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Abstract: A symbolic analysis of Archimedes’s periodical number system is developed, from which a
natural link emerges with the modern positional number systems with zero. After the publication of
Fibonacci’s Liber Abaci, the decimal Indo-Arabic positional system was the basis of the algorithmic
and algebraic trend of modern mathematics, but even if zero plays a crucial role in algebra and
mathematical analysis, zeroless positional systems show the same capability of producing efficient
arithmetical algorithms based on operation tables over digits. The crucial role of digits is assessed, by
considering a representation of numbers based on strings in lexicographic order. A new algorithm
for the determination of decimal periods is presented by remarking on the cruciality of this topic in
number theory. Periods of ordinal numbers and enumerations of recursive enumerability are shortly
recalled. Concluding remarks are formulated about the deep relationship between numbers and
information, which shed new light on a red line passing through the whole history of mathematics.

Keywords: Archimedean periodical system; lexicographic number representation; fraction decimal
representation; transfinite ordinals; Turing computable numbers

1. Preamble

A synthesis of the main results of this paper is given here, which can help in recogniz-
ing strong connections along all the parts presented in this paper.

This paper shows that the root of positional systems can be found in the third century
BC in a system based on orders and periods. A circled notation is introduced that shows
clearly the periodical basis of the notion of zero.

The “Base Representation Theorem” is proved as a direct consequence of periods. This
is a further confirmation of the previous result.

The cruciality of periods in decimal fraction representation is emphasized, and the
“Concatenation Theorem” is given, from which the correctness of decimal representa-
tions of fractions is easily proved. In particular, the correctness of 1/997 is proved, with
166 decimal digits.

A strong connection is shown between Cantor’s ordinals and a generalized notion of
the Archimedean Enumerative System.

Enumerative systems and their periodical generations link naturally Archimedean
number representation with ordinals and Turing computable numbers.

2. Arenarius’s System

In The Sand Reckoner, entitled “Arenarius” in the Latin tradition, Archimedes of Syra-
cuse (III century BC) considers the problem of giving an evaluation of the size of the
universe, according to Aristarchus of Samos’s model, by counting the number of sand
grains filling that universe.

For this reason, the great mathematician introduces a systematic method for repre-
senting numbers of an unlimited size, based on orders and periods. In modern terms,
such a notion could be defined as an “Enumeration System”, where linguistic or symbolic
expressions denoting numbers, that is, numerals, are generated in a totally ordinate manner,
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in such a way that each numeral is different from those previously generated and greater
than all of them (creativity and order), and the rules of generation can always be applied
for producing a new numeral after any already generated numeral (infinity). This idea is
completely new, because all the numerals of the ancient languages reach a biggest number.
After that, it is possible, of course, to provide expressions for bigger numbers, such as “the
double of . . . ” or the “. . . plus one”, but no systematic and efficient way was available
for going up in the succession of numbers. The method given by Archimedes is very
simple [1,2]. He starts from a finite set of initial numerals, the words of Ionic tradition
for numbers from 1 to 108 (the double myriadM, where one Myriad is equal to 104). The
ordinate list of numerals

1, 2, . . . M
is called the first order by Archimedes. Then, the second order is the progression of
numerals

M, 2M, . . . M2.

Going on, in the same way, the lastMth order is

MM−1, 2MM−1 . . . MM.

The givenM orders determine the first period. The second period continues the same
rule of generation, whereM is replaced byMM. It is clear that this method is a recurrent
method where all the numbers are denoted by means of expressions constructed by the
numerals of the first order, and, of course, there is no limit in this process. In fact, after the
first period, the second one can be generated, terminating with (MM)M, and so on for any
following period.

The first two periods, using modern exponential notation, are given below.

First Period
1, 2, 3, 4, 5, 6, 7, 8, 9,M
M, 2M, 3M, . . . M2

M2, 2M2, 3M2, . . . M3

. . . . . . . . .

MM−1, 2MM−1, 3MM−1, . . . MM

Second Period
MM, 2MM 3MM, . . . M(MM)
M(MM), 2M(MM), 3M(MM), . . . M2(MM)
M2(MM), 2M2(MM), 3M2(MM), . . . M3(MM)

. . . . . . . . .

(MM−1)(MM), 2(MM−1)(MM), 3(MM−1)(MM), . . . (MM)2

. . . . . . . . .

. . . . . . . . .

(MM)M−1, 2(MM)M−1, 3(MM)M−1, . . . (MM)M.

The numbers denoted by this method are exponentials (of base M) or multiples
of exponentials. For this reason, we denoted them in the modern exponential notation.
However, Archimedes does not use any symbolic notation but expresses the logic of his
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method in natural language (Greek) and discovers some basic properties of these numbers
and in particular a rule that corresponds to the identity:

bx × by = b(x+y)

a sort of anticipation of the product-sum rule of logarithms.
The basic rule of Archimedes’s enumeration method is that orders are arithmetic

progressions, where any order hasM numerals, and the last numeral of any order coincides
with the first numeral of the next order and with the ratio of the progression. The first
period hasM orders, the second oneM2 orders, and so on for the following periods.

3. From Arenarius to Zeroless Decimal Systems

Now, we consider Archimedes’s system with a symbolic notation adherent to Are-
narius’s formulation given in natural language. For this purpose, we introduce a symbol
expressing the end of orders and periods, realized as a circled superscript. We use an initial
order of ten numerals, denoted by the usual decimal symbols 1, 2, 3, 4, 5, 6, 7, 8, and 9, but
ten is denoted by 1o because it corresponds to the end of the first order. The first period is
given completely; the second period is indicated by omitting some orders.

1, 2, 3, 4, 5, 6, 7, 8, 9, 1o

1o1, 1o2, 1o3, 1o4, 1o5, 1o6, 1o7, 1o8, 1o9, 2o

2o1, 2o2, 2o3, 2o4, 2o5, 2o6, 2o7, 2o8, 2o9, 3o

3o1, 3o2, 3o3, 3o4, 3o5, 3o6, 3o7, 3o8, 3o9, 4o

4o1, 4o2, 4o3, 4o4, 4o5, 4o6, 4o7, 4o8, 4o9, 5o

5o1, 5o2, 5o3, 5o4, 5o5, 5o6, 5o7, 5o8, 5o9, 6o

6o1, 6o2, 6o3, 6o4, 6o5, 6o6, 6o7, 6o8, 6o9, 7o

7o1, 7o2, 7o3, 7o4, 7o5, 7o6, 7o7, 7o8, 7o9, 8o

8o1, 8o2, 8o3, 8o4, 8o5, 8o6, 8o7, 8o8, 8o9, 9o

9o1, 9o2, 9o3, 9o4, 9o5, 9o6, 9o7, 9o8, 9o9, 1oo

1oo, 1oo2, 1oo3, 1oo4, 1oo5, 1oo6, 1oo7, 1oo8, 1oo9, 1oo1o

1oo1o1, 1oo1o2, 1oo1o3, 1oo1o4, 1oo1o5, 1oo1o6, 1oo1o7, 1oo1o8, 1oo1o9, 1oo2o

1oo2o1, 1oo2o2, 1oo2o3, 1oo2o4, 1oo2o5, 1oo2o6, 1oo2o7, 1oo2o8, 1oo2o9, 1oo3o

1oo3o1, 1oo3o2, 1oo3o3, 1oo3o4, 1oo3o5, 1oo3o6, 1oo3o7, 1oo3o8, 1oo3o9, 1oo4o

. . . . . .

1oo9o1, 1oo9o2, 1oo9o3, 1oo9o4, 1oo9o5, 1oo9o6, 1oo9o7, 1oo9o8, 1oo9o9, 2oo

. . . . . .

. . . . . .

2oo9o1, 2oo9o2, 2oo9o3, 2oo9o4, 2oo9o5, 2oo9o6, 2oo9o7, 2oo9o8, 2oo9o9, 3oo

. . . . . .

. . . . . .

. . . . . .

9oo9o1, 9oo9o2, 9oo9o3, 9oo9o4, 9oo9o5, 9oo9o6, 9oo9o7, 9oo9o8, 9oo9o9, 1ooo

In the above representation, any numeral is a sequence of digits and the symbol o for
indicating the end of a cycle (order or period). A number of k consecutive o determines
a period of level k, also called the k-period. For example, 1oo3o6 is the numeral of the
second period at its first 1-period, at its third order, in the sixth position. In fact, periods
are arranged in increasing levels, and within a period of level k > 1 there are ten k− 1-
periods (mono-circled digits correspond to orders). These circled numerals correspond to
exponentials, but their forms resemble the linguistic expression of the periodical mechanism
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used by Archimedes, where small circles provide the arrangement of a cyclic generation
of numerals. The translation of circled numerals in exponentials is the product of the
exponential interpretation of the circled digits, where Do = 10D·10, Doo = 10D·100, and so
on. For example, 1oo3o6 represents 6 · 10130.

The circle, which was the central topic of many of Archimedes’s investigations [3],
emerges in this symbolism as the basic mechanism of a counting process, by adding to the
already seen properties of number enumerations (creativity, order, infinity) the property of
recurrence. In fact, all numerals are represented by a finite sets of symbols that continuously
recur in the generation. Expressions such as “third order of first period” and “second prime
period of the second period” translate, respectively, into 3o and 2oo.

An enumeration is complete when it generates the numerals of all numbers. In a
complete enumeration, a number denoted by a numeral coincides with its position in
the enumeration. It is reasonable to suppose that John Wallis, who translated Arenarius,
introduced in 1655 the symbol ∞ for infinity (a rotation of digit 8) because he was impressed
by the enormous size of Archimedes’s numbers and inspired by the Archimedean term
“octad”, which refers to eight consecutive powers of ten. By the way, the size of the universe
was evaluated by Archimedes at the eighth order of his first period with a value around
1063 (assuming 1024 particles in a sand grain, we obtain the modern evaluation for the
particles contained in our universe).

The enumeration given above can be defined as a linear ordering defined on monads,
where we call the monad a circled digit, that is, a digit with a number of circles as exponents.
Monads are ordered by requiring that α > β if α has a number of circles greater than β, or
when they have the same number of circles, if the digit of α is greater than the digit of β
(9 > 8 > 7 > 6 > 5 > 4 > 3 > 2 > 1). A numeral is a sequence of monads where any
monad needs to have a smaller number of circles than those on its left. Then, if ν1, ν2 are
numerals, ν1 > ν2 when their leftmost monads are µ1 and µ2, and this satisfies µ1 > µ2.

The Archimedes enumeration is not complete, because it represents numbers but not
all numbers of the natural succession. In fact, only exponentials or multiples of them appear.
However, if we change the interpretation by considering each numeral as the successor of
the previous one, then we obtain a complete enumeration. The obtained system, which
we call the Decimal Archimedes System (DAS), is a zeroless system very close to the usual
decimal system, which we call the 0-decimal system (0DS).

Now, we will translate the DAS into another zeroless decimal system, which we call
the X-decimal system (XDS). At this end, we translate monads in strings over the alphabet
of digits 1, 2, 3, 4, 5, 6, 7, 8, 9, and X:

1o ==> 1X, 2o ==> 2X, . . . 9o ==> 9X

1oo ==> XX, 2oo ==> 2XX, . . . 9oo ==> 9XX

and so on, for monads with greater number of circles (X, XX, . . . abbreviates 1X, 1XX, . . .
respectively, when they occur as first monads, from the left). In this way, the first period of
the DAS in the XDS becomes

1, 2, 3, 4, 5, 6, 7, 8, 9, X
X1, X2, X3, X4, X5, X6, X7, X8, X9, 2X
2X1, 2X2, 2X3, 2X4, 2X5, 2X6, 2X7, 2X8, 2X9, 3X
3X1, 3X2, 3X3, 3X4, 3X5, 3X6, 3X7, 3X8, 3X9, 4X
4X1, 4X2, 4X3, 4X4, 4X5, 4X6, 4X7, 4X8, 4X9, 5X
5X1, 5X2, 5X3, 5X4, 5X5, 5X6, 5X7, 5X8, 5X9, 6X
6X1, 6X2, 6X3, 6X4, 6X5, 6X6, 6X7, 6X8, 6X9, 7X
7X1, 7X2, 7X3, 7X4, 7X5, 7X6, 7X7, 7X8, 7X9, 8X
8X1, 8X2, 8X3, 8X4, 8X5, 8X6, 8X7, 8X8, 8X9, 9X
9X1, 9X2, 9X3, 9X4, 9X5, 9X6, 9X7, 9X8, 9X9, XX
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For example, the XDS translation of 1oo3o6 is XX3X6. The logic of the XDS enumeration is
based on powers of ten: 1, X, XX, XXX, . . . . Any numeral is the concatenation of multiples
of these powers, and their sum provides the number expressed by the numeral. It is
interesting to remark that this structure resembles exactly the construction of numerals in
many natural languages. However, neither the DAS nor XDS are positional systems in the
strict sense of our usual decimal system with zero, but they could be better characterized
as polynomial systems (where monads are monomials). Polynomial systems of number
representation occur, in primitive forms, in many ancient systems and in the measurement
of angles. The mathematician and astronomer Claudius Ptolomaeus (first century, author
of the Almagest) used circled digits, and in some contexts his circle resembles zero.

Going back to DAS numerals, we could avoid putting circles to digits when in a
numeral all the monads smaller than the leftmost monad occur. In fact, in that case the level
of any monad corresponds to its position. For example, 1oo3o6 is completely expressed by
136. But, if circles are deleted in 1oo6o and 1oo6, we obtain, in both cases, 16, which does
not distinguish between the two different numerals. However, we can avoid circles if the
missing monads are indicated.

Therefore, zero, which was discovered at the end of the fifth century within the Indo-
Arabic mathematical tradition [4], has a natural motivation in Archimedes’s periodical
system, as a new digit 0 expressing the absence of any monad having a number of circles
corresponding to its position (distance from the rightmost digit).

Nevertheless, the zero digit is not necessary for having a positional system, because
zeroless positional systems in the sense of the 0DS can be defined. One such system is
based on the strings that can be constructed over a finite sets of digits [5,6]. Let us assume
the ten digits (without zero) in the order

1, 2, 3, 4, 5, 6, 7, 8, 9, X.

For each digit, the strings of two digits are generated according to the following square,
where ordering is from left to the right in the columns and from the top to the bottom for
the rows:

1(1, 2, 3, 4, 5, 6, 7, 8, 9, X)
2(1, 2, 3, 4, 5, 6, 7, 8, 9, X)
3(1, 2, 3, 4, 5, 6, 7, 8, 9, X)
4(1, 2, 3, 4, 5, 6, 7, 8, 9, X)
5(1, 2, 3, 4, 5, 6, 7, 8, 9, X)
6(1, 2, 3, 4, 5, 6, 7, 8, 9, X)
7(1, 2, 3, 4, 5, 6, 7, 8, 9, X)
8(1, 2, 3, 4, 5, 6, 7, 8, 9, X)
9(1, 2, 3, 4, 5, 6, 7, 8, 9, X)
X(1, 2, 3, 4, 5, 6, 7, 8, 9, X)

In general, numerals are generated by orders Li, for i = 1, 2, . . .

L1 = 1, 2, 3, 4, 5, 6, 7, 8, 9, X.

Li+1 = 1Li, 2Li, . . . XLi

where numerals of Lj+1 follow those of Lj, and for any digit D, the following equation holds:

DLi = {Dα|α ∈ Li} (1)

with Dβ > Dα for any β > α in Lj, and j > 1. This is the structure of any enumeration
system, over strings, based on orders and periods.
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The ordering associated with this enumeration corresponds to the lexicographic or-
dering, characterized by the following conditions (|α| is the length of string α, and x, y are
any digits):

|α| < |β| ==> α < β

α < β ==> αx < βy

α < β ==> xα < xβ.

We call this enumeration the LXS (Lexicographic X-decimal System). The LXS is a positional
system, where digits contribute to the value of the denoted number according to their
positions.

A complete enumeration system based on orders and periods is an Archimedean
Enumeration System (AES). An AES is monotone if its numerals are non-empty strings
over a finite set of symbols, and any numeral α followed by a digit x is a numeral too, such
that the number [[α]] denoted by α coincides with the number of orders before the order
where αx occurs. Such a system has period p if its initial order has p numerals. The XDS, as
well as the usual decimal positional system, the D0S, are Archimedean natural monotone
enumeration systems.

The following theorem easily generalizes a well-known theorem of positional sys-
tems [7] to the natural monotone AES.

Theorem 1. Let E be an Archimedean monotone enumeration system of period p. Then, the
following recurrent equation holds in E, for any digit x:

[[αx]] = [[α]]p + [[x]]. (2)

from which the base representation equation follows.

Proof. From the hypotheses on E, the product [[α]]p represents the number of numerals
before the order where αx occurs. Then, we have the asserted equation above. If we
apply Equation (2) iteratively, we obtain the fundamental base representation equation of a
positional number system of base b > 1:

[[anan−1 . . . a1]] = ∑
i=1,n

[[ai]]bi−1.

4. The Algorithmic Value of Digits

One of the main novelties of digits is the algorist trend as opposed to the abacist
approach of ancient methods of number calculation (from abacus). In 1585, Simon Stevin
published a book in Flemish, entitled De Thiende (the Tenth) [8], where the algorithms for
computing the four arithmetical operations are given, which correspond to the methods
that are now taught in primary schools. These methods are independent from the particular
basis and essentially reduce the computation of any operation to the knowledge of its
results for all the pair of digits, that is, to a finite set of basic rules. The same situation arises
with zeroless positional systems.

Let us consider the zeroless lexicographic systems of four digits, with the following
first 16 numerals:

- 1 2 3 4 11 12 13 14 21 22 23 24 31 32 33 34

Tables 1 and 2 express the sum and multiplication for a lexicographic systems of
four digits. Figure 1 is a multiplication based on Tables 1 and 2.
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Table 1. Table of sum for a lexicographic system of four digits.

+ 1 2 3 4
1 2 3 4 11

2 3 4 11 12

3 4 11 12 13

4 11 12 13 14

Table 2. Table of multiplication for a lexicographic system of four digits.

× 1 2 3 4
1 2 3 4

1 1 2 3 4

2 2 4 12 14

3 3 12 21 24

4 4 14 24 34

For example, 32× 21 in the four-digit lexicographic system is obtained from the above
tables and provides the same result obtained in the usual decimal system:
32→10 14
21→10 9
14×10 9 = 126
32×4 14 = 1332→10 64 + 3× 16 + 3× 4 + 2→10 126
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In conclusion, zero is not necessary for having positional systems, even if it is essential
for further developments of mathematics: in the infinitesimal analysis and in the algebraic
structures. In fact, the negative enumeration, which from zero goes back in the opposite
direction of the natural (positive) enumeration, giving the negative of any number, makes
integers an additive group with zero as a neuter element.

In his 1585 book, Stevin introduces a notation essentially equivalent to the usual
decimal notation. Using this notation, Stevin’s division algorithm applied to p : q, with
p < q, provides a decimal representation of type 0, x1x2x3 . . . for the fraction p/q, where xi
are decimal digits.

The following theorem is an easy consequence of the pigeonhole principle, where
(pi|i > 1) is the succession of prime numbers (if n objects are distributed among m < n
cells, then there exists some cell containing more than an object).

Theorem 2. For i > 3, the fraction 1/pi has a decimal representation with infinite digits, obtained
by the division algorithm, where a sequence of digits, called a period, repeat indefinitely, and the
length of the period is surely lesser than pi.

In virtue of the above theorem, any fraction has a finite decimal representation or
an infinite but periodical one. Therefore, an infinite decimal representation that is not
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periodical represents a number that is not a fraction and is called an irrational number
(Greek mathematicians use the term Logoi for irrationals). In conclusion, the existence of
irrational numbers follows from Stevin’s representation.

The following theorem is the converse of the above theorem; that is, for any periodical
decimal representation there is an equivalent fraction.

Theorem 3. For every fraction p/q with p, q ∈ Z (set of integers) there exist r, n, m, k ∈ Z
such that

p/q = k + r/(10n − 1)10m

with r < (10n − 1)10m.

Both theorems above can be easily extended to any positional system with zero and
base > 1. However, computing the exact periodical representation of a fraction and showing
its correctness is not an easy task. After Stevin’s work and Napier’s formulation, in his
second book on logarithms [9], a tradition of works on decimal fractions was developed in
the 17th and 18th centuries [10].

Now, we show that a simple theorem can give an efficient solution for a systematic
and reliable determination of the exact periodical representation of fractions. In fact,
the following theorem, which can be easily proven, is the basis for efficient algorithms
(extensible to any base) for computing fraction periods and for checking their correctness.

Theorem 4 (Concatenation Theorem). Stevin algorithms for the basic arithmetical operations
can be “concatenated”. Let us express this fact only for division and multiplication (concatenations
of additions and subtractions are obvious), where Greek letters denote strings of digits of decimal
representations.

(1) 1/q = 0, αβ

if r : q = α with remainder r and r : q = β with remainder 1.

For some natural n,
(2) α× (βδ) = 9nθ

if, for some naturals k, j, i,
α× β = 9kγ

α× δ = η9jθ

γ + η = 9i

with |γ| = |η| = i and n = k + j + i.

By using the theorem above, when arithmetic operations have a precision of p decimal
digits, then operations can be concatenated by obtaining periodical representations of any
period length, and the correctness of the obtained results can be easily proved.

Given the length limits of computer number representation, no computer can directly
compute the exact decimal value of a simple fraction such as 1/19. The representation of
fraction 1/pi for pi < 100, based on division and multiplication concatenations, is given
below, where periods are indicated within brackets and stars mark periods that reach the
maximum possible length.

1/2 = 0,5 = 0,4[9]

1/3 = 0,[3]

1/5 = 0,2 = 0,1[9]

1/7 = 0,[142857]*
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1/11 = 0,[09]

1/13 = 0,[076923]

1/17 = 0,[0588235294117647]*

1/19 = 0,[052631578947368421]*

1/23 = 0,[0434782608695652173913]

1/29 = 0,[0344827586206896551724137931]*

1/31 = 0,[032258064516129]

1/37 = 0,[027]

1/41 = 0,[02439]

1/43 = 0,[023255813953488372093]

1/47 = 0,[0212765957446808510638297872340425531914893617]*

!/53 = 0,[0188679245283]

1/59 = 0,[0169491525423728813559322033898305084745762711864406779661]*

1/61 = 0,[016393442622950819672131147540983606557377049180327868852459]*

1/67 = 0,[014925373134328358208955223880597]

1/71 = 0,[01408450704225352112676056338028169]

1/73 = 0,[013698630136986301369863]

1/79 =0,[01265822784810126582278481]

1/83 = 0,[01204819277108433734939759036144578313253]

1/89 = 0,01123595505617977528089887640449438202247191]

1/97 = 0,[0103092783505154639175257731958762886597938144329896907216494
84536082474226804123711340206185567]*

All these representations were checked using multiplication concatenation. Moreover,
they coincide with those, up to 1/67, of Johann III Bernoulli’s table (1771–1773) reported
in [10]. We remark that fraction periodical representations were extensively investigated by
Carl Friedrich Gauss, who introduced an entire theory for their calculation [10].

As an example, the computation of 1/17 is here reported, using operations reliable up
12 digits.

1 : 17 = 0, 05882352941

Remainder = 3
3 : 17 = 0, 17647[058823
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where the open bracket is put after the last digit of the period. Namely, digits 058823
coincide with the initial digits of the first division. Therefore, by concatenating the two
divisions, according to the Concatenation Theorem, we have

1 : 17 = 0, 0588235294117647

Now, we prove the correctness of the above periodical representation, by concatenating
two multiplications:

1/17 = 588235294117647/9999999999999999

that is,
17× 588235294117647 = 9999999999999999

In fact, 17× 58823529 = 999999993 and 17× 4117647 = 69999999, and the concatena-
tion of the two results, according to the Concatenation Theorem, is just 9999999999999999.

Gauss spent years computing decimal periods of prime fractions. For this purpose,
he developed a theory [10] (of indices), which was the seed of his theory of congruences.
The biggest fraction he computed was 1/997, which we computed in seconds with the
following Python program, using Stevin’s division algorithm going up until a remainder
was obtained that was already generated. By the way, it is interesting to observe that unitary
division is the essence of any division, which is always equivalent to a multiplication of the
result of a unitary division.

def compute-period(p):
results = []
remainders = []
d = 1
q = 0
r = 1
while r not in remainders:

results.append(str(q))
remainders.append(r)
d = r*10
q = int(d/p)
r = d%p

remainders.append(r)
results.append(str(q))
steps = len(results)-1
res = “”.join(results)
res = “(“ + res[1:]+ “)”
return steps,res,remainders

p = int(input(“Input a natural number p: “))
period = compute-period(p)
print(“Period Length: “ , period[0])
print(“Period: “ , period[1])

A python program computing periods.

Decimal Period of 1/997 (166 digits)
d = 001003009027081243731193580742226680040120361083249749247743229689067
201604814443 329989969909729187562688064192577733199598796389167502507522
5677031093279839518555667 (The period was generated by the Python program above, and
its correctness proof is given in Table 3 below).
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Table 3. Proving that the decimal period of 1/997 is correct: The column on the left gives, in
consecutive rows, blocks of the period d of 1/997. In each equation of the second column, the last
three digits added to the first three digits of the number below provides 999; therefore, according to
the Concatenation Theorem, the equations above prove that 0, d× 997 = 0, 9217. Therefore, 9217 being
a period, it follows that 0, [9217] = 0, [9] = 1.

00100300902 × 997 = 999− 98 − 294
7081243731 × 997 = 705− 97 − 807
1935807422 × 997 = 192− 97 − 734
266800401 × 997 = 265− 96 − 797
2036108324 × 997 = 202− 97 − 028

97492477432 × 997 = 971− 98 − 704
29689067201 × 997 = 295− 98 − 397
60481444332 × 997 = 602− 98 − 004
99899699097 × 997 = 995− 98 − 709
2918756268 × 997 = 290− 97 − 196
8064192577 × 997 = 803− 97 − 269
7331995987 × 997 = 730− 97 − 039

96389167502 × 997 = 960− 98 − 494
507522567703 × 997 = 505− 99 − 891
10932798395 × 997 = 108− 98 − 815

18555667 × 997 = 184− 98 − 999

Let us conclude the section by shortly reporting other crucial passages that are based on
the diffusion in Europe of the positional representation of numbers. After the publication
by Leonardo Fibonacci of Liber Abaci, in 1202, a long process begun of conceptual and
notational development of modern mathematics [11,12].

In 1591, François Viète’s book [13] appeared, where expressions with symbols for
indeterminates appear, and ars speciosa is also the name of a new arithmetic perspective that
is the seed of modern algebra. In 1614, John Napier introduced logarithms [9], where he
provided a synchronization between geometrical and arithmetical progressions covering
with good approximation a real interval. This passage in modern mathematics is crucial
and full of practical and theoretical consequences.

The passage from symbols with numeric meanings to indeterminates of unknown
numeric values, on which operations can be performed independently from their meaning,
is a crucial step toward variables, which became the main tool of Cartesian geometry, where
in 1637 René Descartes introduced coordinates, by reversing the Greek relationship between
space and numbers [14]. From this point, the process of arithmetization of mathematics
started, toward the foundational perspectives of the 19th and 20th centuries.

5. Enumerations in Ordinals and in Computability

Archimedes’s mark is not only in the roots of modern mathematics and in infinitesi-
mal calculus, including his introduction of the geometric representation of infinitesimals,
especially in his Method, a book that was lost and was discovered at the beginning of
the twentieth century (and lost again during the second world war, but now completely
restored) [15]. In fact, the crucial role of recurrence in Archimedes’s enumeration is ap-
parent in Cantor’s ordinal numbers [16] and in the theory of computability [17]. Rigorous
foundations of numbers were provided by Dedekind, Frege, and Peano [18–20], but the
most synthetic and expressive definition of numbers is that one given in terms of set theory,
according to a construction due to John von Neumann: a number is the set of numbers that
precede it, in a number enumeration. In this way, 0 coincides with the empty set ∅, 1 is
the set containing the empty set {∅}, 2 is the set {∅, {∅}} = {0, 1}, and so on. In this
formulation, even if “a number enumeration” is mentioned, the numbers stem prescinding
from any specific system of counting, in a very abstract manner, where the process of
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counting results in the true essence of numbers. In fact, if e1, e2, . . . is any enumeration
and [[e1]], [[e2]] . . . the corresponding numbers, then [[e1]] = ∅, [[e2]] = {∅} = {[[e1]]},
[[e2]] = {∅, {∅}} = {[[e1]], [[e2]]}, and so on, by obtaining exactly what von Neumann
defined. Moreover, the theory of ordinals can be expressed in terms of enumerations of
enumerations, in the same way as Archimedes’s periods are generated, because the essence
of a recurrent enumeration is that a number is the position where its numeral is, and this
position is completely identified by the numerals that precedes it. In this way, if a name a
given to an entire enumeration, this name is a sort of hypernumeral that we can imagine as
the last position of its numerals. Then, let us call ω the natural enumeration

ω = 0, 1, 2 . . .

If we assume ω as the first infinite order, we can go further with the following orders
in an analogous way using Archimedes’s periodical system:

0, 1, 2, . . . , ω
ω + 1, ω + 2, . . . , 2ω
2ω + 1, 2ω + 2 . . . , 3ω
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . , ω2

ω2 + 1, ω2 + 2 . . . , ω2 + ω
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . , ω3

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . , ωω

where the name of any (infinite) enumeration is put at the end of it, and then usual
symbols for ordinals are intended as names of the consecutive enumerations preceding
them (enumerations of enumerations, and so on, at successive levels). It is not our intention
to go into further details of such an approach to ordinals, but this short outline suggests
clearly that ordinals are a natural generalization of Archimedes’s periods.

It can be shown that a one-to-one correspondence can be established between the
natural enumeration ω and ordinals at any exponential level (ωω, ωωω

. . .), but no one-to-
one correspondence exists between ω and real numbers, which are represented by infinite
sequences of decimal digits (and the set of ordinals one-to-one with ω is an ordinal that
is not one-to-one with ω). This crucial result, based on a famous diagonal argument, is
the access gate to cardinal numbers and abstract sets, or Cantor Paradise, such as Hilbert
defined set theory [21], within which any mathematical theory can be expressed.

In 1936, Turing published an epochal paper on computable numbers, that is, real
numbers where the sequence of digits can be generated by means of a computing device, a
Turing machine. Sets of numbers that can be generated by the Turing machine, as outputs
of the computing process, are called Turing enumerable, or recursively enumerable, sets.
However, in general, there is no Turing machine that, given a Turing enumerable set A and
a number n, is able to tell, in a finite number of steps, if a does belong or does not belong
to A. The sets for which this is possible are called decidable or recursive. The recursively
enumerable sets for which this decision possibility does not hold are called semidecidable. A
function is computable if and only if its graphic is recursively enumerable.

What is really surprising is that Turing proves the existence of recursively enumerable
sets, by adapting Cantor’s diagonal argument according to which real numbers are not
one-to-one with any natural enumeration. This story tells us that an infinity line [22] links,
along centuries, Archimedes with Cantor and Turing: these three giants follow a common
idea, counting the infinite, according to an arithmetical perspective, to a more general set
theoretic perspective, or to a computational perspective of symbolic manipulation processes,
performed by machines.
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A function on natural numbers is Turing computable if it is computed by some Turing
machine (giving as output the image of the function in correspondence to any argument
given as input). Turing machines are identified by Turing programs, which are strings,
which when put in a lexicographic ordering provide an enumeration. From this, again by a
diagonal argument, the following theorem can be proved.

Theorem 5. Turing computable functions surely include partial functions, which do not give
results in correspondence of some arguments, and no Turing machine can exist that can always tell,
in finite time, if a Turing machine gives a result in correspondence to a given argument.

6. Conclusions

Numbers need numerals to be expressed and manipulated, but numerals are strings,
that is, linear forms of information representation, able to encode any kind of data. However,
strings, when considered in a lexicographic order, represent numbers, with the empty
string naturally associated with zero. Therefore, an intrinsic circularity links numbers to
strings or, equivalently, numbers to information. Nevertheless, while numbers are abstract
entities, independent from any physical reality, symbols and strings are necessarily based
on physical realities. At the same time, their physicality, even if necessary, is not essential,
in the sense that any physical support can be replaced equivalently by another one, and,
similarly, any encoding of data as strings can be translated into another one. The theory
of information, which together with computability is the basis of the new informational
age, according to Shannon’s perspective, introduced in his famous booklet of 1948 [23],
discovered the possibility of measuring information independently from specific codes
and from specific physical supports. In this approach, information is expressed in terms
of negative logarithms of probabilities. But probabilities are pure numbers (between 0
and 1); therefore, “pure” information coincides with numbers, and, conversely, numbers
coincide with pure information, because their essence abstracts from any specific system
of numerals. This simple remark explains why number theoretic properties are so crucial
in information processing, at many different levels, from cryptography to the theory of
codes and to the algebraic and algorithmic perspectives of computer science. This means
that arithmetic, the oldest mathematical theory, is strongly linked to the youngest theory
of information, computation, and communication, born in the twentieth century. Then,
the image of a circle, so often evoked in this paper, is a very appropriate image for the
conclusion of this bird flying over the landscape of mathematics, going from Archimedes,
to Fibonacci, Stevin, Viète, Napier, Descartes, Gauss, Cantor, Turing, and Shannon, just as a
reminder of the great minds mentioned in our travel.
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