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Abstract: The area coverage problem solution is one of the vital research areas which can benefit
from swarm robotics. The greatest challenge to the swarm robotics system is to complete the task
of covering an area effectively. Many domains where area coverage is essential include exploration,
surveillance, mapping, foraging, and several other applications. This paper introduces a survey
of swarm robotics in area coverage research papers from 2015 to 2022 regarding the algorithms
and methods used, hardware, and applications in this domain. Different types of algorithms and
hardware were dealt with and analysed; according to the analysis, the characteristics and advantages
of each of them were identified, and we determined their suitability for different applications in
covering the area for many goals. This study demonstrates that naturally inspired algorithms have
the most significant role in swarm robotics for area coverage compared to other techniques. In
addition, modern hardware has more capabilities suitable for supporting swarm robotics to cover an
area, even if the environment is complex and contains static or dynamic obstacles.

Keywords: swarm robotics; area coverage; hardware architecture; swarm robotics algorithms

1. Introduction

Area coverage is one of the essential and attractive topics that has been studied
in the last few years. This term is used in specific spatial area robotics to gain or update
information in the robotic domain. Area coverage is a critical concept in different significant
applications comprising the exploration of planetary, detection and demining of mines,
wildfire fighting, and surveillance. Generally, the set of coverage behaviours required
and the performance metrics used depend on the application [1]. Area coverage is a field
of multi-robot systems called swarm robots. A swarm robot is one swarm intelligence
application, including mobile robots responsible for completing a particular task [2]. Many
distributed algorithms have been proposed and used for coordinating sets of robots to
maximise the sensing coverage of a given environment area.

Swarm robotics is bio-inspired; the behaviour stems from observing common be-
haviours of animals, where each individual in the group acts autonomously similarly [3].
The basic idea for this swarm robotics is that each robot undergoing simple rules depends on
local sensory inputs and communication with their neighbours locally [4]. Swarm robotics
has possibilities to enable the use of practices in different problem solutions because of their
characteristics: synergistic, distributed, robust, operating in real-time, universal, practical,
optimality, reliability, and scalability. Swarm robotics research encompasses aggregation,
area coverage, the search for a target, and cooperative handling [5]. This paper aims to
survey the research which poses a problem of area coverage that benefits from a swarm
robotics-based approach.

This paper is outlined as follows, Section 2 introduces the Methodology used for this
study. Section 3 submits the algorithms and methods used in swarm robotics for area
coverage problems. Section 4 encompasses the analysis and discussion of these algorithms
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and techniques used. Section 5 shows the hardware architecture used. Section 6 introduces
the applications of swarm robots in this domain. Section 7 is the discussion. The last section
is a conclusion.

2. Methodology

For area coverage problems involving swarm robots, this survey’s methodology
presents an open and systematic way of selecting and categorising studies. Here are the
specifics regarding the paper selection criteria, classification method, and anything else
that might be pertinent. This review includes articles that were published in journals from
2015 to 2022, covering the most current trends and advancements in swarm robots for
coverage areas.

2.1. The Rationale for the Time Frame

A period of tremendous technical developments occurred between 2015 and 2022,
and this is why that is that time range was selected. During this time, swarm robotics
controllers became more robust, and advancements in sensing technologies and hardware
capabilities were substantial. Swarm robotics was widely acknowledged as an exciting new
study area. During this time, swarm robotics emerged as a separate and significant field
within robotics study.

Advancements in swarm robotics algorithmic frameworks occurred between 2015
and 2022. Optimisation methods, coordination strategies, swarm intelligence system de-
velopments, and swarm robots are becoming more effective at tackling area coverage
issues. During this time, swarm robotics moved from a theoretical study field to one with
real-world applications. The practical applications of swarm robotics in agriculture, explo-
ration, surveillance, and industry have recently attracted much attention from researchers
and practitioners.

Swarm robotics has recently seen an upsurge in academic publications, conferences,
and group projects, all coinciding with the chosen time range. The survey covers all
essential and relevant contributions by focusing on this time frame. During 2015–2022,
swarm robotics reached a point of maturity. Scientists might improve previous efforts, test
new approaches, and expand existing knowledge. The variety and depth of the surveyed
papers demonstrate this level of development.

The selected period captures foundational works and contemporary achievements
while considering the historical context. This way, we know that the articles we are looking
at are up-to-date and relevant to where swarm robotics is to ensure consistency when
reviewing and comparing the selected publications; thus, the survey should be limited
to 2015 to 2022. This makes it possible to concentrate on the most current trends and
developments within the given period. Using this era as a starting point, the survey
explores the history, development, and current uses of swarm robotics for coverage areas.
This way, we may be sure that the chosen papers advance our knowledge of swarm robotics
in the given setting. The conceptual framework of the work is shown in Figure 1.
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Figure 1. Conceptual framework of the work.

2.2. Search Criteria

Google Scholar, IEEE Xplore, PubMed, and ScienceDirect were among the credible
academic databases queried in a thorough literature search. “Swarm robotics”, “area
coverage”, and similar topics were among the search queries. Publications published
between 2015 and 2022 were eligible for inclusion in this review. We aimed to cover
the most recent trends and advancements in swarm robots within this period. Swarm
robotics-based area coverage difficulties are the focus of a few articles. The main focus
areas are exploration, monitoring, mapping, foraging, and similar activities. Publications
in high-quality robotics-related peer-reviewed journals and conferences were given priority.
This guaranteed that only works that have passed thorough academic evaluations were
included. For reader accessibility and transparency, we included only papers whose entire
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texts were freely available online. The papers used from the journals are illustrated in
Figure 2.
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Figure 2. No. of papers used for journals.

Articles were considered for inclusion if they pertained to area coverage applications
using swarm robotics. Novel algorithms, techniques, and their applications across fields
were the primary focus of the selected studies. We did not include papers published after
the specified time or that did not add significantly to our knowledge of swarm robotics for
area coverage.

2.3. Classification Process

We sorted the cut articles according to their major use case, algorithmic methods, robot
coordination, centralisation, obstacle handling, and hardware requirements. Categories
such as exploration, task allocation, coordination, and specialised applications (such as
agricultural, surveillance, and industrial tasks) were used to classify the selected studies.
Additional paper classifications were made according to the sensors, processors, and
algorithms utilised for swarm coordination in the robotic platforms. To help readers better
understand the many facets of swarm robotics, each work was assessed for its merits,
shortcomings, and overall impact. Our classification of the reviewed articles is based on
significant themes, areas of application, and the methodology used.

2.3.1. Thematic Classification

We focused on studies that examined the use of swarm robotics to survey large areas.
Problems with effectively uncovering unknown environments are a common focus of these
investigations. The research articles highlighting swarm robots’ task allocation procedures.
One aspect of this is determining how to best cover a particular region by allocating duties
to robotic agents. To achieve coordinated and efficient coverage of areas, papers focused on
the coordination mechanisms used in swarm robotics.

2.3.2. Application Domain Classification

Agricultural robotics papers cover precision farming, pest management, and sustain-
able broad-acre farming. A collection of the articles detailed using swarm robotics for
surveillance tasks, including keeping tabs on expansive regions for intelligence gathering
or security reasons. Various papers were about using swarm robots in manufacturing,
including logistics, cleaning, and maintenance.
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2.3.3. Methodological Classification

Various papers are organised according to the algorithmic approaches used in swarm
robotics, including Particle Swarm Optimisation (PSO) and Ant Colony Optimisation
(ACO). Some articles discussed the various setups and parts of the sensors, CPUs, and com-
munication modules used in swarm robotic platforms. Readers will find a comprehensive
and organised synopsis of the many facets of swarm robotics in the reviewed literature
according to this categorisation.

For the survey, we retrieved the following data from each chosen paper: title, authors,
publication year, essential algorithms, application domain, coordination mechanisms,
hardware details, strengths/limitations, and presentation of the results. Each paper’s
impact on swarm robotics for coverage area was considered while making a final decision.
Emphasis was placed on works with noteworthy methodology, experimental validations,
or practical applications.

3. Algorithms and Methods for Swarm Robotics

Most algorithms applied for swarm robotics in area coverage are inspired by coordi-
nation among biological entities [6]. The algorithms used in swarm robots are classified
into stochastic and deterministic [7]. By definition, deterministic approaches use mathe-
matical models that rely on local optimum and gradient to solve problems [8]. In contrast,
stochastic techniques rely on mathematical properties to perform a given function, but
with minimal dependency on the gradient and local optimums when solving specific prob-
lems [9]. Experts argue that the stochastic technique is more user-friendly than the latter in
optimising robots to work independently or simultaneously in a swarm [10]. The type of
algorithm applied in swarm robots is mainly dependent on the nature or type of problem
being solved by the robot [11]. Researchers and developers of the optimisation domain
have designed stochastic algorithms that mimic natural processes that are synonymous
with various types of animals and flies, such as fish, birds, and bees. The notable algorithms
developed from such observations include Particle Swarm Optimisation (PSO) and Honey
Bee Optimization (MBO) [12,13]. And, lately, algorithms are based on bacteria colony
behaviours [14]. The algorithms mentioned above are commonly used in swarm robots for
area coverage. Many algorithms and methods have been used in swarm robots for area
coverage in the last seven years, as follows.

The algorithms are divided into sections such as metaheuristic algorithms–swarm
intelligence and classical algorithms.

3.1. Metaheuristic Algorithms–Swarm Intelligence

In the field of swarm robotics, metaheuristic algorithms, especially those based on
swarm intelligence, are crucial for covering large areas, and they have recently become
powerful instruments for solving complicated issues. In order to create effective and adapt-
able tactics for robotic swarms, these algorithms take cues from the cooperative behaviour
seen in natural systems, like ant colonies, beehives, and bird flocks. By encouraging decen-
tralised decision making, the metaheuristic method allows swarm robots to jointly traverse
large areas.

3.1.1. Ant Colony Optimization (ACO)

The ACO algorithm is one of the swarm intelligence algorithms [15]. The movement
of ants is influenced by their need to search for food. When ants move from one point
to another in search of food, they produce organic compounds called pheromones in the
form of deposits in their footpath [16,17]. Pheromone paths enable ants to reach the food
source and bring it to deposit in their colonies [18]. The ants will follow the trail with
the highest quality and quantity of food [19]. Many researchers designed an ant-based
algorithm applicable to swarm robots. The algorithm uses artificial intelligence robot-to-
robot communication as a substitute for nature-based communication [20].
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Ref. [21] introduced the design of control laws used by swarm robots to enable them
to work cooperatively. Ant colonies are used for this purpose through pheromones to
control individual robot behaviour. The decentralised control law is formed using many
reaction-diffusion equations, leading to area coverage. Analysis was made in this work
for the effect of pheromone diffusion and evaporation on the environment and measuring
the performance of area coverage. Adding noise to the control law has the greatest effect
on the algorithm for covering an area, and these parameters significantly influence the
performance of the area coverage. The global concept is achieved by finding the most
critical parameter to be the magnitude of the noise applied. Meanwhile, the local image
is also achieved by adding noise depending on the importance of the other parameters:
diffusion and evaporation.

Ref. [22] proposed a Cellular Automata Ant Memory Model (CAAM), which is used for
swarm robots to perform foraging search tasks in a known environment with nests. Robots
communicate with each other through the inverted pheromone. The swarm robot deposits
the pheromone in each step, leading to a repulsive force among the team’s individuals. In
addition, to remember the robot’s last positions and to avoid unnecessary explorations, I
used a short-term memory inspired by Tabu Search. The forage robot has two operations,
one for searching and another for homing, which is getting the food to the collection point
named nest. The simulation results show that the newly proposed method can implement
the foraging task competitively by covering the area effectively in searching and detecting
adequate nests in homing operation.

Ref. [23] proposed a control law for area coverage using swarm robots in a 2D region
inspired by the ant foraging dynamical features. The basic idea is to increase the search
efficiency of that dynamic, adaptive switching between Brownian motion and Levy flight in
the stochastic component of the search. The area of 100 × 100 square units was used for the
simulations with a 10-robot swarm. The simulation results refer to enhanced performance
for area coverage through swarm robots by this method in a particular threshold value.

Ref. [24] proposed a new hybrid method that combines natural and evolutionary
computing methods, using genetic algorithms, inverted ant pheromones, and Tabu Search
to implement the swarm robots in surveillance tasks. The new model is named Genetic
Shared Tabu Inverted Ant Cellular. An inverted pheromone indicates that when the insects
are at risk, they tend to drift away from each other and increase the coverage area; in
construct, when ants are in a foraging case, they tend to cluster along particular paths that
lead to the food source. The simulation experiments used e-puck architecture within the
Webots simulator and Python programming language.

3.1.2. Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation is one of the swarm algorithms in artificial intelligence
developed by Kennedy and Eberhart to simulate birds’ flocking behaviour [25] graphically.
It is a stochastic technique that facilitates robot movement in a swarm [26]. The Particle
Swarm Optimisation algorithm differs from others because its functionality solely depends
on the objective function. It does not rely on differential objectives or gradients in flying
formation [27]. A flock of birds that move in groups benefits from the experience of each
flock member. For instance, when a flock of birds flies randomly in search of food, they
increase the chances of each bird in the community getting the best hunt [28,29]. The Particle
Swarm Optimisation algorithm was designed to assist in solving optimisation problems in
both the local and global space [30,31]. However, each robot utilises the Particle Swarm
Optimisation algorithm to navigate the terrain or area in a semi-autonomous manner that
is distinct from other robots in the swarm. This allows the robot to solve the problem and
navigate independently while functioning as a swarm [32,33].

PSO is a control strategy for a swarm robotic system. Many developed PSO algorithms
have been presented and proposed for this purpose and used for area coverage problems
as follows:
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Ref. [34] presented five robots with an XBee module for the problem of seeking elec-
tromagnetic sources by area coverage by modifying and implementing the PSO algorithm
on mobile robots according to the physical constraints presented by both robots and the
environment. Three different PSOs were evaluated by simulations encompassing PSO with
Inertia Weight, PSO with Constriction Factor, and Standard Particle Swarm Optimization
(SPSO). The area covered was 5 × 5 m2, and applying the Vicon tracking system gave
the information of each robot’s precise position via the support of an indoor GPS system
to recognise markers on the robots. The type of robots used with an XBee module in
experiments improved from the Parallax Shield-Bot, which Arduino controls. These robots
search for the target source, a module of XBee hanging above a floor at a height of 20 cm in
the middle of the area, to avoid a probability collision with the Robot. Also, the avoidance
strategies for static and dynamic obstacles occurred in PSO in this experiment. The results
proved that the best and most convenient diversity of PSO is the Inertia Weight PSO for
this work.

Ref. [35] presented a novel method approach that depends on Robotic Darwinian
Particle Swarm Optimization (RDPSO), Probabilistic Finite State Machine (PFSM), and
Depth First Search (DFS). This new approach was proven to decrease the time needed by
the AntBOT swarm to explore the area coverage environment. The simulator is V-REP, with
different layouts, and three various environment areas are used (25 m2, 100 m2, and 400 m2).
The results indicated that the speed of exploration increases with a combination between
RDPSO and PFSM by at least 1.4x the rate of the individual algorithms. In addition, it
enhances the motion of robots in the environment by allowing smaller sizes for swarm
robots to process exploration and rescue at a minimum cost.

Ref. [28] dwelled upon the description of implementing Robotic Darwinian Particle
Swarm Optimization (RDPSO) for search and rescue in a particular area coverage. A Robot
Operating System (ROS) and Gazebo simulator with Rviz were used. Rviz is a ROS visuali-
sation tool for visualising sensory data, such as camera data, distance measuring device
data, GPS information, etc. The experiments were performed for the rescue operation in
two cases, one for two static victims by four robots and another for four static victims, using
eight robots, with 30 trials for each patient. The simulation results indicated that RDPSO,
compared to RPSO, performs better for multiple target search and rescue (SAR) operations.

Ref. [36] described the significance of fitness functions in the swarm robotics per-
formance. Two maps, one for simulating an open area containing obstacles and another
map with features of an apartment, were presented and used to assess a the PSO-based
algorithm’s performance. These maps have an area of 25 square meters, including walls
and static targets. Three flexible fitness function types were used: standard (stand) and
random target (rand_tar), using Euclidean distance to the nearest target and distance from
the base (dist_base), which computes the Euclidean distance to the ground (launch point).
It was noticed that the results of rand_tar and dist_base commands were better than the
stand function. In total, 80% of the coverage area was achieved by the swarm robot after
1000 iterations through V-REP PRO EDU Platform.

Ref. [37] proposed an exploration-enhanced RPSO (E2RPSO) swarm robotic algorithm,
searching for multitargets via extra exploration and extensive area coverage. Avoiding
obstacles in the area enhanced the exploration capability by adjusting the dynamic Inertia
Weight. Two diversities of the swarm were added, one named top-down diversity and
another called the bottom-up diversity of the original PSO, which used adaptive dynamic
Inertia Weight. The swarm robot detects all the targets in the covered area to handle the
problem of searching for multitargets. The findings showed that this approach can balance
exploration and exploitation and see more marks in a particular area without increasing
time costs.

Ref. [38] proposed an effective target function method by the PSO algorithm with the
inverse of the perspective approach, which led to a growing speed and a decrease in the
size of input information. The primary aim is to find the positions of soccer robots with
their Cartesian coordinates at a precision of 5 cm without the need for a global positioning
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system (GPS) in a specified area. The playground has a dimension of 9 × 6 m, with an extra
70 cm of margin around the ground. The implementation of the algorithm was performed
through the MATLAB platform, and the simulation results showed that the number of
function computations was reduced for each positioning, using the PSO algorithm. A
better solution results from 50 particles (robots) randomly distributed over the whole
area coverage.

Ref. [39] proposed an adaptive exploration robotic PSO (AERPSO) to detect multiple
static or dynamic targets quickly through cooperation between swarm robots in a particular
area. The exploration was performed by avoiding local minima while exploring unexplored
regions. At the same time, avoiding obstacles using evolutionary speed and the aggregation
degree assists the velocity and position of the swarm robots exploring new areas to detect
targets. I also used adaptive Inertia Weight to help in improving the exploration. Compared
with existing methods, the simulation findings show that the AERPSO algorithm enhances
search time by approximately 40% and the detection rate by 25%. It is an excellent method
for multitarget searching by providing a balance between exploration and exploitation.

3.1.3. Bacterial Foraging Optimisation (BFO) Algorithm

The BFO was proposed to mimic the E. coli bacteria’s foraging behaviours in the
intestine [40]. The algorithm became popular due to its high ability to escape from the
local optimum, and when compared with other heuristic methods, it has faster conver-
gence [41]. Some researchers are working to improve the BFO, which is used for area
coverage as follows:

Ref. [41] proposed a bacterial chemotaxis optimisation (B.C.) algorithm. The B.C. is a
decentralized algorithm used in swarm robots inspired by bacteria chemotaxis for target
search and trapping within area coverage. This algorithm was adapted from the original
bacterial foraging optimisation (BFO), and it considered each robot to be a bacterium and
applied the mechanism of bacteria chemotaxis to solve problems of distributed controlling
for swarm robots in area coverage. The B.C. set the target’s position to a significant value,
divided the area by the Voronoi method, computed the gradient for the robots’ chemotaxis
direction, and approached the target’s position by bacteria swimming through the law
in each Voronoi cell. Twenty-six robots can avoid six obstacles by moving robots in the
direction to avoid these obstacles. The problem of detecting targets and surrounding them
in a particular area was solved in this work. Simulation results have presented B.C. as
having a good performance, robustness, and algorithm calculation complexity compared
to several methods for swarm robots’ distribution.

Ref. [42] introduced a new proposal for a swarm robotic system called a bacterial
chemotaxis-inspired coordination strategy (BCCS) for coverage and aggregation. Chaotic
preprocessing is used to initialise the starting positions of the robots. Then, the area covered
by the robot is computed as a fitness function value to compare with previous ones. Based
on BCCS, every robot makes an action, running or rotating. The process continues until
the maximum number of iterations is met or the number of covered cells satisfies the
termination conditions. In addition, it has presented a random factor to guide robots to
rendezvous at an undefined point to overcome aggregation. The simulation results showed
the supremacy performance of the proposed strategy compared with other controllers in
both success rate and iteration average number. BCCS has a high exploration ability for
area coverage.

3.1.4. Bee Algorithm

The bee algorithm is inspired by observing how honey bees breed, mate, and forage.
Their behaviours form the basis of bee optimisation algorithms [43,44]. The Honey Bee
Optimization (MBO) is among the main algorithms based on the breeding and mating
activities associated with honey bees and depends on swarm intelligence [45,46]. There are
several algorithms based on the Honey Bee Optimization (MBO), including Fast Marriage in
Honey Bee Optimization (FMHBO), Honey Bees Mating Optimization (HBMO), and Honey
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Bee Optimization (HBO) [47,48]. As mentioned earlier, the algorithm uses evolutionary
behaviours, such as the random explorative behaviour of the bees, to solve problems or
achieve set objectives. The principal functionality of the bee algorithm commences from a
single source, typically referred to as the queen, and flows to other bees (or robots) in the
colony (swarm) [49]. The principle is based on the forward pass concept, which implies that
information is sent from a single source as it flows to other colony members [50]. Like the
queen, a single robot in a swarm is used as the source of information to guide other robots
as they move in the area [51]. The algorithm’s objective is to allow swarm robots to be
attracted to a goal with the highest solution when deployed to survey a large expanse [52].

Ref. [53] proposed a novel concept of surveillance robotics that is based on honey
bees and with the integration of an autonomous telepresence robot. The telepresence
robot means considering human control in the loop, as doing so is essential to improve
robotic swarm efficiency and speed up convergence. Experiments used Turtlebot robots for
performing a foraging task, beginning at the hive location and randomly exploring in a
specific area for a particular food location. The experiments assessing a proposed swarm
coordination system in an unknown environment were performed via a simulation and on
real robots. The simulation was performed for three settings: 5 × 5 m2 shaped, 10 × 10 m2

shaped, and 10 × 10 m2 L-shaped. When Turtlebots find a food source, they take it and
drive it to the hive, where they put food until they run out of food or detect another source.
The telepresence represents a leader who sends related information about the location to
the Turtlebots. The findings show the telepresence robot’s role in increasing the operation’s
efficiency, chiefly in dynamic and complex scenarios where the sources of food change
over time.

Ref. [54] focused on complex area coverage problems with special task areas such
as forbidden regions or threat regions. At the beginning of the work, the adjusted area
of the task was specified, and the grid was discretisation. Then, it was inspired by the
labour division phenomenon of typical biological sets, such as colonies for bees and ants.
The features analysis of the performance is made of both algorithms’ labour division
model for the ant colony (threshold model) and labour division model for the bee colony
(activation–inhibition model) from the concept of individual and environment, individual
and individual, and a novel swarm intelligence labour division method to solve the prob-
lem of complex area coverage in swarm robots. Three experiments are implemented by
encompassing area coverage problems for the non-threat region, established threat region,
and sudden threat region. The results show the capability of the proposed algorithm to
solve area coverage and the dynamic environment. The algorithm can respond effectively
to the sudden threat.

Ref. [55] referred to a set of autonomous cyber–physical robotic cleaners that have been
controllers for wet-cleaning rooms in large public or commercial buildings. It introduces
different control strategies for the movements of a robot set or those of robots within a set
and the influential factors on the intragroup behaviour of swarm robots. It presented an
approach to building formations for robots depending on the leading robot by the wet trails.
The groups of cyber–physical robotic cleaners are controlled by using two strategies: one is
a global strategy that depends on the bee’s search algorithm, including swarm intelligence
elements, and another related to orientation for leading the robot and its neighbours is a
local formation-building approach. NetLogo carries out experiments for some robots set
through tasks of control and formation. Simulation results can be exploited for similar
problem solutions, such as harvesting, deactivating the area from radioactive substances,
disinfecting the area from viruses, and others.

3.1.5. A Bio-Inspired Neural Network Approach

Artificial intelligence methods especially have more significance in swarm robots for
area coverage. Several robots cooperate to complete coverage tasks efficiently. A neural
dynamics method is proposed for this purpose and guides the group of robots in a dynamic
environment for complete area coverage (CAC). Every robot considers other robots to be
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moving obstacles. The mobile robot’s path is generated from the landscape of the neural
network and the previous position of the robot. Many cases used this method and showed
effective results to enable the robots to cover an area. The computations of the model are
easy, and the path of the robot is created without searching over the global free workspace
or any global cost functions [56].

3.1.6. Cohort Intelligence (CI) Methodology

Cohort Intelligence (CI) methodology is used to model the behaviour of candidates
depending on the interaction among them to perform a common goal. The behaviour
of each candidate is improved by looking at all other candidates in the cohort. The CI
is used for coverage area in the operation of search and rescue by swarm robots, the
roulette wheel selection method, and the median method. Also, a perturbation technique
is used to solve the problem of getting stuck in non-convex obstacles by robots. Many
cases were achieved, such as the No Obstacle Case (NOC), Stationary Obstacles Case
(SOC), Single Dynamic Obstacle Case (SDOC), Multiple Dynamic Obstacles Case with the
Same Velocity (MDOC-SV), and Multiple Dynamic Obstacles Case with Different Velocities
(MDOCDV) [57].

3.2. Classical Algorithms

When it comes to solving area coverage problems in swarm robotics, classical methods
provide a solid basis. When directing the actions of a swarm of robots, these algorithms
frequently use deterministic methods and set parameters. Using more organised decision-
making procedures and perhaps involving centralised control systems, classical algorithms
differ from metaheuristic algorithms. We take a look at a wide variety of classical algorithms
used in swarm robotics here, many of which have been fine-tuned for different tasks
and settings.

3.2.1. Dynamic Voronoi-Based Algorithm

It is a mathematical model generally used in area division in some regions. These
regions are based on the seeds given in the first. Every part has a corresponding region
encompassing all points in space closer to itself than others. In this case, the region is called
Voronoi cells [58]. The Voronoi algorithm controls swarm robots; each robot acts as a seed
and divides the target area into Voronoi cells. Every robot must cover its own Voronoi cell,
guaranteeing that each target point is closer to its corresponding robot [59].

Ref. [60] proposed a dynamic Voronoi-based algorithm, which is used for the area
coverage problem; it divides the target area into Voronoi cells dynamically through the
moving of robots rather than using a static algorithm and to improve the efficiency of
modified bacterial foraging optimisation (MBFO) by using swarm robots in searching.
The MBFO is also used to coordinate between robot positions and the swarm robot target
area. The MBFO algorithm considers each robot to be a bacterium. Then, it applies the
mechanism of bacteria chemotaxis to solve problems of decentralised controlling for swarm
robots in experiments, using these two algorithms to the process of area coverage by
26 swarm robots in random locations on a 300 × 300 m2 area by MBFO. The moving
of robots depends on following the concentration gradient in the target area and using
the sensor control the reaction between them. Also, after using 10, 20, and 30 robots to
validate the efficiency of the new dynamic Voronoi bade on MBFO, the results showed the
effectiveness of the dynamic Voronoi method.

3.2.2. The Decentralised Space-Based Potential Field (D-SBPF) Algorithm

D-SBPF is a simple decentralised method for dispersing a robot team to quickly explore
and cover an area. The algorithm is considered a potential control method that supports
knowledge of the area bounds to be explored. The basic idea is to solve the problem of
deploying many robots in an unknown environment (buildings) to examine and collect
information about the environment, using an effective method. The experiments were
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carried out using three maps, each 10 × 10 m2, and a grid representation of 30 × 30. The
approach uses an extended occupancy grid to represent the space where each cell can be
attractive (if undiscovered) or repulsive (if discovered). A non-monotonic field scale factor
proportional to coverage is also used to improve the searching of corners and niches and to
assist in moving robots out of potential minima. The main characteristic of this method is
that the robot, at any stage, can leave/join/rejoin the team. The simulation results show
that using more robots at the beginning of exploration leads to more area coverage [61].

3.2.3. The Force Vector Algorithm

The general force vector algorithm was designed for most swarm robotics applications
with few requirements to solve area coverage problems. This algorithm works efficiently
and gets good results; it is considered an alternative to many complex algorithms for
effectively covering an environment. Many simple robots are required for implementation
with more capabilities, enabling the algorithm to cover specific areas [62].

3.2.4. Operative Distributed Asynchronous (CORDA) Model

Asynchronous CORDA is the primary computational model in the domain of swarm
robots. It has a closer approximation to real-life situations when compared to other algo-
rithms. The algorithms developed using the CORDA model view robots as consisting of
four sequential cycles: wait, observe, compute, and move. All the cycles do not overlap.
The primary objective of the research is to prove the CORDA model is popular and suitable
compared to other available computational models for area coverage problems. Many
solutions for area coverage have been discussed comprehensively by using this model. Two
situations are applied. The first one is when covering the area without an obstacle; in this
case, the robot starts to compute the boundaries of the strip that will be covered by itself
depending on its closest horizontal neighbours. In the second case, when covering the area
with obstacles, the robots start by being deployed randomly in the area and then collect
on the left boundary. The robots divide the space into several blocks and draw the size of
the blocks. In the beginning, the robot verifies if the region contains an obstacle (another
robot or any object); if it has not found an obstacle, it travels directly to the entry point of
the next block for exploration. On the contrary, it begins to paint the present block, a region
above the horizontal line passing through its current position [63].

3.2.5. Deployment Entropy with Potential Fields Strategy

Deployment entropy was presented to cover persistent areas, using many sensing
swarm robots, which depend on partitioning the area into many regions. Deployment
means the uniformity of agents per region across all regions when covering an area. The
study showed that a good spread of agents and growing sensor coverage resulted when
compared with previous results, which did not use potential fields with deployment
entropy. Fifty-agent deployment was used for the simulation. Two redeployments are
global, which happens in partition regions, and local, which occurs in subregions. As a
result, the robots cluster together more in corners at the end. The attractive and repulsive
fields are applied receptively between robots, leading to the greater spread of robots
to achieve area coverage. Deployment entropy is suitable because of its scalability and
potential for robot system implementation that uses a decentralised control type. The
simulation results show that the potential field approach is more effective than the non-
potential field approach in generating a uniform group of distributed robots [64].

3.2.6. A Self-Organising Area Coverage Based on Gradient and Grouping (GGC)

A new method depending on gradient and grouping was proposed for area coverage
called shortly (GGC), using simple robots without computing or storage space. The rise
of a robot led to the system of swarm robots with accessible functions that enable self-
organisation to cover the area of the unknown task. In a grouping operation, each group can
cover the task area in parallel, improving the coverage speed. The simulation results show
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superior gradient and grouping methods on the other techniques in coverage concepts,
coverage completion time, robustness, and other sides. Simultaneously, this method is
beneficial for the system of submillimetre swarm robots, which will be considered basically
for micro-medicine [65].

3.2.7. Frontier-Led Swarming Algorithm

A Frontier-Led Swarming algorithm was proposed for the exploration and coverage
of the area of unknown environments while controlling a formation that allows for short-
range communication. The algorithm includes two components: swarm rules to save
a closeknit appearance and frontier search for maintaining exploration and coverage.
Three experiments were conducted in various environments, using heterogeneous and
homogeneous groups of mobile robots to test the algorithm. The first experiment used real
heterogeneous swarm robots, the TurtleBot Burger and Pioneer UGVs, and the second used
real robots in an environment containing unknown static obstacles. The third experiment
used a simulation in a 2D large-scale urban-like environment with obstacles through a
virtual Gazebo. The results demonstrate that the proposed algorithm performs better than
the current map coverage approaches [66].

4. Algorithms Analysis

The algorithms and methods discussed in this survey point to using swarm robotics
to cover specific areas. These algorithms are either metaheuristic or classical algorithms.
Each of these algorithms is adopted and integrated into swarm robots based on the need
and the type of problem being solved in an extensive coverage. The successful usage
of swarm robots is not solely associated with the algorithm used but with the existing
hardware infrastructure. The area environment is an essential factor in achieving coverage;
it may be known components or unknown. In unfamiliar territory, they face difficulties
handling it due to needing more information about obstacles available and their type (static
or dynamic).

Earlier algorithms were based on teams to mimic the swarm behaviours of biological
entities. The primary challenge of team-based algorithms was encountering obstacles,
and complete synchrony was required for effective communication among team members.
Individual coverage is an emerging trend in recent surveys where a robot communicates
with the rest of the swarm and updates the area covered. Regardless, there are gaps in
adequate area coverage, although the current algorithms are relatively better than earlier
algorithms. Another takeaway from this survey is that modern algorithms rely less on
computations than earlier algorithms with elaborate mathematical models. Table 1 shows
the specifications of each algorithm or method.

Table 1 provides a thorough summary of several metaheuristic algorithms, from those
with their origins in swarm intelligence to the classical algorithms used in swarm robotics
to cover areas. A wide range of tasks, environments, and applications can be handled by
these algorithms. You can learn a lot about the algorithms’ strengths and weaknesses, as
well as their possible difficulties, from this. Researchers and practitioners interested in the
state of area coverage algorithms for swarm robotics will find the table to be an invaluable
resource. The ant algorithm, which exemplifies swarm intelligence with its decentralised
chemotactic control law, is a renowned example of a metaheuristic algorithm. Incorporating
noise to enhance area coverage performance, this algorithm showcases both global and
local ideas. However, there are problems with iterative modifications to the probability
distribution and uncertainty in the convergence time. The Cellular Automata Ant Memory
model with Tabu Search is another notable technique that deals with foraging activities
and dynamic applications. While the algorithm’s usage of Tabu Search-inspired short-term
memory is effective, it has computational hurdles when dealing with robot movement.
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Table 1. The specifications of each algorithm or method.

Algorithm
or Method Application Environment Environment

Complexity Task Obstacle Type Classification Strength Limitations Ref. Year

Ant algorithm +
decentralised
chemotactic
control law

Area coverage Known Low Simple No
obstacle

Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Global and local concepts are achieved
- Adding noise based on the magnitude
to control law significantly influences
and improves the performance of
area coverage
- Using noise is an important step to
provide abilities to improve many
algorithms, such as the Particle Swarm
Optimisation (PSO), grey wolf
algorithm, or cuckoo search algorithm

- Uncertainty in
convergence time
- Probability distribution
changes by iteration

[21] 2016

A Cellular
Automata Ant
Memory Model
(CAAM) +
Tabu Search

Area coverage
to perform
foraging tasks:
- Dynamic
applications
(changes in
terrain)
- Travelling
salesperson
problem

Known Low Simple Static Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Avoid unnecessary explorations by
using a short-term memory inspired by
Tabu Search
- A better distribution for the robot team
- Transition rules of C.A. used that
provide local control for obstacles,
which leads to non-use obstacle
avoidance algorithms
- Efficient solution

- Sequences of
random decisions.
- Consuming for
computation time
through the
moving robots

[22] 2017

Ant foraging +
adaptive Brownian
Levy flight
transitions +
control law

Area coverage to
perform foraging
tasks in
2D domain

Known Mid Moderate No
obstacle

Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence +
classical
algorithm
(random walk)

- Improve area coverage performance
by using this method
- Using Levy led to lowering the
constraints of communication and
sensing of robots
- Increase area coverage up to a specific
value of threshold by transitions from
Brownian motion to Levy flights

- There is no detailed
analysis for parameter
variations such
as pheromone
diffusion coefficient,
evaporation rates, Levy
index, and noise
intensity and does not
determine which
is better

[23] 2017
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Table 1. Cont.

Algorithm
or Method Application Environment Environment

Complexity Task Obstacle Type Classification Strength Limitations Ref. Year

Genetic Shared
Tabu Inverted Ant
Cellular Automata
(GSTIACA)

Area coverage
for surveillance
tasks

Known Mid Simple Static Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Provide advanced surrogate
techniques for swarm robotic
surveillance tasks, especially in science
and engineering
- Transition rules of C.A. used that
provide local control for obstacles,
which leads to non-use obstacle
avoidance algorithms
- GA optimises the control parameters
of a robotic
- The approach of integrating the
various techniques of artificial
intelligence with natural computing,
which was not used in the
previous research

- Not be applied to real
robots yet [24] 2022

- Particle Swarm
Optimisation with
Inertia Weight
- Particle Swarm
Optimisation with
Constriction Factor
- Standard Particle
Swarm Optimisation
(SPSO)

area coverage for
Source-seeking Unknown High Hard

Static
and dy-
namic

Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Relatively simple to implement
- Few parameters to vary
- Fast and inexpensive computations
- Robust
- Escape from local optimal solutions
- Work well without a centralised unit if
the robots can reach their positions

- More powerful robots
are required for areas
with obstacles
- Increased the swarm
size based on each
environment/area

[34] 2015

Robotic Darwinian
Particle Swarm
Optimization
(RDPSO) +
Probabilistic Finite
Sate Machine
(PFSM) + Depth
First Search (DFS)

Area coverage
through robots’
exploration and
navigation

Unknown Mid Moderate Static Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- The proposed method proved to have
good navigation in optimal time, about
a 40% higher success range, with a
speed of 1.4× for exploration compared
to other methods.
- The consumed time decreases when
the size of the swarm increases
- The swarm of simple robots is faster
than that of a single complex robot

- Increasing the size of
the hive above a
particular level leads to
the saturation of the
RDPSO algorithm and
not obtaining the
optimal time and cost
for each task

[35] 2017
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Table 1. Cont.

Algorithm
or Method Application Environment Environment

Complexity Task Obstacle Type Classification Strength Limitations Ref. Year

Robotic
Darwinian Particle
Swarm Optimisation
(RDPSO)

Area coverage
for search
and rescue

Unknown High Moderate Static Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Reduce the computational cost
- Improve the efficiency of navigation
- RDPSO permits the robot not to get
suboptimal solutions
- The ability to determine the positions
of multiple targets and collisions
- The distribution of the actual target
positions does not influence the work of
the algorithm

- Increasing the size of
the swarm above a
particular level leads to
the saturation of the
RDPSO algorithm and
not obtaining the
optimal time and cost
for each task

[28] 2017

Particle Swarm
Optimisation-
Based Algorithm

Area coverage
and swarm robot
coordination

Unknown High Moderate Static Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Increasing area coverage and the ratio
of detecting more targets by storing the
information for one robot when locating
a target and starting a search
for another
- Produces many flexible fitness
functions which can be used in various
maps and affect the performance of
swarm robots

- The algorithm does
not focus on robot
aggregation because
the objective is to
explore the area
- The positions of
robots not known; a
particular function was
used which returns
these locations (like
GPS work)

[36] 2018

Exploration-
enhanced RPSO
(E2RPSO)

Area coverage to
find multiple
targets

Unknown High Moderate
Static
and dy-
namic

Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Avoid falling into local optimums
- Comprehensive search area coverage
- It is vital in applications of the search
for multitarget due to making a good
balance between
exploration and exploitation

-Does not detect all
targets in the
search area

[37] 2020

Particle Swarm
Optimisation
algorithm+ Inverse
Perspective Map
(IPM)
transformation

Area coverage
for positioning
of soccer robots

Known Low Simple No
obstacle

Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Implementation simplicity
- Reduced computational and memory
consumption of its design
- Increases speed and decreases size of
input information
- Eliminate perspective effects
- High accuracy in determining the
robot location

- The possibility
that it might get stuck
at local optima, and
robots will never be
aware that
other solutions
might exist

[38] 2021



Algorithms 2024, 17, 3 16 of 36

Table 1. Cont.

Algorithm
or Method Application Environment Environment

Complexity Task Obstacle Type Classification Strength Limitations Ref. Year

An adaptive
exploration robotic
PSO (AERPSO)

Area coverage
to find
multiple targets

Unknown High Moderate
Static
and
dynamic

Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Avoids local minima
- Detecting all targets in the search area
- Explores unexplored regions and
helps with obstacle avoidance, using
evolutionary speed and
aggregation degree
- Improves the search time
- It balances between exploration
and exploitation

- Not be applied to real
robots yet [39] 2022

Bacterial chemotaxis
optimisation (B.C.) +
Voronoi-based
algorithm

- Search for
target and
trapping within
area coverage
distributed
control for
swarm robots in
the area

Unknown High Hard
Static
and dy-
namic

Stochastic
alg. + deter-
ministic

Metaheuristic
alg.–swarm
intelligence +
classical
algorithm
(motion
planning)

- Less vulnerability to a local optimum
- Robustness to unexpected failure for
a robot
- Effectiveness

- Time consumption is
based on randomly
initialising the
population of swarm
robots and the target
- Does not depend on
physical robots to
verify the performance

[41] 2015

Bacterial
chemotaxis-
inspired
coordination
strategy (BCCS)

Swarm robotic
systems for
coverage and
aggregation

Known Low Simple No
obstacle

Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Better coverage through preprocessing
- Better exploration capability
- In most cases, BCCS has fewer
iterations and a higher success rate
- Distributed system

- Uncertainty in
irregular environment [42] 2021

Honey bee
algorithm

Area coverage to
perform foraging
tasks, robot
coordination and
surveillance
robotics by using
a human
telepresence
robot in
the system

Unknown Low Simple No
obstacle

Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Low computation
- Robustness
- Scalability
- Adaptability
- Simple and flexible
- Broad applications, even in
complex functions
- Popular
- Ease of implementations
- The human operator controlling the
telepresence robot speeds up the
convergence of the swarm

- New algorithms
require new
fitness tests
- Slow in
sequential processing
- Large objective
function evaluation

[53] 2016
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Table 1. Cont.

Algorithm
or Method Application Environment Environment

Complexity Task Obstacle Type Classification Strength Limitations Ref. Year

Labour division
phenomenon
approach for the
bee colony
algorithm and ant
colony algorithm

Complex area
coverage of
swarm robots
(- Coverage
monitoring for
forest fire
- Task allocation
for UAV
- Detection for
nuclear and
biochemical
disaster
- Search and
rescue in an area
- Searching for
anti-terrorism
explosives)

Unknown High Hard
Static
and
dynamic

Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- High ability to solve area coverage
and dynamic environment
- The algorithm can respond effectively
to the sudden threat
- Low computation
- Robustness
- scalability

- Lack of global
communication.
Between robots
- May not apply to
some situations

[54] 2020

Bee search
algorithm + local
formation-
building approach

- Area coverage
for cleaning
robots
- Harvesting
- Deactivating
the area from
radioactive
substances
- Disinfecting the
area from
viruses

Unknown High Hard
Static
and
dynamic

Stochastic
alg.

Metaheuristic
alg.–swarm
intelligence

- Global solutions
- A high ability to solve area coverage
- Scalability
- Simple and flexible
- Low computation
- Robustness
- Use for orientation by leading robot
and its neighbours

- It requires several
strategies to provide
controllers for the
motion of robots

[55] 2021

A bio-inspired
neural network
approach

Area coverage
by swarm robot Unknown High Simple Dynamic Stochastic

alg.

Heuristic alg.
and
bioinspired
alg.

- Reducing completion time
- Robustness
- Fault-tolerant

Not perfectly accurate [56] 2018

Cohort Intelligence
(CI) methodology
+ perturbation
technique

Area coverage
for search and
rescue by
swarm robots

Unknown High Hard
Static
and
dynamic

Stochastic
alg.

Nature-
inspired
Swarm
Intelligence

- Robots will not get stuck in the
non-convex region by using the
perturbation technique

- In some situations, it
needs many techniques
to support it

[57] 2020
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Table 1. Cont.

Algorithm
or Method Application Environment Environment

Complexity Task Obstacle Type Classification Strength Limitations Ref. Year

Dynamic
Voronoi-based
algorithm +
modified bacterial
foraging
optimisation
(MBFO)

Area coverage
searching
problem in
decentralised
control of
sensors of
swarm robots

Known Low Simple No
obstacle

Deterministic +
stochastic
alg. (MBFO)

Classical
algorithm
(motion
planning) +
metaheuristic
alg.–swarm
intelligence

- Escape from local optimum
- Quick search and saves energy
for robots
- Robots motion by following the
gradient in the target area and the
sensor range control on reactions
between robots

- Consuming for
computation time
through the
moving robots
- Does not depend on
physical robots to
verify the performance

[60] 2015

Decentralised
Space-Based
Potential Field
(D-SBPF)
algorithm

Area coverage
for exploration
by swarm robots
- Motion
planning for
swarm robot

Unknown Moderate Simple Static Deterministic

Classical
algorithm +
(motion
planning)

- Simple
- Uniform
- Decentralised
- Disperse the group of robots to
perform a quick search, using an
effective method
- The area was represented by a grid
that was either attractive (if unexplored)
or repulsive (if discovered), which led
to enhancing the searching
- The robots can leave/join/rejoin the
group at any stage

- Decrease in the
efficiency of coverage
and speed when a few
robots are used
- Lower exploration
performance for maps
with complex
geometry

[61] 2015

The force vector
algorithm

Area coverage
by swarm robot Known Low Simple No

obstacle Deterministic Classical
algorithm

- Applies well to robot swarms with
few requirements.
- Effective area coverage
- General solution
- Simple to implement

- There are some
constraints on
used robots
- It is not reliable like
other algorithms
- A secondary solution

[62] 2016

The Cooperative
Distributed
Asynchronous
(CORDA) model

Area coverage
by swarm robot Known Low Simple

Static/
no
obstacle

Deterministic Classical
algorithm

- Famous and suitable compared to
other available computational models
for area coverage
- Reduces system cost
- Fault-tolerant

- Robot velocities affect
this model
under limited
visibility
- More powerful robots
are required for areas
with obstacles

[63] 2017

Deployment
Entropy with
Potential Fields
Strategy

Covers
persistent areas
by swarm robots
for surveillance
applications

Known Low Simple Static Deterministic Classical
algorithm

- A good spread of agents
- Growing sensor coverage
- Scalability
- Decentralized system (more security)
- More effective at generating a uniform
group of distributed robots
- Low computational complexity

- Lack of
persistence results
- The robot knows its
position but does not
know other robots’
positions in the group

[64] 2020
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Table 1. Cont.

Algorithm
or Method Application Environment Environment

Complexity Task Obstacle Type Classification Strength Limitations Ref. Year

ASelf-Organizing
Area Coverage
Method + Gradient
and Grouping

Area coverage
By swarm robot Unknown High Hard No

obstacle Deterministic Classical
algorithm

- Less completion time for coverage
- Low computational cost
- Robustness
- Its parallel coverage led to speed
covering an area
- Very useful for the system of
submillimetre swarm robots, which will
be considered basically for
micro-medicine

- The number of teams
must be a
manageable size
- The robot coverage
distance must be a
reasonable value

[65] 2021

Frontier-Led
Swarming
algorithm

Area coverage
by swarm robot
for exploration

Unknown High Hard Static Deterministic Classical
algorithm

- High performance for area coverage
- Re-tuning of parameters of algorithm
not needed to move the system to
another environment
- Covering an area, even if in cluttered
environments and including
unknown obstacles

- Not able to track
changes in the
environment (avoiding
moving obstacles)
- Does not search for
optimal parameters of
swarm robots

[66] 2022
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One notable metaheuristic algorithm with applications in surveillance jobs is the
Genetic Shared Tabu Inverted Ant Cellular Automata (GSTIACA). The control settings
are optimized using genetic algorithms (GAs), and it incorporates multiple AI approaches.
Despite its potential, GSTIACA has not yet been implemented on actual robots, which
emphasizes the importance of doing practical validation. Numerous source-seeking appli-
cations have made use of the Particle Swarm Optimization (PSO) family, which includes
variations such as Inertia Weight PSO and Constriction Factor PSO. Although these al-
gorithms are simple, resilient, and scalable, how well they perform is conditional on
the surrounding conditions and the size of the swarm. With the introduction of depth-
first search and a probabilistic finite-state machine, Robotic Darwinian Particle Swarm
Optimization (RDPSO) demonstrates faster and more efficient navigation in exploratory
tasks. Concerns with optimal time and cost arise, however, when swarm sizes are large
and RDPSO becomes saturated. An essential tool for multitarget search applications, the
Exploration-Enhanced RPSO (E2RPSO) helps avoid local optima by striking a balance
between the two. The techniques used here demonstrate the costs and benefits of increas-
ing swarm size in terms of computing efficiency. By way of comparison, one traditional
algorithm, D-SBPF, makes use of a grid-based environment representation, attractive and
repulsive forces, and decentralized robot dispersion. Despite its simplicity and uniformity,
it struggles with complex geometric maps and shows diminishing efficiency and speed
with fewer robots. Although the Frontier-Led Swarming algorithm does a great job with
exploratory tasks, it cannot monitor environmental changes or tune swarm settings for
best performance.

When combined with a Voronoi-based algorithm, Bacterial Chemotaxis Optimization
(B.C.) offers benefits such as effectiveness and robustness, particularly in situations that
are unknown or constantly changing. Nevertheless, there are worries about the amount
of time it takes to initialize a population. The Honey Bee Algorithm has received praise
for its scalability, resilience, and minimal computation, which were all influenced by the
labour-division phenomenon. Still, there are situations where its sequential processing
speed and evaluation of huge objective functions are a hindrance to its performance. All
of the methods that were looked at show how swarm robotics has progressed to solve
problems with area coverage. The efficiency of algorithms, the integration of hardware,
and the practical applications have all seen these developments. The continuous difficulties
of scalability, context adaptation, and coordination strategies are well known. Hardware
concerns, such as advanced control systems and sensors, improve the capabilities of swarm
robots. This is demonstrated by GRITSBot, TurtleBot3, and e-puck 2. Possible directions for
further study and improvement are laid out in the table’s discussions. Emerging as possible
avenues for investigation include adaptive algorithms, dynamic obstacle avoidance, and
integration with new technology. According to the editor’s remarks, experienced reviewers
have stressed the need for a critical literature study, methodical discussions, and consider-
able improvements despite the progress. To lay the groundwork for future developments
in this area, this extensive study of swarm robotics algorithms for area coverage explains
their advantages, disadvantages, and possible uses in various sectors.

5. Mobile Robots Hardware Used for Swarm Robotics

The type of hardware used in swarm robots varies based on the coverage needs. The
various types of hardware include cameras, controllers, actuators, and sensors [67,68]. Each
component in the hardware is used to perform a specific task that assists in the functionality
of each robot in the swarm [69]. Sensors are essential in facilitating information or data
about the surrounding environment; mapping is called mapping. Swarm robots use sensors
to analyse the topography of a domain by detecting key features, like land, roads, paths,
and obstacles, among other feasible features [70]. The I.R. Proximity Sensor is the standard
type of sensor that detects obstacles in swarm robots [71]. Controllers are essential to
the swarm robot hardware [72]. Two approaches are used in controlling swarm robots,
which include a centralised and decentralised control system [73]. Centralised control is a
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situation where a lead robot is responsible for dictating the movement of all robots in the
swarm [74].

In contrast, a distributed approach is used where each robot in the swarm plans
and dictates its movement [75]. The controllers are fused with communication devices to
enhance efficiency in covering a large area. Wireless devices like the Internet, Bluetooth,
infrared, and LED lights are examples of communication devices that improve the function-
ality and movement of swarm robots [76]. The selection and application of each controller
or communication device depend on the swarm device’s type and function.

Moreover, power is essential hardware in the swarm robot. Ideally, swarm robots are
small; hence, ample power is needed to ensure that the device functions appropriately [77].
It is the role of the power supply unit to ensure that there is an optimal supply of power for
the swarm robots. Most swarm robots use lithium batteries with a power voltage capacity
of between five and twenty-five of direct current [78]. The batteries provide consistent and
high-density voltage in small batteries that can be fitted in small swarm robots. They are
some of the robot platforms that are developed and used for swarm robotics as follows:

Ref. [79] proposed GRITSBot. It is an inexpensive microrobot used for swarm robotics.
It allows the user to manage giant cooperative robots and has features encompassing
automatic sensors, autonomous recharging, wireless robot reprogramming, and multiple
robots. GRITSBot was presented to decrease various robot testbeds to fit on a table and
achieve experiments available to many users. GRITSBot is used for an R-shaped area of
coverage in the testbed, using thirteen GRITSBot robots distributed in this shape [80].

Ref. [81] proposed milli-robot-Toronto (mROBerTO) has become more prevalent in
recent years, particularly for swarm robotics studies, enabling researchers to perform
many experiments through many robots in limited areas. Roberto is a new open-source
modular design of millirobot) with a 16 × 16 mm2 design, including various sensors such
as proximity, IMU, compass, ambient light, and a camera. Roberto is capable of formation
control, using an I.R. emitter and detector add-on. It has communication through Bluetooth,
ANT+, or both simultaneously. It uses an ARM processor with 256 KB of memory and
has the ability to program over the air to handle complex tasks. Roberto robots monitor
and explore unknown area coverage via collective behaviour. Also, it is used for robot
aggregation in an exciting area [82].

Ref. [83] developed a TurtleBot3 burgers which is the development of TurtleBot2,
TurtleBot1, and iRobot’s Roomba, respectively. ROS has managed all of these versions
(Robot Operating System: a framework for research in robotics). TurtleBot3 is general
hardware in a lot of robotics research, as it can solve the shortcomings of old versions. It is
a low-cost platform, easily adaptable to particular needs, programmable in MATLAB and
Python, and has 360-degree LiDAR (Light Detection and Ranging) sensor. These features
make it suitable for motion-planning applications [84]. Also, TurtleBot3 was used to cover
a cluttered area that contained unknown obstacles; for example, some experiments used a
swarm of TurtleBot Burger to cover different regions [66].

According to [85], e-puck 2 is the hardware extension of the e-puck. E-puck 2 is a
Raspberry Pi-suitable platform and has high features used by swarm robotics. It is charac-
terised by more powerful and better-equipped sensors containing WiFi, USB, RGB LED,
and a long-distance sensor [86]. E-puck 2 is used for swarm robots in area coverage as an
entrapping approach without a communication environment, like a battlefield, depending
on the environment information, and the communication made indirectly by the sensors of
the camera and laser sensors. Two models were used: GRN (Gene Regulation Network)
for entrapping the target pattern and FSM (Finite-State Machine) for moving to the target
and, at the same time, avoiding obstacles. Then, these e-puck 2 robots surround the target
environment [87]. Many extensions of e-puck, such as Pi-puck, which is an extension for
the e-puck and e-puck 2, allow a Raspberry Pi Zero single-board computer to be attached
to the robot [88].

Ref. [89] developed Colias IV for studying models of intensive computational embed-
ded, which is a good platform for presenting visuals in algorithms of swarm robotics. It



Algorithms 2024, 17, 3 22 of 36

is a micro-ground mobile robot that occupies a diameter of 4 cm. It is characterised by a
strong-ARM processor, has a set of various sensors comprising a small camera and two
digital microphones, and has massive possibilities for connectivity. This miniature robot
can sense and visually detect bio-inspired models. The benefits of this robot are its small
size and depressed cost. The developed Robot Colias IV has revealed the potential for more
research depending on multi-agent experiments, such as the aggregation behaviours in
robot swarms for the coverage of a particular area.

Ref. [90] proposed the WsBot, a tiny swarm robot with little cost used in many do-
mains, especially in smart factories. It introduces characteristics like intelligent agents
and industrial teams to perform a global task—the communication method with others
for WsBot by Wi-Fi. WsBot can contribute fundamentally to smart factories through area
coverage by many swarm robots. These robots have been used in many experiments to
enhance manufacturing productivity by using ARENA (platform for small-scale warehouse
logistics) to achieve the behaviours of intelligent agents inside it. In addition, it avoids
environmental obstacles and improves brilliant manufacturing experiments without using
an actual warehouse [91].

According to [92], HeRo 2.0 (Heathkit Educational Robot) is a newer version of the
first, simpler version of the HeRo platform. It is a low-cost robot containing a 3D-printed
body and off-the-shelf ingredients. This robot is used with swarm robots, according to
convenience, for a wide range of applications. It is completely open-source and has various
sensors. An Espressif ESP8266 (32-bits160 MHz) microcontroller is used in its main board to
accomplish the motors’ control and get and process data from the sensor [93]. Robust and
reliable communication between robots occurs using built-in Wi-Fi in its microcontroller
module. HeRo 2.0 uses a TCP/IP protocol connection to execute the ROS Robot Operating
System) with a remote computer. It has two wheels with a maximum speed of 25 cm/s and
eight I.R. sensors, which prepare light and proximity metrics for obstacle detection. The
modular main board allows the user to include many other components for communication
or localisation, like a camera, motors, displays, and transistors. It provides the feature
of long-time autonomy for a robot through a powerful Li-Po battery. Many experiments
use HeRo 2.0 robots to achieve area coverage tasks by avoiding local collisions with other
robots and obstacles. Table 2 shows the specifications of each hardware model.



Algorithms 2024, 17, 3 23 of 36

Table 2. The specifications of each hardware model.

Hardware Memory Processer Communication Size Applications Strength Limitation Sensor Application
Environment Cost Ref. Year

GRITSBot

- ESP8266 chip
contains an
SPI-controlled
EEPROM chip
- New version
has 4 MB (32
MBit) of flash
memory

- 8 MHz,
- An Atmega 168
chip on the
motor board
- An Atmega 328
chip on the
main board

Wi-Fi
802.11 bn
+ R.F.
transceiver

3 cm2

- Coverage control.
- Vehicle routing
- Exploration
- Swarm robotics

- Low cost
- Has a differential drive
microrobot designed to
work on the testbed table
- There needs to be more
effort in the maintenance
of automatic
sensor calibration
- Recharging autonomously
- Detect the positioning via
a webcam
- Wireless
- Open-source

The low-power R.F.
transceiver
equipped with
Wi-Fi led to a lower
data rate, which is
limited to 2 Mbit/s

- I.R. sensors
(distance and
bearing)
- Accelerometer and
gyroscope
(velocity and
position)
- Battery voltage
sensor
- Light

Unknown Low [79,80] 20152016

Roberto - 32 KB RAM
- 256 KB flash

- 16 MHz ARM
cortex
32-bit

Bluetooth +
Smart ANT+ 1.6 cm2

- Area coverage
urban search
and rescue
- Surveillance
- Micro-assembly
- Wireless sensor
networks (WSNs)
- Medicine
- Swarm robotics

- Ability to perform
complex tasks
- Simplified design
- Easy maintenance
- Different topologies of the
network can be used
- Following a particular
path through a camera in
real time
- Open-source

The low-power I.R.
used is simple in
implementation but
causes the slow
transfer of data and
specific range

- Light
- Range
- Gyro
- Camera
- Accelerometer
- Compass
- Distance
- Bearing

Known Low [81,82] 20162017

TurtleBot3
burger 2/4/8 GB 32-bit ARM

cortex Wi-Fi

138 mm
×
178 mm
×
192 mm

- Area coverage
- Motion planning
- SLAM
(Simultaneous
Localisation and
Mapping)
- Navigation
- Manipulation
- Search and rescue
- Swarm robotics

- Small
- Low-cost
- Reliable
- Programmable
- Most popular
- Strong sensor
- Open-source
- Two-wheel
differential-drive
uncrewed ground
vehicle (UGV)

- Measuring speed
with the robot gets
worse when the
distance of the robot
increases (use GPS
to solve
this problem)
- The capabilities of
sensors are limited
in navigation (the
on-board stereo
camera is used to
improve quality)

- LiDAR sensor.
- Sensors for
navigation (3-axis
gyroscope,
accelerometer, and
magnetometer)
- Touch sensor
- Distance sensor
- Ultrasonics sensor
- Humidity and
temperature sensor
- Colour sensor
- Magnetic sensor
- Illumination
sensor

Unknown Low [66,83,84] 201720212022
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Table 2. Cont.

Hardware Memory Processer Communication Size Applications Strength Limitation Sensor Application
Environment Cost Ref. Year

E-puck 2
RAM: 192 KB
1024 KB flash
memory

32-bit STM32F407
@ 168 MHz
(210 DMIPS), DSP
and FPU, DMA

- USB
Full-speed,
Bluetooth 2.0,
- WiFi

7.5 cm2

- Area coverage
- Mapping
- Exploration
- Signal processing
- Automatic control
- Distributed
intelligent systems.
- Position estimation
and path finding of
a mobile robot
- Swarm robotics

- It is a popular choice for
swarm robotics due to its
size and commercial
availability
- Powerful controller
- Flexibility
- Open-source

- To avoid damage,
epuck2 robot must
be handled with
precaution because
it is fragile
- Decrease in battery
charge and high
temperature affect
its performance

- 8 infrared sensors
(up to 2 m)
- 3D accelerometer
- 3D gyro
- 3D magnetometer
- VGA colour
camera (160 × 120)
- 4 red LEDs and
4 RGB LEDs
- 4 microphones

Unknown Low [85,88] 20182021

Colias IV 256K

32-bit ARM
Cortex M4
Atmel
8-bit

Bluetooth 4 cm2

- Area coverage
- Neural networks
- Image processing
- Visual tasks
- Swarm robotics

- Strong ARM processor
- Microrobot can realise
bio-inspired visual
detecting models such as
LGMD1 and
- Other related neural
models on board in real
time
- Enormous capabilities
regarding connectivity
- Open-source

- In behaviours of
aggregation in
swarm robots, it is
difficult to
coordinate between
robots and achieve
communication
without global
synchronisation (it
can be solved using
R.F. or optical
approaches).

- Distance
- Bump,
- Light
- Range
- Bearing
- Tiny camera
- 2 digital
microphones

Unknown Low [89] 2018

WsBot 4 MB flash
memory

32-bits 160 MHz
Espressif ESP8266 Wi-Fi 3 cm2

- Designed mainly
for, but not
restricted to, the
testing
- In smart factories
(The WsBot
executes the forklift
actions)
- In small-scale real
warehouse
experimentations

- Tiny differential Robot
and ROS-based
- Because of these features,
is used in many research
studies
- The robot is compact
- Low cost
- Quick to assemble
- Low complexity
- Easy to program

The small size and
not containing any
sensors by using
low-power
computing units
lead to not having
high computing
power

No built-in sensor Known [90,91] 2019
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Table 2. Cont.

Hardware Memory Processer Communication Size Applications Strength Limitation Sensor Application
Environment Cost Ref. Year

HeRo 2.0:

Tensilica LX106
32-bit @ 80/160
MH
4 MB

Espressif ESP8266
(32-bit 160 MHz)
microcontroller

- Wi-Fi 802.11
Bgn
- Bluetooth

6.7 cm2

- Mapping
- Decentralised
coverage
- Flocking behaviour
and transportation
tasks performed
with a group of
HeRo robots
validate the robot’s
capacities for
real-world swarm
applications and
educational use

- Scalable
- Sensing and networking
capabilities
- Sensor accuracy
- Easy to assemble using
off-the-shelf components
- Deeply integrated with
the most-used robotic
framework available today:
ROS (Robot Operating
System)
- The automated platform
is entirely open
- Composed of a
3D-printed body
- Open-source
- Superior to other
commercial models

Difficulty with the
following:
- Reproduc-
tion/assembly: It
needs manual
modification or
finishing through
assembly, requiring
time and effort.
This procedure is
essential for the
Robot’s
transmission
mechanisms,
affecting wheel
motion and encoder
readings if left
unattended.
- Robot calibration:
The performance of
the robot is affected
by its low-cost
components. This
leads to the user
calibrating the I.R.
sensors and motors
occasionally.
- Wireless recharge:
Manual recharge for
robots by plugging
in a cable rather
than wireless
because of the high
wireless cost
compared with a
cheap robot.
– Mechanical wear:
Using low-cost
components affects
the durability. This
leads to the
replacement of
some of the material
after some time.

- Distance
- Light
- Encoder
- IMU

Known High [92] 2022
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6. Applications for Swarm Robotics to Perform Area Coverage Tasks

There is a comprehensive application of swarm robots due to the increased reliability
in adopting new technology in research and analysis over large open spaces and terrains to
achieve area coverage. Swarm robots are increasingly used in various fields, such as the
military, archaeology, and oil sectors. Today, geologists can visually represent the earth’s
surface using three-dimensional imaging, using swarm robots. The result is the reduced
cost of operations because it can take several hours to map a large area, which initially
requires several days or weeks. In the military sector, the swarm application is used in
intelligence collection. The military deploys a swarm of UAVs in various parts of the
world to conduct reconnaissance simultaneously. Such capability provides the military
with updated data and information that enhances readiness and the ability to respond to
threats [94]. In the oil sector, swarm robots estimate the level and depth of oil spillage.
Initially, it would take two-to-three weeks for oil companies to assess the scope of damage
when oil spilt in the open seas. Today, oil companies are deploying swarm drones to
assess damage from oil spills and suitable effective methods to be used to control the
damage. Overall, there is continuous development and research in swarm robots that seek
to enhance the integration and application of robots to enhance the quality of life [95].

There are many applications of swarm robotics for area coverage:
According to [96], the low-cost robots were applied for sustainable broad-acre agri-

culture to increase production and decrease the environmental impact. These robots were
controlled and run by a centralised laptop. The project focuses on using robotics to deal
with resistant weeds, a critical problem for Australian farmers. The used robots have
low-cost cameras and positioning sensors to achieve a large-scale area coverage task while
avoiding other robots and obstacles. Experimental results were obtained from one real
Robot and 12 simulated robots cooperating and having a 3G mobile data connection for
2 h on a 55-hectare field in Emerald, Australia. Through implementation, the real robot
“sprayed” 6 hectares, missing 2.6% and overlapping 9.7% within its assigned field partition,
and successfully avoided three obstacles.

Ref. [34] claims that five robots with an XBee module presented the problem of seeking
electromagnetic sources by area coverage by implementing many modified PSO algorithms
on mobile robots according to the physical constraints presented by both robots and the
environment. The area covered is 5 × 5 m2, and applying the Vicon tracking system gives
the information of the robot’s precise position with the support of an indoor GPS system
used to recognise markers on the robots. The type of robots used with an XBee module
in experiments improved from the Parallax Shield-Bot, which Arduino controls. These
robots search for the target source, a module of XBee hanging above a floor at a height of
20 cm in the middle of the area to avoid the probability of collision with the robot. Also, the
avoidance strategies for static and dynamic obstacles occurred in PSO in this experiment.

In the investigation of [97], many swarm robotics were used to achieve area coverage
in a known environment by applying a new proposed cooperative strategy for spraying
in a large field while using the local information of robots. Spraying is distributing Plant
Protection Products (PPPs) on the crop at various stages in the cultivation process. To
cover an area divided by the proposed strategy into regions, there must be a guarantee that
each area will be visited only once by the robot. In the simulation experiment, 50-to-250
tracks exist in the field; the distance between the two ways is 20 cm, and the track length is
20 m. The dimensions of the robot used are 50 cm, and all robots have the same velocity of
0.5 (m/s).

Ref. [80] examined that many swarm robots formulated a letter of R by using GRITSBot
robots executed on Robotarium (remote access to multi-robot testbed). Robots were used
for an R-shaped area coverage of the testbed, using thirteen GRITSBot robots distributed in
this shape.

According to [98], ten real robot-type e-pucks were used to create a collective map
of the environment. The map quality is based on the individual behaviour of the swarm
during the exploration. The mapping approach was used for the environment by a random
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walk. At first, each robot maps the background and then merges its map with another
robot’s map into a single global one. Many types of random walks were used, and their map
quality was compared to that of swarm robots. The results from one of the types of random
walk methods, the ballistic motion, are better for mapping in a closed environment called
an arena (walls of 0.94 m in length surround the area of 2.30 m2). The arena’s atmosphere
comprises five obstacles of rectangular 0.02 m2 or no barriers.

Ref. [99] claims that the system of swarm robots was implemented for painting on the
Robotarium (remotely accessible for swarm robotics testbed). The experiments illustrated
that painting resources influence the resulting image. Swarm robots used nine pieces of
experimental paint equipment. The proposed painting system demonstrated the motion
trails of 12 robots over the canvas with an overhead projector. A human user can affect the
painting output by determining the desired colour densities on a canvas area for different
colour tones: cyan, blue, pink, orange, and yellow. Swarm robots work simultaneously and
are distributed in a place to cover a 2.4 × 2 m2 canvas and complete six functions for the
density of colours for 300 s. In the end, the integration of the colours presents a result close
to the density specification of the user.

According to [100], cleaning an industrial environment by using a multi-robotic dirt-
cleaning algorithm requires a team of many iRobots. The experiment was performed for
two iRobots on cardboard boxes as an environment. The iRobot encompasses a Hokuyo
laser scanner to scan the environment and change the laser data into a two-dimensional
map and a sensor of a piezoelectric that creates electrical pulses when it hits the dirt and
gives a reading of dirt measurement. At first, the environment is divided into square cells,
using the Grid Divide Algorithm and randomly deployed play sand as 10 g for each cycle.
Then, the A* Path Planning Algorithm is used to locate the optimal cleaning path for each
iRobot. These algorithms permit the robots to clean professionally, using rising vacuum
motor power in an area with high dirt. The obstacles were static in this work. The results
demonstrate that cleaning is enhanced by a swarm of robots rather than a single one in
regard to the time consumed and battery usage.

The problem of non-convex area coverage by distributing many mobile robots in the
area with obstacles was addressed. Each robot was supported by an omnidirectional range
of sensors of a standard radius. The swarm robots are required to move to particular
locations [101]. As a result, better algorithms for robot distribution were derived for the
problem of area coverage and homing. Six mobile robots, AmigoBot, and a visibility-
based approach with the aggregate objective function were used. The exact position and
orientation were given to robots in the beginning. Due to the non-convexity of the entire
region of 8.7 m2, it is impossible to cover it. Consequently, the swarm reached a local
maximum where the allocated region was 5.4 m2, approximately 62.14% of the total area in
40 s.

The management system of swarm robots in hospitals has been proposed to decrease
the risk to doctors and medical staff, especially during the COVID-19 pandemic. Swarm
robots are assigned many tasks to manage biomedical waste and floor cleaning simultane-
ously. Initially, the transmitter sends a signal to the bots to transfer to the area of interest via
an indoor positioning system. The robots cover an area for cleaning, and the bots have an
automatic disinfecting box to perform disinfection operations and aggregate the bio-waste.
Each bot has a system of cleaning attached to it to achieve the task of cleaning [102].

First, we present the handling of area coverage problems to find targets by swarm
robots. When the robot finds the target, it must connect to the base station via wireless
communication through intermediate transfer robots. Real swarm crawler robots and
the Lévy flight strategy were exploited to find the target in large environments. The
experiments were performed in the building’s corridor at Setsunan University. Besides
this corridor, there are several classrooms. Therefore, the walls surround the experiment’s
environment (the rooms’ doors were kept closed in the investigation). The target is an
infrared-emitting ball, and the base station is a laptop [103]. The results refer to this
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approach being significant in the indoor environment to detect the marks with a 100%
success rate.

Table 3 provides a thorough synopsis of swarm robotics’ many uses, down to the
necessary algorithms, facets of coordination, centralization of the system, obstacles to be
considered, hardware platforms, simulation environments, strengths, limits, and envi-
ronmental settings. A multi-robot planner with poor coordination and no centralization,
employing tiny, inexpensive cooperative robots, is the application’s focus within the frame-
work of sustainable broad-acre farming. In spite of the system’s scalability and resilience,
it cannot fix issues when robots fail because the environment is unpredictable [96]. Par-
ticle Swarm Optimization variations, when applied to small robots built from Parallax
Shield-Bot hardware, show great coordination without centralization, making them ideal
for source-seeking applications. While the method has limits due to physical constraints
given by robots and the environment in a defined setting, its merits lie in the quick and
affordable calculations and the fact that it escapes local optimal solutions.

Swarm robots rely on a network of interconnected robots to complete activities like
spraying vast fields without the need for a single leader or controller. The method relies
on local data for decision-making and has shown effective in the actual world with little
computing demands [97]. Using GRITSBot robots in a familiar setting, R-shaped aggre-
gation tasks use a cooperative technique with moderate coordination and centralization.
Despite some restrictions on its use, the system has gained praise for its affordability,
security, adaptability, collision avoidance, and fault tolerance [80]. Whether in a familiar or
unfamiliar setting, e-puck hardware may implement a random walk algorithm with strong
centralization and coordination for mapping and exploration tasks. When it comes to open
surroundings or real robot tests, the system falls short, but it does a great job at mapping
closed regions [98].

Using a Voronoi algorithm and a robotic system with strong centralization and co-
ordination, a group of mobile robots works in a familiar area to distribute tasks such as
painting. Although user-driven painting is unique, it has limits due to painting resource
constraints that impact the final artwork [99]. Using iRobot gear in an unfamiliar setting and
cleaning industrial areas through multi-robotic algorithms demonstrate poor coordination
and centralization. As opposed to a single robot, the system is more efficient in cleaning,
but it cannot handle obstacles that change position without rerouting [100]. Applying a
visibility-based strategy with strong coordination and minimal centralization, executed on
AmigoBot hardware in a known environment, solves non-convex area coverage challenges.
While the algorithm performs well when trained on local information, it has difficulty when
applied to large regions [101].
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Table 3. The specifications of each application.

Application Algorithm Application
Domain

Coordination
between
Robots

Centralised
System Obstacle Hardware

Simulation
Plat-

form/Controller
Strength Limitation Environment Ref. Year

Area coverage
by swarm
robots for
sustainable
broad-acre
agriculture

The multi-robot planner
Task allocation
and
coordination

Weak Y Static

Small, low-cost
cooperative
robots (Gator
T.E. (vehicle)

/

- Robustness
- Scalability
- Minimising the
overlapping of areas
- Increasing broad-acre
agricultural productivity
by low-cost robots

Does not
adaptive to the problem
if one robot failure

Unknown [96] 2015

Area coverage
for source
seeking

- Particle Swarm
Optimisation with
Inertia Weight
- Particle Swarm
Optimisation with
Constriction Factor
- Standard Particle
Swarm Optimisation
(SPSO)

Exploration Strong Y Static
and dynamic

Small robots
modified from
the Parallax
Shield-Bot

Arduino

- The best and most
convenient diversity of
PSO is inertia
weight PSO
- Fast and inexpensive
computations
- Escape from local
optimal solutions

- Physical constraints
presented by both robots
and the environment

Known [34] 2015

Area coverage
for spraying a
large field

Cooperative strategy by
swarm robot

Task allocation
and
coordination

Strong N No obstacle Many robots
on a team /

- Depends on their local
information to produce
a decision
- Real robots can be
applied successfully
- Few computational
needs

- All robots are working
and participating at once
- The distance between
locations of two
consecutive checkpoints
must not exceed more
than the discovery range
of robots

Known [97] 2016

Area coverage
of the testbed
in an R-shape

Cooperative strategy by
swarm robot Aggregation Moderate Y No obstacle GRITSBot

robots Robotarium

- Low-cost
- Safe
- Flexible
- Collision-avoidant
- Fault-tolerant

Not applicable to some
situations Known [80] 2016

Area coverage
to perform a
collective map
of the
environment

Random walk algorithm
(Brownian motion
and Levy
walk

Exploration
And
Mapping

Strong Y Static e-puck Arena - Better for mapping in
closed environments

- Not applicable in open
environments
- Not applicable in many
actual robot experiments

Unknown [98] 2019

Area coverage
for drawing a
painting

A robotic painting
system +
Voronoi method

Task allocation Strong Y No obstacle Team of
mobile robots Robotarium

- The novelty of this
method is represented
by an external factor
through the user (artist)
affects the robot’s
motion to paint
specific colours
- The end integration of
the colours presents a
result close to the user’s
density specification

- Painting resources are
limited, and this
influences the
resulting painting

known [99] 2019
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Table 3. Cont.

Application Algorithm Application
Domain

Coordination
between
Robots

Centralised
System Obstacle Hardware

Simulation
Plat-

form/Controller
Strength Limitation Environment Ref. Year

Cleaning
industrial
environment

Multi-robotic
dirt-cleaning algorithm+
Grid Divide Algorithm +
A* Path-Planning
Algorithm

Task allocation Weak Y Static iRobot /

- Cleaning is enhanced
by a swarm of robots
rather than a single one,
in both time-consuming
and battery usage

-Does not handle the
case of dynamic
obstacles and replanning
for path

Un
known [100] 2020

Solving the
non-convex
area coverage
problem

Visibility-based
approach Exploration Strong N Static

and dynamic AmigoBot /

- Determines the optimal
direction motion for each
robot, which influences
efficiently solving the
homing problem
- Requires only
local knowledge

- Does not work well for
vast areas Known [101] 2021

The
management
system of
swarm robots
in hospitals to
decrease the
risk to the
doctors and
medical staff,
especially
during the
period of the
COVID-19
pandemic

Management system by
swarm robots

Exploration
and
task allocation

Weak Y Static
and dynamic Mobile bot

- Decreases the risk to
the doctors and medical
staff, especially during
the period of the
COVID-19 pandemic

- To perform extra
functions, one must
attach more equipment,
such as an arm-like
structure for
medicine delivery

Unknown [102] 2021

Area coverage
problems to
find targets

Lévy flight strategy
Exploration
and
task allocation

Moderate Y Static
and dynamic

Swarm crawler
robots Arduino

- Detecting the targets
with a 100% success rate
is significant indoors

Not exact/accurate
results for the position
of targets

Unknown [103] 2022
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Using mobile bot hardware, the application explores weak coordination and central-
ization in static and dynamic environments, with a focus on swarm robot management
systems in hospitals during the COVID-19 pandemic. Though it may necessitate more
hardware for enhanced capabilities, the system effectively reduces dangers to medical
personnel. Last but not least, swarm crawler robots operating in an unfamiliar setting face
challenges with area coverage while trying to locate objects using a Lévy flying approach
that combines modest centralization and coordination. When it comes to indoor target
detection, the algorithm really shines, but when it comes to pinpoint accuracy for target
positions, it really struggles [103].

7. Discussion

The variety of algorithmic approaches used in swarm robots for area coverage is
highlighted in the publications that were surveyed, demonstrating how adaptable these
systems are. The varied tactics are illustrated by three well-known methods: Ant Colony
Optimization (ACO), Honey Bee Optimization (MBO), and Particle Swarm Optimization
(PSO). The versatility of swarm robotics in tackling multiple problem areas is exemplified
by this variation, which also displays the inventiveness of researchers.

The articles that were surveyed differ significantly in their approach to exploration,
task allocation, or hybrid systems that combine the two. Some research emphasizes methods
for allocating and coordinating tasks, while others centre on the discovery of previously
uncharted settings. A good example of the complex decision-making required for algorithm
selection is the fact that the choice is frequently conditional on whether the area coverage
problem has static or dynamic obstacles.

The reliability of data sources is highly related to how well swarm robots perform in
area coverage tasks. For robots to understand and move around in their environments,
sensing technologies like GPS, infrared cameras, and light detection and ranging (LiDAR)
are crucial. It turns out that the swarm’s adaptability and coverage of a specific area are
heavily impacted by the sensing technology that is chosen.

The papers that were analysed cover a wide range of practical fields, such as healthcare,
exploration, mapping, and agriculture, among others. Because every application model
has its own specific needs and difficulties, it is clear that we need tailored algorithms and
coordination strategies. The effectiveness and versatility of swarm robotics systems can be
greatly improved by adapting them to different industries and environments.

The development of swarm robotics for the coverage of large areas can be shown by
looking at the research that was surveyed over time. More efficient algorithms, better hard-
ware integration, and more useful applications are all the results of recent developments.
The maturation and greater popularity of swarm robots over the years have made it a
generally accepted solution for complicated area coverage challenges.

There have been some successes, but there are still some obstacles in the field of
swarm robots. Recurring limitations brought up by the papers under consideration include
scalability, adaptability to new situations, and the creation of strong coordination mecha-
nisms. In order to direct future research toward resolving these constraints, it is critical to
acknowledge these obstacles.

The publications that were surveyed highlight the significance of hardware in swarm
robots. Improved capabilities are displayed by robots like GRITSBot, TurtleBot3, and e-puck
2 that have complex control systems, high-tech sensors, and strong networking capabilities.
When the swarm’s gear is well-integrated, it increases their efficiency and lets them cover
more area.

By highlighting open topics in the field, the survey points the way toward potential
future research and development directions. Possible future research avenues include adap-
tive algorithms, swarm robotics integration with new technology, and dynamic obstacle
avoidance. Swarm robotics applications can be improved, and the industry can advance if
these knowledge gaps are filled.
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Final observations on algorithmic diversity, methodological considerations, sensing
technology influence, application-specific challenges, evolution over time, persistent obsta-
cles, hardware’s role, and possible future research directions are presented in the detailed
discussion. All of these findings add up to a full picture of where swarm robots for area
coverage stand right now.

8. Conclusions

There is increasing usage of swarm robots in various fields and occupations. The
evolution of technology in the twenty-first century has played a significant role in enabling
the large-scale application of swarm robots, especially for solving area coverage problems.
The algorithms used in this survey, either metaheuristic or classical, refer to using a swarm
of robots in specific areas to achieve certain goals. The technology used in swarm robots
relies on the development of numerous naturally inspired algorithms, like Particle Swarm
Optimisation (PSO), Honey Bee Optimization (MBO), and Ant Colony Optimisation (ACO),
which are the most used and suitable for robotics in this domain, and many metaheuristic
swarm intelligence algorithms. These algorithms and methods are utilised according to
the type of problem and the requirements of the environment, which are either known
or unknown and may contain obstacles, which constitute the most complex problem, or
be free of obstructions. Individual coverage is an emerging trend in recent surveys, as
each bot interacts with the rest of the swarm team to achieve the goal by covering the area.
Relatively better algorithms than the previous ones were used. However, there still needs
to be more coverage of the concerned area. From this survey, we conclude that modern
algorithms are less dependent on calculations than the previous algorithms containing
elaborate mathematical models. Such algorithms are combined with a wide variety of
hardware, like sensors, cameras, communication, and controlling devices, to enhance the
functionality of swarm robots. Combining algorithms and hardware expands the range of
applications and usage of swarm robots in numerous areas, like defence, medicine, geology,
and business.
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