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Abstract: Servo motors play an important role in automation equipment and have been used in
several manufacturing fields. However, the commonly used control methods need their parameters
to be set manually, which is rather difficult, and this means that these methods generally cannot
adapt to changes in operation conditions. Therefore, in this study, we propose an intelligent control
method for a servo motor based on reinforcement learning and that can train an agent to produce a
duty cycle according to the servo error between the current state and the target speed or torque. The
proposed method can adjust its control strategy online to reduce the servo error caused by a change
in operation conditions. We verify its performance on three different servo motors and control tasks.
The experimental results show that the proposed method can achieve smaller servo errors than others
in most cases.

Keywords: servo motor control; motor state perception; reinforcement learning; intelligent control

1. Introduction

A servo motor plays an important role in the composition of automation equipment.
It can convert the voltage signal into torque and speed to drive the controlled object
with high control precision. Because servo motors can meet the torque and speed control
requirements of most tasks, they have been widely used in many manufacturing fields,
such as in aerospace, automotive manufacturing, and robotics, among others [1].

In the servo motor control system, the most widely used and stable control method
is proportion–integration–differentiation (PID), which can generate the control strategy
only by the tracking error. This control strategy bears the advantage of a control mech-
anism which is completely independent of the mathematical model of the controlled
object [2]. However, the PID parameters can generally only be set manually. Thus, the
actual control effect not only depends on the debugging experience of engineering per-
sonnel, but also requires another time-consuming process to verify the control effect of
parameters. Moreover, during the operation of the servo system, the change in magnetic
saturation degree, temperature, load and other conditions of the motor will degrade the
performance of the PID controller designed with the original parameters. Therefore, the
PID controller parameters should be adjusted in a timely manner according to the actual
working conditions, which will increase the difficulty of manual parameter setting. In
order to reduce the burden of manual parameter setting and improve the control effect,
the servo system needs an adaptive control algorithm which is able to effectively solve the
problems caused by the changes in servo motor working conditions by identifying some
related parameter values online and modifying the control strategy in real time [3–7].

In recent years, reinforcement learning, as a major branch of artificial intelligence,
has gained increased attention and made breakthroughs in fields such as autonomous
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driving [8,9], path planning [10,11], and robotics [12,13]. Reinforcement learning imitates
humans’ self-learning ability and can continuously optimize decision-making strategies
through a trial and error mechanism to realize its own evolution [14]. By applying the
reinforcement learning algorithm, it may prompt the servo motor control system to adapt
to the complex control environment by automatically adjusting the output of the control
system through the imitation of human decision-making behavior [15–18]. The existing
methods are all based on deterministic strategies, and their learned optimal strategies
are uniquely determined action values which lack the ability to explore the interaction
environment. To explore other actions around the current optimal action, noise needs to
be artificially added to the policy. The performance is affected. Moreover, in the existing
algorithm, the tracking error is taken as the basis of reward, and the error values in a
period of time are uniformly input to the neural network model. Then, the coefficients
of proportion, integral, and differential of the PID algorithm are learned via the neural
network. This method only allows the agent to control the motor by tracking errors,
although it improves the generalization performance of the algorithm to a certain extent,
but also causes the loss of the motor running-state information, which is not conducive to
further improving the control accuracy.

In view of the problems faced by traditional industrial control systems, this study
intends to design a deep reinforcement learning controller based on reference trajectory
coding to implement intelligent servo motor control. In this, the running state of the servo
motor and the target trajectory in the control process are regarded as two different items
of input information, so that the agent can make better use of the external information to
make control decisions. Therefore, the control precision of the reinforcement learning motor
control algorithm is more optimized. This investigation will break through the limitation
of manually setting controller parameters, realize the online real-time setting of a servo
motor control strategy, and maximize the performance of the servo motor while reducing
the manpower burden. The study has broad application prospects in aerospace, industrial
robots, and other fields.

2. Basic Knowledge
2.1. Motion Control System

As shown in Figure 1, a complete servo motor control system includes seven main
parts, namely, the man–machine interface, motion controller, driver, actuator, drive mecha-
nism, load, and a feedback part.

The motor control method works in the motion controller. As a control center, the
motion controller closes the feedback loop by monitoring the input and output of the system.
The controller receives feedback from the motor and calculates the servo error between the
actual and given state. Then, the motor control method generates a control signal to adjust
the state of the motor and reduce the error. After that, the driver amplifies these signals to
a high-power voltage and current to meet the needs of the motor operation [2].

Our work mainly focuses on the motor control method, and the goal is to adjust it
online to adapt it to changes in operating conditions.
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Figure 1. Structure diagram of servo motor control system.
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2.2. Reinforcement Learning

Reinforcement learning is developed from the idea of trial and error learning. Its
learning process does not rely on artificially marked data labels, but instead on the reward
or punishment mechanism. More specifically, constant trial and error in an environment
full of uncertainty are considered, and a decision-making method that can obtain the
maximum reward in the environment is summarized. Reinforcement learning algorithms
can be classified in various ways, as shown in Figure 2.
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Figure 2. Classification of reinforcement learning algorithms.

2.2.1. On-Policy Algorithm and Off-Policy Algorithm

The policies used by the reinforcement learning algorithm can be divided into two
kinds: one is used to interact with environment in the learning process and the other is
used by the final learned algorithm. According to the relationship between the two policies,
the reinforcement learning algorithm can be divided into an on-policy algorithm and an
off-policy algorithm [19].

The on-policy algorithm means that the policies used by the agent to interact with the
environment are the same as those eventually learned. During the learning process, only
the samples of environment interaction that are collected using their own strategies can be
used [20].

An off-policy algorithm refers to the agent using one policy when interacting with
the environment, and then obtaining a different policy after learning. Compared with the
on-policy algorithm, the off-policy algorithm can be used to explore the environment when
collecting interactive data within the environment. Thus, it can improve the utilization
efficiency of data and will not affect the performance of the final policy [21,22].

2.2.2. Model-Free Algorithm and Model-Based Algorithm

In the learning process, the model-free reinforcement learning agent only learns the
value function and policy function of the current environment without direct environ-
ment cognition.

A model-based reinforcement learning agent builds a virtual model of the real en-
vironment in the process of interacting with the environment, and it replaces the real
environment with a small amount of the virtual environment to reduce interaction require-
ments. Although model-based algorithms can improve the learning speed by reducing the
number of interactions between the agent and the environment, the performances of these
algorithms are often inferior to those of model-free algorithms due to their low modeling
accuracy [23].
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2.2.3. Value Function Algorithm and Policy Gradient Algorithm

According to the different learning contents and agent methods, reinforcement learn-
ing algorithms can be divided into the value function method, policy gradient method, and
actor–critic method [24].

The agent based on the value function method only learns the value function. In
the actual use process, it will choose an action with a higher value to interact with the
environment, according to the value of each action in the current state.

When using the policy gradient method, the agent only learns the strategy function, and
the algorithm dynamically adjusts the probability value of taking the action according to
the subsequent income generated by each action, and it gradually converges to the optimal
strategy. After learning, the algorithm directly uses the policy function to make a decision.

The calculation efficiency of the policy gradient method is low. Therefore, the actor–
critic method, combining the value function and policy gradient, was proposed. In this
approach, the agent learns and optimizes both the value function and the policy function
at the same time [25].

2.2.4. Stochastic Strategy and Deterministic Strategy

When the agent interacts with the environment using a stochastic strategy, it may
perform any action in the action space, and the execution probability of each action is
non-zero [26]. When the agent uses deterministic strategy to interact with the environment,
the agent will only take the optimal action in its cognition, which can be said to be the
preferred action [27].

Stochastic strategy has advantages that deterministic strategy does not have. First,
in the learning process, the randomness of stochastic strategy can be directly used to
explore the environment, and the agent can correct the exploration scope itself in the
learning process, so that it will not easily fall into the local optimum. Second, after learning,
deterministic strategies can only output the same action value for the same environment,
which is easy to target in the game process with other agents [28,29].

3. Problem Description
3.1. Control Mode of Servo Motor

The general servo motor has three control modes: position control, torque control, and
speed control.

The position control mode is usually assigned to the displacement directly through
the external input. Because the position mode can control the speed and position strictly, it
is generally applied to the positioning device.

The speed control mode is used to control the motor rotation speed through the
external input, which has been quite widely applied. In addition, there is a need for a rapid
response of the continuous speed control system, the upper closed-loop positioning system,
and the need for a rapid change in the speed system.

Torque control mode is used to change the size of the motor’s external output torque
through the external input. It is mainly used in winding and unwinding devices with
strict requirements regarding the force of the material, such as a winding device or fiber-
pulling equipment.

In this work, we only consider the torque control mode and speed control mode, since
position control can be achieved via speed control in definite time. The speed and torque of
the motor are determined by the duty cycle, which denotes the ratio of the up-level time to
the whole-cycle time within a pulse period. The range of the duty cycle is [0, 1], and its
value is proportional to the velocity and torque.

3.2. State Information of Servo Motor

In this paper, we only consider three commonly used servo motors: the externally
excited DC motor (ExtEx), series DC motor (Series), and three-phase permanent magnet
synchronous motor (PMSM). The state information of the servo motor generally refers to
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some physical quantities that can describe the actual running state of the motor, such as the
angular velocity of the motor, the actual current, the actual voltage, and the motor torque.

The state of an externally excited DC motor can be described by its angular velocity ω,
torque T, armature current iA, excitation circuit current iE, armature voltage uA, excitation
circuit voltage uE, and service voltage user [2], which is denoted as Equation (1).

OExtEx = [ω, T, iA, iE, uA, uE, user] (1)

In the circuit construction of a series DC motor, the armature and the excitation circuit
are connected in series, so their armature values are the same and can be denoted as i. The
input voltage is the sum of armature voltage and excitation circuit voltage, which can be
denoted as u = uA + uE [2]. The state of the series DC motor is denoted as Equation (2).

OSeries = [ω, T, i, u, user] (2)

A permanent magnet synchronous motor consists of three phases; each of them has
a phase voltage and phase current, denoted as ua,ub,uc,ia,ib, and ic, respectively. Because
the dynamic mathematical model of the PMSM in a three-dimensional static coordinate
system is too complex, it is often converted to a DQ two-phase rotor coordinate system,
where the inductance matrix will be simplified to a constant. In DQ coordinates, the voltage
components in the d and q directions are denoted as usd and usq, respectively. The current
components in the d and q directions are denoted as isd and isq, respectively. The rotor flux
is ε. Therefore, the state of the PMSM is denoted as Equation (3).

OPMSM = [ω, T, ia, ib, ic, isq, isd, ua, ub, uc, usq, usd, user, ε] (3)

3.3. Task of Agent

To enable the motor to operate at a given speed or torque, the task of the reinforcement
learning agent is to output an appropriate duty cycle according to the servo error, which
not only depends on the state of the motor but also depends on the target value.

In order to reduce the influence of observation errors on the control strategy and
the learning process of the agent, and to capture some motor running states that cannot
be represented by instantaneous observations, each model input of the algorithm not
only includes the current motor running state observations, but also combines historical
information within a period of time. This includes the observation of the motor running
state and the control output of the agent in the past period. The state input st of each neural
network model can be specifically expressed as (4).

st = [ot−h, at−h, ot−h+1, at−h+1, ..., ot] (4)

where ot represents all operational state observations of the motor at time t, i.e.,
Equations (1)–(3); at represents the action output by the agent at time t; and h indicates the
length of the history information contained in the status input.

The action output of the reinforcement learning agent is the duty cycle. For the exter-
nally excited DC motor, it includes duty cycles of the armature voltage and excitation circuit
voltage, which are denoted as aExtEx = [aA, aE]. For a series DC motor, it only includes
one duty cycle of the input voltage and is denoted as aSeries. For the permanent magnet
synchronous motor, it includes three duty cycles of the A, B, and C phases, respectively,
which is denoted as aPMSM = [aA, aB, aC]. Each output action is a real number between 0
and 1, and as the value increases from 0 to 1, the duty cycle gradually increases.

Therefore, the task of the agent is to output the appropriate duty cycle at at time t
based on the state input st in order to control the motor running under the set target gt. g
denotes the value of the set speed or torque.
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The Interaction between Agent and Environment

Given a task space G including all possible speeds or torques, the reward function
of the model is expressed as r(s, a, g), which calculates the real reward according to the
environment state s, the duty cycle a output by the agent, and the target g. The reward is
given to the agent by the environment after the agent outputs the duty cycle in a specific
state under this target. At the beginning of each turn, the environment obtains an initial
state of the environment s0 and the target g0. In each subsequent turn, the agent makes
decisions according to the environment state st and the target gt to be tracked in the current
time step t. When the agent output duty cycle occurs, the environment feeds back a reward
signal rt = r(st, at, gt) to the agent. At the same time, the environment transitions to the
next state st+1, and gives a new target gt+1. The reward function is calculated based on the
negative of the value of the current servo error.

4. The Proposed Intelligent Control Method
4.1. The Structure of the Control Method

As shown in Figure 3, reinforcement learning based on the intelligent control method
consists of four main components: (1) strategy network, which is used to control the running
state of the motor and output the specific duty cycle; (2) value network, which is used to
evaluate the output value of each duty ratio of the policy network under a specific state
and target trajectory; (3) temperature coefficient, which is used to balance the proportional
relationship between the duty ratio value and the strategy in the loss function, affecting
the degree of emphasis on the exploration and utilization of the algorithm; (4) experience
buffer, which is used to store interactive data between the reinforcement learning agent
and servo motor control environment as training data for strategy improvement.
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Figure 3. The structure of the control method.

4.1.1. Structure and Loss Function of Value Network

As shown in Figure 4, the inputs of the value network are the motor running state st,
target speed or torque gt, and the duty ratio output of the agent at. Its output is Q(st, gt, at),
denoting the reward of the duty cycle in a given state.
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Figure 4. The structure of the value network.

To solve the overvaluation problem of the duty ratio, the algorithm uses two value
networks with identical structures. When estimating the duty cycle value, the output values
of the two networks are compared, and the minimum value is taken as the final output.
In the training process, the objective function of value network J(θ) can be expressed as
Equation (5).

J(θ) = E(st ,gt ,at)∼D,at+1∼π
1
2 [Q(st, gt, at)− r(st, gt, at)− γ(Q∗(st+1, gt, at+1)− αlogπ(at+1|st+1, gt))]

2 (5)

where D represents the experience buffer that stores the interactive data with the environ-
ment, γ is the discount factor, α is the temperature coefficient, and π(at|st, gt) is the policy
function that will be described next.

Equation (5) represents the update objective function of the value network. By sampling
in the replay buffer D, the calculation method used is the negative of the absolute value of the
difference between the target of the control trajectory and the actual control result.

4.1.2. Structure and Loss Function of Strategy Network

As shown in Figure 5, the inputs of the strategy network are the motor state st and
target gt, and its output is the duty ratio after normalization, which is denoted as π(st, gt).
Therefore, the objective function of the strategy network can be expressed as Equation (6).

J(ϕ) = Est∼D [log π( f (εt; st, gt))− Q(st, f (εt; st, gt))] (6)

where εt is noise sampled from a standard normal distribution. Equation (6) represents the
update objective function of the policy network, which adjusts the update objective of the
proposed control algorithm based on the structure and input–output of the value network
and policy network, while the training method remains basically the same.
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Figure 5. The structure of the strategy network.

In order to use the gradient descent method to train the policy network, it is necessary
to make the random policy output of the network derivable. Therefore, the algorithm
uses the reparameterization technique to calculate the output of the strategy network. The
strategy network itself outputs two real values, µ and σ, corresponding to the mean and
standard deviation of the normal distribution, respectively. The value of the output action
at can be calculated via Equation (7).

at = f (εt; st, gt) = εt × σ(st, gt) + µ(st, gt) (7)

4.1.3. Temperature Coefficient and Its Loss Function

The temperature coefficient α controls the relative importance between the instanta-
neous reward and strategy entropy in each time step and affects the randomness of the
optimal strategy. α is a learnable parameter, so only an initial value needs to be provided at
the beginning of training, and then the value of α can be dynamically adjusted during the
course of the algorithm. It can be adjusted using the objective function in Equation (8).

J(α) = E(st ,gt)∼D,at∼π [−α log π(at|ht, st, gt)− αH0] (8)

where H0 represents the target value of entropy, and is set to the negative of the duty cycle
dimension in this paper. The temperature coefficient is updated by iteration, similar to that
for the value network and the actor network. In each network-weight-updating process, the
value network, the actor network, and the temperature coefficient are trained sequentially,
and all the used samples are drawn from the replay buffer. When the entropy of the current
strategy is lower than the target value, the objective function will increase the value of α.
Otherwise, the value of α will be reduced. In this way, the relative importance of policy
entropy in the objective function of the policy network is adjusted to control the direction
of policy improvement.

The pseudocode of the proposed method is summarized in Algorithm 1.
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Algorithm 1 The proposed intelligent control method

Require: Parameters of value network θ1 and θ2, parameter of policy network φ, and
experience pool D.

1: for each iteration do
2: for each environment step do
3: obtain the duty cycle at according to the state

st, the current target gt and the sampling strategy
πφ;

4: execute duty cycle at and then obtain the next
state st+1, the next target gt+1 and the reward rt;

5: store sample (st,at,rt,st+1,gt) into experience pool
D;

6: for each gradient step do
7: evenly extract a batch size sample from D for

training;
8: update value network parameters θ1 and θ2;
9: update policy network parameter φ;

10: update temperature coefficient α;
11: end for
12: end for
13: end for

5. Experiment and Analysis
5.1. Experimental Environment and Setting

To verify the effectiveness of the proposed reinforcement learning control algorithm,
the Python-based Gym Electric Motor was selected, which is an open-source simulation
platform. It provides a simple algorithm interface for reinforcement learning agents like
the OpenAI Gym. Therefore, the interaction between agents and the environment can be
simulated conveniently, which provides favorable conditions for researchers to develop
and test reinforcement learning control algorithms [30].

As shown in Table 1, six common tasks were selected to verify the performance of
our method.

Table 1. The used tasks.

Name State Dimension Target Duty Cycle Dimension Motor

TC-ExtExDc 7 Torque control 2 Externally excited DC motor
SC-ExtExDc 7 Speed control 2 Externally excited DC motor
TC-PMSM 14 Torque control 3 Three-phase permanent magnet synchronous motor
SC-PMSM 14 Speed control 3 Three-phase permanent magnet synchronous motor

TC-SeriesDc 5 Torque control 1 Series DC motor
SC-SeriesDc 5 Speed control 1 Series DC motor

Aside from the proposed method, four other similar methods are selected to compare
the performance. Firstly, the depth deterministic policy gradient (DDPG) and twin delay
depth deterministic strategy gradient (TD3) of two deep reinforcement learning algorithms
are selected. Secondly, the difference value input (DVI) and state input without special
processing (SI) are also taken into account as feature extraction methods. Therefore, we
combined the reinforcement learning algorithm and feature extraction method to obtain
the four comparison methods, which are termed as DDPG-DVI, DDPG-SI, TD3-DVI, and
TD3-SI, respectively.

Both the strategy network and value network of each method contain two hidden
layers, and each of them has 512 neurons. The ReLU activation function is used. The
historical input length of the value network is 20. The chosen batch size is 256. The
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Adam optimizer [31] is used to optimize network parameters for gradient descent, and the
learning rate of the optimizer is set to 0.00003. The discount reward factor is 0.99.

5.2. Comparison Experiment for Control Performance

In each control task, the same control target is used to compare the control performance
of all comparison algorithms. The total length of each test was 10,000 time steps, and each
control algorithm repeated the process under 10 identical random seeds. The mean absolute
error (MAE) during the test was used as a measure of the control accuracy.

Figure 6 shows the control performance of all the control algorithms in each control
task under the same target trajectory when the random seed is 0, where the horizontal coor-
dinate represents the number of time steps in the test process, and the vertical coordinate
represents the actual size of the target state quantity of the control task. By measuring the
distance between the actual running state and the target trajectory of each control algorithm
in the control process, we can roughly see the difference in the control effect among various
algorithms. The blue lines represent the control targets, while the lines of other colors
represent the actual control results of various algorithms. The smaller the gap, the stronger
the ability of the algorithm to control the motor to track the reference trajectory; and the
larger the gap, the weaker the ability of the algorithm to control the motor to track the
target trajectory. Table 2 shows the mean and standard deviation of the mean absolute error
in tests based on 10 different random seeds.

Table 2. Mean and standard deviation of control error.

Control Task TD3-SI TD3-DVI DDPG-SI DDPG-DVI Ours

TC-ExtExDc 0.029 ± 0.002 0.021 ± 0.006 0.022 ± 0.004 0.035 ± 0.006 0.016 ± 0.002
TC-PMSM 0.320 ± 0.014 0.474 ± 0.016 0.312 ± 0.012 0.434 ± 0.019 0.308 ± 0.014
TC-SeriesDc 0.035 ± 0.004 0.048 ± 0.002 0.045 ± 0.003 0.029 ± 0.004 0.013 ± 0.002
SC-ExtExDc 13.509 ± 1.351 16.785 ± 1.262 14.827 ± 1.316 18.949 ± 1.401 12.60 ± 1.229
SC-PMSM 29.591 ± 4.053 38.271 ± 4.231 32.670 ± 4.122 43.365 ± 5.032 25.590 ± 3.653
SC-SeriesDc 12.478 ± 1.133 19.503 ± 1.231 18.549 ± 1.393 21.798 ± 1.538 11.251 ± 1.513

As shown in Figure 6, for the torque control, the performance difference between
control methods is minimal. This may be because the response speed of the current loop
is fast, and so no algorithms can easily open the gap. In the task of speed control, it can
be clearly seen that the distance between the motor running trajectory controlled by the
proposed algorithm and the target trajectory is the closest. Compared with other algorithms,
our algorithm has certain advantages regarding control accuracy. The difference in control
accuracy between algorithms may be more highly reflected in control trajectory changes
due to the slow response speed of the speed control. In general, the proposed soft actor–
critic algorithm based on target trajectory coding maintains the closest distance to the
target trajectory. No matter how the target trajectory changes, the proposed algorithm can
respond to the change quickly and adjust the running state of the motor in time.

As can be seen from Table 2, in both torque control and speed control, our algorithm
obtains the smallest mean absolute error in all tasks, indicating that compared with the
other algorithms, the proposed algorithm has the highest control accuracy under a regular
control trajectory, although it has a higher standard deviation in individual tasks. This
shows that the performance of the control algorithm may not be as stable as that of similar
algorithms, but, in general, it achieves the best effect.
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Figure 6. The control performance on six tasks.
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5.3. Comparison Experiment for Training Speed

The comparison experiment for training speed uses six control tasks provided by Gym
Electric Motor (from Cont-TCExtExDc-v0, Cont-SC-ExtExDc-v0, Cont-TC-PMSM-v0, Cont-
SC-PMSM-v0, Cont-TCSeriesDc-v0, and Cont-SC-SeriesDc-v0). The experiment records
the mean absolute error between the target trajectory and the actual running state of the
motor in the control task from the initialization state of the algorithm to a certain training
time. The target trajectory includes the step signal, asymmetric triangle signal, and sine
wave signal, and it randomly switches between the three forms. The total training time is
106 time steps. In the whole process of the experiment, the default random initialization
parameters provided by Gym Electric Motor were used, and to ensure that the algorithm
performance would not deviate too much from the actual performance during the test, we
used 10 fixed random seeds to repeat the experiment.

In order for the MAE to better reflect the changing trend in the algorithm’s control
ability, a sliding window of size 1000 was set up when drawing a picture of the experimental
results, and the MAE in the window was calculated. Figure 7 shows the learning process of
all algorithms, where the horizontal coordinate represents the number of time steps in the
training process, and the unit is one million. The coordinate represents the MAE between
the actual running state of the motor and the target trajectory. The curve represents the
mean of all experimental results, and the shaded part represents the standard deviation of
the experimental results.

From Figure 7, we can see that the convergence rate of the proposed method is faster
than others for all tasks. Regarding torque control, all methods can converge within
0.3 million steps and obtain stable performance. Regarding speed control, the convergence
rates are slower, and most of them need 0.7–0.8 million steps to converge. Moreover, their
performance is less stable. This is because speed control is more difficult than torque control.

 !"#

$%&'()

$%&'%*)

%%+,'()

%%+,'%*)

-.-/0

(a) TC-ExtExDc

 ! "#

$%&'

()*+,-

()*+).-

))/0+,-

))/0+).-

(b) TC-PMSM

Figure 7. Cont.
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Figure 7. The convergence procedures of each method on different tasks.

5.4. Inference Speed Test

To test the inference speed, we recorded the time taken by the agent’s policy network
after receiving the environmental state input to make the output control instructions. The
results in Table 3 show the average reasoning duration of the proposed algorithm after
10,000 repetitions of neural network reasoning. As shown in Table 3, under the hardware
condition of GeForce RTX 3060, if the servo motor requires a control frequency in the
range of 6000–10,000, the computational efficiency of the proposed algorithm can meet
the requirements.
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Table 3. Mean reasoning time (unit: 1 × 10−5 s).

Control Task Time

TC-ExtExDc 7.87805
TC-PMSM 8.16622

TC-SeriesDc 7.80392
SC-ExtExDc 7.80206
SC-PMSM 8.19868

SC-SeriesDc 7.85899

6. Conclusions

The selection of parameters for traditional control methods is difficult and cannot
adapt to dynamic changes in the operating condition. Therefore, to solve these problems,
we proposed a intelligent control method for servo motors based on reinforcement learning.
This method trains an agent to produce the duty cycle according to the motor’s state and
target speed or torque. Based on a Gym Electric Motor test environment, we verified the
performance of the proposed algorithm. The experimental results of six different control
tasks show that the control accuracy can be improved in comparison to previous algorithms.
In future, some methods to reduce the scale of the neural network could be considered in
order to improve the computational efficiency of the algorithm.
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