-Ortí, E.S.; Remón, A. Unleashing GPU acceleration for symmetric band linear
algebra kernels and model reduction. Clust. Comput. 2015, 18, 1351–1362. [CrossRef]

15. Kirk, D.B.; Wen-Mei, W.H. Programming Massively Parallel Processors: A Hands-On Approach; Morgan Kaufmann: Burlington, MA,
USA, 2016.

16. Munshi, A.; Gaster, B.; Mattson, T.G.; Ginsburg, D. OpenCL Programming Guide; Pearson Education: London, UK, 2011.
17. Volkov, V.; Demmel, J.W. Benchmarking GPUs to tune dense linear algebra. In Proceedings of the SC’08: Proceedings of the 2008

ACM/IEEE conference on Supercomputing, Austin, TX, USA, 15–21 November 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–11.
18. Kurzak, J.; Tomov, S.; Dongarra, J. Autotuning GEMM kernels for the Fermi GPU. IEEE Trans. Parallel Distrib. Syst. 2012,

23, 2045–2057. [CrossRef]
19. Ortega, G.; Vázquez, F.; García, I.; Garzón, E.M. Fastspmm: An efficient library for sparse matrix matrix product on gpus.

Comput. J. 2014, 57, 968–979. [CrossRef]
20. Hossain, S.; Mahmud, M.S. On computing with diagonally structured matrices. In Proceedings of the 2019 IEEE High Performance

Extreme Computing Conference (HPEC), Waltham, MA, USA, 24–26 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.
21. Eagan, J.; Herdman, M.; Vaughn, C.; Bean, N.; Kern, S.; Pirouz, M. An Efficient Parallel Divide-and-Conquer Algorithm for

Generalized Matrix Multiplication. In Proceedings of the 2023 IEEE 13th Annual Computing and Communication Workshop and
Conference (CCWC), Las Vegas, NV, USA, 8–11 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 0442–0449.

22. Haque, S.A.; Choudhury, N.; Hossain, S. Matrix Multiplication with Diagonals: Structured Sparse Matrices and Beyond. In
Proceedings of the 2023 7th International Conference on High Performance Compilation, Computing and Communications, Jinan,
China, 17–19 June 2023; pp. 69–76.

23. Barrachina, S.; Castillo, M.; Igual, F.D.; Mayo, R.; Quintana-Ortí, E.S. Solving dense linear systems on graphics processors. In
Proceedings of the European Conference on Parallel Processing, Las Palmas de Gran Canaria, Spain, 26–29 August 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 739–748.

24. Volkov, V.; Demmel, J. LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs. 2008. Available online:
https://bebop.cs.berkeley.edu/pubs/volkov2008-gpu-factorizations.pdf (accessed on 10 December 2023).

25. Liu, C.; Wang, Q.; Chu, X.; Leung, Y.W. G-crs: Gpu accelerated cauchy reed-solomon coding. IEEE Trans. Parallel Distrib. Syst.
2018, 29, 1484–1498. [CrossRef]

26. Larsen, E.S.; McAllister, D. Fast matrix multiplies using graphics hardware. In Proceedings of the 2001 ACM/IEEE Conference
on Supercomputing, Denver, CO, USA, 10–16 November 2001; p. 55.

27. Barrachina, S.; Castillo, M.; Igual, F.D.; Mayo, R.; Quintana-Orti, E.S. Evaluation and tuning of the level 3 CUBLAS for graphics
processors. In Proceedings of the 2008 IEEE International Symposium on Parallel and Distributed Processing, Miami, FL, USA,
14–18 April 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–8.

28. Cui, X.; Chen, Y.; Zhang, C.; Mei, H. Auto-tuning dense matrix multiplication for GPGPU with cache. In Proceedings of the 2010
IEEE 16th International Conference on Parallel and Distributed Systems, Shanghai, China, 8–10 December 2010; IEEE: Piscataway,
NJ, USA, 2010; pp. 237–242.

29. Osama, M.; Merrill, D.; Cecka, C.; Garland, M.; Owens, J.D. Stream-K: Work-Centric Parallel Decomposition for Dense Matrix-
Matrix Multiplication on the GPU. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming, Montreal, QC, Canada, 25 February–1 March 2023; pp. 429–431.

30. Matam, K.; Indarapu, S.R.K.B.; Kothapalli, K. Sparse matrix-matrix multiplication on modern architectures. In Proceedings of the
2012 19th International Conference on High Performance Computing, Pune, India, 18–22 December 2012; IEEE: Piscataway, NJ,
USA, 2012; pp. 1–10.

31. Naumov, M.; Chien, L.; Vandermersch, P.; Kapasi, U. Cusparse library. In Proceedings of the GPU Technology Conference,
San Jose, CA, USA, 20–23 September 2010.

32. Bell, N.; Garland, M. Cusp: Generic Parallel Algorithms for Sparse Matrix and Graph computations, Version 0.3.0; 2012.
33. Hoberock, J.; Bell, N. Thrust: A Parallel Template Library; GPU Computing Gems Jade Edition, 359; 2011. Available online:

https://shop.elsevier.com/books/gpu-computing-gems-jade-edition/hwu/978-0-12-385963-1 (accessed on 10 December 2023).
34. Gomez-Luna, J.; Sung, I.J.; Chang, L.W.; González-Linares, J.M.; Guil, N.; Hwu, W.M.W. In-place matrix transposition on GPUs.

IEEE Trans. Parallel Distrib. Syst. 2015, 27, 776–788. [CrossRef]
35. Garland, M.; Kirk, D.B. Understanding throughput-oriented architectures. Commun. ACM 2010, 53, 58–66. [CrossRef]
36. Haque, S.A.; Moreno Maza, M.; Xie, N. A Many-Core Machine Model for Designing Algorithms with Minimum Parallelism

Overheads. In Parallel Computing: On the Road to Exascale; IOS Press: Amsterdam, The Netherlands, 2016; pp. 35–44.
37. Davis, T. Florida Sparse Matrix Collection. 2014. Available online: http://www.cise.ufl.edu/research/sparse/matrices/index.

html (accessed on 1 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10586-015-0489-x
http://dx.doi.org/10.1109/TPDS.2011.311
http://dx.doi.org/10.1093/comjnl/bxt038
https://bebop.cs.berkeley.edu/pubs/volkov2008-gpu-factorizations.pdf
http://dx.doi.org/10.1109/TPDS.2018.2791438
https://shop.elsevier.com/books/gpu-computing-gems-jade-edition/hwu/978-0-12-385963-1
http://dx.doi.org/10.1109/TPDS.2015.2412549
http://dx.doi.org/10.1145/1839676.1839694
http://www.cise.ufl.edu/research/sparse/matrices/index.html
http://www.cise.ufl.edu/research/sparse/matrices/index.html

	Introduction
	Related Work
	Storage Schemes
	Diagonal Storage Scheme
	Compact Diagonal Storage Scheme

	Compact Diagonal Matrix Multiplication
	GPU Programming
	Algorithms
	Banded Matrix–Matrix Multiplication
	Structured Sparse Matrix–Matrix Multiplication

	Experimental Results
	Banded Matrix Multiplication
	Structured Sparse Matrix Multiplication

	Summary and Concluding Remarks
	References

