
Citation: Scutari, M. Entropy and the

Kullback–Leibler Divergence for

Bayesian Networks: Computational

Complexity and Efficient

Implementation. Algorithms 2024, 17,

24. https://doi.org/10.3390/

a17010024

Academic Editors: Kevin B Korb,

Steven Mascaro, Erik P. Nyberg and

Frank Werner

Received: 29 November 2023

Revised: 31 December 2023

Accepted: 4 January 2024

Published: 6 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Entropy and the Kullback–Leibler Divergence for Bayesian
Networks: Computational Complexity and
Efficient Implementation
Marco Scutari

Istituto Dalle Molle di Studi Sull’Intelligenza Artificiale (IDSIA), 6900 Lugano, Switzerland; scutari@bnlearn.com

Abstract: Bayesian networks (BNs) are a foundational model in machine learning and causal infer-
ence. Their graphical structure can handle high-dimensional problems, divide them into a sparse
collection of smaller ones, underlies Judea Pearl’s causality, and determines their explainability and
interpretability. Despite their popularity, there are almost no resources in the literature on how to
compute Shannon’s entropy and the Kullback–Leibler (KL) divergence for BNs under their most com-
mon distributional assumptions. In this paper, we provide computationally efficient algorithms for
both by leveraging BNs’ graphical structure, and we illustrate them with a complete set of numerical
examples. In the process, we show it is possible to reduce the computational complexity of KL from
cubic to quadratic for Gaussian BNs.

Keywords: Bayesian networks; Shannon entropy; Kullback–Leibler divergence

1. Introduction

Bayesian networks [1] (BNs) have played a central role in machine learning research
since the early days of the field as expert systems [2,3], graphical models [4,5], dynamic
and latent variables models [6], and as the foundation of causal discovery [7] and causal
inference [8]. They have also found applications as diverse as comorbidities in clinical
psychology [9], the genetics of COVID-19 [10], the Sustainable Development Goals of the
United Nations [11], railway disruptions [12] and industry 4.0 [13].

Machine learning, however, has evolved to include a variety of other models and refor-
mulated them into a very general information-theoretic framework. The central quantities
of this framework are Shannon’s entropy and the Kullback–Leibler divergence. Learning
models from data relies crucially on the former to measure the amount of information
captured by the model (or its complement, the amount of information lost in the residuals)
and on the latter as the loss function we want to minimise. For instance, we can con-
struct variational inference [14], the Expectation-Maximisation algorithm [15], Expectation
Propagation [16] and various dimensionality reduction approaches such as t-SNE [17] and
UMAP [18] using only these two quantities. We can also reformulate classical maximum-
likelihood and Bayesian approaches to the same effect, from logistic regression to kernel
methods to boosting [19,20].

Therefore, the lack of literature on how to compute the entropy of a BN and the
Kullback–Leibler divergence between two BNs is surprising. While both are mentioned in
Koller and Friedman [5] and discussed at a theoretical level in Moral et al. [21] for discrete
BNs, no resources are available on any other type of BN. Furthermore, no numerical
examples of how to compute them are available even for discrete BNs. We fill this gap in the
literature by:

• Deriving efficient formulations of Shannon’s entropy and the Kullback–Leibler divergence for
Gaussian BNs and conditional linear Gaussian BNs.

• Exploring the computational complexity of both for all common types of BNs.

Algorithms 2024, 17, 24. https://doi.org/10.3390/a17010024 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010024
https://doi.org/10.3390/a17010024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2151-7266
https://doi.org/10.3390/a17010024
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010024?type=check_update&version=3

Algorithms 2024, 17, 24 2 of 32

• Providing step-by-step numeric examples for all computations and all common types of BNs.

Our aim is to make apparent how both quantities are computed in their closed-form
exact expressions and what is the associated computational cost.

The common alternative is to estimate both Shannon’s entropy and the Kullback–
Leibler divergence empirically using Monte Carlo sampling. Admittedly, this approach is
simple to implement for all types of BNs. However, it has two crucial drawbacks:

1. Using asymptotic estimates voids the theoretical properties of many machine learning
algorithms: Expectation-Maximisation is not guaranteed to converge [5], for instance.

2. The number of samples required to estimate the Kullback–Leibler divergence accu-
rately on the tails of the global distribution of both BNs is also an issue [22], especially
when we need to evaluate it repeatedly as part of some machine learning algorithm.
The same is true, although to a lesser extent, for Shannon’s entropy as well. In gen-
eral, the rate of convergence to the true posterior in Monte Carlo particle filters is
proportional to the number of variables squared [23].

Therefore, efficiently computing the exact value of Shannon’s entropy and the Kullback–
Leibler divergence is a valuable research endeavour with a practical impact on BN use in
machine learning. To help its development, we implemented the methods proposed in the
paper in our bnlearn R package [24].

The remainder of the paper is structured as follows. In Section 2, we provide the
basic definitions, properties and notation of BNs. In Section 3, we revisit the most common
distributional assumptions in the BN literature: discrete BNs (Section 3.1), Gaussian BNs
(Section 3.2) and conditional linear Gaussian BNs (Section 3.3). We also briefly discuss
exact and approximate inferences for these types of BNs in Section 3.4 to introduce some
key concepts for later use. In Section 4, we discuss how we can compute Shannon’s
entropy and the Kullback–Leibler divergence for each type of BN. We conclude the paper
by summarising and discussing the relevance of these foundational results in Section 5.
Appendix A summarises all the computational complexity results from earlier sections,
and Appendix B contains additional examples we omitted from the main text for brevity.

2. Bayesian Networks

Bayesian networks (BNs) are a class of probabilistic graphical models defined over
a set of random variables X = {X1, . . . , XN}, each describing some quantity of interest,
that are associated with the nodes of a directed acyclic graph (DAG) G. Arcs in G express
direct dependence relationships between the variables in X, with graphical separation in G
implying conditional independence in probability. As a result, G induces the factorisation

P(X | G, Θ) =
N

∏
i=1

P
(
Xi | ΠXi , ΘXi

)
, (1)

in which the global distribution (of X, with parameters Θ) decomposes into one local
distribution for each Xi (with parameters ΘXi ,

⋃
X ΘXi = Θ) conditional on its parents ΠXi .

This factorisation is as effective at reducing the computational burden of working
with BNs as the DAG underlying the BN is sparse, meaning that each node Xi has a small
number of parents (|ΠXi | < c, usually with c ∈ [2, 5]). For instance, learning BNs from data
is only feasible in practice if this holds. The task of learning a BN B = (G, Θ) from a data
set D containing n observations comprises two steps:

P(G, Θ | D)︸ ︷︷ ︸
learning

= P(G | D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

.

If we assume that parameters in different local distributions are independent [25], we
can perform parameter learning independently for each node. Each Xi | ΠXi will have
a low-dimensional parameter space ΘXi , making parameter learning computationally

Algorithms 2024, 17, 24 3 of 32

efficient. On the other hand, structure learning is well known to be both NP-hard [26] and
NP-complete [27], even under unrealistically favourable conditions such as the availability
of an independence and inference oracle [28]. However, if G is sparse, heuristic learning
algorithms have been shown to run in quadratic time [29]. Exact learning algorithms,
which have optimality guarantees that heuristic algorithms lack, retain their exponential
complexity but become feasible for small problems because sparsity allows for tight bounds
on goodness-of-fit scores and the efficient pruning of the space of the DAGs [30–32].

3. Common Distributional Assumptions for Bayesian Networks

While there are many possible choices for the distribution of X in principle, the
literature has focused on three cases.

3.1. Discrete BNs

Discrete BNs [25] assume that both X and the Xi are multinomial random variables
(The literature sometimes denotes discrete BNs as “dBNs” or “DBNs”; we do not do that
in this paper to avoid confusion with dynamic BNs, which are also commonly denoted as
“dBNs”). Local distributions take the form

Xi | ΠXi ∼ Mul(πik|j), πik|j = P
(
Xi = k | ΠXi = j

)
;

their parameters are the conditional probabilities of Xi given each configuration of the
values of its parents, usually represented as a conditional probability table (CPT) for each Xi.
The πik|j can be estimated from data via the sufficient statistic {nijk, i = 1, . . . N; j = 1, . . . , qi;
k = 1, . . . , ri}, the corresponding counts tallied from {Xi, ΠXi} using maximum likelihood,
Bayesian or shrinkage estimators as described in Koller and Friedman [5] and Hausser and
Strimmer [33].

The global distribution takes the form of an N-dimensional probability table with
one dimension for each variable. Assuming that each Xi takes at most l values, the table
will contain |Val(X)| = O

(
lN) cells, where Val(·) denotes the possible (configurations

of the) values of its argument. As a result, it is impractical to use for medium and large
BNs. Following standard practices from categorical data analysis [34], we can produce the
CPT for each Xi from the global distribution by marginalising (that is, summing over) all
the variables other than {Xi, ΠXi} and then normalising over each configuration of ΠXi .
Conversely, we can compose the global distribution from the local distributions of the Xi by
multiplying the appropriate set of conditional probabilities. The computational complexity
of the composition is O

(
NlN) because applying (1) for each of the lN cells yields

P(X = x) =
N

∏
i=1

P
(

Xi = xi | ΠXi = xΠXi

)
,

which involves N multiplications. As for the decomposition, for each node, we:

1. Sum over N − |ΠXi | − 1 variables to produce the joint probability table for {Xi, ΠXi},

which contains O
(

l|ΠXi
|+1
)

cells. The value of each cell is the sum of O
(

lN−|ΠXi
|−1
)

probabilities.
2. Normalise the columns of the joint probability table for {Xi, ΠXi} over each of the

O
(

l|ΠXi
|
)

configurations of values of ΠXi , which involves summing O(l) probabilities
and dividing them by their total.

The resulting computational complexity is

O
(

l|ΠXi
|+1 · lN−|ΠXi

|−1
)

︸ ︷︷ ︸
marginalisation

+O
(

l · l|ΠXi
|
)

︸ ︷︷ ︸
normalisation

= O
(

lN + l|ΠXi
|+1
)

(2)

for each node and O
(

NlN + l ∑N
i=1 l|ΠXi

|
)

for the whole BN.

Algorithms 2024, 17, 24 4 of 32

Example 1 (Composing and decomposing a discrete BN). For reasons of space, this example is
presented as Example A1 in Appendix B.

3.2. Gaussian BNs

Gaussian BNs [35] (GBNs) model X with a multivariate normal random variable N(µB ,
ΣB) and assume that the Xi are univariate normals linked by linear dependencies,

Xi | ΠXi ∼ N(µXi + ΠXi βXi
, σ2

Xi
), (3)

which can be equivalently written as linear regression models of the form

Xi = µXi + ΠXi βXi
+ εXi , εXi ∼ N(0, σ2

Xi
). (4)

The parameters in (3) and (4) are the regression coefficients βXi
associated with the parents

ΠXi , an intercept term µXi and the variance σ2
Xi

. They are usually estimated by maximum
likelihood, but Bayesian and regularised estimators are available as well [1].

The link between the parameterisation of the global distribution of a GBN and that of
its local distributions is detailed in Pourahmadi [36]. We summarise it here for later use.

• Composing the global distribution. We can create an N × N lower triangular matrix CB
from the regression coefficients in the local distributions such that CBCT

B gives ΣB after
rearranging rows and columns. In particular, we:

1. Arrange the nodes of B in the (partial) topological ordering induced by G, de-
noted X(i), i = 1, . . . , N.

2. The ith row of CB (denoted CB [i; •], i = 1, . . . , N) is associated with X(i). We
compute its elements from the parameters of X(i) | ΠX(i)

as

CB [i; i] =
√

σ2
X(i)

and CB [i; •] = βX(i)
CB [ΠX(i)

; •],

where CB [ΠX(i)
; •] are the rows of CB that correspond to the parents of X(i). The

rows of CB are filled following the topological ordering of the BN.
3. Compute Σ̃B = CBCT

B .
4. Rearrange the rows and columns of Σ̃B to obtain ΣB .

Intuitively, we construct CB by propagating the node variances along the paths in
G while combining them with the regression coefficients, which are functions of the
correlations between adjacent nodes. As a result, CBCT

B gives ΣB after rearranging the
rows and columns to follow the original ordering of the nodes.
The elements of the mean vector µB are similarly computed as E(X(i)) = ΠX(i)

βX(i)

iterating over the variables in topological order.
• Decomposing the global distribution. Conversely, we can derive the matrix CB from ΣB

by reordering its rows and columns to follow the topological ordering of the variables
in G and computing its Cholesky decomposition. Then

R = IN − diag(CB)C−1
B ,

contains the regression coefficients βX(i)
in the elements corresponding to X(i), ΠX(i)

(Here diag(CB) is a diagonal matrix with the same diagonal elements as CB and IN is
the identity matrix.) Finally, we compute the intercepts µXi as µB − RµB by reversing
the equations we used to construct µB above.

The computational complexity of composing the global distribution is bound by
the matrix multiplication CBCT

B , which is O
(

N3); if we assume that G is sparse as in
Scutari et al. [29], the number of arcs is bound by some cN, computing the µB takes O(N)
operations. The complexity of decomposing the global distribution is also O

(
N3) because

both inverting CB and multiplying the result by diag(CB) are O
(

N3).

Algorithms 2024, 17, 24 5 of 32

Example 2 (Composing and decomposing a GBN). Consider the GBN B from Figure 1 top.
The topological ordering of the variables defined by B is {{X1, X2}, X4, X3}, so

CB =


X1 X2 X4 X3

X1 0.894 0 0 0
X2 0 0.774 0 0
X4 1.341 2.014 1.049 0
X3 1.610 2.416 1.258 0.948


where the diagonal elements are

CB [X1; X1] =
√

0.8, CB [X2; X2] =
√

0.6, CB [X4; X4] =
√

1.1, CB [X3; X3] =
√

0.9;

and the elements below the diagonal are taken from the corresponding cells of

CB [X4; •] =
(
1.5 2.6

)(0.894 0 0 0
0 0.774 0 0

)
,

CB [X3; •] =
(
1.2
)(

1.341 2.014 1.049 0
)
.

Computing CBCT
B gives

Σ̃B =


X1 X2 X4 X3

X1 0.800 0 1.200 1.440
X2 0 0.600 1.560 1.872
X4 1.200 1.560 6.956 8.347
X3 1.440 1.872 8.347 10.916


and reordering the rows and columns of Σ̃B gives

ΣB =


X1 X2 X3 X4

X1 0.800 0 1.440 1.200
X2 0 0.600 1.872 1.560
X3 1.440 1.872 10.916 8.347
X4 1.200 1.560 8.347 6.956

.

The elements of the corresponding expectation vector µB are then

E(X1) = 2.400,

E(X2) = 1.800,

E(X4) = 0.2 + 1.5 E(X1) + 2.6 E(X2) = 8.480,

E(X3) = 2.1 + 1.2 E(X4) = 12.276.

Starting from ΣB , we can reorder its rows and columns to obtain Σ̃B . The Cholesky decompo-
sition of Σ̃B is CB . Then

σ2
X1

= CB [X1; X1]
2 = 0.8, σ2

X2
= CB [X2; X2]

2 = 0.6,

σ2
X3

= CB [X3; X3]
2 = 0.9, σ2

X4
= CB [X4; X4]

2 = 0.11.

Algorithms 2024, 17, 24 6 of 32

The coefficients βXi
of the local distributions are available from

R = IN −


0.894 0 0 0

0 0.774 0 0
0 0 1.049 0
0 0 0 0.948


︸ ︷︷ ︸

diag(CB)


1.118 0 0 0

0 1.291 0 0
−1.430 −2.479 0.953 0

0 0 −1.265 1.054


︸ ︷︷ ︸

C−1
B

=



X1 X2 X4 X3

X1 0 0 0 0

X2 0 0 0 0

X4 1.500 2.600 0 0

X3 0 0 1.200 0


where we can read RX4,X1 = 1.5 = βX4,X1 , RX4,X2 = 2.6 = βX4,X2 , RX3,X4 = 1.2 = βX3,X4 .

We can read the standard errors of X1, X2, X3 and X4 directly from the diagonal elements of
CB , and we can compute the intercepts from µB − RµB which amounts to

µX1 = E(X1) = 2.400,

µX2 = E(X2) = 1.800,

µX4 = E(X4)− E(X1)βX4,X1 − E(X2)βX4,X2 = 0.200,

µX3 = E(X3)− E(X4)βX3,X4 = 2.100.

Figure 1. DAGs and local distributions for the GBNs B (top) and B′ (bottom) used in Examples 2 and 6–9.

3.3. Conditional Linear Gaussian BNs

Finally, conditional linear Gaussian BNs [37] (CLGBNs) subsume discrete BNs and GBNs
as particular cases by combining discrete and continuous random variables in a mixture
model. If we denote the former with XD and the latter with XG, so that X = XD ∪ XG, then:

• Discrete Xi ∈ XD are only allowed to have discrete parents (denoted ∆Xi), and are
assumed to follow a multinomial distribution parameterised with CPTs. We can
estimate their parameters in the same way as those in a discrete BN.

Algorithms 2024, 17, 24 7 of 32

• Continuous Xi ∈ XG are allowed to have both discrete and continuous parents (de-
noted ΓXi , ∆Xi ∪ ΓXi = ΠXi). Their local distributions are

Xi | ΠXi ∼ N
(

µXi ,δXi
+ ΓXi βXi ,δXi

, σ2
Xi ,δXi

)
,

which is equivalent to a mixture of linear regressions against the continuous parents
with one component for each configuration δXi ∈ Val(∆Xi) of the discrete parents:

Xi = µXi ,δXi
+ ΓXi βXi ,δXi

+ εXi ,δXi
, εXi ,δXi

∼ N
(

0, σ2
Xi ,δXi

)
.

If Xi has no discrete parents, the mixture reverts to a single linear regression like that
in (4). The parameters of these local distributions are usually estimated by maximum
likelihood like those in a GBN; we have used hierarchical regressions with random
effects in our recent work [38] for this purpose as well. Bayesian and regularised
estimators are also an option [5].

If the CLGBN comprises |XD| = M discrete nodes and |XG| = N − M continuous
nodes, these distributional assumptions imply the partial topological ordering{

X(1), . . . , X(M)

}
︸ ︷︷ ︸

discrete nodes

,
{

X(M+1), . . . , X(N)

}
︸ ︷︷ ︸

continuous nodes

. (5)

The discrete nodes jointly follow a multinomial distribution, effectively forming a discrete
BN. The continuous nodes jointly follow a multivariate normal distribution, parameterised
as a GBN, for each configuration of the discrete nodes. Therefore, the global distribution is
a Gaussian mixture in which the discrete nodes identify the components, and the contin-
uous nodes determine their distribution. The practical link between the global and local
distributions follows directly from Sections 3.1 and 3.2.

Example 3 (Composing and decomposing a CLGBN). For reasons of space, this example is
presented as Example A2 in Appendix B.

The complexity of composing and decomposing the global distribution is then

O
(

MlM
)

.︸ ︷︷ ︸
convert between CPTs and component probabilities

+ O
(
(N − M)3lVal(∆)

)
︸ ︷︷ ︸

(de)compose the distinct component distributions

where ∆ =
⋃

Xi∈XG
∆Xi are the discrete parents of the continuous nodes.

3.4. Inference

For BNs, inference broadly denotes obtaining the conditional distribution of a subset of
variables conditional on a second subset of variables. Following older terminology from
expert systems [2], this is called formulating a query in which we ask the BN about the
probability of an event of interest after observing some evidence. In conditional probability
queries, the event of interest is the probability of one or more events in (or the whole
distribution of) some variables of interest conditional on the values assumed by the evidence
variables. In maximum a posteriori (“most probable explanation”) queries, we condition
the values of the evidence variables to predict those of the event variables.

All inference computations on BNs are completely automated by exact and approximate
algorithms, which we will briefly describe here. We refer the interested reader to the more
detailed treatment in Castillo et al. [2] and Koller and Friedman [5].

Exact inference algorithms use local computations to compute the value of the query.
The seminal works of Lauritzen and Spiegelhalter [39], Lauritzen and Wermuth [37] and
Lauritzen and Jensen [40] describe how to transform a discrete BN or a (CL)GBN into

Algorithms 2024, 17, 24 8 of 32

a junction tree as a preliminary step before using belief propagation. Cowell [41] uses
elimination trees for the same purpose in CLGBNs. (A junction tree is an undirected
tree whose nodes are the cliques in the moral graph constructed from the BN and their
intersections. A clique is the maximal subset of nodes such that every two nodes in the
subset are adjacent).

Namasivayam et al. [42] give the computational complexity of constructing the junc-
tion tree from a discrete BN as O(Nw + wlwN) where w is the maximum number of nodes
in a clique and, as before, l is the maximum number of values that a variable can take.
We take the complexity of belief propagation to be O(Nwlw + |Θ|), as stated in Lauritzen
and Spiegelhalter [39] (“The global propagation is no worse than the initialisation [of the
junction tree]”). This is confirmed by Pennock [43] and Namasivayam and Prasanna [44].

As for GBNs, we can also perform exact inference through their global distribution
because the latter has only O

(
N2 + N

)
parameters. The computational complexity of this

approach is O
(

N3) because of the cost of composing the global distribution, which we
derived in Section 3.2. However, all the operations involved are linear, making it possible
to leverage specialised hardware such as GPUs and TPUs to the best effect. Koller and
Friedman [5] (Section 14.2.1) note that “inference in linear Gaussian networks is linear
in the number of cliques, and at most cubic in the size of the largest clique” when using
junction trees and belief propagation. Therefore, junction trees may be significantly faster
for GBNs when w ≪ N. However, the correctness and convergence of belief propagation
in GBNs require a set of sufficient conditions that have been studied comprehensively by
Malioutov et al. [45]. Using the global distribution directly always produces correct results.

Approximate inference algorithms use Monte Carlo simulations to sample from the
global distribution of X through the local distributions and estimate the answer queries by
computing the appropriate summary statistics on the particles they generate. Therefore,
they mirror the Monte Carlo and Markov chain Monte Carlo approaches in the literature:
rejection sampling, importance sampling, and sequential Monte Carlo among others. Two
state-of-the-art examples are the adaptive importance sampling (AIS-BN) scheme [46] and the
evidence pre-propagation importance sampling (EPIS-BN) [47].

4. Shannon Entropy and Kullback–Leibler Divergence

The general definition of Shannon entropy for the probability distribution P of X is

H(P) = EP(− log P(X)) = −
∫

Val(X)
P(x) log P(x) dx. (6)

The Kullback–Leibler divergence between two distributions P and Q for the same random
variables X is defined as

KL(P ∥ Q) = EP(X)

(
− log

P(X)
Q(X)

)
= −

∫
Val(X)

P(x) log
P(x)
Q(x)

dx. (7)

They are linked as follows:

EP(X)

(
− log

P(X)
Q(X)

)
︸ ︷︷ ︸

KL(P(X) ∥ Q(X))

= EP(X)(− log P(X))︸ ︷︷ ︸
H(P(X))

+EP(X)(log Q(X))︸ ︷︷ ︸
H(P(X),Q(X))

(8)

where H(P(X), Q(X)) is the cross-entropy between P(X) and Q(X). For the many prop-
erties of these quantities, we refer the reader to Cover and Thomas [48] and Csiszár
and Shields [49]. Their use and interpretation are covered in depth (and breadth!) in
Murphy [19,20] for general machine learning and in Koller and Friedman [5] for BNs.

For a BN B encoding the probability distribution of X, (6) decomposes into

H(B) =
N

∑
i=1

H
(

Xi | ΠB
Xi

)

Algorithms 2024, 17, 24 9 of 32

where ΠB
Xi

are the parents of Xi in B. While this decomposition looks similar to (1), we see
that its terms are not necessarily orthogonal, unlike the local distributions.

As for (7), we cannot simply write

KL
(
B
∥∥B′) = N

∑
i=1

KL
(

Xi | ΠB
Xi

∥∥∥Xi | ΠB′
Xi

)
because, in the general case, the nodes Xi have different parents in B and B′. This issue
impacts the complexity of computing Kullback–Leibler divergences in different ways
depending on the type of BN.

4.1. Discrete BNs

For discrete BNs, H(B) does not decompose into orthogonal components. As pointed
out in Koller and Friedman [5] (Section 8.4.12),

H
(

Xi | ΠB
Xi

)
=

qi

∑
j=1

P
(

ΠB
Xi

= j
)

H
(

Xi | ΠB
Xi

= j
)

where

H
(

Xi | ΠB
Xi

= j
)
= −

ri

∑
k=1

πik|j(B) log πik|j(B). (9)

If we estimated the conditional probabilities πik|j(B) from data, the P
(

ΠB
Xi

= j
)

are al-
ready available as the normalising constants of the individual conditional distributions
{πik|j(B), j = 1, . . . , qi} in the local distribution of Xi. In this case, the complexity of

computing H
(

Xi | ΠB
Xi

)
is linear in the number of parameters: O(|Θ|) = ∑N

i=1 O
(
|ΘXi |

)
.

In the general case, we need exact inference to compute the probabilities P
(

ΠB
Xi

= j
)

.
Fortunately, they can be readily extracted from the junction tree derived from B as follows:

1. Identify a clique containing both Xi and ΠB
Xi

. Such a clique is guaranteed to exist by
the family preservation property [5] (Definition 10.1).

2. Compute the marginal distribution of ΠB
Xi

by summing over the remaining variables
in the clique.

Combining the computational complexity of constructing the junction tree from
Section 3.4 and that of marginalisation, which is at most O

(
lw−1) for each node as in (2),

we have

O(Nw + wlwN)︸ ︷︷ ︸
create the junction tree

+ O
(

Nlw−1
)

︸ ︷︷ ︸
compute the P

(
ΠB

Xi
= j
)
+ O(|Θ|)︸ ︷︷ ︸

compute H(B)

=

O
(

N(w(1 + lw) + lw−1) + |Θ|
)

,

which is exponential in the maximum clique size w. (The maximum clique size in a junction
tree is proportional to the treewidth of the BN the junction tree is created from, which is also
used in the literature to characterise computational complexity in BNs.) Interestingly, we
do not need to perform belief propagation, so computing H(B) is more efficient than other
inference tasks.

Example 4 (Entropy of a discrete BN). For reasons of space, this example is presented as
Example A3 in Appendix B.

The Kullback–Leibler divergence has a similar issue, as noted in Koller and Friedman [5]
(Section 8.4.2). The best and most complete explanation of how to compute it for discrete

Algorithms 2024, 17, 24 10 of 32

BNs is in Moral et al. [21]. After decomposing KL(B ∥B′) following (8) to separate H(B)
and H(B,B′), Moral et al. [21] show that the latter takes the form

H
(
B,B′) = N

∑
i=1

∑
j∈Val

(
ΠB′

Xi

)
[

ri

∑
k=1

πikj(B) log πik|j(B′)

]
(10)

where:

• πikj(B) = P
(
Xi = k, ΠXi (B′) = j

)
is the probability assigned by B to Xi = k given

that the variables that are parents of Xi in B′ take value j;
• πik|j(B′) = P

(
Xi = k | ΠXi (B′) = j

)
is the (k, j) element of the CPT of Xi in B′.

In order to compute the πikj(B), we need to transform B into its junction tree and use
belief propagation to compute the joint distribution of Xi ∪ ΠB′

Xi
. As a result, H(B,B′) does

not decompose at all: each πikj(B) can potentially depend on the whole BN B.
Algorithmically, to compute KL(B ∥B′) we:

1. Transform B into its junction tree.
2. Compute the entropy H(B).
3. For each node Xi:

(a) Identify ΠB′
Xi

, the parents of Xi in B′.

(b) Obtain the distribution of the variables {Xi, ΠB′
Xi
} from the junction tree of B,

consisting of the probabilities πikj(B).
(c) Read the πik|j(B′) from the local distribution of Xi in B′.

4. Use the πikj(B) and the πik|j(B′) to compute (10).

The computational complexity of this procedure is as follows:

O
(

N(w(1 + lw) + lw−1) + |Θ|
)

︸ ︷︷ ︸
create the junction tree of B and computing H(B)

+O(Nlc(Nwlw + |Θ|))︸ ︷︷ ︸
produce the πikj(B)

+ O(|Θ|)︸ ︷︷ ︸
compute H(B,B′)

=

O
(

N2wlw+c + N(w + wlw + lw−1) + (Nlc + 2)|Θ|
)

. (11)

As noted in Moral et al. [21], computing the πikj(B) requires a separate run of belief

propagation for each configuration of the ΠB′
Xi

, for a total of ∑N
i=1 l|Π

B′
Xi
| times. If we assume

that the DAG underlying B′ is sparse, we have that |ΠB′
Xi
| ⩽ c and the overall complexity

of this step becomes O(Nlc · (Nwlw + |Θ|)), N times that listed in Section 3.4. The caching
scheme devised by Moral et al. [21] is very effective in limiting the use of belief propagation,
but it does not alter its exponential complexity.

Example 5 (KL between two discrete BNs). Consider the discrete BN B from Figure 2 top.
Furthermore, consider the BN B′ from Figure 2 bottom. We constructed the global distribution of B
in Example A1; we can similarly compose the global distribution of B′, shown below.

X1 = a X1 = b

X2 = c X2 = d X2 = c X2 = d

X3 X3 X3 X3

X4 e f X4 e f X4 e f X4 e f

g 0.013 0.033 g 0.022 0.054 g 0.016 0.144 g 0.016 0.139

h 0.072 0.062 h 0.029 0.025 h 0.013 0.040 h 0.079 0.243

Algorithms 2024, 17, 24 11 of 32

Since both global distributions are limited in size, we can then compute the Kullback–Leibler
divergence between B and B′ using (7).

KL
(
B
∥∥B′) = −0.013 log 0.013 − 0.016 log 0.016 − 0.022 log 0.022 − 0.016 log 0.016−

0.072 log 0.072 − 0.013 log 0.013 − 0.029 log 0.029 − 0.079 log 0.079−
0.033 log 0.033 − 0.144 log 0.144 − 0.054 log 0.054 − 0.139 log 0.139−

− 0.062 log 0.062 − 0.04 log 0.04 − 0.025 log 0.025 − 0.243 log 0.243 = 0.687

In the general case, when we cannot use the global distributions, we follow the approach described in
Section 4.1. Firstly, we apply (8) to write

KL
(
B
∥∥B′) = H(B)− H

(
B,B′);

we have from Example A3 that H(B) = 2.440. As for the cross-entropy H(B,B′), we apply (10):

1. We identify the parents of each node in B′:

ΠB′
X1

= {∅}, ΠB′
X2

= {X1, X4}, ΠB′
X3

= {X1}, ΠB′
X4

= {X3}.

2. We construct a junction tree from B and we use it to compute the distributions P(X1),
P(X2, X1, X4), P(X3, X1) and P(X4, X3).

X1
a b

0.53 0.47

{X1, X4}
{a, g} {a, h} {b, g} {b, h}

X2
c 0.070 0.110 0.053 0.107
d 0.089 0.261 0.076 0.235

X1
a b

X3
e 0.289 0.312
f 0.241 0.158

X3
e f

X4
g 0.120 0.167
h 0.481 0.231

3. We compute the cross-entropy terms for the individual variables in B and B′:

H
(

XB
1 , XB′

1

)
= 0.53 log 0.31 + 0.47 log 0.69 = −0.795;

H
(

XB
2 , XB′

2

)
= 0.070 log 0.38 + 0.089 log 0.62 + 0.110 log 0.71 + 0.261 log 0.29+

0.053 log 0.51 + 0.076 log 0.49 + 0.107 log 0.14 + 0.235 log 0.86

= −0.807;

H
(

XB
3 , XB′

3

)
= 0.289 log 0.44 + 0.241 log 0.56 + 0.312 log 0.18 + 0.158 log 0.82

= −0.943;

H
(

XB
4 , XB′

4

)
= 0.120 log 0.26 + 0.481 log 0.74 + 0.167 log 0.50 + 0.231 log 0.50

= −0.582;

which sum up to H(B,B′) = ∑N
i=1 H

(
XB

i , XB′
i

)
= −3.127.

4. We compute KL(B ∥B′) = 2.440 − 3.127 = 0.687, which matches the value we previously
computed from the global distributions.

Algorithms 2024, 17, 24 12 of 32

Figure 2. DAGs and local distributions for the discrete BNs B (top) and B′ (bottom) used in
Examples 1, 4 and 5.

4.2. Gaussian BNs

H(B) decomposes along with the local distributions Xi | ΠXi in the case of GBNs:
from (3), each Xi | ΠXi is a univariate normal with variance σ2

Xi
(B) and therefore

H
(

Xi | ΠB
Xi

)
=

1
2

log
(

2πσ2
Xi
(B)

)
+

1
2

(12)

which has a computational complexity of O(1) for each node, O(N) overall. Equivalently,
we can start from the global distribution of B from Section 3.2 and consider that

det(Σ) = det(CB′CT
B′) = det(CB)

2 =
(
∏N

i=1 CB [i; i]
)2

= ∏N
i=1 σ2

Xi
(B) (13)

because CB is lower triangular. The (multivariate normal) entropy of X then becomes

H(B) = N
2
+

N
2

log 2π +
1
2

log det(Σ) =
N
2
+

N
2

log 2π +
1
2

N

∑
i=1

log σ2
Xi
(B)

=
N

∑
i=1

1
2
+

1
2

log
(

2πσ2
Xi
(B)

)
=

N

∑
i=1

H
(

Xi | ΠB
Xi

)
in agreement with (12).

Example 6 (Entropy of a GBN). For reasons of space, this example is presented as Example A4 in
Appendix B.

In the literature, the Kullback–Leibler divergence between two GBNs B and B′ is usually
computed using the respective global distributions N(µB, ΣB) and N(µB′ , ΣB′) [50–52]. The
general expression is

KL
(
B
∥∥B′) = 1

2

[
tr(Σ−1

B′ ΣB) + (µB′ − µB)
TΣ−1

B′ (µB′ − µB)− N + log
det(ΣB′)

det(ΣB)

]
, (14)

Algorithms 2024, 17, 24 13 of 32

which has computational complexity

O
(

2N3 + 2N
)

︸ ︷︷ ︸
compute µB , µB′ ΣB , ΣB′

+ O
(

N3
)

︸ ︷︷ ︸
invert ΣB′

+ O
(

N3
)

︸ ︷︷ ︸
multiply Σ−1

B and ΣB′

+ O(N)︸ ︷︷ ︸
trace of Σ−1

B ΣB′

+

O
(

N2 + 2N
)

︸ ︷︷ ︸
compute (µB′ − µB)

TΣ−1
B′ (µB′ − µB)

+ O
(

N3
)

︸ ︷︷ ︸
determinant of ΣB′

+ O
(

N3
)

︸ ︷︷ ︸
determinant of ΣB

=

O
(

6N3 + N2 + 5N
)

. (15)

The spectral decomposition ΣB′ = UΛB′UT gives the eigenvalues diag(ΛB′) = {λ1(B′), . . . ,
λN(B′)} to compute Σ−1

B′ and det(ΣB′) efficiently as illustrated in the example below. (Fur-
ther computing the spectral decomposition of ΣB to compute det(ΣB) from the eigen-
values {λ1(B), . . . , λN(B)} does not improve complexity because it just replaces a single
O
(

N3) operation with another one.) We thus somewhat improve the overall complexity of
KL(B ∥B′) to O

(
5N3 + N2 + 6N

)
.

Example 7 (General-case KL between two GBNs). Consider the GBN B Figure 1 top, which
we know has global distribution

X1
X2
X3
X4

 ∼ N




2.400
1.800

12.276
8.848

,


0.800 0 1.440 1.200

0 0.600 1.872 1.560
1.440 1.872 10.916 8.347
1.200 1.560 8.347 6.956




from Example 2. Furthermore, consider the GBN B′ from Figure 1 bottom, which has global distribution
X1
X2
X3
X4

 ∼ N




2.400
11.324
6.220
4.620

,


0.800 2.368 1.040 0.640
2.368 8.541 3.438 1.894
1.040 3.438 1.652 0.832
0.640 1.894 0.832 1.012


.

In order to compute KL(B ∥B′), we first invert ΣB′ to obtain

Σ−1
B′ =


9.945 −1.272 −2.806 −1.600
−1.272 0.909 −1.091 0
−2.806 −1.091 4.642 0
−1.600 0 0 2.000

,

which we then multiply by ΣB to compute the trace tr(Σ−1
B′ ΣB) = 57.087. We also use Σ−1

B′ to
compute (µB′ − µB)

TΣ−1
B′ (µB′ − µB) = 408.362. Finally, det(ΣB′) = 0.475, det(ΣB) = 0.132

and therefore

KL
(
B
∥∥B′) = 1

2

[
57.087 + 408.362 − 4 + log

(
0.475
0.132

)]
= 230.0846. (16)

As an alternative, we can compute the spectral decompositions ΣB = UBΛBUT
B and ΣB′ = UB′ΛB′UT

B′

as an intermediate step. Multiplying the sets of eigenvalues

ΛB = diag({18.058, 0.741, 0.379, 0.093}) and ΛB′ = diag({11.106, 0.574, 0.236, 0.087})

gives the corresponding determinants; and it allows us to easily compute

Σ−1
B′ = UB′Λ−1

B′ UT
B′ , where Λ−1

B′ = diag
({

1
11.106

,
1

0.574
,

1
0.236

,
1

0.087

})

Algorithms 2024, 17, 24 14 of 32

for use in both the quadratic form and in the trace.

However, computing KL(B ∥B′) from the global distributions N(µB , ΣB) and
N(µB′ , ΣB′) disregards the fact that BNs are sparse models that can be characterised more
compactly by (µB , CB) and (µB′ , CB′) as shown in Section 3.2. In particular, we can revisit
several operations that are in the high-order terms of (15):

• Composing the global distribution from the local ones. We avoid computing ΣB and ΣB′ ,
thus reducing this step to O(2N) complexity.

• Computing the trace tr(Σ−1
B′ ΣB). We can reduce the computation of the trace as follows.

1. We can replace ΣB and ΣB′ in the trace with any reordered matrix [53] (Result 8.17):
we choose to use Σ̃B′ and Σ̃∗

B where Σ̃B′ is defined as before and Σ̃∗
B is ΣB with

the rows and columns reordered to match Σ̃B′ . Formally, this is equivalent to
Σ̃∗
B = PΣ̃BPT where P is a permutation matrix that imposes the desired node

ordering: since both the rows and the columns are permuted in the same way, the
diagonal elements of Σ̃B are the same as those of Σ̃∗

B and the trace is unaffected.
2. We have Σ̃B′ = CB′CT

B′ .
3. As for Σ̃∗

B , we can write Σ̃∗
B = PΣ̃BP = (PCB)(PCB)

T = C∗
B(C

∗
B)

T where
C∗
B = PCB is the lower triangular matrix CB with the rows re-ordered to match

Σ̃B′ . Note that C∗
B is not lower triangular unless G and G ′ have the same partial

node ordering, which implies P = IN .

Therefore

tr(Σ−1
B′ ΣB) = tr

(
(C−1

B′ C∗
B)

T(C−1
B′ C∗

B)
)
= ∥C−1

B′ C∗
B∥2

F (17)

where the last step rests on Seber [53] (Result 4.15). We can invert CB′ in O
(

N2) time
following Stewart [54] (Algorithm 2.3). Multiplying C−1

B′ and C∗
B is still O

(
N3). The

Frobenius norm ∥ · ∥F is O
(

N2) since it is the sum of the squared elements of C−1
B′ C∗

B .
• Computing the determinants det(ΣB′) and det(ΣB). From (13), each determinant can be

computed in O(N).
• Computing the quadratic term (µB′ − µB)

TΣ−1
B′ (µB′ − µB). Decomposing Σ−1

B′ leads to

(µB′ − µB)
TΣ−1

B′ (µB′ − µB) = (C−1
B′ (µ

∗
B′ − µ∗

B))
TC−1

B′ (µ
∗
B′ − µ∗

B), (18)

where µ∗
B′ and µ∗

B are the mean vectors re-ordered to match C−1
B′ . The computational

complexity is still O
(

N2 + 2N
)

because C−1
B′ is available from previous computations.

Combining (17), (13) and (18), the expression in (14) becomes

KL
(
B
∥∥B′) =

1
2

[
∥C−1

B′ C∗
B∥2

F + (C−1
B′ (µ

∗
B′ − µ∗

B))
TC−1

B′ (µ
∗
B′ − µ∗

B)− N + 2 log
∏N

i=1 CB′ [i; i]

∏N
i=1 CB [i; i]

]
. (19)

The overall complexity of (19) KL is

O
(

2N2 + 2N
)

︸ ︷︷ ︸
compute µB , µB′ CB , CB′

+ O
(

2N2 + N3
)

︸ ︷︷ ︸
compute ∥C−1

B′ CB∥2
F

+ O
(

N2 + 2N
)

︸ ︷︷ ︸
compute the quadratic form

+

O(2N)︸ ︷︷ ︸
compute det(ΣB), det(ΣB′)

= O
(

N3 + 5N2 + 6N
)

; (20)

while still cubic, the leading coefficient suggests that it should be about 5 times faster than
the variant of (15) using the spectral decomposition.

Algorithms 2024, 17, 24 15 of 32

Example 8 (Sparse KL between two GBNs). Consider again the two GBNs from Example 7.
The corresponding matrices

CB =



X1 X2 X4 X3

X1 0.894 0 0 0

X2 0 0.774 0 0

X4 1.341 2.014 1.049 0

X3 1.610 2.416 1.258 0.948

, CB′ =



X1 X3 X4 X2

X1 0.894 0 0 0

X3 1.163 0.548 0 0

X4 0.715 0 0.707 0

X2 2.647 0.657 0 1.049


readily give the determinants of ΣB and ΣB′ following (13):

det(CB) = (0.894 · 0.774 · 1.049 · 0.948)2 = 0.475,

det(CB′) = (0.894 · 0.548 · 0.707 · 1.049)2 = 0.132.

As for the Frobenius norm in (17), we first invert CB′ to obtain

C−1
B′ =


X1 X3 X4 X2

X1 1.118 0 0 0
X3 −2.373 1.825 0 0
X4 −1.131 0 1.414 0
X2 −1.334 −1.144 0 0.953

;

then we reorder the rows and columns of CB to follow the same node ordering as CB′ and compute∥∥∥∥∥∥∥∥


1.118 0 0 0
−2.373 1.825 0 0
−1.131 0 1.414 0
−1.334 −1.144 0 0.953




0.894 0 0 0
1.610 0.948 1.258 2.416
1.341 0 1.049 2.014

0 0 0 0.774


∥∥∥∥∥∥∥∥

2

F

= 57.087

which, as expected, matches the value of tr(Σ−1
B′ ΣB) we computed in Example 7. Finally,

C−1
B′ (µ

∗
B′ − µ∗

B) in (18) is
1.118 0 0 0
−2.373 1.825 0 0
−1.131 0 1.414 0
−1.334 −1.144 0 0.953





2.400
6.220
4.620

11.324

−


2.400

12.1276
8.848
1.800


 =


0

−11.056
−5.459
16.010

.

The quadratic form is then equal to 408.362, which matches the value of (µB′ − µB)
TΣ−1

B′ (µB′ − µB)
in Example 7. As a result, the expression for KL(B ∥B′) is the same as in (16).

We can further reduce the complexity (20) of (19) when an approximate value of KL is
suitable for our purposes. The only term with cubic complexity is tr(Σ−1

B′ ΣB) = ∥C−1
B′ C∗

B∥2
F:

reducing it to quadratic complexity or lower will eliminate the leading term of (20), making
it quadratic in complexity. One way to do this is to compute a lower and an upper bound
for tr(Σ−1

B′ ΣB), which can serve as an interval estimate, and take their geometric mean as
an approximate point estimate.

A lower bound is given by Seber [53] (Result 10.39):

tr(Σ−1
B′ ΣB) ⩾ log det(Σ−1

B′ ΣB) + N = − log det(ΣB′) + log det(ΣB) + N, (21)

which conveniently reuses the values of det(ΣB) and det(ΣB′) we have from (13). For an
upper bound, Seber [53] (Result 10.59) combined with Seber [53] (Result 4.15) gives

tr(Σ−1
B′ ΣB) ⩽ tr(Σ−1

B′) tr(ΣB) = tr
(
(CB′CT

B′)−1
)

tr(CBCT
B) = ∥C−1

B′ ∥2
F∥CB∥2

F , (22)

Algorithms 2024, 17, 24 16 of 32

a function of CB and CB′ that can be computed in O
(
2N2) time. Note that, as far as the

point estimate is concerned, we do not care about how wide the interval is: we only need
its geometric mean to be an acceptable approximation of tr(Σ−1

B′ ΣB).

Example 9 (Approximate KL). From Example 7, we have that tr(Σ−1
B′ ΣB) = 57.087,

det(ΣB′) = 0.475 and det(ΣB) = 0.132. The lower bound in (21) is then

− log det(ΣB′) + log det(ΣB) + 4 = 5.281

and the upper bound in (22) is

∥C−1
B′ ∥2

F∥CB∥2
F = 17.496 · 19.272 = 337.207.

Their geometric mean is 42.199, which can serve as an approximate value for KL(B ∥B′).

If we are comparing two GBNs whose parameters (but not necessarily network struc-
tures) have been learned from the same data, we can sometimes approximate KL(B ∥B′)

using the local distributions Xi | ΠB
Xi

and Xi | ΠB′
Xi

directly. If B and B′ have compatible
partial orderings, we can define a common total node ordering for both such that

KL
(
B
∥∥B′) = KL

(
X(1) | {X(2), . . . , X(N)} · · · XN

∥∥∥X(1) | {X(2), . . . , X(N)} · · · XN

)
= KL

(
X(1) | ΠB

X(1)
· . . . · X(N) | ΠB

X(N)

∥∥∥X(1) | ΠB′
X(1)

· . . . · X(N) | ΠB′
X(N)

)
.

By “compatible partial orderings”, we mean two partial orderings that can be sorted into
at least one shared total node ordering that is compatible with both. The product of the
local distributions in the second step is obtained from the chain decomposition in the first
step by considering the nodes in the conditioning other than the parents to have associated
regression coefficients equal to zero. Then, following the derivations in Cavanaugh [55] for
a general linear regression model, we can write the empirical approximation

KL
(

Xi | ΠB
Xi

∥∥∥Xi | ΠB′
Xi

)
≈ 1

2

(
log

σ̂2
Xi
(B′)

σ̂2
Xi
(B)

+
σ̂2

Xi
(B)

σ̂2
Xi
(B′)

− 1

)
+

1
2n

(
∥x̂i(B)− x̂i(B′)∥2

2
σ̂2

Xi
(B′)

)
(23)

where, following a similar notation to (4):

• µ̂Xi(B), β̂Xi
(B), µ̂Xi(B′), β̂Xi

(B′) are the estimated intercepts and regression coefficients;
• x̂i(B) and x̂i(B′) are the n × 1 vectors

x̂i(B) = µ̂Xi (B) + x[• ; ΠXi (B)]β̂Xi
(B), x̂i(B′) = µ̂Xi (B

′) + x[• ; ΠXi (B
′)]β̂Xi

(B′),

the fitted values computed from the data observed for Xi, ΠXi (B), ΠXi (B′);
• σ2

Xi
(B) and σ2

Xi
(B′) are the residual variances in B and B′.

We can compute the expression in (23) for each node in

O
(
n(|ΠXi (B)|+ |ΠXi (B

′)|+ 2)
)︸ ︷︷ ︸

compute x̂i(B) and x̂i(B′)

+ O(n)︸ ︷︷ ︸
compute the norm ∥x̂i(B)− x̂i(B′)∥2

2

=

O
(
n(|ΠXi (B)|+ |ΠXi (B

′)|+ 5/2)
)
,

which is linear in the sample size if both G and G′ are sparse because |ΠXi(B)| ⩽ c, |ΠXi(B′)| ⩽ c.
In this case, the overall computational complexity simplifies to O(nN(2c + 5/2)). Further-
more, as we pointed out in Scutari et al. [29], the fitted values x̂i(B), x̂i(B′) are computed as
a by-product of parameter learning: if we consider them to be already available, the above
computational complexity is reduced to just O(n) for a single node and O(nN) overall.

Algorithms 2024, 17, 24 17 of 32

We can also replace the fitted values x̂i(B), x̂i(B′) in (23) with the corresponding residuals
ε̂i(B), ε̂i(B′) because

∥x̂i(B)− x̂i(B′)∥2
2 = ∥(x[• ; Xi]− x̂i(B))− (x[• ; Xi]− x̂i(B′))∥2

2 = ∥ε̂i(B)− ε̂i(B′)∥2
2

if the latter are available but the former are not.

Example 10 (KL between GBNs with parameters estimated from data). For reasons of space,
this example is presented as Example A5 in Appendix B.

4.3. Conditional Gaussian BNs

The entropy H(B) decomposes into a separate H
(

Xi | ΠB
Xi

)
for each node, of the

form (9) for discrete nodes and (12) for continuous nodes with no discrete parents. For
continuous nodes with both discrete and continuous parents,

H
(

Xi | ΠB
Xi

)
=

1
2 ∑

δXi
∈Val(∆Xi

)

πδXi
log
(

2πσ2
Xi ,δXi

(B)
)
+

1
2

, (24)

where πδXi
represents the probability associated with the configuration δXi of the discrete

parents ∆Xi . This last expression can be computed in O
(
|Val(∆Xi)|

)
time for each node.

Overall, the complexity of computing H(B) is

O

(
∑

Xi∈XD

|ΘXi |+ ∑
Xi∈XG

max
{

1, |Val(∆Xi)|
})

.

where the max accounts for the fact that |Val(∆Xi)| = 0 when ∆Xi = ∅ but the computa-
tional complexity is O(1) for such nodes.

Example 11 (Entropy of a CLGBN). For reasons of space, this example is presented as Example A6
in Appendix B.

As for KL(B ∥B′), we could not find any literature illustrating how to compute it. The
partition of the nodes in (5) implies that

KL
(
B
∥∥B′) = KL

(
XB

D

∥∥∥XB′
D

)
︸ ︷︷ ︸

discrete nodes

+KL
(

XB
G | XB

D

∥∥∥XB′
G | XB′

D

)
︸ ︷︷ ︸

continuous nodes

. (25)

We can compute the first term following Section 4.1: XB
D and XB′

D form two discrete BNs
whose DAGs are the spanning subgraphs of B and B′ and whose local distributions are the
corresponding ones in B and B′, respectively. The second term decomposes into

KL
(

XB
G | XB

D

∥∥∥XB′
G | XB′

D

)
= ∑

xD∈Val(XD)

P
(

XB
D = xD

)
KL
(

XB
G | XB

D = xD

∥∥∥XB′
G | XB′

D = xD

)
(26)

similarly to (10) and (24). We can compute it using the multivariate normal distributions
associated with the XB

D = xD and the XB′
D = xD in the global distributions of B and B′.

Example 12 (General-case KL between two CLGBNs). Consider the CLGBNs B from
Figure 3 top, which we already used in Examples 3 and 11, and B′ from Figure 3 bottom. The
variables XB′

D identify the following mixture components in the global distribution of B′:

{a, c, e}, {b, c, e}, {a, d, e}, {b, d, e} 7→ {e},

{a, c, f }, {b, c, f }, {a, d, f }, {b, d, f } 7→ { f }.

Algorithms 2024, 17, 24 18 of 32

Therefore, B′ only encodes two different multivariate normal distributions.
Firstly, we construct two discrete BNs using the subgraphs spanning XB

D = XB′
D = {X1, X2, X3}

in B and B′, which have arcs {X1 → X2} and {X1 → X2, X2 → X3}, respectively. The CPTs for
X1, X2 and X3 are the same as in B and in B′. We then compute KL

(
XB

D

∥∥∥XB′
D

)
= 0.577 following

Example 5.
Secondly, we construct the multivariate normal distributions associated with the components

of B′ following Example 3 (in which we computed those of B). For {e}, we haveX4
X5
X6

 ∼ N

0.300
1.400
1.140

,

0.160 0.000 0.032
0.000 1.690 1.183
0.032 1.183 2.274

;

for { f }, we have X4
X5
X6

 ∼ N

1.000
0.500
0.650

,

0.090 0.000 0.018
0.000 2.250 1.575
0.018 1.575 2.546

.

Then,

KL
(

XB
G | XB

D

∥∥∥XB′
G | XB′

D

)
= ∑

x1∈{a,b}
∑

x2∈{c,d}
∑

x3∈{e, f }
P
(

XB
D = {x1, x2, x3}

)
·

KL
(

XB
G | XB

D = {x1, x2, x3}
∥∥∥XB′

G | XB′
D = {x1, x2, x3}

)
= 0.040 × 1.721︸ ︷︷ ︸

{a,c,e}

+ 0.036 × 1.721︸ ︷︷ ︸
{b,c,e}

+ 0.040 × 2.504︸ ︷︷ ︸
{a,d,e}

+ 0.084 × 2.504︸ ︷︷ ︸
{b,d,e}

+

0.16 × 4.303︸ ︷︷ ︸
{a,c, f }

+ 0.144 × 4.303︸ ︷︷ ︸
{b,c, f }

+ 0.16 × 6.31︸ ︷︷ ︸
{a,d, f }

+ 0.336 × 6.31︸ ︷︷ ︸
{b,d, f }

= 4.879

and KL(B ∥B′) = KL
(

XB
D

∥∥∥XB′
D

)
+ KL

(
XB

G | XB
D

∥∥∥XB′
G | XB′

D

)
= 0.577 + 4.879 = 5.456.

The computational complexity of this basic approach to computing KL(B ∥B′) is

O
(

Mwlw+c + M(w + wlw + lw−1) + (Mlc + 2)|ΘXD |
)

︸ ︷︷ ︸
compute KL

(
XB

D

∥∥∥XB′
D

)
+

O
(

lM ·
(

6(N − M)3 + (N − M)2 + 5(N − M)
))

︸ ︷︷ ︸
compute all the KL

(
XB

G | XB
D = xD

∥∥∥XB′
G | XB′

D = xD

)
, (27)

which we obtain by adapting (11) and (15) to follow the notation |XD| = M and |XG| = N − M
we established in Section 3.3. The first term implicitly covers the cost of computing the
P
(
XB

D = xD
)
, which relies on exact inference like the computation of KL

(
XB

D

∥∥∥XB′
D

)
. The

second term is exponential in M, which would lead us to conclude that it is computationally
unfeasible to compute KL(B ∥B′) whenever we have more than a few discrete variables in
B and B′. Certainly, this would agree with Hershey and Olsen [22], who reviewed various
scalable approximations of the KL divergence between two Gaussian mixtures.

Algorithms 2024, 17, 24 19 of 32

Figure 3. DAGs and local distributions for the CLGBNs B (top) and B′ (bottom) used in
Examples 3 and 11–13.

However, we would again disregard the fact that BNs are sparse models. Two properties
of CLGBNs that are apparent from Examples 3 and 12 allow us to compute (26) efficiently:

• We can reduce XB
G | XB

D to XB
G | ∆B where ∆B =

⋃
Xi∈XG

∆B
Xi

⊆ XB
D. In other words, the

continuous nodes are conditionally independent on the discrete nodes that are not
their parents (XB

D \ ∆B) given their parents (∆B). The same is true for XB′
G | XB′

D . The
number of distinct terms in the summation in (26) is then given by |Val(∆B ∪ ∆B′

)|
which will be smaller than |Val(XB

D)| in sparse networks.
• The conditional distributions XB

G | XB
D = δ and XB′

G | XB′
D = δ are multivariate normals

(not mixtures). They are also faithful to the subgraphs spanning the continuous nodes
XG, and we can represent them as GBNs whose parameters can be extracted directly
from B and B′. Therefore, we can use the results from Section 4.2 to compute their
Kullback–Leibler divergences efficiently.

As a result, (26) simplifies to

KL
(

XB
G | XB

D

∥∥∥XB′
G | XB′

D

)
=

∑
δ∈Val(∆B∪∆B′)

P
(
{∆B ∪ ∆B′} = δ

)
KL
(

XB
G | {∆B ∪ ∆B′} = δ

∥∥∥XB′
G | {∆B ∪ ∆B′} = δ

)
.

Algorithms 2024, 17, 24 20 of 32

where P
(
{∆B ∪ ∆B′} = δ

)
is the probability that the nodes ∆B ∪ ∆B′

take value δ as com-
puted in B. In turn, (27) reduces to

O
(

Mwlw+c + M(w + wlw + lw−1) + (Mlc + 2)|ΘXD |
)

︸ ︷︷ ︸
compute KL

(
XB

D

∥∥∥XB′
D

)
+

O
(

l|Val(∆B∪∆B′)| ·
(
(N − M)3 + 5(N − M)2 + 6(N − M)

))
︸ ︷︷ ︸

compute all the KL
(

XB
G | {∆B ∪ ∆B′} = δ

∥∥∥XB′
G | {∆B ∪ ∆B′} = δ

)
.

because we can replace lM with l|Val(∆B∪∆B′)|, which is an upper bound to the unique
components in the mixture, and because we replace the complexity in (15) with that (20).
We can also further reduce the second term to quadratic complexity as we discussed in
Section 4.2. The remaining drivers of the computational complexity are:

• the maximum clique size w in the subgraph spanning XB
D;

• the number of arcs from discrete nodes to continuous nodes in both B and B′ and the
overlap between ∆B and ∆B′

.

Example 13 (Sparse KL between two CLGBNs). Consider again the CLGBNs B and B′ from
Example 12. The node sets ∆B = {X2, X3} and ∆B′

= {X3} identify four KL divergences to
compute: Val(∆B ∪ ∆B′

) = {{c, e}, {c, f }, {d, e}, {d, f }}.

KL
(

XB
G | XB

D

∥∥∥XB′
G | XB′

D

)
=

P
(
{∆B ∪ ∆B′} = {c, e}

)
KL
(

XB
G | {∆B ∪ ∆B′} = {c, e}

∥∥∥XB′
G | {∆B ∪ ∆B′} = {c, e}

)
+

P
(
{∆B ∪ ∆B′} = {c, f }

)
KL
(

XB
G | {∆B ∪ ∆B′} = {c, f }

∥∥∥XB′
G | {∆B ∪ ∆B′} = {c, f }

)
+

P
(
{∆B ∪ ∆B′} = {d, e}

)
KL
(

XB
G | {∆B ∪ ∆B′} = {d, e}

∥∥∥XB′
G | {∆B ∪ ∆B′} = {d, e}

)
+

P
(
{∆B ∪ ∆B′} = {d, f }

)
KL
(

XB
G | {∆B ∪ ∆B′} = {d, f }

∥∥∥XB′
G | {∆B ∪ ∆B′} = {d, f }

)
All the BNs in the Kullback–Leibler divergences are GBNs whose structure and local distribu-
tions can be read from B and B′. The four GBNs associated with XB

G | {∆B ∪ ∆B′} have nodes
XB

G = {X4, X5, X6}, arcs {X5 → X4, X4 → X6} and the local distributions listed in Figure 3.
The corresponding GBNs associated with XB′

G | {∆B ∪ ∆B′} are, in fact, only two distinct GBNs
associated with {e} and { f}. They have arcs {X4 →X6, X5 →X6} and local distributions: for {e},

X4 = 0.3 + εX4 , εX4 ∼ N(0, 0.16),

X5 = 1.4 + εX5 , εX5 ∼ N(0, 1.69),

X6 = 0.1 + 0.2X4 + 0.7X5 + εX6 , εX6 ∼ N(0, 1.44);

for { f },

X4 = 1.0 + εX4 , εX4 ∼ N(0, 0.09),

X5 = 0.5 + εX5 , εX5 ∼ N(0, 2.25),

X6 = 0.1 + 0.2X4 + 0.7X5 + εX6 , εX6 ∼ N(0, 1.44).

Algorithms 2024, 17, 24 21 of 32

Plugging in the numbers,

KL
(

XB
G | XB

D

∥∥∥XB′
G | XB′

D

)
= 0.076 × 1.721︸ ︷︷ ︸

{c,e}

+ 0.304 × 4.303︸ ︷︷ ︸
{c, f }

+

0.124 × 2.504︸ ︷︷ ︸
{d,e}

+ 0.496 × 6.310︸ ︷︷ ︸
{d, f }

= 4.879

which matches the value we computed in Example 12.

5. Conclusions

We started this paper by reviewing the three most common distributional assump-
tions for BNs: discrete BNs, Gaussian BNs (GBNs) and conditional linear Gaussian BNs
(CLGBNs). Firstly, we reviewed the link between the respective global and local distribu-
tions, and we formalised the computational complexity of decomposing the former into
the latter (and vice versa).

We then leveraged these results to study the complexity of computing Shannon’s
entropy. We can, of course, compute the entropy of a BN from its global distribution using
standard results from the literature. (In the case of discrete BNs and CLGBNS, only for
small networks because |Θ| grows combinatorially.) However, this is not computationally
efficient because we incur the cost of composing the global distribution. While the entropy
does not decompose along with the local distributions for either discrete BNs or CLGBNS,
we show that it is nevertheless efficient to compute it from them.

Computing the Kullback–Leibler divergence between two BNs following the little
material found in the literature is more demanding. The discrete case has been thoroughly
investigated by Moral et al. [21]. However, the literature typically relies on composing the
global distributions for GBNs and CGBNs. Using the local distributions, thus leveraging
the intrinsic sparsity of BNs, we showed how to compute the Kullback–Leibler divergence
exactly with greater efficiency. For GBNs, we showed how to compute the Kullback–Leibler
divergence approximately with quadratic complexity (instead of cubic). If the two GBNs
have compatible node orderings and their parameters are estimated from the same data,
we can also approximate their Kullback–Leibler divergence with complexity that scales
with the number of parents of each node. All these results are summarised in Table A1 in
Appendix A.

Finally, we provided step-by-step numeric examples of how to compute Shannon’s
entropy and the Kullback–Leibler divergence for discrete BNs, GBNs and CLGBNs. (See
also Appendix B). Considering this is a highly technical topic, and no such examples are
available anywhere in the literature, we feel that they are helpful in demystifying this topic
and in integrating BNs into many general machine learning approaches.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Computational Complexity Results

For ease of reference, we summarise here all the computational complexity results in
this paper, including the type of BN and the page where they have been derived.

Algorithms 2024, 17, 24 22 of 32

Table A1. Summary of all the computational complexity results in this paper, including the type of
BN and the page where they have been derived.

Composing and decomposing the global distributions

O
(

NlN + l ∑N
i=1 l|ΠXi

|
)

discrete BNs Section 3.1
O
(

N3) GBNs Section 3.2
O
(

MlM + (N − M)3l∆
)

CLGBNs Section 3.3

Computing Shannon’s entropy

O
(

N(w(1 + lw) + lw−1) + |Θ|
)

discrete BNs Section 4.1
O(N) GBNs Section 4.2
O
(
∑Xi∈XD

|ΘXi |+ ∑Xi∈XG
max

{
1, |Val(∆Xi)|

})
CLGBNs Section 4.3

Computing the Kullback–Leibler divergence

O
(

N2wlw+c + N(w + wlw + lw−1) + (Nlc + 2)|Θ|
)

discrete BNs Section 4.1
O
(
6N3 + N2 + 5N

)
GBNs Section 4.2

O
(

Mwlw+c + M(w + wlw + lw−1) + (Mlc + 2)|ΘXD |
)
+

O
(
lM ·

(
6(N − M)3 + (N − M)2 + 5(N − M)

))
CLGBNs Section 4.3

Sparse Kullback–Leibler divergence

O
(

N3 + 5N2 + 6N
)

GBNs Section 4.2
O
(

Mwlw+c + M(w + wlw + lw−1) + (Mlc + 2)|ΘXD |
)
+

O
(

l|Val(∆B∪∆B′)| ·
(
(N − M)3 + 5(N − M)2 + 6(N − M)

))
CLGBNs Section 4.3

Approximate Kullback–Leibler divergence

O
(
7N2 + 6N

)
GBNs Section 4.2

Efficient empirical Kullback–Leibler divergence

O(nN(2c + 5/2)) GBNs Section 4.2

Appendix B. Additional Examples

Example A1 (Composing and decomposing a discrete BN). Consider the discrete BN B shown
in Figure 2 (top). Composing its global distribution entails computing the joint probabilities of all
possible states of all variables,

{a, b} × {c, d} × {e, f } × {g, h},

and arranging them in the following four-dimensional probability table in which each dimension is
associated with one of the variables.

X1 = a X1 = b

X2 = c X2 = d X2 = c X2 = d

X3 X3 X3 X3

X4 e f X4 e f X4 e f X4 e f

g 0.005 0.064 g 0.052 0.037 g 0.013 0.040 g 0.050 0.026

h 0.022 0.089 h 0.210 0.051 h 0.051 0.056 h 0.199 0.036

The joint probabilities are computed by multiplying the appropriate cells of the CPTs, for instance

P(X = {a, d, f , h}) =
P(X1 = a)P(X2 = d)P(X3 = f | X1 = a, X2 = d)P(X4 = h | X3 = f) =

0.53 · 0.66 · 0.25 · 0.58 = 0.051.

Algorithms 2024, 17, 24 23 of 32

Conversely, we can decompose the global distribution into the local distributions by summing
over all variables other than the nodes and their parents. For X1, this means

P(X1 = a) = ∑
x2∈{c,d}

∑
x3∈{e, f }

∑
x4∈{g,h}

P(X1 = a, X2 = x2, X3 = x3, X4 = x4)

= 0.005 + 0.064 + 0.022 + 0.089 + 0.052 + 0.037 + 0.210 + 0.051 = 0.53,

P(X1 = b) = ∑
x2∈{c,d}

∑
x3∈{e, f }

∑
x4∈{g,h}

P(X1 = b, X2 = x2, X3 = x3, X4 = x4)

= 0.013 + 0.040 + 0.051 + 0.056 + 0.050 + 0.026 + 0.199 + 0.036 = 0.47.

Similarly, for X2 we obtain

P(X2 = c) = ∑
x1∈{a,b}

∑
x3∈{e, f }

∑
x4∈{g,h}

P(X1 = x1, X2 = c, X3 = x3, X4 = x4)

= 0.005 + 0.064 + 0.022 + 0.089 + 0.013 + 0.040 + 0.051 + 0.056 = 0.34,

P(X2 = d) = ∑
x1∈{a,b}

∑
x3∈{e, f }

∑
x4∈{g,h}

P(X1 = x1, X2 = d, X3 = x3, X4 = x4)

= 0.052 + 0.037 + 0.210 + 0.051 + 0.050 + 0.026 + 0.199 + 0.036 = 0.66.

For X4, we first compute the joint distribution of X4 and X3 by marginalising over X1 and X2,

(e f

g 0.005 0.064

h 0.022 0.089

)
︸ ︷︷ ︸

{a,c}

+

(e f

g 0.052 0.037

h 0.210 0.051

)
︸ ︷︷ ︸

{a,d}

+

(e f

g 0.013 0.040

h 0.051 0.056

)
︸ ︷︷ ︸

{b,c}

+

(e f

g 0.050 0.026

h 0.199 0.036

)
︸ ︷︷ ︸

{b,d}

=

(e f

g 0.120 0.167

h 0.481 0.232

)
;

from which we obtain the CPT for X4 | X3 by normalising its columns.
As for X3, we marginalise over X2 to obtain the joint distribution of X3, X1 and X2

({a, c} {a, d} {b, c} {b, d}
e 0.005 + 0.022 = 0.027 0.052 + 0.210 = 0.262 0.013 + 0.051 = 0.064 0.050 + 0.199 = 0.248
f 0.064 + 0.089 = 0.153 0.037 + 0.051 = 0.087 0.040 + 0.056 = 0.096 0.026 + 0.036 = 0.062

)
and we obtain the CPT for X3 | X1, X2 by normalising its columns as we did earlier with X4.

Example A2 (Composing and decomposing a CLGBN). Consider the CLGBN B from
Figure 3 top. The M = 3 discrete variables at the top of the network have the joint distribu-
tion below:

{X1, X2, X3}
{a, c, e} {b, c, e} {a, d, e} {b, d, e} {a, c, f } {b, c, f } {a, d, f } {b, d, f }
0.040 0.036 0.040 0.084 0.160 0.144 0.160 0.336

Its elements identify the components of the mixture that make up the global distribution of B, and
the associated probabilities are the probabilities of those components.

We can then identify which parts of the local distributions of the N − M = 3 contin-
uous variables (X4, X5 and X6) we need to compute P(X4, X5, X6 | X1, X2, X3) for each ele-
ment of the mixture. The graphical structure of B implies that P(X4, X5, X6 | X1, X2, X3) =
P(X4, X5, X6 | X2, X3) because the continuous nodes are d-separated from X1 by their parents. As

Algorithms 2024, 17, 24 24 of 32

a result, the following mixture components will share identical distributions which only depend on
the configurations of X2 and X3:

{a, c, e}, {b, c, e} 7→ {c, e}, {a, d, e}, {b, d, e} 7→ {d, e},

{a, c, f }, {b, c, f } 7→ {c, f }, {a, d, f }, {b, d, f } 7→ {d, f }.

For the mixture components with a distribution identified by {c, e}, the relevant parts of the
distributions of X4, X5 and X6 are:

X4 = 0.1 + 0.2X5 + εX4 , εX4 ∼ N(0, 0.09);

X5 = 0.1 + εX5 , εX5 ∼ N(0, 0.09);

X6 = 0.1 + 0.2X4 + εX6 , εX6 ∼ N(0, 1).

We can treat them as the local distributions in a GBN over {X4, X5, X6} with a DAG equal to
the subgraph of B spanning only these nodes. If we follow the steps outlined in Section 3.2 and
illustrated in Example 2, we obtainX4

X5
X6

 ∼ N

0.120
0.100
0.124

, Σ{c,e}(B) =

0.094 0.018 0.019
0.018 0.090 0.004
0.019 0.004 1.004


which is the multivariate normal distribution associated with the components {a, c, e} and {b, c, e}
in the mixture. Similarly, the relevant parts of the distributions of X4, X5 and X6 for {d, e} are

X4 = 0.6 + 0.8X5 + εX4 , εX4 ∼ N(0, 0.36);

X5 = 0.2 + εX5 , εX5 ∼ N(0, 0.36);

X6 = 0.1 + 0.2X4 + εX6 , εX6 ∼ N(0, 1);

and jointly X4
X5
X6

 ∼ N

0.760
0.200
0.252

, Σ{d,e}(B) =

0.590 0.288 0.118
0.288 0.360 0.058
0.118 0.058 1.024


for the components {a, d, e} and {b, d, e}. For the components {a, c, f } and {b, c, f }, the local
distributions identified by {c, f } are

X4 = 0.1 + 0.2X5 + εX4 , εX4 ∼ N(0, 0.09);

X5 = 0.4 + εX5 , εX5 ∼ N(0, 0.81);

X6 = 0.1 + 0.2X4 + εX6 , εX6 ∼ N(0, 1);

and the joint distribution of X4, X5 and X6 isX4
X5
X6

 ∼ N

0.180
0.400
0.136

, Σ{c, f }(B) =

0.122 0.162 0.024
0.162 0.810 0.032
0.024 0.032 1.005

.

Finally, the local distributions identified by {d, f } are

X4 = 0.6 + 0.8X5 + εX4 , εX4 ∼ N(0, 0.36);

X5 = 0.4 + εX5 , εX5 ∼ N(0, 1.44);

X6 = 0.1 + 0.2X4 + εX6 , εX6 ∼ N(0, 1);

Algorithms 2024, 17, 24 25 of 32

and the joint distribution of X4, X5 and X6 for the components {a, d, f }, {b, d, f } isX4
X5
X6

 ∼ N

0.920
0.400
0.284

, Σ{d, f }(B) =

1.282 1.152 0.256
1.152 1.440 0.230
0.256 0.230 1.051

.

We follow the same steps in reverse to decompose the global distribution into the local distri-
butions. The joint distribution of X is a mixture with multivariate normal components and the
associated probabilities. The latter are a function of the discrete variables X1, X2, X3: rearranging
them as the three-dimensional table

X1 = a

X2
c d

X3
e 0.040 0.040
f 0.160 0.160

X1 = b

X2
c d

X3
e 0.036 0.084
f 0.144 0.336

gives us the typical representation of P(X1, X2, X3), which we can work with by operating over
the different dimensions. We can then compute the conditional probability tables in the local
distributions of X1 and X3 by marginalising over the remaining variables:

P(X1) = ∑
X2∈{c,d}

∑
X3∈{e, f }

P(X1, X2, X3)

=
(a b

0.040 + 0.160 + 0.040 + 0.160 0.036 + 0.144 + 0.084 + 0.336
)

=
(a b

0.4 0.6
)

,

P(X3) = ∑
X1∈{a,b}

∑
X2∈{c,d}

P(X1, X2, X3)

=
(e f

0.040 + 0.040 + 0.036 + 0.084 0.160 + 0.160 + 0.144 + 0.336
)

=
(e f

0.2 0.8
)

.

As for X2, we marginalise over X3 and normalise over X1 to obtain

P(X2 | X1) = ∑
X3∈{e, f }

P(X1, X2, X3)

P(X1)
=

(a b
c 0.040 + 0.160

0.4
0.036 + 0.144

0.6
d 0.040 + 0.160

0.4
0.084 + 0.336

0.6

)
=

(a b
c 0.5 0.3
d 0.5 0.7

)
.

The multivariate normal distributions associated with the mixture components are a function of
the continuous variables X4, X5, X6. X4 has only one discrete parent (X2), X5 has two (X2 and
X3) and X6 has none. Therefore, we only need to examine four mixture components to obtain the
parameters of the local distributions of all three variables: one for which {X2 = c, X3 = e}, one for
which {X2 = d, X3 = e}, one for which {X2 = c, X3 = f } and one for which {X2 = d, X3 = f }.

If we consider the first mixture component {a, c, e}, we can apply the steps described Section 3.2
to decompose it into the local distributions of X4, X5, X6 and obtain

X4 = 0.1 + 0.2X5 + εX4 , εX4 ∼ N(0, 0.09);

X5 = 0.1 + εX5 , εX5 ∼ N(0, 0.09);

X6 = 0.1 + 0.2X4 + εX6 , εX6 ∼ N(0, 1).

Algorithms 2024, 17, 24 26 of 32

Similarly, the third mixture component {a, d, e} yields

X4 = 0.6 + 0.8X5 + εX4 , εX4 ∼ N(0, 0.36);

X5 = 0.2 + εX5 , εX5 ∼ N(0, 0.36);

X6 = 0.1 + 0.2X4 + εX6 , εX6 ∼ N(0, 1).

The fifth mixture component {a, c, f } yields

X4 = 0.1 + 0.2X5 + εX4 , εX4 ∼ N(0, 0.09);

X5 = 0.4 + εX5 , εX5 ∼ N(0, 0.81);

X6 = 0.1 + 0.2X4 + εX6 , εX6 ∼ N(0, 1).

The seventh mixture component {a, d, f } yields

X4 = 0.6 + 0.8X5 + εX4 , εX4 ∼ N(0, 0.36);

X5 = 0.4 + εX5 , εX5 ∼ N(0, 1.44);

X6 = 0.1 + 0.2X4 + εX6 , εX6 ∼ N(0, 1).

Reorganising these distributions by variables we obtain the local distributions of B shown in Figure 3 top.

Example A3 (Entropy of a discrete BN). Consider again the discrete BN from Example A1. In
this simple example, we can use its global distribution and (6) to compute

H(B) = −0.005 log 0.005 − 0.013 log 0.013 − 0.052 log 0.052 − 0.050 log 0.050−
0.064 log 0.064 − 0.040 log 0.040 − 0.037 log 0.037 − 0.026 log 0.026−
0.022 log 0.022 − 0.051 log 0.051 − 0.210 log 0.210 − 0.199 log 0.199−

0.089 log 0.089 − 0.056 log 0.056 − 0.051 log 0.051 − 0.036 log 0.036 = 2.440.

In the general case, we compute H(B) from the local distributions using (9). Since X1 and X2 have
no parents, their entropy components simply sum over their marginal distributions:

H(X1) = −0.53 log 0.53 − 0.47 log 0.47 = 0.691,

H(X2) = −0.34 log 0.34 − 0.66 log 0.66 = 0.641.

For X3,

H(X3 | X1, X2) = ∑
x1∈{a,b}

∑
x2∈{c,d}

P(X1 = x1, X2 = x2)H(X3 | X1 = x1, X2 = x2)

where

H(X3 | X1 = a, X2 = c) = −0.15 log 0.15 − 0.85 log 0.85 = 0.423,

H(X3 | X1 = a, X2 = d) = −0.75 log 0.75 − 0.25 log 0.25 = 0.562,

H(X3 | X1 = b, X2 = c) = −0.40 log 0.40 − 0.60 log 0.60 = 0.673,

H(X3 | X1 = b, X2 = d) = −0.80 log 0.80 − 0.20 log 0.20 = 0.500;

and where (multiplying the marginal probabilities for X1 and X2, which are marginally independent)

P(X1 = a, X2 = c) = 0.180, P(X1 = a, X2 = d) = 0.350,

P(X1 = b, X2 = c) = 0.160, P(X1 = b, X2 = d) = 0.310;

giving

H(X3 | X1, X2) = (0.180 · 0.423 + 0.350 · 0.562 + 0.160 · 0.673 + 0.310 · 0.500) = 0.536.

Algorithms 2024, 17, 24 27 of 32

Finally, for X4
H(X4 | X3) = ∑

x3∈{e, f }
P(X3 = x3)H(X4 | X3 = x3)

where

H(X4 | X3 = e) = −0.20 log 0.20 − 0.80 log 0.80 = 0.500,

H(X4 | X3 = f) = −0.42 log 0.42 − 0.58 log 0.58 = 0.680;

and P(X3 = e) = 0.601, P(X3 = f) = 0.399, giving

H(X4 | X3) = 0.601 · 0.500 + 0.399 · 0.680 = 0.572.

Combining all these figures, we obtain H(B) as

H(X1) + H(X2) + H(X3 | X1, X2) + H(X4 | X3) = 0.691 + 0.641 + 0.536 + 0.572 = 2.440

as before.
In general, we would have to compute the probabilities of the parent configurations of each

node using a junction tree as follows:

1. We construct the moral graph of B, which contains the same arcs (but undirected) as its DAG
plus X1 −− X2.

2. We identify two cliques C1 = {X1, X2, X3} and C2 = {X3, X4} and a separator S12 = {X3}.
3. We connect them to create the junction tree C1 −− S12 −−C2.
4. We initialise the cliques with the respective distributions P(C1) = P(X1, X2, X3),

P(C2) = P(X3, X4) and P(S12) = P(X3).
5. We compute P(X1, X2) = ∑x3∈{e, f } P(C1) and P(X3) = P(S12).

Example A4 (Entropy of a GBN). Consider the GBN B from Figure 1 top, whose global distribu-
tion we derived in Example 2. If we plug its covariance matrix ΣB into the entropy formula for the
multivariate normal distribution we obtain

H(B) = 4
2
+

4
2

log 2π +
1
2

log det(ΣB) = 2 + 3.676 + 0.5 log 0.475 = 5.304.

Equivalently, plugging the σ2
Xi
(B) into (12) we have

H(B) =
N

∑
i=1

H
(

Xi | ΠB
Xi

)
=

1
2
[log(2π · 0.8) + log(2π · 0.6) + log(2π · 0.9) + log(2π · 1.1)] +

4
2
= 5.304.

Example A5 (KL between GBNs with parameters estimated from data). Consider the DAGs
for the BNs B and B′ and the 10 observations shown in Figure A1. The partial topological ordering
of the nodes in B is {{X1, X2}, X4, X3} and that in B′ is {X1, X2, {X3, X4}}: the total ordering
that is compatible with both is {X1, X2, X4, X3}.

If we estimate the parameters of the local distributions of B by maximum likelihood we obtain

X1 = 2.889 + εX1 , εX1 ∼ N(0, 0.558),

X2 = 1.673 + εX2 , εX2 ∼ N(0, 1.595),

X3 = 0.896 + 1.299X4 + εX3 , εX3 ∼ N(0, 1.142),

X4 = −2.095 + 2.222X1 + 2.613X2 + εX4 , εX4 ∼ N(0, 1.523),

Algorithms 2024, 17, 24 28 of 32

and the associated fitted values are

x̂1(B) = (2.889, 2.889, 2.889, 2.889, 2.889, 2.889, 2.889, 2.889, 2.889, 2.889),

x̂2(B) = (1.673, 1.673, 1.673, 1.673, 1.673, 1.673, 1.673, 1.673, 1.673, 1.673),

x̂3(B) = (17.293, 14.480, 8.675, 13.937, 14.846, 12.801, 13.449, 2.394, 9.670, 14.381),

x̂4(B) = (13.307, 11.447, 5.852, 8.635, 8.475, 9.018, 10.370, 2.376, 7.014, 10.489).

Similarly, for B′ we obtain

X1 = 2.889 + εX1 , εX1 ∼ N(0, 0.558),

X2 = 3.505 − 0.634X1 + εX2 , εX2 ∼ N(0, 1.542),

X3 = 7.284 + 2.933X2 + εX3 , εX3 ∼ N(0, 6.051),

X4 = 5.151 + 2.120X2 + εX4 , εX4 ∼ N(0, 3.999),

and the associated fitted values are

x̂1(B) = (2.889, 2.889, 2.889, 2.889, 2.889, 2.889, 2.889, 2.889, 2.889, 2.889),

x̂2(B) = (1.207, 2.304, 1.778, 1.625, 1.754, 2.044, 1.127, 2.037, 0.840, 2.019),

x̂3(B) = (15.529, 17.760, 9.408, 11.931, 12.261, 14.009, 11.918, 6.528, 7.019, 15.564),

x̂4(B) = (11.110, 12.722, 6.686, 8.509, 8.748, 10.011, 8.500, 4.604, 4.959, 11.135).

Therefore,

∥x̂1(B)− x̂1(B′)∥2
2 = 0, ∥x̂2(B)− x̂2(B′)∥2

2 = 2.018,

∥x̂3(B)− x̂3(B′)∥2
2 = 54.434, ∥x̂4(B)− x̂4(B′)∥2

2 = 21.329;

and the values of the Kullback–Leibler divergence for the individual nodes are

KL
(

X1 | ΠB
X1

∥∥∥X1 | ΠB′
X1

)
≈ 1

2

(
log

0.558
0.558

+
0.558
0.558

− 1
)
+

1
20

(
0

0.558

)
= 0,

KL
(

X2 | ΠB
X2

∥∥∥X2 | ΠB′
X2

)
≈ 1

2

(
log

1.542
1.595

+
1.595
1.542

− 1
)
+

1
20

(
2.018
1.542

)
= 0.066,

KL
(

X3 | ΠB
X3

∥∥∥X3 | ΠB′
X3

)
≈ 1

2

(
log

6.051
1.142

+
1.142
6.051

− 1
)
+

1
20

(
54.434
6.051

)
= 0.878,

KL
(

X4 | ΠB
X4

∥∥∥X4 | ΠB′
X4

)
≈ 1

2

(
log

3.999
1.523

+
1.523
3.999

− 1
)
+

1
20

(
21.329
3.999

)
= 0.440,

which sum up to KL(B ∥B′) ≈ 1.383. The exact value, which we can compute as shown in
Section 4.2, is 1.692.

The quality of the empirical approximation improves with the number of observations. For
reference, we generated the data in Figure A1 from the GBN in Example 2. With a sample of size
n = 100 from the same network, KL(B ∥B′) ≈ 1.362 with KL(B ∥B′) = 1.373; with n = 1000,
KL(B ∥B′) ≈ 1.343 with KL(B ∥B′) = 1.345.

Algorithms 2024, 17, 24 29 of 32

Figure A1. The DAGs for the GBNs B (top left) and B′ (bottom left) and the data (right) used in
Example A5.

Example A6 (Entropy of a CLGBN). Consider again the CLGBN B from from Figure 3 (top).
For such a simple BN, we can use its global distribution (which we derived in Example A2)
directly to compute the entropies of the multivariate normal distributions associated with the
mixture components

H(X4, X5, X6 | {c, e}) = 3
2
+

3
2

log(2π) +
1
2

log det
(

Σ{c,e}(B)
)
= 1.849,

H(X4, X5, X6 | {d, e}) = 3
2
+

3
2

log(2π) +
1
2

log det
(

Σ{d,e}(B)
)
= 3.235,

H(X4, X5, X6 | {c, f }) = 3
2
+

3
2

log(2π) +
1
2

log det
(

Σ{c, f }(B)
)
= 2.947,

H(X4, X5, X6 | {d, f }) = 3
2
+

3
2

log(2π) +
1
2

log det
(

Σ{d, f }(B)
)
= 3.928;

and to combine them by weighting with the component probabilities

H(X4, X5, X6 | X1, X2, X3) = 0.040 · 1.849︸ ︷︷ ︸
{a,c,e}

+ 0.036 · 1.849︸ ︷︷ ︸
{b,c,e}

+ 0.040 · 3.235︸ ︷︷ ︸
{a,d,e}

+ 0.084 · 3.235︸ ︷︷ ︸
{b,d,e}

+

0.160 · 2.947︸ ︷︷ ︸
{a,c, f }

+ 0.144 · 2.947︸ ︷︷ ︸
{b,c, f }

+ 0.160 · 3.928︸ ︷︷ ︸
{a,d, f }

+ 0.336 · 3.928︸ ︷︷ ︸
{b,d, f }

= 3.386.

The entropy of the discrete variables is

H(X1, X2, X3) = −0.040 log 0.040 − 0.036 log 0.036 − 0.040 log 0.040 − 0.084 log 0.084−
0.160 log 0.160 − 0.144 log 0.144 − 0.160 log 0.160 − 0.336 log 0.336 = 1.817

and then H(B) = H(X1, X2, X3) + H(X4, X5, X6 | X1, X2, X3) = 5.203.

Algorithms 2024, 17, 24 30 of 32

If we use the local distributions instead, we can compute the entropy of the discrete variables
using (9) from Section 4.1:

H(X1) = −0.4 log 0.4 − 0.6 log 0.6 = 0.673,

H(X2 | X1) = 0.4(−0.5 log 0.5 − 0.5 log 0.5) + 0.6(−0.3 log 0.3 − 0.7 log 0.7) = 0.644,

H(X3) = −0.2 log 0.2 − 0.8 log 0.8 = 0.500.

We can compute the entropy of the continuous variables with no discrete parents using (12) from
Section 4.2:

H(X6 | X4) =
1
2

log(2π · 1) +
1
2
= 1.419.

Finally, we can compute the entropy of the continuous variables with discrete parents using (24)
from Section 4.3:

H(X4 | X2, X5) = 0.38
(

1
2

log(2π · 0.09) +
1
2

)
+ 0.62

(
1
2

log(2π · 0.36) +
1
2

)
= 0.645,

H(X5 | X2, X3) = 0.076
(

1
2

log(2π · 0.09) +
1
2

)
+ 0.124

(
1
2

log(2π · 0.36) +
1
2

)
+

0.304
(

1
2

log(2π · 0.81) +
1
2

)
+ 0.496

(
1
2

log(2π · 1.44) +
1
2

)
= 1.322.

As before, we confirm that overall

H(B) = H(X1) + H(X2 | X1) + H(X3) + H(X4 | X2, X5) + H(X5 | X2, X3)+

H(X6 | X4) = 0.673 + 0.644 + 0.500 + 0.645 + 1.322 + 1.419 = 5.203.

References
1. Scutari, M.; Denis, J.B. Bayesian Networks with Examples in R, 2nd ed.; Chapman & Hall: Boca Raton, FL, USA, 2021.
2. Castillo, E.; Gutiérrez, J.M.; Hadi, A.S. Expert Systems and Probabilistic Network Models; Springer: Berlin/Heidelberg, Ger-

many, 1997.
3. Cowell, R.G.; Dawid, A.P.; Lauritzen, S.L.; Spiegelhalter, D.J. Probabilistic Networks and Expert Systems; Springer: Berlin/Heidelberg,

Germany, 1999.
4. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: Burlington, MA, USA, 1988.
5. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009.
6. Murphy, K.P. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. Thesis, Computer Science Division,

UC Berkeley, Berkeley, CA, USA, 2002.
7. Spirtes, P.; Glymour, C.; Scheines, R. Causation, Prediction, and Search; MIT Press: Cambridge, MA, USA, 2000.
8. Pearl, J. Causality: Models, Reasoning and Inference, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009.
9. Borsboom, D.; Deserno, M.K.; Rhemtulla, M.; Epskamp, S.; Fried, E.I.; McNally, R.J.; Robinaugh, D.J.; Perugini, M.; Dalege, J.;

Costantini, G.; et al. Network Analysis of Multivariate Data in Psychological Science. Nat. Rev. Methods Prim. 2021, 1, 58.
10. Carapito, R.; Li, R.; Helms, J.; Carapito, C.; Gujja, S.; Rolli, V.; Guimaraes, R.; Malagon-Lopez, J.; Spinnhirny, P.; Lederle, A.; et al.

Identification of Driver Genes for Critical Forms of COVID-19 in a Deeply Phenotyped Young Patient Cohort. Sci. Transl. Med.
2021, 14, 1–20.

11. Requejo-Castro, D.; Giné-Garriga, R.; Pérez-Foguet, A. Data-driven Bayesian Network Modelling to Explore the Relationships
Between SDG 6 and the 2030 Agenda. Sci. Total Environ. 2020, 710, 136014. [PubMed]

12. Zilko, A.A.; Kurowicka, D.; Goverde, R.M.P. Modeling Railway Disruption Lengths with Copula Bayesian Networks. Transp. Res.
Part C Emerg. Technol. 2016, 68, 350–368.

13. Gao, R.X.; Wang, L.; Helu, M.; Teti, R. Big Data Analytics for Smart Factories of the Future. CIRP Ann. 2020, 69, 668–692.
14. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational Inference: A Review for Statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877.
15. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood From Incomplete Data via the EM Algorithm. J. R. Stat. Soc.

(Ser. B) 1977, 39, 1–22. [CrossRef]
16. Minka, T.P. Expectation Propagation for Approximate Bayesian Inference. In Proceedings of the 17th Conference on Uncertainty

in Artificial Intelligence (UAI), Seattle, WA, USA, 2–5 August 2001; pp. 362–369.

http://www.ncbi.nlm.nih.gov/pubmed/32050357
http://doi.org/10.1111/j.2517-6161.1977.tb01600.x

Algorithms 2024, 17, 24 31 of 32

17. van der Maaten, L.; Hinton, G. Visualizing Data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–3605.
18. Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality Reduction for

Visualizing Single-Cell Data Using UMAP. Nat. Biotechnol. 2019, 37, 38–44. [CrossRef]
19. Murphy, K.P. Probabilistic Machine Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2022.
20. Murphy, K.P. Probabilistic Machine Learning: Advanced Topics; MIT Press: Cambridge, MA, USA, 2023.
21. Moral, S.; Cano, A.; Gómez-Olmedo, M. Computation of Kullback–Leibler Divergence in Bayesian Networks. Entropy 2021,

23, 1122. [CrossRef]
22. Hershey, J.R.; Olsen, P.A. Approximating the Kullback Leibler Divergence Between Gaussian Mixture Models. In Proceedings of

the 32nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, HI, USA, 15–20 April
2007; Volume IV, pp. 317–320.

23. Beskos, A.; Crisan, D.; Jasra, A. On the Stability of Sequential Monte Carlo Methods in High Dimensions. Ann. Appl. Probab. 2014,
24, 1396–1445. [CrossRef]

24. Scutari, M. Learning Bayesian Networks with the bnlearn R Package. J. Stat. Softw. 2010, 35, 1–22. [CrossRef]
25. Heckerman, D.; Geiger, D.; Chickering, D.M. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data.

Mach. Learn. 1995, 20, 197–243. [CrossRef]
26. Chickering, D.M.; Heckerman, D. Learning Bayesian Networks is NP-Hard; Technical Report MSR-TR-94-17; Microsoft Corporation:

Redmond, WA, USA, 1994.
27. Chickering, D.M. Learning Bayesian Networks is NP-Complete. In Learning from Data: Artificial Intelligence and Statistics V; Fisher,

D.; Lenz, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 121–130.
28. Chickering, D.M.; Heckerman, D.; Meek, C. Large-sample Learning of Bayesian Networks is NP-hard. J. Mach. Learn. Res. 2004,

5, 1287–1330.
29. Scutari, M.; Vitolo, C.; Tucker, A. Learning Bayesian Networks from Big Data with Greedy Search: Computational Complexity

and Efficient Implementation. Stat. Comput. 2019, 25, 1095–1108. [CrossRef]
30. Cussens, J. Bayesian Network Learning with Cutting Planes. In Proceedings of the 27th Conference on Uncertainty in Artificial

Intelligence (UAI), Barcelona, Spain, 14–17 July 2011 ; pp. 153–160.
31. Suzuki, J. An Efficient Bayesian Network Structure Learning Strategy. New Gener. Comput. 2017, 35, 105–124. [CrossRef]
32. Scanagatta, M.; de Campos, C.P.; Corani, G.; Zaffalon, M. Learning Bayesian Networks with Thousands of Variables. Adv. Neural

Inf. Process. Syst. (Nips) 2015, 28, 1864–1872.
33. Hausser, J.; Strimmer, K. Entropy Inference and the James-Stein Estimator, with Application to Nonlinear Gene Association

Networks. J. Mach. Learn. Res. 2009, 10, 1469–1484.
34. Agresti, A. Categorical Data Analysis, 3rd ed.; Wiley: Hoboken, NJ, USA, 2012.
35. Geiger, D.; Heckerman, D. Learning Gaussian Networks. In Proceedings of the 10th Conference on Uncertainty in Artificial

Intelligence (UAI), Seattle, WA, USA, 29–31 July 1994; pp. 235–243.
36. Pourahmadi, M. Covariance Estimation: The GLM and Regularization Perspectives. Stat. Sci. 2011, 26, 369–387.
37. Lauritzen, S.L.; Wermuth, N. Graphical Models for Associations between Variables, Some of which are Qualitative and Some

Quantitative. Ann. Stat. 1989, 17, 31–57. [CrossRef]
38. Scutari, M.; Marquis, C.; Azzimonti, L. Using Mixed-Effect Models to Learn Bayesian Networks from Related Data Sets. In

Proceedings of the International Conference on Probabilistic Graphical Models, Almería, Spain, 5–7 October 2022; Volume 186,
pp. 73–84.

39. Lauritzen, S.L.; Spiegelhalter, D.J. Local Computation with Probabilities on Graphical Structures and their Application to Expert
Systems (with discussion). J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1988, 50, 157–224.

40. Lauritzen, S.L.; Jensen, F. Stable Local Computation with Conditional Gaussian Distributions. Stat. Comput. 2001, 11, 191–203.
[CrossRef]

41. Cowell, R.G. Local Propagation in Conditional Gaussian Bayesian Networks. J. Mach. Learn. Res. 2005, 6, 1517–1550.
42. Namasivayam, V.K.; Pathak, A.; Prasanna, V.K. Scalable Parallel Implementation of Bayesian Network to Junction Tree Conversion

for Exact Inference. In Proceedings of the 18th International Symposium on Computer Architecture and High Performance
Computing, Ouro Preto, Brazil, 17–20 October 2006; pp. 167–176.

43. Pennock, D.M. Logarithmic Time Parallel Bayesian Inference. In Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence (UAI), Pittsburgh, PA, USA, 31 July–4 August 2023; pp. 431–438.

44. Namasivayam, V.K.; Prasanna, V.K. Scalable Parallel Implementation of Exact Inference in Bayesian Networks. In Proceedings
of the 12th International Conference on Parallel and Distributed Systems (ICPADS), Minneapolis, MN, USA, 12–15 July 2006;
pp. 1–8.

45. Malioutov, D.M.; Johnson, J.K.; Willsky, A.S. Walk-Sums and Belief Propagation in Gaussian Graphical Models. J. Mach. Learn.
Res. 2006, 7, 2031–2064.

46. Cheng, J.; Druzdzel, M.J. AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian
Networks. J. Artif. Intell. Res. 2000, 13, 155–188. [CrossRef]

47. Yuan, C.; Druzdzel, M.J. An Importance Sampling Algorithm Based on Evidence Pre-Propagation. In Proceedings of the 19th
Conference on Uncertainty in Artificial Intelligence (UAI), Acapulco, Mexico, 7–10 August 2003 ; pp. 624–631.

48. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006.

http://dx.doi.org/10.1038/nbt.4314
http://dx.doi.org/10.3390/e23091122
http://dx.doi.org/10.1214/13-AAP951
http://dx.doi.org/10.18637/jss.v035.i03
http://dx.doi.org/10.1007/BF00994016
http://dx.doi.org/10.1007/s11222-019-09857-1
http://dx.doi.org/10.1007/s00354-016-0007-6
http://dx.doi.org/10.1214/aos/1176347003
http://dx.doi.org/10.1023/A:1008935617754
http://dx.doi.org/10.1613/jair.764

Algorithms 2024, 17, 24 32 of 32

49. Csiszár, I.; Shields, P. Information Theory and Statistics: A Tutorial; Now Publishers Inc.: Delft, The Netherlands, 2004.
50. Gómez-Villegas, M.A.; Main, P.; Susi, R. Sensitivity of Gaussian Bayesian Networks to Inaccuracies in Their Parameters. In

Proceedings of the 4th European Workshop on Probabilistic Graphical Models (PGM), Cuenca, Spain, 17–19 September 2008;
pp. 265–272.

51. Gómez-Villegas, M.A.; Main, P.; Susi, R. The Effect of Block Parameter Perturbations in Gaussian Bayesian Networks: Sensitivity
and Robustness. Inf. Sci. 2013, 222, 439–458. [CrossRef]

52. Görgen, C.; Leonelli, M. Model-Preserving Sensitivity Analysis for Families of Gaussian Distributions. J. Mach. Learn. Res. 2020,
21, 1–32.

53. Seber, G.A.F. A Matrix Handbook for Stasticians; Wiley: Hoboken, NJ, USA, 2008.
54. Stewart, G.W. Matrix Algorithms, Volume I: Basic Decompositions; SIAM: Philadelphia, PA, USA, 1998.
55. Cavanaugh, J.E. Criteria for Linear Model Selection Based on Kullback’s Symmetric Divergence. Aust. N. Z. J. Stat. 2004,

46, 197–323. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ins.2012.08.004
http://dx.doi.org/10.1111/j.1467-842X.2004.00328.x

	Introduction
	Bayesian Networks
	Common Distributional Assumptions for Bayesian Networks
	Discrete BNs
	Gaussian BNs
	Conditional Linear Gaussian BNs
	Inference

	Shannon Entropy and Kullback–Leibler Divergence
	Discrete BNs
	Gaussian BNs
	Conditional Gaussian BNs

	Conclusions
	Appendix A
	Appendix B
	References

