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Abstract: The minimum-cost arborescence problem is a well-studied problem. Polynomial-time
algorithms for solving it exist. Recently, a new variation of the problem called the Precedence-
Constrained Minimum-Cost Arborescence Problem with Waiting Times was presented and proven
to be NP-hard. In this work, we propose new polynomial-size models for the problem that are
considerably smaller in size compared to those previously proposed. We experimentally evaluate
and compare each new model in terms of computation time and quality of the solutions. Several
improvements to the best-known upper and lower bounds of optimal solution costs emerge from
the study.
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programming

1. Introduction

The Minimum-Cost Arborescence (MCA) problem asks to find a directed minimum-cost
spanning tree (i.e., an arborescence) rooted at vertex r—the root of the arborescence—in
a directed graph. Chu and Liu [1] and Edmonds [2] proposed the same polynomial time
algorithm to solve the problem, independently from each other. A faster implementation
was later proposed by Gabow and Tarjan [3], and a different polynomial time algorithm [4]
that operates directly on the cost matrix was introduced by Bock [5].

Several variations of the MCA problem were introduced in the literature since its
introduction. Given a directed graph with a resource associated to each of its vertices,
the Resource-Constrained Minimum-Weight Arborescence problem aims at retrieving an arbores-
cence with minimum total cost, with the additional constraint that outgoing arcs from each
vertex have to have a cost at most equal to that of the resource of the vertex itself (Fischetti
and Vigo [6]). Given a weighted directed graph G = (V, A) with a vertex r ∈ V identified
as the root and an integer p, the p-Arborescence Star problem asks to identify a minimum-cost
arborescence rooted at r. The arborescence spans the set of vertices H ⊆ V\{r} of size
p, and there must be an assignment between each vertex v ∈ V\{H ∪ r} and one of the
vertices in H (Pereira et al. [7], Morais et al. [8], Hakimi [9]). Given a directed graph with a
number assigned to each vertex, the Restricted Fathers Tree problem seeks a minimum-cost
arborescence, with the constraint that each path between a vertex and the root has to touch
vertices with ranking not lower than the vertex (Guttmann-Beck and Hassin [10]). Given a
directed graph with a vertex r designed as the root and a set Av ⊂ V for every v ∈ V\{r}
such that r ∈ Av, the Restricted Ancestors Tree problem aims at finding a minimum-cost
arborescence rooted at r, with the additional constraint that vertex i can be an ancestor of
vertex j only when i ∈ Aj (Guttmann-Beck and Hassin [10]). The Minimum Spanning Tree
Problem with Conflict Pairs (Carrabs and Gaudioso [11]) is a variation of the classic Minimum-
Spanning Tree problem (Kruskal [12]), characterized by an undirected graph and a set S

Algorithms 2024, 17, 12. https://doi.org/10.3390/a17010012 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010012
https://doi.org/10.3390/a17010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-3283-6131
https://orcid.org/0009-0003-9368-1094
https://orcid.org/0000-0002-0229-0465
https://doi.org/10.3390/a17010012
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010012?type=check_update&version=1


Algorithms 2024, 17, 12 2 of 16

containing conflicting pairs of conflicting edges. The objective is to retrieve a minimum-
cost spanning tree with at most one edge from the pair in S. The Capacitated Minimum
Spanning Tree problem, introduced in Gouveia and Lopez [13], is another variation, charac-
terized by non-negative integer node demands qj for each node j ∈ V\{r} and a budget Q
for the sum of the weights in any root–leaf path. Further related problems can be found
in Frieze and Tkocz [14], Fertin et al. [15], Eswaran and Tarjan [16], Li et al. [17], Kawatra
and Bricker [18], Galbiati et al. [19], Bérczi et al. [20], Bang-Jensen [21], Yingshu et al. [22],
Carrabs et al. [23], Darmann et al. [24] and Viana and Campêlo [25]. The Sequential Ordering
Problem, introduced in Escudero [26], is relevant to the present study and can be described
as follows. Given a weighted graph and a set of precedence constraints between vertex
pairs and start and end vertices, the goal is to find a Minimum-Cost Hamiltonian Path that
respects the precedence constraints. Solving algorithms can be found in Moon et al. [27],
Balas et al. [28], Hernádvölgyi [29], Escudero et al. [30], Gambardella and Dorigo [31], Karan
and Skorin-Kapov [32], Ascheuer et al. [33], Ascheuer et al. [34], Montemanni et al. [35] and
Fiala Timlin and Pulleyblank [36]. The Precedence-Constrained Minimum-Cost Arborescence
is an extension of the MCA problem first introduced in Dell’Amico et al. [37]. Precedence
constraints have the following meaning. A precedence set R containing pairs of vertices is
given. For each (s, t) ∈ R, if both vertices s and t are on a same path of the arborescence,
then vertex s has to be visited before vertex t. The optimization seeks to find an arbores-
cence of minimum total cost such that all the precedence constraints are satisfied. Several
models for the problem, all based on Mixed Integer Linear Programming (MILP), were
proposed. We refer the interested reader to Chou et al. [38].

The Precedence-Constrained Minimum-Cost Arborescence problem with Waiting Times
(PCMCA-WT)—which is the object of the current paper—was first introduced in Chou et al. [38],
where the problem was shown to be NP-hard through a reduction to the Rectilinear Steiner
Arborescence problem (Shi and Su [39]), and different MILP models were proposed. The prob-
lem is about retrieving an arborescence where traveling times are present among vertices
and temporal precedences relative to the time of visit have to be fulfilled among pairs
of vertices. Waiting times at vertices are allowed to enforce such precedences, but these
waiting times are accounted for in the objective function together with travel times. The op-
timization is to minimize such an objective function.

The organization of the paper is as follows. The PCMCA-WT is formally defined in
Section 2. Section 3 describes a new family of compact models for the problem (character-
ized by a polynomial number of variables and constraints). Section 4 discusses the results
of a vast experimental campaign where the new models are compared to those previously
disclosed in the literature. Some conclusions are the content of Section 5.

The contributions of the paper can be summarized as follows:

• New models for the PCMCA-WT that are polynomial in size and are characterized
by a substantially smaller memory footprint compared to the known models are
introduced. This result is achieved by exploiting some theoretical properties emerging
from the current study and previously unobserved.

• The new models are solved both with MILP and Constraint Programming (CP) solvers.
The experimental results substantially improve the state of the art for the instances
commonly adopted in the literature. Out of the 88 open instances from the literature,
improved lower bounds are provided for 71 instances and improved upper bounds
are provided for 80 instances. Finally, seven instances are closed for the first time.

2. Problem Description

The PCMCA-WT can be described according to the following definitions. A directed
graph G = (V, A, R) is given, with V = {1, . . . , n} being a set of vertices and A ⊆ V × V
a set of arcs, with a non-negative cost cij associated with every arc (i, j) ∈ A. It represents
the traversing time for that arc. The set R ⊂ V × V contains precedence relationships. Let
dj be the time step at which the flow enters vertex j ∈ V, with dr = 0. For any (s, t) ∈ R,
we impose dt ≥ ds. This implies that the flow cannot enter vertex t before entering vertex s,
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but it can wait at any vertex before servicing it. We define wj as the waiting time at vertex
j ∈ V, with wr = 0. The waiting time at a vertex j that is visited after another vertex i in the
current solution is defined as wj = dj − (di + cij). Given a vertex r ∈ V being the root of
the arborescence, the target of the optimization is to retrieve an arborescence T (with root r)
that provides the lowest possible sum of the total cost plus the total waiting time.

An example of PCMCA-WT is provided in Figure 1. In the instance (top part of the
figure), the precedence relationship (1, 3) ∈ R is represented as a dashed arrow, while
in the bottom part of the figure, an optimal solution for the given instance is shown.
The corresponding values of di and wi are exposed near each vertex. The cost of the
solution is 8 (obtained by adding the cost of the traversed arcs and the waiting times payed
at vertices). In the example, observe the waiting time of 1 unit at vertex 3 (d1 = 4, d3 = 3
and (1, 3) ∈ R).

r

1 2

3

4 1

6
7

8

2

r

dr = 0
wr = 0

2
d2 = 1
w2 = 0 1

d1 = 4
w1 = 0

3
d3 = 3
w3 = 1

1 4

2

Figure 1. Instance of the PCMCA-WT problem and relative solution. The instance is depicted in
the top of the figure, with its arc costs. The precedence relationship (1, 3) ∈ R is depicted through a
dashed arrow. The bottom part of the figure depicts the optimal arborescence of cost 8.

3. New Compact Models

An MILP model for the PCMCA-WT that is polynomial in size was recently proposed
in Chou et al. [38]. The model is based on a multicommodity flow formulation [40] that
extends the flow conservation constraints in order to satisfy the precedence relationships
between vertex pairs. However, the model suffers from computational limitations caused
by the large number of variables and constraints, both in the order of O(n3). In this section,
we derive two new models for the PCMCA-WT that are also polynomial in size. Compared
to the previous models, the new ones use less variables and constraints for the description
of the precedence relationships among pairs of vertices. This solves the memory issues
that were encountered when using the multicommodity flow model originally introduced
in [38], making compact models competitive against other solutions.
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3.1. The Complete Model

We first define VR as the set of vertices of V involved in at least one precedence
relation as a head. Formally, VR = {t ∈ V | ∃s ∈ V : (s, t) ∈ R}. Let xij be a binary variable
modeling if arc (i, j) ∈ A is visited: xij = 1 if (i, j) ∈ T, and 0 otherwise. Let yi be an integer
variable used to identify the position of vertex i ∈ V along the only path of the arborescence
connecting the root r to vertex i itself. Let ut

j be a binary variable with indices representing

vertex j ∈ V and vertex t ∈ VR. This variable will be used to model precedences. Let dj be
a continuous variable containing entering time of the flow at vertex j ∈ V. Finally, let wj be
a continuous variable modeling the time waited at vertex j before letting the flow enter the
node itself.

An MILP model for the PCMCA-WT is as follows.

minimize ∑
(i,j)∈A

cijxij + ∑
i∈V

wi (1)

subject to: ∑
(i,j)∈A

xij = 1 ∀j ∈ V\{r} (2)

yi − yj + 1 ≤ n(1 − xij) ∀(i, j) ∈ A : j ̸= r (3)

ut
s = 0 ∀(s, t) ∈ R (4)

ut
t = 1 ∀t ∈ VR (5)

ut
j − ut

i − xij ≥ −1 ∀t ∈ VR, (i, j) ∈ A (6)

dr = 0 (7)

wr = 0 (8)

dj ≥ di − M + (M + cij)xij ∀(i, j) ∈ A (9)

wj ≥ dj − di − M + (M − cij)xij ∀(i, j) ∈ A (10)

dt ≥ ds ∀(s, t) ∈ R (11)

xij ∈ {0, 1} ∀(i, j) ∈ A (12)

yi ∈ {0, 1, . . . , n − 1} ∀i ∈ V (13)

ut
j ∈ {0, 1} ∀t ∈ VR, j ∈ V (14)

di ≥ 0 ∀i ∈ V (15)

wi ≥ 0 ∀i ∈ V (16)

The objective function (1) minimizes the sum of the total travel and waiting times,
as described in Section 2. The set of constraints (2) enforces that each vertex apart from the
root needs to have one incoming arc. Constraints (3) model subtour elimination and dictate
that any feasible solution cannot contain any cycles. The set of constraints (2) and (3) work
together in order to enforce only solutions in the form of an arborescence rooted at vertex r.
Constraints (4), (5) and (6) regulate precedence constraints among the vertices visited in
a same branch of the tree. The logic behind these constraints will be explained in detail
in Section 3.1.1, entirely devoted to this purpose. Constraints (7) and (8) initialize the
distance traveled and the waiting time at the root r to 0. Constraints (9), activated once an
arc (i, j) ∈ A is selected, force the arrival time at vertex j to be not lower than the arrival
time vertex i plus the travel time cij. Note that here and in the following set of constraints,
M is an arbitrarily large constant. Constraints (10) push the waiting time at vertex j to
be no smaller than the the service time at vertex j minus the service time at vertex i plus
cij. Constraints (11) impose that the service time at vertex t cannot be smaller than the
service time at vertex s for all (s, t) ∈ R. This set of constraints, in conjunction with the
previous ones, regulates the value of the waiting times. Finally, constraints (12)–(16) define
the domain of the variables.

The value of the large constant M, appearing in constraints (9) and (10), is an approxi-
mation by excess of the optimal cost of the problem. In our case, the solution cost of solving



Algorithms 2024, 17, 12 5 of 16

the instance as a Sequential Ordering Problem [34] using a nearest neighbor algorithm [41]
is taken as the value of M. This is a valid upper bound for the optimal cost of a PCMCA-WT
instance, being a valid solution for the Sequential Ordering Problem a simple directed path
that includes all the vertices of the graph, with the constraint that t never precede s for all
(s, t) ∈ R. This implies that dt ≥ ds for all (s, t) ∈ R.

The model proposed in this section has a considerably smaller memory footprint
compared to the polynomial-size model proposed for the PCMCA-WT in [38]. In detail,
the number of variables is reduced from O(n3) to O(n2). The number of constraints remains
instead in the order of O(n3), although now the hidden multiplicative factor depends on the
number of vertices involved in at least one precedence as a head, instead of all the vertices.
This makes the number of constraints much smaller. All together, these improvements
reduce substantially the memory footprint of the model, with great advantages for practical
tractability.

3.1.1. The New Precedence Constraints

The approach proposed in this work to deal with precedences is similar to the idea
originally introduced in Dell’Amico et al. [42] for the Precedence-Constrained Minimum-Cost
Arborescence (PCMCA) problem. Constraints (4) and (5) impose the values of ut

s and ut
t to

be 0 and 1, respectively, for all (s, t) ∈ R, and t ∈ V : ∃(s, t) ∈ R. On the other hand, the set
of constraints (6) enforces that ut

j ≥ ut
i whenever arc (i, j) ∈ A is selected to be part of the

solution. These concepts together forbid any violation of precedence constraints along a
same path of the solution arborescence T.

Figure 2 shows an example of how a precedence-violating path is detected using
the set of constraints (6). In the figure, the range/value of variable ut

j is written on the
left of each vertex, and black arcs show the arcs that are part of the solution, while the
red arcs show a precedence relationship (s, t) ∈ R. In the figure, constraints (6) enforce
that ut

1 and ut
2 have to be greater than or equal to 1. However, once ut

s ≥ 1 is imposed
through this logic, the constraint (4) relative to variable ut

s is violated, rendering therefore
the solution infeasible.

tut
t = 1

1ut
1 ≥ 1

2ut
2 ≥ 1

sut
s = 0

xt1 = 1

x12 = 1

x2s = 1

R

Figure 2. Example of how a precedence-violating path is detected using constraints (4)–(6).

3.2. The Reduced Model

It can be observed that by removing the set of constraints (4)–(6) from the model
described in Section 3.1, the set of constraints (11) in general still enforces the precedence
relationships between s and t with (s, t) ∈ R, apart from the following special case. A di-
rected path that visits t before visiting s implies that dt ≤ ds, which violates the set of
constraints (11). However, the set of constraints (11) might fail to enforce a precedence
relationship between s and t if a zero-cost path in G that reaches s from t exists. Therefore,
variables ut

j and constraints (4)–(6) need to be defined only for those t for which there exist
at least an s for which (s, t) ∈ R and a zero-cost path that connects t to s is available in G.
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The identification of such pairs (s, t) ∈ R for which a zero-cost path exists has, however,
to be performed in a preprocessing phase, adding some complexity to the overall process.
The procedure we devised for the retrieval of such pairs will be detailed in Section 3.2.1.

The reduced set of constraints can be described formally as follows. Let G0 = (V0, A0, R)
be the graph obtained from G by considering only arcs with cost zero and the relevant
nodes. Therefore, A0 = {(i, j) ∈ A | cij = 0} and V0 = {i ∈ V | ∃j ∈ V : (i, j) ∈
A0 or (j, i) ∈ A0} (a node is considered relevant for the residual precedence constraints
if it has at least an outgoing or incoming zero-cost arc). Let SPij ⊆ A0 be a shortest path
that starts from i to j in G, and let c(SPij) = ∑

(k,l)∈SPij

ckl be its cost. For each t ∈ VR, let

V0(t) = {s ∈ V0 | ∃ (s, t) ∈ R with c(Pts) = 0} be the set of vertices involved in a prece-
dence constraint with t as a head, and such that a zero-cost path from t to s exists. Finally,
let VR

0 = {t ∈ VR |V0(t) ̸= ∅} be the set of vertices involved as a head in at least one
precedence constraint for which an inverse zero-cost path exists.

The Reduced model can be obtained from the Complete model described in Section 3.1
by substituting constraints (4), (5), (6) and (14) with the following specialized version of
them, characterized by a reduced domain:

ut
s = 0 ∀t ∈ VR

0 , s ∈ V0(t) (17)

ut
t = 1 ∀t ∈ VR

0 (18)

ut
j − ut

i − xij ≥ −1 ∀t ∈ VR
0 , (i, j) ∈ A0 (19)

ut
j ≥ 0 ∀t ∈ VR

0 , j ∈ V0 (20)

Notice that the domain of the u variables is reduced according to (20).
Compared to the model introduced in Section 3.1, and given that zero-cost paths

are rare, the Reduced model uses less variables and constraints (although the theoretical
complexity remains unchanged), thus further reducing the memory footprint. However, it
might be characterized by a weaker linear relaxation due to the elimination of redundancy
in the constraints, on top of having the burden of a preprocessing phase.

3.2.1. Selecting the Precedence Constraints involving a Zero-Cost Path

Zero-cost paths in G0 that start from t and end in s for some (s, t) ∈ R can be retrieved
by running the procedure described in Algorithm 1.

Algorithm 1 Retrieve the Relevant Zero-Cost Paths from an Instance
1: Compute the shortest path SPij for each pair of vertices i, j of G0

2: VR
0 = ∅

3: for all t ∈ V0 do
4: V0(t) = ∅
5: for all s ∈ V0 : (s, t) ∈ R do
6: if C(SPij)=0 then
7: V0(t) = V0(t) ∪ {s}
8: end if
9: end for

10: if V0(t) ̸= ∅ then
11: VR

0 = VR
0 ∪ {t}

12: end if
13: end for

Line 1 can be implemented by running the algorithm of Floyd-Warshall [43] to retrieve
the shortest path between each pair of vertices of a graph. The algorithm has a computa-
tional complexity of O(n3). Lines 2–13 scan the results to populate the sets V0(t), containing
vertices involved in relevant zero-cost paths for each vertex t ∈ V0, and the set VR

0 , with a
total computational complexity of O(n2). Therefore, the overall computational complexity
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of the procedure remains polynomial, in the order of O(n3). This guarantees negligible
computation times for the graphs considered in the study and in real applications of the
problem, for which n does not exceed 700.

3.3. Solving the New Models via Constraint Programming

Modern Constraint Programming solvers such as Google OR-Tools CP-SAT [44]—the
one adopted for the present work—are able to solve compact MILP models efficiently [45].
In particular, these solvers are very effective in treating logical inferences that can be
expressed effectively without the use of big-M coefficients (that weaken linear relaxations
and consequently worsen solving times) in their syntax. The two MILP models discussed
in Sections 3.1 and 3.2 use such a technique to describe the nonlinear relation between
the variable xij and the set of variables {yi, ut

j, dj, wj} in order to turn the constraints off
whenever the value of xij is equal to zero. In this section, we will therefore manipulate the
models previously introduced in order to transform the constraints involving big-Ms into
logical inferences. Notice that this operation mentioned above is not strictly required, since
CP-SAT is able to deal with big-M constraints natively, but according to some preliminary
tests, using logical inferences enhances the performance of the solver. Conversely, MILP
solvers such as CPLEX [46]—the one adopted for the present work—that are also able
to treat logical inferences without big-M constraints present a strong degradation of the
performances when big-M constraints are removed. For this reason, in the experiments
reported in Section 4, we will use big-M constraints for the MILP solver and logical
inferences for the CP solver.

Finally, it can be observed that CP solvers only accept integer-valued variables, which
means that the value of the cijs should be discretized before being passed to the model
in case they are not integer. See Montemanni and Dell’Amico [45] for a deeper traction.

In detail, the Complete model can be adapted by modifying constraints (3), (6), (9)
and (10), which are substituted by the following ones:

xij =⇒ yj = yi + 1 ∀(i, j) ∈ A : j ̸= r (21)

xij =⇒ ut
j ≥ ut

i ∀t ∈ VR, (i, j) ∈ A (22)

xij =⇒ dj = di + wj + cij ∀(i, j) ∈ A (23)

Constraints (21) implement subtour elimination. The nonlinear relationship yj =
(yi + 1)xij is modeled by setting the value of yj to yi + 1 if xij = 1 (true). Technically,
the logical implication is implemented through the OnlyEnforceIf construct of the CP-SAT
solver [44]. Constraints (22) are the precedence-enforcing constraints that set the value of ut

j
to be greater than or equal to ut

j if xij = 1 and model the nonlinear relationship ut
j ≥ ut

i xij.
Constraints (23) set the value of dj to di + wj + cij if xij = 1. The set of constraints (23) deals
therefore with the nonlinear relationship (dj − di − wj − cij)xij = 0. Notice that the two
constraints (9) and (10) are now combined in a single set of constraints.

Analogously, it is possible to obtain a version of the Reduced model based on logical
inferences by changing constraints (3) to (21) and substituting constraints (19), (9) and (10)
with the following new ones:

xij =⇒ ut
j ≥ ut

i ∀t ∈ VR
0 , (i, j) ∈ A0 (24)

xij =⇒ dj = di + wj + cij ∀(i, j) ∈ A0 (25)

Notice that constraints (24) and (25) are the versions of (22) and (23) specialized to the
reduced graph G0 for what concerns zero-cost precedences and that constraints (25) cover
again both the sets (9) and (10).
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4. Computational Experiments

The experimental settings and conditions are described in Section 4.1 together with the
instances adopted for the tests. The detailed results are instead presented and commented
on in Section 4.2.

4.1. Experimental Settings

The computational experiments we present in order to position the proposed mod-
els within the existing literature are based on the benchmark instances of TSPLIB [47],
SOPLIB [48] and COMPILERS [49]. All these datasets had originally been proposed for
the Sequential Ordering Problem, and they are commonly adopted in the PCMCA-WT
literature so far, see [38]. In total, the benchmark sets considered contain 116 instances
with sizes ranging between 9 and 700 vertices (and an average of 248 vertices). Currently,
the benchmark set has a total of 88 open instances (i.e., without a known optimal solution).

The MILP solver adopted is CPLEX v12.8 [46] with standard settings. The CP solver
used is OR-Tools v9.5 [44] CP-SAT, also run with standard settings. The computation time
of both solvers is limited to 1 h, while the preprocessing time required for the Reduced
methods is not accounted for, being in the order of fractions of a second for all the instances
considered.

The best-known solutions used as reference are those appearing in [38]. The value
reported is for each instance the best of the results achieved by the three models introduced
there. This biases the comparison in favor of the old methods, since—according to the No
Free Lunch Theorem [50]—taking the best of different approaches might give a substantial
advantage. Among the three ideas disclosed in [38], the one improved in the present work
had shown some potential, however, it was the weakest of the set due to severe scalability
issues (now solved, see Section 3). On the other hand, the results of [38] were obtained
on an Intel i7-8550U processor running at 1.8 GHz and with 8 GB of RAM, while the new
experiments are obtained on Intel Xeon Platinum 8375C running at 2.9 GHz and using up
to 16 GB of RAM. This gives a hardware advantage to the new models, somehow balancing
back the comparison. Notice that the newly proposed models are a direct improvement
aiming at overcoming the crucial scalability of one of the three models of [38], making
computational fairness considerations less central, in our view.

4.2. Results

An aggregated summary of the results is presented in Table 1. The average optimality
gap across all the instances for which all the models were able to find a feasible/optimal
solution is reported under Average optimality gap. The average solution time among all
the instances that were solved to optimality by all the models can be found under Average
solution time. The detailed results of each model can be found instead in Tables 2–4, where
the following data are reported for each instance. The name and size can be found in
the columns with these names. The best-known bounds found in [38] are reported in
the column Best-Known [38], where LB shows the best lower bound found, and UB the
best-known solution. For each model, the following columns are displayed. The lower and
upper bound can be found in the column with these names. The optimality gap, computed
as UB−LB

UB , is reported in the column Gap. The solution time in seconds, which is reported
only for those instances that are closed in the given time, can be found in the column Time.
Entries in bold indicate new best-known lower or upper bounds. Finally, the name of the
instances for which optimality is proven for the first time in this work is highlighted in
bold across the tables.

Comparing the average optimality gap of each model, it can be observed that the
MILP solver run on the Complete model has an optimality gap of 0.206 on average (0.418
when all the instances solved by the model are considered) but fails to solve two instances,
as it runs out of memory. The MILP solver on the Reduced model has an optimality gap of
0.153 on average (with a 25.7% improvement over the previous model) and an optimality
gap of 0.340 on average (an 18.7% improvement) across all the instances. The MILP solver
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on the Reduced model also runs out of memory on one instance. When considering the
CP solver, the Complete model shows an optimality gap of 0.159 on average (with a 22.8%
improvement), with an optimality gap of 0.157 on average across all the instances. However,
the largest instances, with size larger than 200 or with a very dense precedence graph, are
not solved, since the model runs out of memory due to the large number of constraints (19).
When solving the Reduced model, the CP solver achieves an optimality gap of 0.122 on
average (with a 40.7% improvement), with an optimality gap of 0.286 averaged across all
the instances.

Table 1. Summary of the results achieved with each solver/model combination.

MILP Solver CP Solver

Complete Reduced Complete Reduced
Model Model Model Model

Average optimality gap 0.206 0.153 0.159 0.122
Average solution time 690.8 270.8 166.4 36.4
New best-known lower bounds 2 24 13 32
New best-known upper bounds 1 15 10 54
New optimal solutions 0 0 7 7

In terms of solution time, and comparing the instances that are optimally solved by all
models (27 instances), using the MILP solver takes the Complete model to a solution time of
690.8 s on average, while the Reduced takes 270.8 s on average (with a 60.8% improvement).
When the CP solver is used, the Complete model has a solution time of 166.4 s on average
(with a 75.9% improvement), while solving the Reduced model takes 36.4 s on average (with
a 94.7% improvement). Cross-comparing a same model when treated by the two different
solvers, it emerges that generally the CP models outperform the MILP models on instances
with medium to high density precedence graphs.

In terms of solution costs, the Reduced model solved by an MILP solver finds new best-
known lower bounds for 24 out of 88 instances (27.3%) compared to the 2 retrieved by the
Complete model solved by the same solver. Furthermore, the Reduced model finds new best-
known upper bounds for 15 (17.1%) compared to the 1 only found by the Complete model.
This indicates that the strength of the linear relaxation of the model is not drastically affected
after removing a subset of the variables and constraints from the model. Furthermore,
this shows that the Reduced model is generally easier to solve by the MILP solver adopted,
and therefore the solver is able to find new bounds more frequently compared to solving the
Complete model. When considering the CP solver, the Reduced model finds new best-known
lower bounds for 32 (36.4%), while the Complete model finds new lower bounds for 13
(14.8%). For new best-known upper bounds, solving the Reduced model leads to new 54
new bests (61.4%), while solving the Complete model leads to 10 new bests (11.4%). This
indicates that the Reduced model is generally more effective to solve by the CP solver when
compared to the Complete model. Moreover, the use of the CP solver led to seven newly
proven optimal solutions. In general, using the MILP solver seems to produce better lower
bounds, while the CP solver is better at finding lower cost solutions.

In summary, the computational results show that the Reduced model generally out-
performs the Complete model independently of the solver adopted. This is due to the fact
that the Reduced model has a substantially smaller number of variables and constraints,
giving an advantage to the solvers. Moreover, the CP solver performs better than the MILP
solver in terms of the quality of the solutions, the average solution time and the average
optimality gap. Furthermore, the CP solver finds new best-known lower/upper bounds
for some instances.
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Table 2. Computational results for TSPLIB instances.

MILP Solver CP Solver

Instance Complete Model Reduced Model Complete Model Reduced Model

Name Size Best-Known [38] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s]

br17.10 18 [35, 44] 39 44 0.114 - 40 44 0.091 - 44 44 0.000 46.629 44 44 0.000 56.628
br17.12 18 [35, 44] 41 44 0.068 - 41 44 0.068 - 44 44 0.000 22.604 44 44 0.000 44.550
ESC07 9 1906 1906 1906 0.000 0.028 1906 1906 0.000 0.070 1906 1906 0.000 0.023 1906 1906 0.000 0.025
ESC11 13 2174 2174 2174 0.000 0.125 2174 2174 0.000 0.114 2174 2174 0.000 0.107 2174 2174 0.000 0.077
ESC12 14 1138 1138 1138 0.000 0.035 1138 1138 0.000 0.030 1138 1138 0.000 0.034 1138 1138 0.000 0.037
ESC25 27 1158 1158 1158 0.000 6.185 1158 1158 0.000 1.945 1158 1158 0.000 0.910 1158 1158 0.000 0.833
ESC47 49 747 747 747 0.000 59.760 747 747 0.000 22.153 747 747 0.000 3.886 747 747 0.000 2.708
ESC63 65 56 56 56 0.000 24.600 56 56 0.000 57.347 56 56 0.000 1.517 56 56 0.000 2.465
ESC78 80 1196 1196 1196 0.000 2410.483 1196 1196 0.000 257.609 1196 1196 0.000 100.511 1196 1196 0.000 18.971
ft53.1 54 4089 4089 4089 0.000 1764.235 4089 4089 0.000 2023.553 4089 4089 0.000 215.480 4089 4089 0.000 291.099
ft53.2 54 [4135, 4284] 4112 4317 0.047 - 4161 4334 0.040 - 4102 4284 0.042 - 4103 4284 0.042 -
ft53.3 54 [4623, 5457] 4746 5425 0.125 - 4799 5279 0.091 - 4493 60 0.161 - 4508 5484 0.178 -
ft53.4 54 [5657, 6439] 5922 6420 0.078 - 5923 6420 0.077 - 5338 6502 0.179 - 5357 6420 0.166 -
ft70.1 71 [33,128, 33,298] 32,777 33,308 0.016 - 32,827 33,308 0.014 - 32,669 33,472 0.024 - 33,101 33,298 0.006 -
ft70.2 71 [33,357, 34,450] 33,057 33,977 0.027 - 33,089 33,916 0.024 - 32,938 33,670 0.022 - 32,897 33,670 0.023 -
ft70.3 71 [33,914, 42,732] 34,152 38,546 0.114 - 34,423 38,351 0.102 - 33,825 36,939 0.084 - 33,813 36,932 0.084 -
ft70.4 71 [36,517, 40,404] 36,737 39,145 0.062 - 36,850 38,771 0.050 - 33,825 36,939 0.084 - 35,664 39,843 0.105 -
rbg048a 50 [261, 264] 260 265 0.019 - 259 264 0.019 - 263 263 0.000 9.442 263 263 0.000 25.294
rbg050c 52 225 225 225 0.000 863.662 225 225 0.000 36.673 225 225 0.000 2.575 225 225 0.000 1.234
rbg109 111 [354, 414] 354 426 0.169 - 366 407 0.101 - 357 488 0.268 - 359 401 0.105 -
rbg150a 152 [447, 541] 447 511 0.125 - 461 509 0.094 - 463 591 0.217 - 461 517 0.108 -
rbg174a 176 [446, 580] 452 601 0.248 - 463 553 0.163 - 457 571 0.200 - 461 572 0.194 -
rbg253a 255 [477, 773] 523 1252 0.582 - 532 718 0.259 - - - - - 527 722 0.270 -
rbg323a 325 [926, 4035] 981 10,111 0.903 - 974 2466 0.605 - - - - - 1009 1891 0.466 -
rbg341a 343 [681, 3800] 764 9313 0.918 - 761 2907 0.738 - - - - - 780 1457 0.465 -
rbg358a 360 [706, 3296] 950 11,528 0.918 - 755 2453 0.692 - - - - - 788 1150 0.315 -
rbg378a 380 [649, 2759] 672 10,242 0.934 - 648 2191 0.704 - - - - - 678 1126 0.398 -
kro124p.1 101 [32,858, 35,231] 32,651 37,120 0.120 - 32,630 36,099 0.096 - 32,504 34,100 0.047 - 32,561 33,962 0.041 -
kro124p.2 101 [33,190, 37,956] 32,886 42,573 0.228 - 33,006 39,931 0.173 - 32,764 37,074 0.116 - 32,799 35,860 0.085 -
kro124p.3 101 [34,217, 53,988] 33,813 54,183 0.376 - 34,005 46,764 0.273 - 33,561 43,910 0.236 - 33,488 42,416 0.210 -
kro124p.4 101 [39,413, 55,187] 39,969 58,944 0.322 - 39,333 53,456 0.264 - 38,433 50,910 0.245 - 37,676 49,590 0.240 -
p43.1 44 [2827, 4470] 2660 4085 0.349 - 2656 3955 0.328 - 2860 3955 0.277 - 2851 3990 0.285 -
p43.2 44 [2826, 4275] 991 4450 0.777 - 2705 4210 0.357 - 2856 4160 0.313 - 2870 4180 0.313 -
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Table 2. Cont.

MILP Solver CP Solver

Instance Complete Model Reduced Model Complete Model Reduced Model

Name Size Best-Known [38] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s]

p43.3 44 [2864, 5375] 1067 5015 0.787 - 1383 4440 0.689 - 2966 4450 0.333 - 2897 4255 0.319 -
p43.4 44 [3101, 4900] 2995 5035 0.405 - 3125 4605 0.321 - 3090 4495 0.313 - 3094 4620 0.330 -
prob.100 100 [674, 1008] 668 2125 0.686 - 677 741 0.086 - 666 784 0.151 - 667 738 0.096 -
prob.42 42 171 171 171 0.000 396.458 171 171 0.000 230.506 171 171 0.000 79.667 171 171 0.000 34.245
ry48p.1 49 [13,371, 13,722] 13,114 14,272 0.081 - 13,200 13,670 0.034 - 13,036 13,670 0.046 - 13,061 13,670 0.045 -
ry48p.2 49 [13,508, 14,659] 13,299 14,415 0.077 - 13,336 14,305 0.068 - 13,216 14,305 0.076 - 13,185 14,305 0.078 -
ry48p.3 49 [14,371, 16,326] 13,882 16,193 0.143 - 13,994 15,840 0.117 - 13,764 15,546 0.115 - 13,728 15,477 0.113 -
ry48p.4 49 [17,339, 19,649] 17,162 19,744 0.131 - 17,180 19,583 0.123 - 16,550 19,837 0.166 - 16,483 19,495 0.155 -

Average 0.158 552.557 0.167 263.000 0.103 37.184 0.128 36.782

Table 3. Computational results for SOPLIB instances.

MILP Solver CP Solver

Instance Complete Model Reduced Model Complete Model Reduced Model

Name Size Best-Known [38] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s]

R.200.100.1 200 29 29 29 0.000 18.394 29 29 0.000 6.017 29 29 0.000 28.271 29 29 0.000 31.403
R.200.100.15 200 [505, 1271] 497 1431 0.653 - 525 1033 0.492 - 381 1864 0.796 - 589 979 0.398 -
R.200.100.30 200 [669, 2011] 686 3252 0.789 - 774 1761 0.560 - 451 3001 0.850 - 838 1871 0.552 -
R.200.100.60 200 [8070, 18,761] 8760 17,004 0.485 - 8861 16,930 0.477 - 6018 31,561 0.809 - 8440 16,197 0.479
R.200.1000.1 200 887 887 887 0.000 1288.092 887 887 0.000 15.635 887 887 0.000 649.979 887 887 0.000 26.0915
R.200.1000.15 200 [6665, 16,496] 6769 16,336 0.586 - 6895 12,601 0.453 - 5318 25,196 0.789 - 7231 12,812 0.436 -
R.200.1000.30 200 [9340, 30,351] 9937 23,226 0.572 - 10,512 22,781 0.539 - 7381 38,410 0.808 - 10,120 23,249 0.565 -
R.200.1000.60 200 [10,508, 23,748] 11,399 21,706 0.475 - 12,042 21,993 0.452 - 6666 28,522 0.766 - 10,665 19,934 0.465
R.300.100.1 300 13 13 13 0.000 37.352 13 13 0.000 35.012 13 13 0.000 205.731 13 13 0.000 56.4263
R.300.100.15 300 [625, 12,903] 660 6958 0.905 - 669 2259 0.704 - - - - - 811 2056 0.606 -
R.300.100.30 300 [948, 3767] 1008 6790 0.852 - 1102 3163 0.652 - - - - - 1157 2590 0.553 -
R.300.100.60 300 [824, 3005] 919 4732 0.806 - 949 1954 0.514 - - - - - 991 1865 0.469 -
R.300.1000.1 300 715 715 715 0.000 3187.049 715 715 0.000 64.683 715 715 0.000 257.074 715 715 0.000 71.6789
R.300.1000.15 300 [7213, 112,424] 7607 110,366 0.931 - 7832 24,047 0.674 - - - - - 8768 29,423 0.702 -
R.300.1000.30 300 [10,385, 40,457] 11,179 53,835 0.792 - 12,071 40,863 0.705 - - - - - 12,269 31,618 0.612 -
R.300.1000.60 300 [9413, 30,655] 10,180 38,212 0.734 - 10,275 25,323 0.594 - - - - - 10,408 21,623 0.519 -
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Table 3. Cont.

MILP Solver CP Solver

Instance Complete Model Reduced Model Complete Model Reduced Model

Name Size Best-Known [38] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s]

R.400.100.1 400 6 6 376 0.984 - 6 6 0.000 995.137 6 6 0.000 726.057 6 6 0.000 97.3851
R.400.100.15 400 [729, 47,117] 781 35,044 0.978 - 856 22,767 0.962 - - - - - 963 3591 0.732 -
R.400.100.30 400 [780, 7243] 911 39,022 0.977 - 1010 26,438 0.962 - - - - - 1084 3061 0.646 -
R.400.100.60 400 [731, 5545] 837 3309 0.747 - 861 2652 0.675 - - - - - 966 2069 0.533 -
R.400.1000.1 400 780 780 780 0.000 161.021 780 780 0.000 124.990 780 780 0.000 208.525 780 780 0.000 90.9555
R.400.1000.15 400 [7760, 501,543] 8357 85,878 0.903 - 9083 85,878 0.894 - - - - - 9976 35,160 0.716 -
R.400.1000.30 400 [10,076, 95,523] 11,030 127,290 0.913 - 11,783 127,290 0.907 - - - - - 12,337 57,272 0.785 -
R.400.1000.60 400 [8103, 55,950] 9360 65,615 0.857 - 9877 36,662 0.731 - - - - - 9954 22,376 0.555 -
R.500.100.1 500 3 3 3 0.000 2157.743 3 3 0.000 1881.297 3 3 0.000 2333.235 3 3 0.000 112.086
R.500.100.15 500 [924, 11,452] 964 11,452 0.916 - 1018 11,452 0.911 - - - - - 1250 5508 0.773 -
R.500.100.30 500 [773, 12,225] 849 16,963 0.950 - 976 14,273 0.932 - - - - - 1099 4841 0.773 -
R.500.100.60 500 [669, 8427] 840 49,105 0.983 - 840 6357 0.868 - - - - - 931 2723 0.658 -
R.500.1000.1 500 297 297 297 0.000 97.473 297 297 0.000 85.459 297 297 0.000 85.281 297 297 0.000 77.4382
R.500.1000.15 500 [8420, 107,776] 8949 107,776 0.917 - 9461 107,776 0.912 - - - - - 10,628 45,356 0.766
R.500.1000.30 500 [10,431, 181,835] 11,799 156,359 0.925 - 12,694 156,359 0.919 - - - - - 12,576 57,330 0.781
R.500.1000.60 500 [7094, 33,260] 8233 112,466 0.927 - 8192 45,696 0.821 - - - - - 6559 20,465 0.680 -
R.600.100.1 600 [1, 379] 1 55 0.982 - 1 55 0.982 - 1 1 0.000 2710.470 1 1 0.000 2182.18
R.600.100.15 600 [670, 5949] 714 5931 0.880 - 845 4044 0.791 - - - - - 938 2443 0.616 -
R.600.100.30 600 [873, 12,875] 945 18,932 0.950 - 1099 18,932 0.942 - - - - - 740 6467 0.886 -
R.600.100.60 600 [751, 7893] 838 26,732 0.969 - 778 25,214 0.969 - - - - - 538 2494 0.784 -
R.600.1000.1 600 322 322 322 0.000 352.202 322 322 0.000 140.645 322 322 0.000 127.397 322 322 0.000 103.378
R.600.1000.15 600 [10,181, 121,877] 10,753 121,877 0.912 - 10,915 121,877 0.910 - - - - - 9401 65,039 0.855 -
R.600.1000.30 600 [10,151, 151,010] 11,352 190,145 0.940 - 12,431 190,145 0.935 - - - - - 9356 48,775 0.808 -
R.600.1000.60 600 [7604, 87,770] 7962 256,464 0.969 - 8162 75,269 0.892 - - - - - 6908 42,652 0.838 -
R.700.100.1 700 2 - - - - - - - - 2 2 0.000 1649.486 2 2 0.000 619.22
R.700.100.15 700 [799, 6561] 815 14,478 0.944 - 972 5718 0.830 - - - - - 655 2759 0.763 -
R.700.100.30 700 [762, 20,281] 896 6960 0.871 - 983 4218 0.767 - - - - - 588 2531 0.768 -
R.700.100.60 700 [516, 9030] 538 7033 0.924 - 555 1854 0.701 - - - - - 383 1598 0.760 -
R.700.1000.1 700 [611, 621] 611 616 0.008 - 611 616 0.008 - 611 611 0.000 592.107 611 611 0.000 368.139
R.700.1000.15 700 [4636, 147,321] 4375 147,321 0.970 - 5136 7145 0.281 - - - - - 2787 6315 0.559 -
R.700.1000.30 700 [4303, 50,000] 4477 32,742 0.863 - 4827 6981 0.309 - - - - - 2658 6115 0.565 -
R.700.1000.60 700 [2857, 15,579] 2942 8534 0.655 - 2997 5842 0.487 - - - - - 1913 5357 0.643 -

Average 0.689 912.416 0.577 372.097 0.268 797.801 0.492 319.698
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Table 4. Computational results for COMPILERS instances.

MILP Solver CP Solver

Instance Complete Model Reduced Model Complete Model Reduced Model

Name Size Best-Known [38] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s] LB UB Gap Time [s]

gsm.153.124 126 [246, 313] 257 312 0.176 - 269 311 0.135 - 278 317 0.123 - 280 311 0.100 -
gsm.444.350 353 [2103, 2873] 2294 4878 0.530 - 2405 4856 0.505 - - - - - 2456 4310 0.430 -
gsm.462.77 79 [396, 488] 402 478 0.159 - 402 477 0.157 - 419 474 0.116 - 418 465 0.101 -
jpeg.1483.25 27 87 87 87 0.000 26.041 87 87 0.000 18.556 87 87 0.000 1.194 87 87 0.000 1.071
jpeg.3184.107 109 [489, 684] 506 656 0.229 - 510 715 0.287 - 518 718 0.279 - 517 692 0.253 -
jpeg.3195.85 87 [22, 25] 17 25 0.320 - 17 25 0.320 - 23 25 0.080 - 22 25 0.120 -
jpeg.3198.93 95 [172, 204] 180 188 0.043 - 180 188 0.043 - 181 188 0.037 - 181 188 0.037 -
jpeg.3203.135 137 [600, 750] 602 980 0.386 - 618 751 0.177 - 629 913 0.311 - 626 750 0.165 -
jpeg.3740.15 17 33 33 33 0.000 1.523 33 33 0.000 0.839 33 33 0.000 0.157 33 33 0.000 0.095
jpeg.4154.36 38 90 90 90 0.000 556.798 90 90 0.000 60.924 90 90 0.000 1.272 90 90 0.000 1.764
jpeg.4753.54 56 164 164 164 0.000 2753.752 164 164 0.000 1790.269 164 164 0.000 15.342 164 164 0.000 16.877
susan.248.197 199 [736, 1184] 792 1978 0.600 - 802 1370 0.415 - 805 1361 0.409 - 780 1320 0.409 -
susan.260.158 160 [564, 876] 568 937 0.394 - 573 938 0.389 - 596 991 0.399 - 598 897 0.333 -
susan.343.182 184 [591, 862] 617 798 0.227 - 622 776 0.198 - 636 1043 0.390 - 632 792 0.202 -
typeset.10192.123 125 [280, 415] 274 429 0.361 - 282 379 0.256 - 293 385 0.239 - 292 387 0.245 -
typeset.10835.26 28 [99, 112] 99 111 0.108 - 100 112 0.107 - 110 111 0.009 - 109 111 0.018 -
typeset.12395.43 45 [143, 146] 140 146 0.041 - 141 146 0.034 - 146 146 0.000 2181.942 146 146 0.000 2780.121
typeset.15087.23 25 97 97 97 0.000 60.502 97 97 0.000 29.118 97 97 0.000 0.477 97 97 0.000 0.318
typeset.15577.36 38 125 125 125 0.000 286.210 125 125 0.000 43.164 125 125 0.000 2.116 125 125 0.000 1.713
typeset.16000.68 70 [77, 80] 66 81 0.185 - 66 80 0.175 - 79 80 0.013 - 71 80 0.113 -
typeset.1723.25 27 60 60 60 0.000 590.577 60 60 0.000 86.068 60 60 0.000 4.013 60 60 0.000 3.469
typeset.19972.246 248 [1325, 1929] 1422 3562 0.601 - 1452 2509 0.421 - 1519 2961 0.487 - 1525 2804 0.456 -
typeset.4391.240 242 [1093, 1412] 1108 2595 0.573 - 1137 2476 0.541 - 1149 2511 0.542 - 1154 1905 0.394 -
typeset.4597.45 47 [150, 155] 150 154 0.026 - 151 154 0.019 - 154 154 0.000 209.659 154 154 0.000 128.916
typeset.4724.433 435 [2460, 3433] - - - - 2673 6131 0.564 - - - - - 2679 7194 0.628 -
typeset.5797.33 35 113 113 113 0.000 851.490 113 113 0.000 28.504 113 113 0.000 0.547 113 113 0.000 0.574
typeset.5881.246 248 [1305, 1700] 1378 2258 0.390 - 1396 2426 0.425 - 1406 2385 0.410 - 1394 2084 0.331 -

Average 0.206 640.862 0.191 257.180 0.154 241.672 0.161 293.492
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5. Conclusions

This work introduced new models for the Precedence-Constrained Minimum-Cost
Arborescence Problem with Waiting-Times that are polynomial in size and are characterized
by a smaller memory footprint with respect to the polynomial-sized models previously
proposed in the literature. A first model is based on a new set of variables to model
precedences. The number of variables and constraints are further reduced, at the price
of a preprocessing phase, in a second model. The two models are solved both by Mixed
Integer Linear Programs and Constraint Programming solvers. The computational results
show that the model characterized by the need of preprocessing outperforms the other one.
Furthermore, the Constraint Programming solver achieves the best overall results in terms
of both optimality gap and solution time. However, the Mixed Integer Linear Programming
solver generally finds better lower bound estimates on the instances. Finally, the models
proposed were able to close 7 new instances that were previously open, to provide improved
lower bounds for 71 instances, and to find improved upper bounds for 80 instances, out of
a total of 88 open instances.

Future work should cover aspects such as robustness of the approaches and the
addition to the models of other realistic constraints. Given the progress on the solvers,
new instances should be also introduced in order to extend the study on scalability of the
different models. Finally, a deeper analysis of the characteristics of the instances that mainly
affect the different approaches presented should be in order.
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