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Abstract: This paper proposes algorithms to model fractional (dynamical) behaviors using non-
singular rational kernels whose interest is first demonstrated on a pure power law function. Two
algorithms are then proposed to find a non-singular rational kernel that allows the input-output data
to be fitted. The first one derives the impulse response of the modeled system from the data. The
second one finds the interlaced poles and zeros of the rational function that fits the impulse response
found using the first algorithm. Several applications show the efficiency of the proposed work.
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1. Introduction

The search for non-singular kernels [1–5] or alternative solutions to fractional mod-
els [6,7] is gaining momentum in the field of modeling fractional dynamical behaviors.
Using such kernels makes it possible to overcome certain limitations of fractional models,
such as fractional differential equations or pseudo-state space descriptions, which have re-
cently been highlighted [8–14]. For instance, it was demonstrated that a fractional integrator
operator in the Riemann–Liouville sense [15,16] involves infinitely large and infinitely small
time constants, which makes fractional models doubly infinite models: infinite because
distributed, but also infinite as defined on an infinite equivalent spatial domain [17]. In a
modelling context, these infinitely large and infinitely small time constants are not required
to capture the behavior of a real system that operates on finite spatial and time scales.
Moreover, these time constants introduced by fractional models (and that do exist in the
modelled system) can greatly complicate the analyses and lead to erroneous conclusions on
certain internal properties of the modelled system. This is the case for initialization [18,19]
or observability for example [20].

However, fractional behaviors (produced by physical phenomena) and fractional
models should be distinguished. The former designates a property of a physical system
while the latter designates a model class, among a set of model classes able to capture
fractional dynamical behaviors. Based on this observation, a whole new field opens up,
from the search for new models dedicated to capturing fractional behaviors to the study of
their properties and the development of identification methods. A few studies undertaken
from this perspective are already available in the literature [6,7], which is also the case in
the present article.

To overcome the limitations mentioned in the first paragraph, we propose in this
paper to use non-singular rational kernels to model fractional behaviors and propose an
algorithm to find the parameters in the kernel description. Non-singular rational kernels
are considered for the three following reasons:

- a fractional behavior defined by the power law t−ν, can be associated with a rational
function with an infinite number of interlaced poles and zeros as shown in this paper.

- the approximation of such a function by rational functions of degree n leads to a very
small approximation error in comparison to polynomials of degree n [21];
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- rational kernels permit the approximation of fractional behaviors with a reduced
number of parameters in comparison to fractional models.

For all these reasons, it appeared necessary to develop a simple and efficient algorithm
allowing the determination of the coefficients of a rational kernel in a convolution model,
which fits a given fractional behavior with a defined given level of accuracy.

To the best knowledge of the authors, there is no method that allows a direct estimation
of the parameters of a rational kernel in a convolution model. That is why we have defined
a two-step method that consists of:

- first, estimating the time response of the kernel in the convolution model that fits the
input-output behavior of the modeled system.

- then, estimate the parameters of a rational function that fits the kernel time response.

For the second step of this strategy, there are many methods that allow rational
interpolation [22–26]. But these methods are not well adapted to fractional behaviors, that
is to say with time behaviors with slow convergence. On the other hand, when working
in the logarithmic domain as in the methodology we propose, a time compression occurs
which facilitates fitting over large time domains.

The paper is thus organized as follows. In Section 2, the approximation of a pure
power law function Kt−ν by a rational function involving interlaced poles and zeros is con-
sidered. It demonstrates the accuracy and the simplicity of rational kernels to approximate
a fractional behavior and thus justifies their use. In Section 3, two algorithms are proposed
to find a non-singular rational kernel capable of fitting input-output data. The first one
derives the impulse response of a system from the data. The second one finds the interlaced
poles and zeros of the rational function that is used to fit the impulse response found in
the first step. Several applications are presented in Section 4 to show the efficiency of the
proposed algorithms.

2. Approximation of a Pure Power Law Behavior by Non-Singular Rational Kernels

This section shows the efficiency of non-singular rational kernels for the modelling of
fractional behaviors. The fractional behavior considered is first the pure power law function:

ην(t) = Kt−ν (1)

This function indeed falls within the definition of a fractional integration order opera-
tor defined in the Riemann–Liouville sense by [15,16]

Iγ[u(t)] =
1

Γ(γ)

∫ t

0

1

(t − τ)1−γ
u(τ)dτ = ηPL(t) ∗ u(t), (2)

with ηPL(t) = tγ−1/Γ(γ). The idea is to approximate the kernel ηPL(t) by a non-singular
rational kernel η(t), to avoid the limitations cited in the introduction, while allowing
the model

y(t) =
∫ t

0
η(t − τ)u(τ)dτ = η(t) ∗ u(t), (3)

to capture fractional behaviors.
For the approximation of ην(t), the following rational kernel is considered:

η(t) = C0

∏N
j=1

(
t
t′j
+ 1
)

∏N
j=1

(
t
tj
+ 1
) . (4)

The decimal logarithm of η(t) is

log(η(t)) = log(C0) + ∑N
j=1 log

(
t
t′j
+ 1

)
− ∑N

j=1 log

(
t
tj
+ 1

)
(5)
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Decimal logarithm applied to the function ην(t) gives:

log(ην(t)) = log(K)− ν log(t). (6)

At t = 1, from (1),
ην(1) = K (7)

and using relation (4),

η(1) = C0

∏N
j=1

(
1
t′j
+ 1
)

∏N
j=1

(
1
tj
+ 1
) . (8)

Thus, to ensure that η(1) = ην(1), it is imposed that

C0 = K
∏N

j=1

(
1
tj
+ 1
)

∏N
j=1

(
1
t′j
+ 1
) . (9)

The functions ηz(t) = log
(

t
t′j
+ 1
)

and ηp(t) = − log
(

t
tj
+ 1
)

of relation (5) are

represented in Figure 1 for t′j = tj = 1, as a function of log(t). For t >
(

t′j = 1
)

and

t >
(
tj = 1

)
, the functions ηz(t) and ηp(t) behave, respectively, as lines of slope 1 and −1.

The function given by relation (2) has a slope of –ν on a logarithmic scale. Thus, taking
inspiration from the work which aimed to approximate fractional integrator operators in
the frequency domain [27–32], and adapting them to the time domain, the function ην(t)
can be approximated by choosing the appropriate values of t′j and tj in an alternation of
function ηp(t) and ηz(t).
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Figure 1. Representation of functions ηz(t) = log
(

t
t′j
+ 1
)

and ηp(t) = − log
(

t
tj
+ 1
)

for t′j = tj = 1,

as functions of log(t).

Figure 2 describes how the functions ηz(t) and ηp(t) are used to produce the desired
slope. On this figure, it is assumed that an approximation of relation (1) is required on the



Algorithms 2024, 17, 20 4 of 13

time interval [tl , th]. In the functions ηz(t) and ηp(t), it is assumed that the time t′j and tj
meet the following relations

log(α) = log
(

t′j
)
− log

(
tj
)

and thus α =
t′j
tj

(10)

log(η) = log
(
tj+1

)
− log

(
t′j
)

and thus β =
tj+1

t′j
(11)

log(α) + log(β) = log
(
tj+1

)
− log

(
tj
)
= log

(
t′j+1

)
− log

(
t′j
)

and thus r = αβ =
tj+1

tj
=

t′j+1

t′j
(12)
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Figure 2. Illustration of the algorithm used to approximate an affine function of slope ν (red line) by
an alternation of function ηp(t) and ηz(t) (blue line).

It is assumed that N functions ηz(t) and ηp(t) are used for the approximation. Thus,
according to Figure 2, it can be written

N(log(α) + log(β)) = log(th)− log(tl) and thus αβN = rN =
th
tl

. (13)

In order for the distribution of times tj and t′j to lead to the same slope as the function
to be approximated, the following conditions on the slopes must be verified

−ν =
A

log(α) + log(β)
and − 1 =

A
log(α)

(14)

which can be combined into:

ν =
log(α)

log(α) + log(β)
and thus α = (αβ)ν. (15)

Using the non-singular rational function of relation (4), an approximation of the
function ην(t), which is close to the impulse response of a fractional integrator, can then be
obtained using the following algorithm.

Figure 3 illustrates the efficiency of the above approximation algorithm for the power
law function (1) with K = 10 and ν = 0.5. In this application the following parameters
were used: N = 7, tl = 10−3, th = 104 thus leading to r = 10, α = 3.162, β = 3.162 and
C0 = 316.35.
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Based on this analysis we can say that

t−ν = lim
N→∞

N

∏
j=−N

(
t
t′j
+ 1
)

(
t
t′j
+ 1
) (16)

in which the poles and zeros are linked by relations (10) to (12).
It must be noticed that the kernel ην(t) is singular at time t = 0. With the method we

propose, we can get as close as necessary to 0 with the approximation method developed
as it is done on a defined time interval. The accuracy of the approximation then depends
on the number of poles and zeros used in the approximation.

But the problem is not whether it is possible or not to fit a pure power law, because in
practice it is not necessary to do so. As mentioned in the first paragraph of the introduction,
if a pure power law is used in a convolution product as in relation (3), the resulting model
has infinitely large and infinitely small time constants. In modelling context, these infinitely
large and infinitely small time constants are not required to capture the behaviour of a real
system that operates on finite spatial and time scales. Thus, in practice, it is not necessary
to be able to fit a pure power law for times tending to 0 or infinity.

Figure 4 compares the approximation given by relation (4) associated with Algorithm 1,
and the approximation currently used in the literature for function (1) (close to the impulse
response of a fractional integrator), based on a distribution of the exponential function in
the time domain:

χ(t) = K′0 + ∑N
j=1 aje

− t
rjω1 . (17)

which corresponds to the inverse Laplace transform of the transfer function

χ(s) =
K0

s

∏N
j=1

(
1 + s

ω′
j

)
∏N

j=1

(
1 + s

ωj

) . (18)
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with
ω′j+1 = rω′j ωj = rνω′

j. (19)
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In the comparison of Figure 4, parameters N and ν are chosen equal to 7 and 0.3 for
relations (18) to (20). Parameters K0, ω′1 and r in relation (20) and C0, t1 and r in relation (4)
are chosen so that the two approximations cover the same time domain:

t1 = 2.2387 ∗ 10−3s, t′1 = 4.467 ∗ 10−3s, r = 10 and C0 = 79.45 for relation (4),
ω1 = 1.788 ∗ 10−4rd/s, ω′1 = 8.955 ∗ 10−5rd/s, r = 10 and K0 = 0.622 for relation (18).
In the same figure, the comparison is also done with the function (1) with K = 10 and

ν = 0.3.
Within the approximation interval, this figure reveals a better approximation with

relation (4) with significantly fewer oscillations.

Algorithm 1: Approximation of a Pure Power Law Behavior

1: Chose the time interval on which the approximation is required [tl , th] and the degree N of the
rational function.

2: Compute r = N
√

th
tl

.
3: Compute α = rν and β = r

α .
4: Compute t′1 = tl ∗

√
β and the other t′j and tj using relations (10) and (11).

5: Compute C0 = K
∏N

j=1

(
1
tj
+1
)

∏N
j=1

(
1
t′j
+1
) .

3. Algorithms to Model More General Fractional Behaviors

This section proposes an algorithm to determine a non-singular rational kernel of
the model in relation (3) from input-output data produced by a system with a fractional
behavior. The algorithm allows an approximation of the kernel with a given absolute
bound on the error. The algorithm is split into parts:

- computation of the kernel sample η(kTe), which is described in Section 3.1,
- computation of the kernel approximation with a non-singular rational function, which

is described in Section 3.2.
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3.1. A Least Squares Method to Obtain the Kernel Samples η(kTe)

In order to obtain the kernel (3) samples η(kTe), let y(t) and u(t) be, respectively, the
output and the input of this system, that is

y(t) =
∫ t

0
η(t − τ)u(τ)dτ. (20)

If y(t) and u(t) are sampled with a sampling period Te, then at time kTe, k ∈ N,

y(kTe) =
∫ kTe

0
η(τ)u(t − τ) = ∑k

j=1

∫ jTe

(j−1)Te
η(τ)u(t − τ)dτ. (21)

Many numerical schemes can then be used to evaluate the integrals in (23). With
Gaussian quadrature, then

y(kTe) ≈
Te

2 ∑k
j=1(η(jTe)u((k − j)Te) + η((j − 1)Te)u((k − j + 1)Te)). (22)

For k = 1
y(Te) ≈

Te

2
(η(Te)u(0) + η(0)u(1)) (23)

For k = 2

y(2Te) ≈
Te

2
(η(Te)u(Te) + η(0)u(2Te)) +

Te

2
(η(2Te)u(0Te) + η(Te)u(Te)). (24)

For k = 3

y(3Te) ≈ Te
2 (η(Te)u(2Te) + η(0)u(3Te)) +

Te
2 (η(2Te)u(Te) + η(Te)u(2Te)) +

Te
2 (η(3Te)u(0)+

η(2Te)u(Te)).
(25)

For k = 4

y(4Te) ≈ Te
2 (η(Te)u(3Te) + η(0Te)u(4Te)) +

Te
2 (η(2Te)u(2Te) + η(Te)u(3Te))

+ Te
2 (η(3Te)u(Te) + η(2Te)u(2Te)) +

Te
2 (η(4Te)u(0) + η(3Te)u(Te))

(26)

An approximation of the kernel function η(t) for t = kTe, k ∈ [1 . . . M], can thus be
obtained by solving in the least square sense the linear system of equations

Te

2



u(Te) u(0) 0 0 0 · · · 0
u(2Te) 2u(Te) u(0) 0 0 · · · 0
u(3Te) 2u(2Te) 2u(Te) u(0) 0 · · · 0
u(4Te) 2u(3Te) 2u(2Te) 2u(Te) u(0) · · · 0

...
...

...
...

...
. . .

...
u(MTe) u(0)





η(0)
η(Te)
η(2Te)
η(3Te)

...
η(MTe)


=



y(Te)
y(2Te)
y(3Te)
y(4Te)

...
y(MTe)


, (27)

obtained by writing the expression of output y(kTe) given by relation (24) for k ∈ [1 . . . M].
In order to evaluate the efficiency of this algorithm, it is applied to the data produced

by the fractional model:

H(s) = K

(
sν

ωz1
+ 1
)(

sν

ωz2
+ 1
)

s
(

sν

ωp1
+ 1
)(

sν

ωp2
+ 1
) (28)

with ν = 0.5, K = 5, ωz1 = 1000 rd/s, ωz2 = 5000 rd/s, ωp1 = 0.001 rd/s, ωp2 = 100 rd/s.
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After partial fraction expansion of the transfer function (30), the exact impulse response
of the transfer function H(s) is given by:

η f (t) = K +
A1√
πt

+ A2tν−1Eν,ν
(
−ωp2tν

)
+ A3tν−1Eν,ν

(
−ωp1tν

)
(29)

with
A1 = K

ωp1ωp2ωz1 + ωp1ωp2ωz2 − ωp1ωz2ωz1 − ωp2ωz2ωz1

ωz1ωz2ωp1ωp2
(30)

A2 = Kωp1
ωp2

2−ωp2ωz1 − ωp2ωz2 + ωz2ωz1

ωz1ωz2ωp2
(
ωp1 − ωp2

) (31)

A3 = −Kωp2
ωp1

2−ωp1ωz1 − ωp1ωz2 + ωz2ωz1

ωz1ωz2ωp1
(
ωp1 − ωp2

) (32)

To generate data, the pseudo-random binary sequence of Figure 5 is used as an input
of the transfer function H(s). In Figure 6, the function η(t) estimated using the algorithm
described above is compared to the function η f (t). It reveals a very accurate estimation of
η(t), with a quadratic error over Ns = 5000 data samples

εq =
1

Ns
∑Ns

k=1

(
η f (kTe)− η(kTe)

)2
= 7.426 × 10−5 . Te = 0.1s (33)
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3.2. Algorithm for η(kTe) Sample Fitting with a Non-Singular Rational Kernel and a Given
Absolute Error Bound

The interlaced poles and zeros concept in a non-singular rational function proved its
efficiency in Section 2 to fit a pure power law behavior (a fractional behavior). The concept
is used again here to develop an algorithm for fitting more general fractional behaviors
from their impulse response η(t) (that can be computed as detailed in Section 3.1) with a
given absolute error bound δ. This algorithm is given below.
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Figure 6. Comparison of η(t) and η f (t).

It must be noted that with Algorithm 2, the time domain on which the poles are located
is defined in step 1. At this step, it is supposed that the function to fit, η(t), is known on the
interval t ∈

[
t0, t f

]
with 0 < t0 < t f . This is on this interval that the poles and the zeros

are placed by the algorithm. There is thus no risk for instability and ill-conditioning with
relation (4).

Algorithm 2: Fitting of a general fractional behaviour with a Non-Singular Rational Kernel and a
Given Absolute Error Bound

1: Compute η(t) on t ∈
[
t0, t f

]
; select δ; initialise slope = 0; initialise ηa(t) = η(t0);

2: Compute the bound (log(η(t)) + δ) and (log(η(t))− δ) on t ∈
[
t0, t f

]
;

3: Compute tl = min
t
(log(η(t))− δ = η(t0)) and tu = min

t
(log(η(t)) + δ = η(t0));

4: if tl = {∅}, tl = t f ;
5: if tu = {∅}, tu = t f ;

6: if tl < tu, slope = slope + 1; tm = tl ; η(t) = η(t)
(

t
tm

+ 1
)

; c = log η(tm)− δ − slope ∗ log(tm);

7: if tu < tl , slope = slope − 1; tm = tu; η(t) = η(t)
( t

tm
+1)

; c = log η(tm) + δ − slope ∗ log(tm);

8: Compute tl = min
t
(log(η(t))− δ) = slope ∗ Log(t) + c and

tu = min
t
(log(η(t)) + δ = slope ∗ log(t) + c) on t ∈

[
tm, t f

]
; if tl = {∅}, tl = t f ; if

tu = {∅}, tu = t f ;
9: If tl ̸= t f or tu ̸= t f go to to step 6;
10: end.

Algorithm 2 is now applied to another fractional behavior: the impulse response of a
fractional model defined by the transfer function

H(s) = K

(
sν

ωz1
+ 1
)

(
sν

ωp1
+ 1
)(

sν

ωp2
+ 1
)(

sν

ωp3
+ 1
) (34)

with ν = 0.5, K = 5, ωz1 = 0.4 rd/s, ωp1 = 0.01 rd/s, ωp2 = 2 rd/s, ωp3 = 100 rd/s.
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After partial fraction decomposition, the impulse response of the transfer function
H(s) is defined analytically by:

η f (t) = A1tν−1Eν,ν
(
−ωp1tν

)
+ A2tν−1Eν,ν

(
−ωp2tν

)
+ A3tν−1Eν,ν

(
−ωp3tν

)
(35)

with A1 = 4.899 × 10−2, A2 = 2.051 × 10−1 and A3 = −2.541 × 10−1.
The results produced by Algorithm 2 for three values of δ, δ = 0.6, δ = 0.4 and

δ = 0.2 are shown in Figure 7. This figure shows the function log(η(t)) and the two bounds
log(η(t))− δ and log(η(t)) + δ. It also shows:

- on the left, how poles and zeros are added in ηa(t) as the asymptotic behavior of this
function intersects the upper and lower bounds.

- on the right, the resulting function ηa(t).
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This figure demonstrates the efficiency of the proposed algorithm to fit a fractional
behavior. It also shows that it is possible to control the accuracy of this fitting through
parameter δ. This is confirmed by the calculation of the absolute error

εa =
1

Ns
∑Ns

k=1 (ηa(k)− η(k))2 Ns = 10, 000 (36)

for the three values of δ considered. These errors εa, reported in Table 1, decrease as
δ decreases.

Table 1. Comparison of η(t) and η f (t).

δ 0.2 0.4 0.6

εa 2.077 × 10−1 2.0472 3.9617

This comparison permits us to say that, even if I + f convergence of the kernel is slow
as the time tends towards infinity, the fitting method described by Algorithm 2 remains
possible. The order of the fraction will increase, but it is still possible. Nevertheless, it must
be mentioned that, when working in the logarithmic domain, a sort of time compression
occurs which facilitates fitting over large time domains.

Another kind of impulse response is now considered, the one produced by the transfer
function (30) and which is defined analytically by relation (31). The result obtained with
Algorithm 2 is shown in Figure 8 and reveals again times the impulse response fitting in
compliance with the imposed bound.
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4. Conclusions

In this paper, several algorithms are proposed to fit a fractional dynamical behavior
using a convolution integral involving a rational kernel. In the case of a pure power law
function, a first algorithm based on an interlacing distribution of poles and zeros in the
rational kernel is given. Using a logarithmic scale on the abscissa and ordinate axes, a
power law function of order ν ( Kt−ν) appears as a line of slope −ν. It is thus possible
to approximate it by interlacing poles and zeros which, respectively, induce in this same
system of coordinates, an asymptotic behavior of slope −1 and 1. It is then demonstrated
that the values of the poles and zeros are linked by geometric ratios that are computed by
the algorithm. This fitting solution appears to be similar to the one commonly used in the
frequency domain to approximate the behavior of a fractional integrator or differentiator.
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In fact, it is observed that the solution proposed here in the time domain leads to fewer
oscillations for the same number of poles and zeros.

Inspired by the idea of interlacing of poles and zeros, a second algorithm is proposed
to fit the impulse response of a system with any fractional dynamical behavior. First, we
propose a solution based on a least squares method to derive the sampled-data impulse
response of a dynamical system from input-output data. Then, the solution to obtain
an approximant of this impulse response in the form of a rational function consists of
adding poles or zeros in the approximant so that the error remains bounded in absolute
value. This algorithm adds a pole if the approximant asymptotic diagram induced by the
pole or the zeros previously added intersects the selected upper bound, and vice versa, a
zero is added if the asymptotic diagram of the approximant induced by the pole or the
zero previously added intersects the lower bound. In the applications proposed in the
paper that illustrate the algorithm’s efficiency, a constant error bound is imposed over the
whole approximation time interval. However, this algorithm also works by taking different
upper and lower bounds and functions of time. This algorithm is able to place the poles
and zeros of the approximation and limit the approximation error between an upper and
lower bound, but this placement is sub-optimal with regard to the quadratic error between
the impulse response and its approximation. Moreover, this sequence of two algorithms
(kernel samples computation using the algorithm described in Section 3.1 and then fitting
the kernel samples with a rational kernel using Algorithm 2) can lead to the accumulation
of errors. Furthermore, although Algorithm 2, which is recursive, has a low chance of
leading to numerical instabilities, the algorithm used in Section 3.1 may have some. On
the other hand, the solution we propose is very simple to implement and can constitute
a solution for initializing future algorithms which will be developed by the authors. The
authors have also now to consider additional real-life fractional behavior in order to clearly
identify the limits of the use of non-singular rational kernels in modeling situations and to
consider possible significant changes over time in the modelled system behavior.

This work is an additional illustration that fractional behaviors can be modelled using
other tools than the ones based on fractional calculus.
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