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Abstract: Using multispectral sensors a@ached to unmanned aerial vehicles (UAVs) can assist in the 

collection of morphological and physiological information from several crops. This approach, also 

known as high-throughput phenotyping, combined with data processing by machine learning (ML) 

algorithms, can provide fast, accurate, and large-scale discrimination of genotypes in the field, 

which is crucial for improving the efficiency of breeding programs. Despite their importance, 

studies aimed at accurately classifying sorghum hybrids using spectral variables as input sets in ML 

models are still scarce in the literature. Against this backdrop, this study aimed: (I) to discriminate 

sorghum hybrids based on canopy reflectance in different spectral bands (SB) and vegetation indices 

(VIs); (II) to evaluate the performance of ML algorithms in classifying sorghum hybrids; (III) to 

evaluate the best dataset input for the algorithms. A field experiment was carried out in the 2022 

crop season in a randomized block design with three replications and six sorghum hybrids. At 60 

days after crop emergence, a flight was carried out over the experimental area using the Sensefly 

eBee real time kinematic. The spectral bands (SB) acquired by the sensor were: blue (475 nm, B_475), 

green (550 nm, G_550), red (660 nm, R_660), Rededge (735 nm, RE_735) e NIR (790 nm, NIR_790). 

From the SB acquired, vegetation indices (VIs) were calculated. Data were submi@ed to ML 

classification analysis, in which three input se@ings (using only SB, using only VIs, and using SB + 

VIs) and six algorithms were tested: artificial neural networks (ANN), support vector machine 

(SVM), J48 decision trees (J48), random forest (RF), REPTree (DT) and logistic regression (LR, 

conventional technique used as a control). There were differences in the spectral signature of each 

sorghum hybrid, which made it possible to differentiate them using SBs and VIs. The ANN 

algorithm performed best for the three accuracy metrics tested, regardless of the input used. In this 

case, the use of SB is feasible due to the speed and practicality of analyzing the data, as it does not 

require calculations to perform the VIs. RF showed be@er accuracy when VIs were used as an input. 

The use of VIs provided the best performance for all the algorithms, as did the use of SB + VIs which 

provided good performance for all the algorithms except RF. Using ML algorithms provides 

accurate identification of the hybrids, in which ANNs using only SB and RF using VIs as inputs 

stand out (above 55 for CC, above 0.4 for kappa and around 0.6 for F-score). There were differences 

in the spectral signature of each sorghum hybrid, which makes it possible to differentiate them 

using wavelengths and vegetation indices. Processing the multispectral data using machine 

learning techniques made it possible to accurately differentiate the hybrids, with emphasis on 

artificial neural networks using spectral bands as inputs and random forest using vegetation indices 

as inputs.  
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1. Introduction 

Genetic improvement has undergone significant advances in plant gene analysis over 

the years, but phenotypic evaluation techniques still need to be improved in search of 

faster and more accurate responses [1]. Currently, the methods used for phenotyping 

plants are costly, time-consuming, and subjective, and most require the plant to be 

destroyed [2,3]. High-throughput phenotyping (HTP) is a faster and non-destructive 

approach to the evaluation of plant characteristics, making it an essential tool in 

agriculture [4]. 

Using sensors a@ached to unmanned aerial vehicles (UAVs) enables fast, cost-

effective, and high-resolution image processing, contributing to the measuring and 

monitoring of plant characteristics in several crops [5–7]. Furthermore, crop information 

is collected simultaneously at a large scale over time and space, making it possible to carry 

out automated data analysis [8]. 

Among the uses of phenotyping, we can highlight the identification and 

differentiation of cultivars by using multispectral sensors, which can be used to detect 

errors in sowing and find out the most differentiating characteristics between cultivars [9], 

thus contributing to be@er targeting of breeding programs. Using UAVs for phenotyping 

crops such as sorghum can make it easier to measure plant height, for example, since some 

genotypes are too tall, which hinders conventional assessments [10]. Other applications 

include the determination of crop chlorophyll [11] and, as it is a non-destructive 

evaluation, it enables the assessment of the presence of green leaves after flowering [12].  

The use of HTP generates a large amount of data in which the use of machine learning 

techniques is a means of processing such data effectively and accurately, which aims to 

use algorithms to relate the information extracted to the reflectance of the phenotypes 

obtained [13]. To the best of our knowledge, there is some research that demonstrates that 

it is possible to distinguish different tree species using UAV-multispectral sensing in 

conjunction with machine learning models [14]. For genetic materials from the same 

species, there is li@le research on soybean cultivation [15]. The biochemical properties of 

leaves affect the absorption and reflectance of light in various spectral bands [16]. Spectral 

signatures can reveal biochemical and structural differences between plant populations 

distributed throughout space. Such physiological differences in populations of the same 

species can be a@ributed to the genetic distinction between them [17]. 

Distinguishing sorghum hybrids according to their canopy reflectance and using 

machine learning algorithms to classify these hybrids is a novel strategy that has yet to be 

studied. Our hypothesis is that using UAV imaging and machine learning techniques for 

data processing enables faster, accurate and large-scale discrimination of sorghum 

hybrids. Thus, the aim of this work was to: (i) discriminate sorghum hybrids using canopy 

reflectance at different wavelengths and vegetation indices; (ii) evaluate the performance 

of machine learning algorithms in classifying sorghum hybrids; and (iii) assess the 

accuracy of different input variables in machine learning models. 

2. Materials and Methods 

2.1. Field Experiment 

The field experiment was carried out on 7 March 2022, in the experimental area of the 

Federal University of Mato Grosso do Sul (18°41′33″ S, 52°40′45″ W, with an altitude of 

810 m) in the municipality of Chapadão do Sul, Mato Grosso do Sul, Brazil (Figure 1). The 

soil was managed using a tillage system (plowing and harrowing). According to the 

Koppen classification, the region’s climate is characterized as Tropical Savannah (Aw). 
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The experimental design adopted was randomized blocks with three replications. The ex-

periment was sown using a seeder and with a row spacing of 0.45 m. The sorghum hybrids 

evaluated were: 50A60 (H1), ADV1221 (H2), JB1330 (H3), NTX202 (H4), RANCHEIRO 

(H5) and SLP20K6D (H6). The hybrids were sown in two randomized blocks containing 

10 lines of 10 m each. Crop management was carried out according to the requirements of 

the crop. 

 

Figure 1. Location of the experimental area in Chapadão do Sul-MS, Brazil. Hibryds: 50A60 (H1), 

ADV1221 (H2), JB1330 (H3), NTX202 (H4), RANCHEIRO (H5) and SLP20K6D (H6). 

2.2. Collecting and Processing Multispectral Images 

At 60 days after crop emergence (DAE), we performed a flyover using the Sensefly 

eBee RTK, a fixed-wing remotely piloted aircraft (RPA), equipped with autonomous take-

off, flight plan and landing control. The objective was to collect spectral information from 

six different sorghum hybrids. For this task, the RPA was equipped with a Parrot Sequoia 

multispectral sensor. The Sequoia sensor is a multispectral camera widely used in various 

agricultural activities. It utilizes a sunlight sensor combined with an additional 16-mega-

pixel RGB camera for recognition purposes. This setup allowed us to obtain accurate and 

comprehensive data on the spectral characteristics of sorghum hybrids, contributing to a 

more detailed and meaningful analysis of our study. The adopted multispectral sensor 

has a horizontal angle of view (HFOV) of 61.9 degrees, a vertical angle of view (VFOV) of 

48.5 degrees and a diagonal angle of view (DFOV) of 73.7 degrees. The flight took place at 

09:00 (local time) in the morning, in a cloudless condition and at an altitude of 100 m, with 

a spatial resolution of 0.10 m. The aerial survey was carried out using RTK technology, 

which made it possible to position the sensor to collect the images with an accuracy of 2.5 

cm. The images were mosaicked and orthorectified using Pix4Dmapper. 

Radiometric calibration of the sensor was carried out with a factory-calibrated reflec-

tive surface. Parrot Sequoia has a brightness sensor that allows the acquired values to be 

calibrated. The wavelengths (SB) acquired by the sensor were: blue (475 nm, B_475), green 
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(550 nm, G_550), red (660 nm, R_660), Rededge (735 nm, RE_735), and NIR (790 nm, 

NIR_790) according Figure 2. Once the SB data had been acquired, it was possible to cal-

culate the vegetation indices (VIs) described in Table 1.  

 

Figure 2. RGB-NIR map of experiment. Hybrids: 50A60 (H1), ADV1221 (H2), JB1330 (H3), NTX202 

(H4), RANCHEIRO (H5) and SLP20K6D (H6). 

Table 1. Vegetation indices evaluated and their respective equations and references. 

Sigla Vegetation Index Equation 
Refer-

ence 

NDVI 

Normalized Differ-

ence Vegetation In-

dice 

����� –  ���	
 
����� �  ���	
 [18] 

NDRE 

Normalized Differ-

ence Red Edge In-

dice 

�����  �  ��	�
 
����� �  ��	�
  [19] 

SAVI 
Soil-Adjusted Vege-

tation Index 
�1 � 0.5
 ����� � ���	


����� � ���	 � 0.5
 [20] 

EVI 
Enhanced Vegeta-

tion Index (EVI) 
2.5 � �����  � ���	


������
 � ��1 � ����
 � �C2 � �����
 � 1
 [21] 

GNDVI 

Green Normalized 

Difference Vegeta-

tion 

����� � �����

����� � �����
 [22] 

LAI Leaf Area Index ln �0.69 � ��� 0.59 

0.91  [23] 

MSAVI 

Modified Soil Ad-

justed 

Vegetation Index 

2���� � 1 � !�2���� � 1
" � �8���� � ���	

2  [24] 

MTVI 
Modified Triangular 

Vegetation Index 

1.5 $1.2����� � �����
 � 2.5����	 � �����
%
&�2���� � 1
" � �6���� � 5!���	
 � 0.5

 
[25] 
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MCARI 

Modified Chloro-

phyll 

Absorption Ratio In-

dex 

��	� � ���	 � 0.2���	� − �����
 '��	�
���	

( [26] 

Rnir: near-infrared reflectance; Rgreen: green reflectance; Rred: red reflectance; Redge: Red-edge 

reflectance; L: soil effect correction factor. 

2.3. Machine Learning Models and Statistical Analysis 

Data were subjected to machine learning analysis, in which six algorithms were 

tested: artificial neural network (ANN), support vector machine (SVM), decision trees J48 

and REPTree (DT), random forest (RF) and logistic regression (LR) used as a control tech-

nique. In k-fold cross-validation, the input data into subsets divide of data called k-folds. 

The ML model is trained on all but one fold (k-1) and then evaluates the model on the 

dataset that was not used for training. A random cross-validation sampling strategy with 

k-fold = 10 and 10 repetitions (total of 100 runs) was applied. This strategy was used to 

evaluate the performance of the six supervised machine learning models, as already re-

ported in other studies [27–29]. All model parameters were set according to the default 

se@ing of the Weka 3.8.5 software.  

Three accuracy metrics were used to verify the accuracy of the algorithms in classi-

fying sorghum hybrids: percentage of correct classifications (CC), Kappa coefficient, and 

F-score (Table 2). 

Table 2. Accuracy of the algorithms and their respective equations. 

Sigla Accuracy Equation 

CC Correct classifications �� = �*+,-./ 01 20//.23 4/.562360*7
 
�30389 6*738*2.7
  

Kappa Kappa coefficient :8448 =  �0-7./;.5 8</..,.*3 −  8</..,.*3 .=4.23.5 -> 2ℎ8*2.
 
�1 −  agreement expected by chance
  

F-score F-score 
2 × �M/.26760* ×  /.2899


�M/.26760* +  /.2899
  

An analysis of variance was carried out to assess the significance of ML, input, and 

interaction between them. Boxplots were used to illustrate the performance of the models 

and their significance, with the means of CC, kappa, and F-score according to the group-

ing of means from the Sco@–Kno@ test [30] at 5% significance level. All analyses and 

graphs were generated using the ggplot2 and ExpDes.pt packages in the R software [31]. 

3. Results 

3.1. Spectral Signature of Hybrids 

The six sorghum hybrids evaluated showed different reflectance behaviors in the vis-

ible range, especially from the 660 nm wavelength onwards, where the difference in re-

flectance between the hybrids becomes more evident. The difference in reflectance be-

tween the hybrids is even more marked from 735 nm onwards, where the reflectance from 

the H5 and H6 hybrids was similar and always lower than the others. The H4 and H2 

hybrids had low reflectance up to just above 735 nm, standing out from the others from 

this wavelength onwards, especially the first one (Figure 3). Therefore, it is possible to 

observe distinct spectral signatures for each hybrid evaluated. 

At wavelength B_475, the highest reflectance was observed for hybrid H1 and the 

lowest for hybrids H2 and H4 (Figure 3A). At wavelengths G_550 and R_660 (Figure 3B,C), 

the highest reflectances were observed by hybrids H1 and H4, while the other hybrids 

reflected less, but with no difference between them. At RE_735 (Figure 3D), hybrids H1, 

H2, H3, and H4 had the highest reflectances, which did not differ from each other, while 

hybrids H5 and H6 had the lowest reflectances. At wavelength NIR_790, hybrids H2 and 
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H4 had the highest reflectances (Figure 3E), while the lowest reflectances were observed 

for H5 and H6. 

 

Figure 3. Boxplot of the multispectral reflectance from six sorghum hybrids 50A60 (H1), ADV1221 

(H2), JB1330 (H3), NTX202 (H4), RANCHEIRO (H5) and SLP20K6D (H6) at Blue (475 nm, A), Green 

(550 nm, B), Red (660 nm, C), Rededge (735 nm, D) and NIR (790 nm, E) wavelengths. Hybrids 

followed by the same le@ers for each wavelength do not differ by the Sco@-Kno@ test at 5% proba-

bility 

Figure 4 shows the means of the vegetation indices, in which for all of them, except 

LAI, the highest means were achieved by the H4 hybrid, indicating a higher chlorophyll 

activity by this genotype. The lowest means for VIs were observed for hybrids H1, H5, 

and H6, while for LAI these hybrids had the highest means. 
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Figure 4. Mean values of the vegetation indices NDVI (A), NDRE (B), SAVI (C), EVI (D), GNVDI 

(E), IAF (F), MSAVI (G), MTVI (H), MCARI (I), and GSAVI (J) calculated for the six sorghum hybrids 

50A60 (H1), ADV1221 (H2), JB1330 (H3), NTX202 (H4), RANCHEIRO (H5) and SLP20K6D (H6). 

Hybrids followed by the same le@ers for each VI do not differ by the Sco@-Kno@ test at 5% proba-

bility. 

3.2. Classification of Hybrids Using Machine Learning  

After identifying the spectral signature of each hybrid, the data was submi@ed to ML 

analysis in order to identify the most accurate algorithms for classifying each hybrid given 

the different input sets (using only SB, only VIs and SB + VIs). The significance of the 

interaction between ML x Inputs is notable for the three accuracy metrics tested (Table 3). 
Therefore, we performed a statistical unfolding of each metric, in order to identify the best 

algorithm for each input, and which input was best for each algorithm. 

Table 3. Summary of the analysis of variance for the metrics Correct Classification (CC), Kappa and 

F-score. 

S.V. D.F. CC Kappa F-Score 

ML 5 377.88 * 0.05 * 0.03 * 

Input 2 556.7 * 0.08 * 0.07 * 

ML × Input 10 45.06 * 0.01 * 0.01 * 

Residual 162 4.56 6.66 0 

C.V. (%)  4.5 6.99 5.95 

F.V.: Source of variation; D.F.: Degrees of freedom; ML: Machine Learning; C.V.: Coefficient of var-

iation; * significant at 5% probability by the F test 

Using the CC accuracy metric (Figure 5), it can be seen that ANN performed best 

when using SB and SB + VIs as inputs to the algorithms (correct classification above 55%). 

Using the VIs as input to the algorithms, ANN and RF achieved the best accuracy. Evalu-
ating each algorithm and inputs, SVM, J48 and DT achieved be@er accuracy using VIs and 
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SB + VIs. RF achieved be@er accuracy using VIs. RL and ANN had the same classification 

accuracy regardless of the input used. 

 

Figure 5. Boxplot for the correct classification accuracy metric of the six machine learning algorithms 

used with three different inputs tested for each algorithm. Equal uppercase le@ers does not differ 

between the 5% probability model inputs by the Sco@–Kno@ test. Equal lowercase le@ers does not 

differ between mL to 5% probability by sco@-kno@ test. SB: wavelengths; VIs: vegetation indices; 

RL: Logistic Regression; ANN: Artificial Neural Network; SVM: Support Vector Machine; J48: deci-

sion trees J48; RF: Randon Forest; DT: REPTree. 

Regarding the Kappa coefficient (Figure 6), the SB and SB + VI inputs provided the 

highest accuracies by the ANN algorithm (above 0.4). VIs provided be@er answers for 

ANN and RF. SB + VIs provided the best answers for ANN. Evaluating the algorithms and 
their inputs, SVM, J48, and DT were be@er when VIs and SB + IVs were used. RF per-

formed be@er with VIs. RL and ANN, as in CC, had the same accuracy response regardless 

of the input used in the algorithm. 
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Figure 6. Boxplot for the Kappa coefficient accuracy metric of the six machine learning algorithms 

used with three different inputs tested for each algorithm. Equal uppercase le@ers does not differ 

between the 5% probability model inputs by the Sco@–Kno@ test. Equal lowercase le@ers does not 

differ between mL to 5% probability by sco@-kno@ test. SB: wavelengths; VIs: vegetation indices; 

RL: Logistic Regression; ANN: Artificial Neural Network; SVM: Support Vector Machine; J48: deci-

sion trees J48; RF: Randon Forest; DT: REPTree. 

By the F-score accuracy metric (Figure 7), when the input used was SB, ANN outper-

formed the other algorithms tested (around 0.60). When VIs and SB + VIs were used as 

inputs, RL, ANN, and RF performed be@er. Evaluating the algorithms, SVM, J48, and DT 

achieved the best results when VIs and SB + VIs were used as inputs. RF showed be@er 

accuracy when VIs were used as the input. RL and ANN had the same accuracy response 

regardless of the input. 
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Figure 7. Boxplot for the F-score coefficient accuracy metric of the six machine learning algorithms 

used with three different inputs tested for each algorithm. Equal uppercase le@ers does not differ 

between the 5% probability model inputs by the Sco@–Kno@ test. Equal lowercase le@ers does not 

differ between mL to 5% probability by Sco@–Kno@ test. SB: wavelengths; VIs: vegetation indices; 

RL: Logistic Regression; ANN: Artificial Neural Network; SVM: Support Vector Machine; J48: deci-

sion trees J48; RF: Randon Forest; DT: REPTree. 

The ANN algorithm performed best for the three accuracy metrics tested, regardless 

of the input used. In this case, the use of SB is feasible due to the speed and practicality of 

analyzing the data, as it does not require calculations to perform the VIs. RF showed be@er 

accuracy when VIs were used as an input. The use of VIs provided the best performance 

for all the algorithms, as did the use of SB + VIs which provided good performance for all 

the algorithms except RF. 

4. Discussion 

4.1. Spectral Signature of Hybrids 

Each sorghum hybrid evaluated by the multispectral sensor showed a distinct spec-

tral signature. This task of differentiating genetic materials has become a promising tool 

in the agricultural field, especially for plant breeding, through high-throughput pheno-

typing. Genotype-specific spectral signatures are influenced by the anatomical, morpho-
logical and physiological characteristics of each one, and this fact can be used in breeding 

programs to select distinct genotypes, increasing the genetic variability required to de-

velop superior genotypes [32–34]. 

Pigments such as chlorophyll, carotenoids, and anthocyanins absorb light intensely 

in the visible range from 400 to 700 nm. It can be seen that the reflectance of sorghum 
hybrids is low until near the 660 nm range (Figure 2). Ref. [35] reported that the reflectance 

of healthy green leaves is low in the visible range, with a slight increase at 550 nm, which 

corresponds to the green region. The low reflectance in the visible wavelengths is due to 

the greater absorption by chlorophyll, which reflects less.  

In the 475 nm wavelength blue region, the hybrids had li@le differentiation in their 
spectral signature. The 475 nm band, which covers the blue region, is related to the light 

absorption of green to yellow leaf pigments used in photosynthesis, being strongly related 

to the presence of xanthophylls, carotenes, and chlorophyll α and β pigments [36,37]. The 
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red band (660 nm), is highly absorbed by chlorophylls to carry out photosynthesis and by 

phytochromes to be used in photoperiod processes. Both blue and red spectral bands are 

of significant importance for various plant biochemical processes, specifically photosyn-

thesis. Bergamaschi [38] states that in addition this spectrum, the Rededge and NIR bands 

are also necessary for photoperiod processes and tissue elongation. 

Another factor that contributes to the spectral range covering the NIR and Rededge 

reflecting more is that biochemical light absorption is low, which varies according to leaf 

structure [39]. This is evident in Figure 2, where there was greater differentiation between 

the hybrids from the 735 nm wavelength onwards. These findings can be a@ributed to the 

different biochemical abilities and leaf structure of the hybrids and also to the fact that the 

790 nm wavelength is more sensitive in differentiating between them. 

The sorghum hybrids behaved differently at the different wavelengths, as mentioned 

above. At B_475 nm (Figure 2A), hybrid H1 had the highest reflectance, followed by hy-

brids H3, H5, and H6, which had similar reflectance, and hybrids H2 and H4, which had 

the lowest and similar reflectance. Blue light in plants acts as a signaling agent and not as 

an energy source. This signaling is related to stomatal opening and is essential in the early 

hours of the day [40]. The hybrids with the lowest reflectance at this wavelength conse-

quently absorbed blue SB, which means that these hybrids may have slightly higher pho-

tosynthetic efficiency than the others. 

It should be noted that the stomatal opening caused by blue light does not depend 

directly on the guard cell or the photosynthesis of the mesophyll in response to it, but is 

enhanced by red light because the action of blue light alone tends to be less effective for 

stomatal opening [40–42]. Hybrids H1 and H3 had the highest reflectance in SB R_660 

(Figure 2C). This spectral band, as well as blue, plays a fundamental role in the photosyn-

thetic metabolism of plants [43]. Red light is intensely absorbed by chlorophyll in tissue 

that carries out photosynthesis, and compared to blue SB, there was li@le difference in 

reflectance between the hybrids, but the pa@ern of higher or lower reflectance remained 
the same, reinforcing the fact that hybrids with lower reflectance may have be@er photo-

synthetic performance. 

At wavelength G_550, hybrids H1 and H3 reflected more and in a similar pa@ern. 

Within the visible range, the green wavelength is the most reflective, because around 10 

to 50% of the green wavelength is not absorbed by the leaf chloroplasts [43,44]. The frac-
tion of this band that is absorbed or transmi@ed by the plant is used in the essential pro-

cesses of photosynthesis [45]. Among the roles played by the green wavelength is the CO2 

assimilation used in the growth of plant biomass and yield. This SB is essential for the 

bo@om leaves of the plant, where the blue and red wavelengths have a more limited inci-

dence because they are more captured by the upper portion of the canopy [45,46]. The 
hybrids with the highest absorption in the 550 nm band, which corresponds to green light, 

were the same ones that absorbed less in the blue and red wavelengths. 

Both wavelengths, RE and NIR, are sensitive to capturing plant reflectance, especially 

when plants are under stress [47] or when there are changes in the water status [48]. Due 

to this sensitivity, the sorghum hybrids reflected these wavelengths differently. This high 
reflectance above 700 nm is due to the spectrum’s sensitivity to changes in chlorophyll 

content, which in the Rededge range is mainly carried out by chlorophyll a [49]. 

It is noteworthy that the hybrids that reflected less in the visible range wavelengths 

were the ones that absorbed the most electromagnetic radiation. This indicates that these 

hybrids had a higher amount of chlorophyll [50]. This suggests that they had greater pho-
tosynthetic activity, and thus are physiologically superior. 

VIs can provide information on several physiological parameters of the crop accord-

ing to the reflectance values [35]. There was a great distinction between the hybrids for 

each VI used (Figure 4), even more so than between the wavelengths, because the indices 

used are sensitive to capturing the photosynthetically active activity of the plant canopy, 
leading to inferences about chlorophyll activity [51]. The VIs are calculated based on re-

flectance values at different wavelengths in the visible range, especially using distinct 
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combinations between reflectances in the Rededge and NIR ranges. By combining these 

bands, the sensitivity of the indices to estimating chlorophyll is increased, which is further 

improved by combining NIR and Red, which are the most widely used for estimating 

plant biomass, as is the case with NDVI [52]. GNDVI is another index that is widely used 

in agriculture and, in this study, was able to differentiate sorghum hybrids in a similar 

way to NDVI. SAVI and MSAVI are indices that use medium and low-resolution images 

and can minimize soil influences [20], which were also able to differentiate between sor-

ghum hybrids. Aiming at improving the efficiency of this data, associating this infor-

mation with machine learning and looking for algorithms that provide accurate answers 

on the biophysical a@ributes of crops would improve the resources for evaluation in var-

ious fields [51]. Santana et al. [53], combining multispectral UAV data and machine learn-

ing algorithms achieved good accuracy in soybean classifications regarding grain indus-

trial variables. There is an example of this distinction, it is possible to observe in Figure 1, 

an example with an NDVI map showing the variability between hybrids, which was pos-

sible to be distinguished by ML techniques. 

4.2. Classification of Hybrids Using Machine Learning 

After obtaining the spectral signature of each sorghum hybrid and observing the dif-

ferentiation of these hybrids in terms of wavelength reflectance and VIs, data was submit-

ted to machine learning analysis, evaluating the performance of six ML algorithms. We 

also tested different input data for these algorithms: using only SB, only VIs, and using 

both (SB + VIs), looking for the best performance in classifying the hybrids.  

Considering the three accuracy metrics analyzed, the algorithm with the best perfor-

mance was ANN, regardless of the input used. ANNs are used in several prediction and 

classification tasks in agriculture across a wide range of applications. [54] found high ac-

curacy when using the algorithm to predict diameter at breast height (DBH) and total 

plant height (Ht) in eucalyptus trees. [55] achieved satisfactory accuracy in predicting tan-

nin content in sorghum grains of different genotypes using artificial neural networks.  

Regardless of the input, ANN algorithm achieved satisfactory accuracy in classifying 

sorghum hybrids. However, the most interesting from a data processing point of view 

would be using only SB as input variables. [28] stated that performing calculations to gen-

erate the VIs was an unnecessary task since using only SB as inputs for classifying soybean 

genotypes provided higher accuracy. [47] found that spectral bands, especially green and 

NIR, provide more accurate responses than using VIs for identifying soybean plants that 

are symptomatic or asymptomatic to nematode a@acks. 

Another algorithm that achieved good accuracy in classifying sorghum hybrids was 

RF using VIs as input set. RF is also used in several studies, such as recognizing the growth 

pa@ern of eucalyptus species using multispectral sensing [56]. Although it takes longer to 

obtain, the use of VIs can improve the image-based assessment of morphological and bi-

ochemical parameters of plants, consequently helping to reduce time and improve data 

processing by algorithms [57].  

This study proposes a way of distinguishing sorghum hybrids using UAV-multispec-

tral imagery, which consists of building a spectral signature model for sorghum hybrids 

and then processing this data using ML algorithms. Further information on the spectral 

signature of hybrids can be obtained using data from hyperspectral sensors in more dif-

ferent conditions of environments. The use of other sorghum hybrids, different vegetation 

indices, or an increased number of VIs can contribute to improving the accuracy of the 

ML algorithms.  

5. Conclusions 

There were differences in the spectral signature of each sorghum hybrid, which 

makes it possible to differentiate them using wavelengths and vegetation indices. Pro-
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cessing the multispectral data using machine learning techniques made it possible to ac-

curately differentiate the hybrids, with emphasis on artificial neural networks using spec-

tral bands as inputs and random forest using vegetation indices as inputs.  
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