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Abstract: In this paper, we present a general version of polygonal fitting problem called Uncon-
strained Polygonal Fitting (UPF). Our goal is to represent a given 2D shape S with an N-vertex
polygonal curve P with a known number of vertices, so that the Intersection over Union (IoU) metric
between S and P is maximized without any assumption or prior knowledge of the object structure
and the location of the N-vertices of P that can be placed anywhere in the 2D space. The search space
of the UPF problem is a superset of the classical polygonal approximation (PA) problem, where the
vertices are constrained to belong in the boundary of the given 2D shape. Therefore, the resulting so-
lutions of the UPF may better approximate the given curve than the solutions of the PA problem. For
a given number of vertices N, a Particle Swarm Optimization (PSO) method is used to maximize the
IoU metric, which yields almost optimal solutions. Furthermore, the proposed method has also been
implemented under the equal area principle so that the total area covered by P is equal to the area
of the original 2D shape to measure how this constraint affects IoU metric. The quantitative results
obtained on more than 2800 2D shapes included in two standard datasets quantify the performance
of the proposed methods and illustrate that their solutions outperform baselines from the literature.
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1. Introduction

Polygonal shape fitting is a key problem in computer vision and computer graphics
with several applications, including object recognition, computational cartography, signal
summarization, and compression [1–3]. When curves are modeled, straight-line segments
are usually preferred due to their simplicity. The polygonal fitting process saves mem-
ory space, reduces rendering time on graphics applications, and gives a more compact
representation of the original shape.

According to the classical polygonal approximation problem of a 2D shape, the goal is
to compute an N-vertex polygonal curve P that approximates the boundary B of the original
shape S according to a predefined error criterion. In the classical polygonal approximation,
the vertices of P are an ordered sub-sequence of the boundary points B [1]. The classical
polygonal shape fitting provides poor results, especially when the number of vertices
is low and the shape complexity is high. In this work, we study a general version of
polygonal fitting, called the Unconstrained Polygonal Fitting (UPF) problem, to provide
better solutions with the same number of vertices. According to UPF, the N-vertices of P
can be placed anywhere in the 2D space. Therefore, the search space of UPF problem is
a superset of the classical polygonal approximation (PA) problem, where the vertices are
constrained to belong in the boundary of the given 2D shape. This means that the resulting
solutions of UPF may better approximate the given curve than the PA problem solutions.
This theoretically interesting computer vision problem has a compact and easy-to-grasp
description, but a very high algorithmic complexity due to the large search space. Even
if just a triangle (N = 3) is used, there does not exist any trivial method to compute the
optimal solution of UPF problem.
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Different error criteria have been proposed for shape fitting/polygonal approximation
problems. In this research, the Intersection over Union (IoU) metric between S and P is
maximized given a fixed number of polygonal vertices N, without any assumption or
prior knowledge of the object structure. IoU metric can be easily replaced by any other
segmentation metric, for example accuracy and dice coefficient (DICE), without any change
in the proposed methodology. Another problem instance that we experimentally study is
to define the problem under the Equal Area constraint, which states that the area covered
by the polygonal curve P should be equal to the area of the given shape S.

Figure 1 shows two example outputs of the classical polygonal approximation using
the Douglas–Peucker algorithm [4] (left) and the unconstrained polygonal fitting using
the proposed method (right) for N = 4 vertices. In both cases, it holds that the solution
of the UPF problem provides higher IoU, DICE values compared with the results of
Douglas–Peucker algorithm. In the first example with an apple, the Douglas–Peucker
algorithm yields DICE = 79.6%, IoU = 66.1% (Figure 1a), while the proposed method
yields DICE = 90.8%, IoU = 83.2% (Figure 1b). In the second example with a building,
the Douglas–Peucker algorithm yields DICE = 88.9%, IoU = 80.1% (Figure 1c), while
the proposed method yields DICE = 97.5%, IoU = 95.1% (Figure 1d). There exist several
examples where there exist significant differences in performance between the optimal
solutions of the two problems, especially for lower values of N, where the optimal solutions
of UPF space may be far from the shape boundary.

(a) (b)

(c) (d)

Figure 1. Example outputs of the classical polygonal approximation (PA) (left) and the proposed
unconstrained polygonal fitting (UPF) (right) for N = 4 vertices. The red dots and green lines
correspond on vertices and line segments of the polygonal curves. The green plus symbol represents
the centroid of the shape.

In summary, the main contributions of our work are the following: To the best of
our knowledge, this is the first work to define and solve the UPF problem. The proposed
method solves the UPF problem via Particle Swarm Optimization (PSO) [5] that quickly
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explore the search space. The proposed framework suggests solutions that outperform
baselines in quantitative terms, even if are not necessarily optimal due to the PSO. Especially
in a low-dimensional search space, which is true for low number of vertices, the proposed
method clearly outperforms baselines of classical PA, since even the optimal solutions of
the classical PA problem usually fail to obtain high performance results due to the limited
search space (shape boundary) of PA problem.

2. Related Work

The problem of shape fitting/polygonal approximation has been studied extensively
during the last five decades [1,3,4,6]. The methods that have been developed solve the
problem by approximating the original shape S by a polygonal curve P under the constraint
that the P vertex sequence is an ordered sub-sequence of the vertices along shape boundary.
The polygonal approximation problem can be formulated in two ways [1,6]:

• The problem of better fitting, where the approximation error is minimized or the fitting
accuracy is maximized given the number of vertices N.

• The problem of minimum number of vertices, where the approximation error or the
fitting accuracy is bounded and the goal is to find the minimum number of vertices
that satisfy the given bound.

The polygonal approximations algorithms can be classified as (1) optimal or non-
optimal and (2) supervised or unsupervised algorithms [6]. The non-optimal algorithms
do not guarantee any kind of optimum as optimal algorithms, but can find reasonable
polygonal approximations faster than the optimal ones. The supervised algorithms take
into account parameters to generate polygonal approximations, while the unsupervised
algorithms generate the polygonal approximations without parameters. The Douglas–
Peucker algorithm [4] is one of the first successful algorithms developed for polygonal
approximation and cartographic generalization [7]. The algorithm is also widely used
in robotics to perform simplification [8]. The purpose of the algorithm is, given a curve
composed of line segments, to find a similar polygonal curve with fewer points so that the
simplified curve consists of a subset of the points that defined the original curve. Yin [9]
presents a polygonal approximation approach based on the discrete particle swarm op-
timization (PSO) algorithm. Each particle represented as a binary vector corresponds to
a candidate solution to the polygonal approximation problem. A swarm of particles is
initiated and flies through the solution space for targeting the optimal solution. In [10],
the authors proposes a non-optimal and unsupervised algorithm for generation of polyg-
onal approximations based on the convex hull of the 2D closed curves or contours. The
significance levels of the contour points are computed using a symmetric version of the
well-known Douglas–Peucker algorithm and, finally, a thresholding process is applied to
obtain the vertices or dominant points of the polygonal approximation.

In the case of 2D shape fitting, a 2D binary image is given with foreground points
representing the shape to be modeled. This image can be the result of any object detection
or image segmentation method (e.g., [11–13]). Several models can be used to solve the
2D shape fitting problem. In the literature, there exists several approaches that fit a set
of ellipses to the given 2D shape based on (a) the Hough Transform, (b) Genetic and
Optimization Algorithms, and (c) edge-following [13,14]. In [13], a framework has been
proposed to represent a given 2D shape with an automatically determined number of
ellipses based on expectation maximization criterion, so that the total area covered by the
ellipses is equal to the area of the original shape. In [3], an algorithm is proposed to extract
and vectorize objects in images with low-complexity polygons based on local merging and
splitting of cells. Departing from a polygonal partition that oversegments an image into
convex cells, the algorithm refines the geometry of the partition while labeling its cells by
a semantic class. The authors applied their method to a variety of scenes, from organic
shapes to human-made objects through floor maps and line-drawing sketches.

Concerning the metrics that have been used to measure the performance on shape
fitting problem, they can be classified into:
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• Boundary-based metrics that compare the distance between the boundary of given
shape and the approximated curve. Some of the most well-known metrics are the
root mean square error (RMSE) between the two curves and the maximum error
between the boundary S and their corresponding subcurves of P. These metrics have
the advantage that can also be applied on given curves (non closed contours), but are
sensitive to boundary noise [1,6].

• Region-based metrics that compare the region of the approximated shape and the
given shape. Region-based metrics are more tolerant to noise, since they do not
restrict themselves to the boundaries of shapes but rather take into account all shape
points [13]. Common metrics of this category are the Intersection over Union (IoU)
and the Dice coefficient (DICE), which is defined by twice the area of the shapes’
intersection divided by the sum of the areas of each shape. Both of them have also
been used to measure the performance of image segmentation methods [15].

3. Unconstrained Polygonal Fitting
3.1. Problem Formulation

We assume a binary image I that represents a 2D shape S. A pixel p of I belongs either
to the foreground S (I(p) = 1) or to the background (I(p) = 0). The area A of the 2D shape
is given by

A(S) = ∑
p∈S

I(p). (1)

We also assume a closed polygonal curve P with N vertices Pi, i ∈ {1, ..., N}, which belong
in the 2D space (not necessary on the boundary of S). The binary image IP is also defined
so that IP(p) = 1 at points p that are inside any of the polygonal curve P and IP(p) = 0,
otherwise. Then, the Intersection over Union IoU(P) metric between the 2D shape S and P
is calculated as follows:

IoU(P) =
∑p∈S IP(p)

∑p∈I max(I(p), IP(p))
. (2)

Essentially, IoU(P) is the percentage of the 2D shape points that are under polygonal curve
P divided by the number of 2D points that belong to shape S either polygonal curve P. The
optimal solution of Unconstrained Polygonal Fitting problem is the closed polygonal curve
P that maximizes the IoU(P).

P∗ = argmaxP IoU(P) (3)

3.2. Equal Area Principle

The equal area principle (constraint) has been used in [13] restricting the area of P
to be equal with the area of the given shape. This is a reasonable constraint, in the sense
that we except in many cases that the optimal solutions of the UPF problem have almost
the same area with the given shape S. So, by adding this extra constraint, we reduce
the search space of the problem without mainly affecting the performance of the method.
Additionally, some applications may also include this requirement. Let A(P) denote the
areas of polygonal curve P, A(P) = ∑p∈I IP(p). According to the Equal Area constraint,
it holds that the area of polygonal curve P is equal with the area of shape S meaning that
A(P) = A(S). Therefore, the optimal solution of Unconstrained Polygonal Fitting problem
under equal area principle is the closed polygonal curve P that maximizes the IoU(P)
under equal area principle.

P∗ = argmaxP IoU(P), A(P) = A(S) (4)

Hereafter, we describe a simple procedure that applies the equal area principle on
a polygonal curve P, yielding a new polygonal curve P̄ so that A(P̄) = A(S). Let C be
the centroid of S (the centroid of P can be also used; the centroid of S is more preferable
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for stability reasons in an iterative process) and P̄i be the i vertex of polygonal curve P̄,
i ∈ {1, ..., N}.

C =
1

A(S) ∑
p∈S

p (5)

P̄i = C +

√
A(S)
A(P)

· (Pi − C) (6)

3.3. UPF-PSO and UPF-PSO-EA Algorithms

In this work, we cast the search for a single polygonal curve as a stochastic opti-
mization problem that is solved based on Particle Swarm Optimization (PSO) [5,16,17].
PSO is a derivative-free optimization method that handles multi-modal, discontinuous
objective functions with several local minima. Optimization is performed through the
evolution of particles (candidate solutions) of a population (swarm). Particles lie in the
parameter space of the objective function to be optimized, and evolve through a limited
number of generations (iterations) according to a policy which emulates “social interaction”.
The main parameters of PSO are the number of particles and generations, the product of
which determines its computational budget (i.e., the number of objective function evalua-
tions). PSO achieves near-optimal solutions, and has been successfully applied in several
challenging optimization problems in computer vision and pattern recognition such as
classification, clustering, prediction, image segmentation, video co-segmentation, object
tracking [16,18–20].

The proposed Unconstrained Polygonal Fitting based on Particle Swarm Optimization
Algorithm (UPF-PSO) optimizes the IoU metric (see Equation (3)) for different polygonal
curves that are directly represented by PSO particles. The input to UPF-PSO is the binary
image I, representing the given shape S and the number of vertices N of the polygonal
closed curve that will be fitted to S. The UPF-PSO method quickly explores the search
space starting from random solutions. Iteratively, PSO searches for a polygonal curve that
maximizes the IoU metric.

We represent each particle by a 2 · N vector with the 2D coordinates of the N points of
the polygonal curve. In order to simplify the search space, we assume that the vertices are
in clockwise order; otherwise, in the evolution process, we correct the order of vertices of
each particle according to this hypothesis. The fitness (objective function) of the particle is
directly given by the IoU metric of the particle (see Equation (2)). The UPF-PSO Algorithm
is analytically described hereafter.

Initially, we create a population of M (e.g., M = 20) particles that are located in
random positions around the centroid of the shape S under the Equal Area Principle (see
Section 3.2) to be in valid positions of the search space. In the evolution process, PSO finds
the current optimal solution in order to update the best global solution. Additionally, the
best local solution of each particle is also updated, where the IoU of the particle reaches
a better solution. The method terminates when the number of iterations of the evolution
process exceeds the given number of generations. In this work, we use the upper limit of
100 generations.

The proposed Unconstrained Polygonal Fitting based on Particle Swarm Optimization
Algorithm under equal area principle (UPF-PSO-EA) is the UPF-PSO algorithm with the
extra modification of applying the transform of Equation (6) at each iteration of PSO. This
means that in each step of the method, the area of P is equal with the area of the given
shape. Therefore, the solutions of UPF-PSO-EA can be completely different from the
original UPF-PSO.

4. Experimental Evaluation

The evaluation of the proposed approach was based on two standard datasets from
the literature. More specifically, we employ:
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• MPEG-7 [21], which consists of 1400 binary shapes organized in 70 categories with
20 shapes per category. This dataset has been extensively used in shape tasks [13,22].

• A subset of LEMS [23]; that is, 1462 shapes that come from the following categories of
the original database: Buildings, Containers, Fish, Fruit and vegetables, Misc Animal,
People, Robots, Toddlers, and Turtles [13].

Figure 2 shows twelve sample images form the MPEG-7 dataset and LEMS dataset. The
code implementing the proposed method together with the datasets are publicly available
at https://sites.google.com/site/costaspanagiotakis/research/unconstrained-polygonal-
fitting (accessed on 4 January 2024). The proposed methods have been implemented using
MATLAB. All experiments were executed on an Intel I7 CPU processor at 2.3 GHz with
40 GB RAM. The average processing time for the execution of UPF-PSO given a single
shape of our dataset is 0.809 s without any speed optimization and parallelization. It should
be noticed that the processing time of the PSO based methods can be reduced up to 95%
via the parallelization of the M = 20 particles. The average processing time of DP and SM
methods is 0.013 and 0.213, respectively. The using of the equal area principle essentially
does not affect the above processing times.

(a) MPEG-7 dataset

(b) LEMS dataset

Figure 2. Twelve sample images form (a) the MPEG-7 dataset and (b) the LEMS dataset.

We compared the proposed Unconstrained Polygonal Fitting based on Particle Swarm
Optimization Algorithm (UPF-PSO) and UPF-PSO under equal area principle (UPF-PSO-
EA) methods with the Douglas–Peucker algorithm (DP) [4] and Douglas–Peucker algorithm
under equal area principle (DP-EA) [4]. In each execution, the PSO based methods may
yields slightly different results due to Particle Swarm Optimization, so we have executed
10 times each PSO based method (UPF-PSO, UPF-PSO-EA), getting the average IoU. Addi-
tionally, inspired by the Decremental Ellipse Fitting Algorithm method proposed in [13],
which decreases the number of ellipses starting with a large number to approximate a given
2D shape with a number of ellipses, we have implemented a sequential baseline method
of classical Polygonal Approximation that maximizes IoU. This method uses an initial
polygonal curve that is given by the execution of the Douglas–Peucker algorithm (DP) with
high number of vertices (e.g., 50 >> N). In each step, it sequentially removes the vertex of
the polygonal curve so that the IoU of the resulting polygonal curve is maximized. The
method terminates when the number of vertices are reduced to N. This baseline method

https://sites.google.com/site/costaspanagiotakis/research/unconstrained-polygonal-fitting
https://sites.google.com/site/costaspanagiotakis/research/unconstrained-polygonal-fitting
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is called Sequential Maximization of IoU (SM). After the execution of SM, the equal area
principle can be applied yielding the SM-EA method.

In our experiments, we have evaluated the methods for different values of N. Since
our framework makes sense to be applied for low values of N, where the difference in
performance between the solutions of UPF and PA usually is significant, we have fitted
polygonal curves with 3 ≤ N ≤ 10 (eight cases). According to the formulation of the UPF
problem, we have compared the performance of UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM,
and SM-EA on the IoU metric.

For a given dataset, we also compute Pr(m/IoU), where m is a method in {UPF-PSO,
UPF-PSO-EA, DP, DP-EA, SM, SM-EA}. Pr(m/IoU) is quantified as the percentage of
shapes of the datasets where the method m outperforms the others under the IoU, defined
as follows:

Pr(m/IoU) =
∑I∈D H(IoUm(I)− maxn ̸=m IoUn(I))

|D| (7)

where H is the unit step function, |D| denotes the number of shapes of dataset D and
IoUm(P) is the IoU metric of method m given the binary image I. This also means that the
value 100% − ∑m Pr(m/IoU) gives the percentage of images, for which there is no clear
winner method.

Tables 1 and 2 present the average IoU, DICE and Pr(m/IOU) metrics computed
on all images from the MPEG7 and LEMS datasets, respectively. It holds that UPF-PSO
and UPF-PSO-EA clearly outperform the other methods in any dataset. UPF-PSO slightly
outperforms UPF-PSO-EA. UPF-PSO or UPF-PSO-EA outperform all the other methods
in about 80% of shapes under MPEG-7 and LEMS datasets. SM or SM-EA outperform
all the other methods in about 17% of shapes under MPEG-7 dataset and LEMS dataset.
DP or DP-EA outperform all the rest methods in about 3% of shapes under MPEG-7 and
LEMS datasets.

Table 1. The average IoU, DICE, Pr(m/IOU), UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM, SM-EA
methods computed on all images of MPEG7 dataset. For each metric, the best results are highlighted
in bold.

Methods IoU DICE Pr (m/IOU)

UPF-PSO 0.776 0.866 0.477

UPF-PSO-EA 0.770 0.861 0.322

DP 0.645 0.764 0.005

DP-EA 0.661 0.771 0.031

SM 0.732 0.833 0.084

SM-EA 0.731 0.831 0.080

Table 2. The average IoU, DICE, Pr(m/IOU), of the methods UPF-PSO, UPF-PSO-EA, DP, DP-EA,
SM, SM-EA methods computed on all images of LEMS dataset. For each metric, the best results are
highlighted in bold.

Methods IoU DICE Pr (m/IOU)

UPF-PSO 0.801 0.885 0.404

UPF-PSO-EA 0.803 0.886 0.382

DP 0.679 0.793 0.008

DP-EA 0.685 0.794 0.024

SM 0.751 0.848 0.093

SM-EA 0.751 0.847 0.089
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Figure 3 depicts the average IoU of UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM and
SM-EA computed for different values of N ∈ {3,. . . , 10} in the two datasets used. UPF-PSO
and UPF-PSO-EA clearly outperform the rest methods under any dataset and N ≤ 8.
As expected, the lower the N, the better outer-performance of the proposed methods
compared to the classical PA methods. For high values of N (N > 8), the problem search
space increases, so it is more difficult for the PSO to find near-optimal solutions. At the
same time, when N obtains high values, the solutions of classical PA significantly better
approximate the given shape, reducing the gap from the UPF methods. Theoretically, it
holds that as N tends to infinity, the optimal solution of both problems (classical PA and
UPF) converges to the initial shape having IoU equal to one (limN→∞ IoU = 1). When
equal area principle is applied it holds that the EA-results slightly underperforms the
corresponding solutions. The equal area principle provides better results for the special
case of N = 3, where the fitting polygon is less complex. The results under DICE metric
depicted in Figure 4 agree with the results of Figure 3.
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Figure 3. (a) The IoU metric of UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM, SM-EA methods over
(a) the 1400 images of MPEG-7 dataset and (b) the 1462 of LEMS dataset.
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Figure 4. (a) The DICE metric of UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM, SM-EA methods over
(a) the 1400 images of MPEG-7 dataset and (b) the 1462 of LEMS dataset.

Figure 5 illustrates the Pr(m/IoU), m ∈ {UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM,
SM-EA} over the 1400 images of MPEG-7 dataset (Figure 5a) the 1462 of LEMS dataset
(Figure 5b). The results agree with the results of Figure 3. If we sum the cases where
UPF-PSO or UPF-PSO-EA outperforms all the rest methods, it holds that for N ≤ 8 is more
than 70% and 68% under MPEG-7 dataset and LEMS dataset. As it was expected, when
N = 3, UPF-PSO or UPF-PSO-EA clearly outperform the rest method on more than 98% of
shapes and any dataset.
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Figure 5. (a) The Pr(m/IoU), m ∈ {UPF-PSO, UPF-PSO-EA, DP, DP-EA, SM, SM-EA} over (a) the
1400 images of MPEG-7 dataset and (b) the 1462 of LEMS dataset.

Finally, Figures 6–8 depict several output examples of the proposed methods and
baselines to further study their behavior. The DICE-IoU metrics and the used method-N
are depicted in the title and caption of each result, respectively. These figures depict results
for N = 3, 6, 9 vertices on a turtle, bat, and horse shapes from MPEG 7 and LEMS datasets.
The results of N = 3, N = 6 and N = 9, corresponds to low, middle, and high values
of N according to the proposed framework. In most of the cases, the proposed methods
outperform the baselines. As was expected, the difference in performance between the
proposed methods and baselines is higher for low value of N (N = 3), due to the limited
classical polygonal approximation problem/search space that is restricted on the shape
boundary. PSO-based methods yield high performance results, when it is more possible to
find near-optimal solutions, which is true under low values of N and less complex given
shapes. On other cases (high values of N and complex shapes), the PSO-based methods may
fail to provide high performance solutions due to the complicated and high-dimensional
search space. For example, in the case of N = 9 and horse shape (see Figure 8) that is
the most complex shape, the results of UPF-PSO and UPF-PSO-EA underperform the SM
method. However, it should be noticed that under this complex shape, when N = 3 or
N = 6 it seems that the proposed methods outperform all baselines. Concerning the other
two simpler shapes, it holds that UPF-PSO or UPF-PSO-EA outperform any other method
even when N = 9, showing that the proposed methods are capable of providing high
performance results even for high values of N.

(a) UPF-PSO (N = 3) (b) UPF-PSO (N = 6) (c) UPF-PSO (N = 9)

(d) UPF-PSO-EA (N = 3) (e) UPF-PSO-EA (N = 6) (f) UPF-PSO-EA (N = 9)

Figure 6. Cont.
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(g) DP (N = 3) (h) DP (N = 6) (i) DP (N = 9)

(j) DP-EA (N = 3) (k) DP-EA (N = 6) (l) DP-EA (N = 9)

(m) SM (N = 3) (n) SM (N = 6) (o) SM (N = 9)

(p) SM-EA (N = 3) (q) SM-EA (N = 6) (r) SM-EA (N = 9)

Figure 6. Results of the proposed methods and baselines for N = 3, 6, 9 vertices on a bat shape
from MPEG7 dataset. The red dots and green lines correspond on vertices and line segments of the
polygonal curves. The green plus symbol represents the centroid of the shape.

(a) UPF-PSO (N = 3) (b) UPF-PSO (N = 6) (c) UPF-PSO (N = 9)

(d) UPF-PSO-EA (N = 3) (e) UPF-PSO-EA (N = 6) (f) UPF-PSO-EA (N = 9)

Figure 7. Cont.
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(g) DP (N = 3) (h) DP (N = 6) (i) DP (N = 9)

(j) DP-EA (N = 3) (k) DP-EA (N = 6) (l) DP-EA (N = 9)

(m) SM (N = 3) (n) SM (N = 6) (o) SM (N = 9)

(p) SM-EA (N = 3) (q) SM-EA (N = 6) (r) SM-EA (N = 9)

Figure 7. Results of the proposed methods and baselines for N = 3, 6, 9 vertices on a turtle shape
from LEMS dataset. The red dots and green lines correspond on vertices and line segments of the
polygonal curves, respectively. The green plus symbol represents the centroid of the shape.

(a) UPF-PSO (N = 3) (b) UPF-PSO (N = 6) (c) UPF-PSO (N = 9)

(d) UPF-PSO-EA (N = 3) (e) UPF-PSO-EA (N = 6) (f) UPF-PSO-EA (N = 9)

Figure 8. Cont.
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(g) DP (N = 3) (h) DP (N = 6) (i) DP (N = 9)

(j) DP-EA (N = 3) (k) DP-EA (N = 6) (l) DP-EA (N = 9)

(m) SM (N = 3) (n) SM (N = 6) (o) SM (N = 9)

(p) SM-EA (N = 3) (q) SM-EA (N = 6) (r) SM-EA (N = 9)

Figure 8. Results of the proposed methods and baselines for N = 3, 6, 9 vertices on a horse shape
from LEMS dataset. The red dots and green lines correspond on vertices and line segments of the
polygonal curves, respectively. The green plus symbol represents the centroid of the shape.

5. Conclusions

In this work, a novel PSO based polygonal fitting algorithm (UPF-PSO) has been
proposed to solve a general version of the polygonal fitting problem called Unconstrained
Polygonal Fitting (UPF), that is defined and solved for the first time in this work. Ac-
cording to the UPF-PSO algorithm, the location of the N-vertices of P that can be placed
anywhere in the 2D space, generally providing better solutions compared to those of the
classical polygonal approximation problem, where the vertices are restricted to belong in
the boundary of the given 2D shape.

In our experimental results, we have also compared the proposed UPF-PSO with
several baselines in two standard datasets of 2D shapes of more than 2800 images, showing
the high performance of the proposed framework. As was expected, when the number
of vertices is low, the difference in performance between UPF-PSO and the rest baseline
methods increases as the solutions of classical polygonal approximation problem generally
fails to provide well fitting results due to the limited search space of PA problem. On the
other side, when N obtains high values, the solutions of classical PA significantly better
approximate the given shape, reducing the gap from the UPF methods. The equal area
principle, which is also studied in this work, usually provides better results for low values
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of N (especially for N = 3), where the fitting polygon is less complex. If we could obtain
the optimal solutions of UPF problem given a 2D shape, the optimal solution of UPF would
outperform or be equivalent with optimal solutions of the PA. However, in some cases, the
results of UPF-PSO, which correspond to sub-optimal solutions of UPF due to the PSO
optimization, are obviously not the optimal ones, especially for high values of N where the
search space is more complex for the PSO.

The goal of this work is to provide high performance solutions for low values of N,
where even the optimal solutions of PA are not sufficient to well approximate the given
shape. Our experimental results show that for low values of N, the results of UPF-PSO are
almost always better than the corresponding results of PA methods. As N increases, and it
tends to infinity, the optimal solution PA converges to the initial shape having IoU equal to
one, therefore even if we could obtain the optimal solutions of UPF, then the performance
difference between UPF and PA methods will tend to zero, showing that the cases for high
values of N are less promising to provide improvements, compared to the cases with low
values of N.

In ongoing and future work, our aim is to study more unconstrained fitting problems
and to provide better solutions by combining solutions of PA problem, e.g., in initialization
step of particles and better exploring the search space of UPF. Additionally, we plan to
consider extensions of UPF-PSO towards handling more complex shapes than polygons.
Finally, we plan to extend the proposed framework on 3D shape and to explore real
applications in which the proposed system may be useful.
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