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Abstract: This paper proposes algorithms to model fractional (dynamical) behaviors using non-sin-
gular rational kernels whose interest is first demonstrated on a pure power law function. Two algo-
rithms are then proposed to find a non-singular rational kernel that allows the input-output data to 
be fitted. The first one derives the impulse response of the modeled system from the data. The sec-
ond one finds the interlaced poles and zeros of the rational function that fits the impulse response 
found using the first algorithm. Several applications show the efficiency of the proposed work. 
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1. Introduction 
The search for non-singular kernels [1–5] or alternative solutions to fractional models 

[6,7] is gaining momentum in the field of modeling fractional dynamical behaviors. Using 
such kernels makes it possible to overcome certain limitations of fractional models, such 
as fractional differential equations or pseudo-state space descriptions, which have re-
cently been highlighted [8–14]. For instance, it was demonstrated that a fractional integra-
tor operator in the Riemann–Liouville sense [15,16] involves infinitely large and infinitely 
small time constants, which makes fractional models doubly infinite models: infinite be-
cause distributed, but also infinite as defined on an infinite equivalent spatial domain [17]. 
In a modelling context, these infinitely large and infinitely small time constants are not 
required to capture the behavior of a real system that operates on finite spatial and time 
scales. Moreover, these time constants introduced by fractional models (and that do exist 
in the modelled system) can greatly complicate the analyses and lead to erroneous con-
clusions on certain internal properties of the modelled system. This is the case for initial-
ization [18,19] or observability for example [20]. 

However, fractional behaviors (produced by physical phenomena) and fractional 
models should be distinguished. The former designates a property of a physical system 
while the latter designates a model class, among a set of model classes able to capture 
fractional dynamical behaviors. Based on this observation, a whole new field opens up, 
from the search for new models dedicated to capturing fractional behaviors to the study 
of their properties and the development of identification methods. A few studies under-
taken from this perspective are already available in the literature [6,7], which is also the 
case in the present article. 

To overcome the limitations mentioned in the first paragraph, we propose in this 
paper to use non-singular rational kernels to model fractional behaviors and propose an 
algorithm to find the parameters in the kernel description. Non-singular rational kernels 
are considered for the three following reasons: 
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- a fractional behavior defined by the power law 𝑡ିఔ, can be associated with a rational 
function with an infinite number of interlaced poles and zeros as shown in this paper. 

- the approximation of such a function by rational functions of degree 𝑛 leads to a 
very small approximation error in comparison to polynomials of degree 𝑛 [21]; 

- rational kernels permit the approximation of fractional behaviors with a reduced 
number of parameters in comparison to fractional models. 

For all these reasons, it appeared necessary to develop a simple and efficient algo-
rithm allowing the determination of the coefficients of a rational kernel in a convolution 
model, which fits a given fractional behavior with a defined given level of accuracy. 

To the best knowledge of the authors, there is no method that allows a direct estima-
tion of the parameters of a rational kernel in a convolution model. That is why we have 
defined a two-step method that consists of: 
- first, estimating the time response of the kernel in the convolution model that fits the 

input-output behavior of the modeled system. 
- then, estimate the parameters of a rational function that fits the kernel time response. 

For the second step of this strategy, there are many methods that allow rational in-
terpolation [22–26]. But these methods are not well adapted to fractional behaviors, that 
is to say with time behaviors with slow convergence. On the other hand, when working 
in the logarithmic domain as in the methodology we propose, a time compression occurs 
which facilitates fitting over large time domains. 

The paper is thus organized as follows. In Section 2, the approximation of a pure 
power law function 𝐾𝑡ିఔ by a rational function involving interlaced poles and zeros is 
considered. It demonstrates the accuracy and the simplicity of rational kernels to approx-
imate a fractional behavior and thus justifies their use. In Section 3, two algorithms are 
proposed to find a non-singular rational kernel capable of fitting input-output data. The 
first one derives the impulse response of a system from the data. The second one finds the 
interlaced poles and zeros of the rational function that is used to fit the impulse response 
found in the first step. Several applications are presented in Section 4 to show the effi-
ciency of the proposed algorithms. 

2. Approximation of a Pure Power Law Behavior by Non-Singular Rational Kernels 
This section shows the efficiency of non-singular rational kernels for the modelling 

of fractional behaviors. The fractional behavior considered is first the pure power law 
function: 𝜂ఔ(𝑡) = 𝐾𝑡ିఔ (1)

This function indeed falls within the definition of a fractional integration order oper-
ator defined in the Riemann–Liouville sense by [15,16] 𝐼ఊሾ𝑢(𝑡)ሿ = ଵ୻(ఊ) ׬ ଵ(௧ିఛ)భషം௧଴ 𝑢(𝜏)𝑑𝜏 = 𝜂௉௅(𝑡) ∗ 𝑢(𝑡), (2)

with 𝜂௉௅(𝑡) = 𝑡ఊିଵ Γ(𝛾)⁄ . The idea is to approximate the kernel 𝜂௉௅(𝑡) by a non-singular 
rational kernel 𝜂(𝑡), to avoid the limitations cited in the introduction, while allowing the 
model 𝑦(𝑡) = ׬ 𝜂(𝑡 − 𝜏)௧଴ 𝑢(𝜏)𝑑𝜏 = 𝜂(𝑡) ∗ 𝑢(𝑡), (3)

to capture fractional behaviors. 
For the approximation of 𝜂ఔ(𝑡), the following rational kernel is considered: 

𝜂(𝑡) = 𝐶଴ ∏ ൭ ೟೟ೕᇲାଵ൱ೕಿసభ∏ ቆ ೟೟ೕାଵቇೕಿసభ . (4)
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The decimal logarithm of 𝜂(𝑡) is 

log൫𝜂(𝑡)൯ = log(𝐶଴) + ∑ logே௝ୀଵ ൬ ௧௧ೕᇲ + 1൰ − ∑ logே௝ୀଵ ൬ ௧௧ೕ + 1൰  (5)

Decimal logarithm applied to the function 𝜂ఔ(𝑡) gives: 

log൫𝜂ఔ(𝑡)൯ = log(𝐾) − 𝜈 log(𝑡). (6)

At 𝑡 = 1, from (1),  𝜂ఔ(1) = 𝐾 (7)

and using relation (4), 

𝜂(1) = 𝐶଴ ∏ ൭ భ೟ೕᇲାଵ൱ೕಿసభ∏ ቆ భ೟ೕାଵቇೕಿసభ . (8)

Thus, to ensure that 𝜂(1) = 𝜂ఔ(1), it is imposed that 

𝐶଴ = 𝐾 ∏ ቆ భ೟ೕାଵቇೕಿసభ∏ ൭ భ೟ೕᇲାଵ൱ೕಿసభ . (9)

The functions 𝜂௭(𝑡) = log ൬ ௧௧ೕᇲ + 1൰ and 𝜂௣(𝑡) = −log ൬ ௧௧ೕ + 1൰ of relation (5) are rep-

resented in Figure 1 for 𝑡௝ᇱ = 𝑡௝ = 1 , as a function of log(𝑡) . For 𝑡 > ൫𝑡௝ᇱ = 1൯  and 𝑡 >൫𝑡௝ = 1൯, the functions 𝜂௭(𝑡) and 𝜂௣(𝑡) behave, respectively, as lines of slope 1 and −1. 
The function given by relation (2) has a slope of – 𝜈 on a logarithmic scale. Thus, taking 
inspiration from the work which aimed to approximate fractional integrator operators in 
the frequency domain [27–32], and adapting them to the time domain, the function 𝜂ఔ(𝑡) 
can be approximated by choosing the appropriate values of 𝑡௝ᇱ and 𝑡௝ in an alternation 
of function 𝜂௣(𝑡) and 𝜂௭(𝑡). 

 

Figure 1. Representation of functions 𝜂௭(𝑡) = log ൬ ௧௧ೕᇲ + 1൰ and 𝜂௣(𝑡) = −log ൬ ௧௧ೕ + 1൰  for 𝑡௝ᇱ = 𝑡௝ =1, as functions of log(𝑡). 
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Figure 2 describes how the functions 𝜂௭(𝑡) and 𝜂௣(𝑡) are used to produce the de-
sired slope. On this figure, it is assumed that an approximation of relation (1) is required 
on the time interval ሾ𝑡௟, 𝑡௛ሿ. In the functions 𝜂௭(𝑡) and 𝜂௣(𝑡), it is assumed that the time 𝑡௝ᇱ and 𝑡௝ meet the following relations 

log(𝛼) = log൫𝑡௝ᇱ൯ − log൫𝑡௝൯ and thus 𝛼 = ௧ೕᇲ௧ೕ (10)

log(𝜂) = log൫𝑡௝ାଵ൯ − log൫𝑡௝ᇱ൯ and thus 𝛽 = ௧ೕశభ௧ೕᇲ  (11)

log(𝛼) + log(𝛽) = log൫𝑡௝ାଵ൯ − log൫𝑡௝൯ = log൫𝑡′௝ାଵ൯ − log൫𝑡′௝൯ and thus 𝑟 = 𝛼𝛽 = ௧ೕశభ௧ೕ = ௧ᇱೕశభ௧ᇱೕ  (12) 

It is assumed that 𝑁  functions 𝜂௭(𝑡)  and 𝜂௣(𝑡)  are used for the approximation. 
Thus, according to Figure 2, it can be written 𝑁 ቀlog(𝛼) + log(𝛽)ቁ = log(𝑡௛) − log(𝑡௟) and thus 𝛼𝛽ே = 𝑟ே = ௧೓௧೗ . (13)

In order for the distribution of times 𝑡௝ and 𝑡௝ᇱ to lead to the same slope as the func-
tion to be approximated, the following conditions on the slopes must be verified −𝜈 = ஺

log(ఈ)ାlog(ఉ) and −1 = ஺
log(ఈ) (14)

which can be combined into: 𝜈 = ୪୭୥(ఈ)
log(ఈ)ାlog(ఉ) and thus 𝛼 = (𝛼𝛽)ఔ. (15)

Using the non-singular rational function of relation (4), an approximation of the func-
tion 𝜂ఔ(𝑡), which is close to the impulse response of a fractional integrator, can then be 
obtained using the following algorithm. 

 
Figure 2. Illustration of the algorithm used to approximate an affine function of slope 𝜈 (red line) 
by an alternation of function 𝜂௣(𝑡) and 𝜂௭(𝑡) (blue line). 

Figure 3 illustrates the efficiency of the above approximation algorithm for the power 
law function (1) with 𝐾 = 10 and 𝜈 = 0.5. In this application the following parameters 
were used: 𝑁 = 7 , 𝑡௟ = 10ିଷ , 𝑡௛ = 10ସ  thus leading to 𝑟 = 10 , 𝛼 = 3.162 , 𝛽 = 3.162 
and 𝐶଴ = 316.35. 

Based on this analysis we can say that 
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𝑡ିఔ = limே→ஶ ෑ ቆ 𝑡𝑡௝ᇱ + 1ቇ
ቆ 𝑡𝑡௝ᇱ + 1ቇ

ே
௝ୀିே  (16) 

in which the poles and zeros are linked by relations (10) to (12). 

 
Figure 3. Comparison of log൫𝜂ఔ(𝑡)൯ and log൫𝜂(𝑡)൯ with a logarithmic time scale. 

It must be noticed that the kernel 𝜂ఔ(𝑡) is singular at time 𝑡 = 0. With the method 
we propose, we can get as close as necessary to 0 with the approximation method devel-
oped as it is done on a defined time interval. The accuracy of the approximation then de-
pends on the number of poles and zeros used in the approximation.  

But the problem is not whether it is possible or not to fit a pure power law, because 
in practice it is not necessary to do so. As mentioned in the first paragraph of the intro-
duction, if a pure power law is used in a convolution product as in relation (3), the result-
ing model has infinitely large and infinitely small time constants. In modelling context, 
these infinitely large and infinitely small time constants are not required to capture the 
behaviour of a real system that operates on finite spatial and time scales. Thus, in practice, 
it is not necessary to be able to fit a pure power law for times tending to 0 or infinity. 

Figure 4 compares the approximation given by relation (4) associated with Algorithm 
1, and the approximation currently used in the literature for function (1) (close to the im-
pulse response of a fractional integrator), based on a distribution of the exponential func-
tion in the time domain: 𝜒(𝑡) = 𝐾′଴ + ∑ 𝑎௝𝑒ି ೟ೝೕഘభே௝ୀଵ . (16)

which corresponds to the inverse Laplace transform of the transfer function 

χ(𝑠) = ௄బ௦ ∏ ൭ଵା ೞഘೕᇲ൱ೕಿసభ∏ ቆଵା ೞഘೕቇೕಿసభ . (17)
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with 𝜔′௝ାଵ = 𝑟𝜔′௝        𝜔௝ = 𝑟ఔ𝜔௝ᇱ. (18)

In the comparison of Figure 4, parameters 𝑁 and 𝜈 are chosen equal to 7 and 0.3 
for relations (17) to (19). Parameters 𝐾଴, 𝜔′ଵ and 𝑟 in relation (19) and 𝐶଴, 𝑡ଵ and 𝑟 in 
relation (4) are chosen so that the two approximations cover the same time domain: 𝑡ଵ = 2.2387 ∗ 10ିଷ 𝑠, 𝑡′ଵ = 4.467 ∗ 10ିଷ 𝑠, 𝑟 = 10 and 𝐶଴ = 79.45 for relation (4),  𝜔ଵ = 1.788 ∗ 10ିସ 𝑟𝑑/𝑠 , 𝜔′ଵ = 8.955 ∗ 10ିହ 𝑟𝑑/𝑠 , 𝑟 = 10  and 𝐾଴ = 0.622  for rela-
tion (17). 

In the same figure, the comparison is also done with the function (1) with 𝐾 = 10 
and 𝜈 = 0.3. 

Within the approximation interval, this figure reveals a better approximation with 
relation (4) with significantly fewer oscillations. 

Algorithm 1 
1: Chose the time interval on which the approximation is required ሾ𝑡௟, 𝑡௛ሿ and the de-
gree 𝑁 of the rational function. 

2: Compute 𝑟 = ට௧೓௧೗ಿ . 

3: Compute 𝛼 = 𝑟ఔand 𝛽 = ௥ఈ. 
4: Compute 𝑡ଵᇱ = 𝑡௟ ∗ ඥ𝛽 and the other 𝑡௝ᇱ and 𝑡௝ using relations (10) and (11). 

5: Compute 𝐶଴ = 𝐾 ∏ ቆ భ೟ೕାଵቇೕಿసభ∏ ൭ భ೟ೕᇲାଵ൱ೕಿసభ . 

 
Figure 4. Comparison of log൫𝜂ఔ(𝑡)൯, log൫𝜒(𝑡)൯ and log൫𝜂(𝑡)൯ with a logarithmic time scale. 
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3. Algorithms to Model More General Fractional Behaviors 
This section proposes an algorithm to determine a non-singular rational kernel of the 

model in relation (3) from input-output data produced by a system with a fractional be-
havior. The algorithm allows an approximation of the kernel with a given absolute bound 
on the error. The algorithm is split into parts: 
- computation of the kernel sample 𝜂(𝑘𝑇௘), which is described in Section 3.1, 
- computation of the kernel approximation with a non-singular rational function, 

which is described in Section 3.2. 

3.1. A Least Squares Method to Obtain the Kernel Samples 𝜂(𝑘𝑇௘) 
In order to obtain the kernel (3) samples 𝜂(𝑘𝑇௘), let 𝑦(𝑡) and 𝑢(𝑡) be, respectively, 

the output and the input of this system, that is 𝑦(𝑡) = ׬ 𝜂(𝑡 − 𝜏)𝑢(𝜏)𝑑𝜏௧଴ . (20)

If 𝑦(𝑡) and 𝑢(𝑡) are sampled with a sampling period 𝑇௘, then at time 𝑘𝑇௘, 𝑘 ∈ ℕ,  𝑦(𝑘𝑇௘) = ׬ 𝜂(𝜏)𝑢(𝑡 − 𝜏)௞ ೐்଴ = ∑ ׬ 𝜂(𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏௝ ೐்(௝ିଵ) ೐்௞௝ୀଵ . (19)

Many numerical schemes can then be used to evaluate the integrals in (21). With 
Gaussian quadrature, then 𝑦(𝑘𝑇௘) ≈ ೐்ଶ ∑ ቀ𝜂(𝑗𝑇௘)𝑢൫(𝑘 − 𝑗)𝑇௘൯ + 𝜂൫(𝑗 − 1)𝑇௘൯𝑢൫(𝑘 − 𝑗 + 1)𝑇௘൯ቁ௞௝ୀଵ . (20)

For k = 1 𝑦(𝑇௘) ≈ 𝑇௘2 ൫𝜂(𝑇௘)𝑢(0) + 𝜂(0)𝑢(1)൯ (21)

For k = 2 𝑦(2𝑇௘) ≈ ೐்ଶ ൫𝜂(𝑇௘)𝑢(𝑇௘) + 𝜂(0)𝑢(2𝑇௘)൯ + ೐்ଶ ൫𝜂(2𝑇௘)𝑢(0𝑇௘) + 𝜂(𝑇௘)𝑢(𝑇௘)൯. (22)

For k = 3 𝑦(3𝑇௘) ≈ ೐்ଶ ൫𝜂(𝑇௘)𝑢(2𝑇௘) + 𝜂(0)𝑢(3𝑇௘)൯ + ೐்ଶ ൫𝜂(2𝑇௘)𝑢(𝑇௘) + 𝜂(𝑇௘)𝑢(2𝑇௘)൯ + ೐்ଶ ൫𝜂(3𝑇௘)𝑢(0) +𝜂(2𝑇௘)𝑢(𝑇௘)൯. 
(23) 

For k = 4 𝑦(4𝑇௘) ≈ 𝑇௘2 ൫𝜂(𝑇௘)𝑢(3𝑇௘) + 𝜂(0𝑇௘)𝑢(4𝑇௘)൯ + 𝑇௘2 ൫𝜂(2𝑇௘)𝑢(2𝑇௘) + 𝜂(𝑇௘)𝑢(3𝑇௘)൯+ 𝑇௘2 ൫𝜂(3𝑇௘)𝑢(𝑇௘) + 𝜂(2𝑇௘)𝑢(2𝑇௘)൯ + 𝑇௘2 ൫𝜂(4𝑇௘)𝑢(0) + 𝜂(3𝑇௘)𝑢(𝑇௘)൯ 
(24) 

An approximation of the kernel function 𝜂(𝑡) for 𝑡 = 𝑘𝑇௘, 𝑘 ∈ ሾ1. . 𝑀ሿ, can thus be 
obtained by solving in the least square sense the linear system of equations 

೐்ଶ ⎣⎢⎢
⎢⎢⎡

𝑢(𝑇௘) 𝑢(0) 0 0 0 ⋯ 0𝑢(2𝑇௘) 2𝑢(𝑇௘) 𝑢(0) 0 0 ⋯ 0𝑢(3𝑇௘) 2𝑢(2𝑇௘) 2𝑢(𝑇௘) 𝑢(0) 0 ⋯ 0𝑢(4𝑇௘) 2𝑢(3𝑇௘) 2𝑢(2𝑇௘) 2𝑢(𝑇௘) 𝑢(0) ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮𝑢(𝑀𝑇௘) 𝑢(0)⎦⎥⎥
⎥⎥⎤

⎣⎢⎢
⎢⎢⎡

𝜂(0)𝜂(𝑇௘)𝜂(2𝑇௘)𝜂(3𝑇௘)⋮𝜂(𝑀𝑇௘)⎦⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎡

𝑦(𝑇௘)𝑦(2𝑇௘)𝑦(3𝑇௘)𝑦(4𝑇௘)⋮𝑦(𝑀𝑇௘)⎦⎥⎥
⎥⎥⎤, (25) 

obtained by writing the expression of output 𝑦(𝑘𝑇௘) given by relation (22) for 𝑘 ∈ ሾ1. . 𝑀ሿ. 
In order to evaluate the efficiency of this algorithm, it is applied to the data produced 

by the fractional model: 
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𝐻(𝑠) = 𝐾 ൬ 𝑠ఔ𝜔௭ଵ + 1൰ ൬ 𝑠ఔ𝜔௭ଶ + 1൰𝑠 ൬ 𝑠ఔ𝜔௣ଵ + 1൰ ൬ 𝑠ఔ𝜔௣ଶ + 1൰ (26)

with 𝜈 = 0.5 , 𝐾 = 5 , 𝜔௭ଵ = 1000 rd/s , 𝜔௭ଶ = 5000 rd/s , 𝜔௣ଵ = 0.001 rd/s , 𝜔௣ଶ =100 rd/s. 
After partial fraction expansion of the transfer function (28), the exact impulse re-

sponse of the transfer function 𝐻(𝑠) is given by: 𝜂௙(𝑡) = 𝐾 + 𝐴ଵ√𝜋𝑡 + 𝐴ଶ𝑡ఔିଵ𝐸ఔ,ఔ൫−𝜔௣ଶ𝑡ఔ൯ + 𝐴ଷ𝑡ఔିଵ𝐸ఔ,ఔ൫−𝜔௣ଵ𝑡ఔ൯ (27)

with 𝐴ଵ =  𝐾 𝜔௣ଵ𝜔௣ଶ𝜔௭ଵ + 𝜔௣ଵ𝜔௣ଶ𝜔௭ଶ − 𝜔௣ଵ𝜔௭ଶ𝜔௭ଵ − 𝜔௣ଶ𝜔௭ଶ𝜔௭ଵ𝜔௭ଵ𝜔௭ଶ𝜔௣ଵ𝜔௣ଶ  (28)

𝐴ଶ =  𝐾𝜔௣ଵ 𝜔௣ଶଶ−𝜔௣ଶ𝜔௭ଵ − 𝜔௣ଶ𝜔௭ଶ + 𝜔௭ଶ𝜔௭ଵ𝜔௭ଵ𝜔௭ଶ𝜔௣ଶ൫𝜔௣ଵ − 𝜔௣ଶ൯  (29)

𝐴ଷ =  −𝐾𝜔௣ଶ 𝜔௣ଵଶ−𝜔௣ଵ𝜔௭ଵ − 𝜔௣ଵ𝜔௭ଶ + 𝜔௭ଶ𝜔௭ଵ𝜔௭ଵ𝜔௭ଶ𝜔௣ଵ൫𝜔௣ଵ − 𝜔௣ଶ൯  (30)

To generate data, the pseudo-random binary sequence of Figure 5 is used as an input 
of the transfer function 𝐻(𝑠). In Figure 6, the function 𝜂(𝑡) estimated using the algorithm 
described above is compared to the function 𝜂௙(𝑡). It reveals a very accurate estimation 
of 𝜂(𝑡), with a quadratic error over 𝑁௦ = 5000 data samples 𝜀௤ = ଵேೞ ∑ ቀ𝜂௙(𝑘𝑇௘) − 𝜂(𝑘𝑇௘)ቁଶ = 7.426 × 10ିହ ேೞ௞ୀଵ . 𝑇௘ = 0.1𝑠 (31)

 
Figure 5. Pseudo random binary sequence used as the input of the transfer function 𝐻(𝑠). 
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Figure 6. Comparison of 𝜂(𝑡) and 𝜂௙(𝑡). 

3.2. Algorithm for 𝜂(𝑘𝑇௘) Sample Fitting with a Non-Singular Rational Kernel and a Given 
Absolute Error Bound 

The interlaced poles and zeros concept in a non-singular rational function proved its 
efficiency in Section 2 to fit a pure power law behavior (a fractional behavior). The concept 
is used again here to develop an algorithm for fitting more general fractional behaviors 
from their impulse response 𝜂(𝑡) (that can be computed as detailed in Section 3.1) with a 
given absolute error bound 𝛿. This algorithm is given below. 

It must be noted that with Algorithm 2, the time domain on which the poles are lo-
cated is defined in step 1. At this step, it is supposed that the function to fit, 𝜂(𝑡), is known 
on the interval 𝑡 ∈ ൣ𝑡଴, 𝑡௙൧ with 0 < 𝑡଴ < 𝑡௙. This is on this interval that the poles and the 
zeros are placed by the algorithm. There is thus no risk for instability and ill-conditioning 
with relation (4). 

Algorithm 2 
1: Compute 𝜂(𝑡) on 𝑡 ∈ ൣ𝑡଴, 𝑡௙൧; select 𝛿; initialise 𝑠𝑙𝑜𝑝𝑒 = 0; initialise 𝜂௔(𝑡) =  𝜂(𝑡଴); 
2: Compute the bound ൫log൫𝜂(𝑡)൯ + 𝛿൯ and ൫log൫𝜂(𝑡)൯ − 𝛿൯ on 𝑡 ∈ ൣ𝑡଴, 𝑡௙൧; 
3: Compute 𝑡௟ = min௧ ቀlog൫𝜂(𝑡)൯ − 𝛿 = 𝜂(𝑡଴)ቁ  and 𝑡௨ = min௧ ቀlog൫𝜂(𝑡)൯ + 𝛿 = 𝜂(𝑡଴)ቁ;  
4: if 𝑡௟ = ሼ∅ሽ, 𝑡௟ = 𝑡௙; 
5: if 𝑡௨ = ሼ∅ሽ, 𝑡௨ = 𝑡௙; 
6: if 𝑡௟ < 𝑡௨ , 𝑠𝑙𝑜𝑝𝑒 = 𝑠𝑙𝑜𝑝𝑒 + 1;   𝑡௠ = 𝑡௟ ; 𝜂(𝑡) =  𝜂(𝑡) ቀ ௧௧೘ + 1ቁ ; 𝑐 = log 𝜂(𝑡௠) − 𝛿 −𝑠𝑙𝑜𝑝𝑒 ∗ log(𝑡௠); 
7: if 𝑡௨ < 𝑡௟ , 𝑠𝑙𝑜𝑝𝑒 = 𝑠𝑙𝑜𝑝𝑒 − 1; 𝑡௠ = 𝑡௨;   𝜂(𝑡) =  ఎ(௧)ቀ ೟೟೘ାଵቁ ;  𝑐 = log 𝜂(𝑡௠) + 𝛿 − 𝑠𝑙𝑜𝑝𝑒 ∗
log(𝑡௠); 
8: Compute 𝑡௟ = min௧ ൫𝑙𝑜𝑔൫𝜂(𝑡)൯ − 𝛿൯ = 𝑠𝑙𝑜𝑝𝑒 ∗ 𝐿𝑜𝑔(𝑡) + 𝑐  and 𝑡௨ = min௧ ൫log൫𝜂(𝑡)൯ +𝛿 = 𝑠𝑙𝑜𝑝𝑒 ∗ log(𝑡) + 𝑐൯ on 𝑡 ∈ ൧𝑡௠, 𝑡௙൧; if 𝑡௟ = ሼ∅ሽ, 𝑡௟ = 𝑡௙; if 𝑡௨ = ሼ∅ሽ, 𝑡௨ = 𝑡௙; 
9: If 𝑡௟ ≠ 𝑡௙ or 𝑡௨ ≠ 𝑡௙ go to to step 6; 
10: end. 
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Algorithm 2 is now applied to another fractional behavior: the impulse response of a 
fractional model defined by the transfer function 

𝐻(𝑠) = 𝐾 ൬ 𝑠ఔ𝜔௭ଵ + 1൰൬ 𝑠ఔ𝜔௣ଵ + 1൰ ൬ 𝑠ఔ𝜔௣ଶ + 1൰ ൬ 𝑠ఔ𝜔௣ଷ + 1൰ (32)

with 𝜈 = 0.5, 𝐾 = 5, 𝜔௭ଵ = 0.4 rd/s, 𝜔௣ଵ = 0.01 rd/s, 𝜔௣ଶ = 2 rd/s, 𝜔௣ଷ = 100 rd/s 
After partial fraction decomposition, the impulse response of the transfer function 𝐻(𝑠) is defined analytically by: 𝜂௙(𝑡) = 𝐴ଵ𝑡ఔିଵ𝐸ఔ,ఔ൫−𝜔௣ଵ𝑡ఔ൯ + 𝐴ଶ𝑡ఔିଵ𝐸ఔ,ఔ൫−𝜔௣ଶ𝑡ఔ൯ + 𝐴ଷ𝑡ఔିଵ𝐸ఔ,ఔ൫−𝜔௣ଷ𝑡ఔ൯ (33)

with 𝐴ଵ = 4.899 × 10ିଶ, 𝐴ଶ = 2.051 × 10ିଵ and 𝐴ଷ = −2.541 × 10ିଵ. 
The results produced by Algorithm 2 for three values of 𝛿 , 𝛿 = 0.6 , 𝛿 = 0.4  and 𝛿 = 0.2  are shown in Figure 7. This figure shows the function log൫𝜂(𝑡)൯  and the two 

bounds log൫𝜂(𝑡)൯ − 𝛿 and log൫𝜂(𝑡)൯ + 𝛿. It also shows: 
- on the left, how poles and zeros are added in 𝜂௔(𝑡) as the asymptotic behavior of 

this function intersects the upper and lower bounds. 
- on the right, the resulting function 𝜂௔(𝑡). 

This figure demonstrates the efficiency of the proposed algorithm to fit a fractional 
behavior. It also shows that it is possible to control the accuracy of this fitting through 
parameter 𝛿. This is confirmed by the calculation of the absolute error 𝜀௔ = ଵேೞ ∑ ൫𝜂௔(𝑘) − 𝜂(𝑘)൯ଶ ேೞ௞ୀଵ  𝑁௦ = 10,000 (34)

for the three values of 𝛿 considered. These errors 𝜀௔, reported in Table 1, decrease as 𝛿 
decreases. 

Table 1. Comparison of 𝜂(𝑡) and 𝜂௙(𝑡). 𝜹 0.2 0.4 0.6 𝜀௔ 2.077 × 10−1 2.0472 3.9617 

This comparison permits us to say that, even if I + f convergence of the kernel is slow 
as the time tends towards infinity, the fitting method described by Algorithm 2 remains 
possible. The order of the fraction will increase, but it is still possible. Nevertheless, it must 
be mentioned that, when working in the logarithmic domain, a sort of time compression 
occurs which facilitates fitting over large time domains. 

Another kind of impulse response is now considered, the one produced by the trans-
fer function (28) and which is defined analytically by relation (29). The result obtained 
with Algorithm 2 is shown in Figure 8 and reveals again times the impulse response fitting 
in compliance with the imposed bound. 
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Figure 7. Comparison of 𝜂(𝑡) and 𝜂௔(𝑡) for the impulse response of model (28), for 3 values of 𝛿. 
left column: asymptotic diagram built by the algorithm, right column: obtained function 𝜂௔(𝑡). 
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Figure 8. Comparison of 𝜂(𝑡) and 𝜂௔(𝑡) for the impulse response of model (25) with 𝛿 = 0.2. left 
column: asymptotic diagram built by the algorithm, right column: obtained function 𝜂௔(𝑡). 

4. Conclusions 
In this paper, several algorithms are proposed to fit a fractional dynamical behavior 

using a convolution integral involving a rational kernel. In the case of a pure power law 
function, a first algorithm based on an interlacing distribution of poles and zeros in the 
rational kernel is given. Using a logarithmic scale on the abscissa and ordinate axes, a 
power law function of order 𝜈 (𝐾𝑡ିఔ) appears as a line of slope −𝜈. It is thus possible to 
approximate it by interlacing poles and zeros which, respectively, induce in this same 
system of coordinates, an asymptotic behavior of slope -1 and 1. It is then demonstrated 
that the values of the poles and zeros are linked by geometric ratios that are computed by 
the algorithm. This fitting solution appears to be similar to the one commonly used in the 
frequency domain to approximate the behavior of a fractional integrator or differentiator. 
In fact, it is observed that the solution proposed here in the time domain leads to fewer 
oscillations for the same number of poles and zeros. 

Inspired by the idea of interlacing of poles and zeros, a second algorithm is proposed 
to fit the impulse response of a system with any fractional dynamical behavior. First, we 
propose a solution based on a least squares method to derive the sampled-data impulse 
response of a dynamical system from input-output data. Then, the solution to obtain an 
approximant of this impulse response in the form of a rational function consists of adding 
poles or zeros in the approximant so that the error remains bounded in absolute value. 
This algorithm adds a pole if the approximant asymptotic diagram induced by the pole or 
the zeros previously added intersects the selected upper bound, and vice versa, a zero is 
added if the asymptotic diagram of the approximant induced by the pole or the zero pre-
viously added intersects the lower bound. In the applications proposed in the paper that 
illustrate the algorithm’s efficiency, a constant error bound is imposed over the whole ap-
proximation time interval. However, this algorithm also works by taking different upper 
and lower bounds and functions of time. This algorithm is able to place the poles and 
zeros of the approximation and limit the approximation error between an upper and lower 
bound, but this placement is sub-optimal with regard to the quadratic error between the 
impulse response and its approximation. Moreover, this sequence of two algorithms (ker-
nel samples computation using the algorithm described in Section 3.1 and then fitting the 
kernel samples with a rational kernel using Algorithm 2) can lead to the accumulation of 
errors. Furthermore, although Algorithm 2, which is recursive, has a low chance of leading 
to numerical instabilities, the algorithm used in Section 3.1 may have some. On the other 
hand, the solution we propose is very simple to implement and can constitute a solution 
for initializing future algorithms which will be developed by the authors. The authors 
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have also now to consider additional real-life fractional behavior in order to clearly iden-
tify the limits of the use of non-singular rational kernels in modeling situations and to 
consider possible significant changes over time in the modelled system behavior. 

This work is an additional illustration that fractional behaviors can be modelled us-
ing other tools than the ones based on fractional calculus. 
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