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Abstract: Deep learning has enabled a straightforward, convenient method of road pavement infras-
tructure management that facilitates a secure, cost-effective, and efficient transportation network.
Manual road pavement inspection is time-consuming and dangerous, making timely road repair
difficult. This research showcases You Only Look Once version 5 (YOLOv5), the most commonly em-
ployed object detection model trained on the latest benchmark Road Damage Dataset, Road Damage
Detection 2022 (RDD 2022). The RDD 2022 dataset includes four common types of road pavement
damage, namely vertical cracks, horizontal cracks, alligator cracks, and potholes. This paper presents
an improved deep neural network model based on YOLOv5 for real-time road pavement damage
detection in photographic representations of outdoor road surfaces, making it an indispensable
tool for efficient, real-time, and cost-effective road infrastructure management. The YOLOv5 model
has been modified to incorporate several techniques that improve its accuracy and generalization
performance. These techniques include the Efficient Channel Attention module (ECA-Net), label
smoothing, the K-means++ algorithm, Focal Loss, and an additional prediction layer. In addition,
a 1.9% improvement in mean average precision (mAP) and a 1.29% increase in F1-Score were attained
by the model in comparison to YOLOv5s, with an increment of 1.1 million parameters. Moreover,
a 0.11% improvement in mAP and 0.05% improvement in F1 score was achieved by the proposed
model compared to YOLOv8s while having 3 million fewer parameters and 12 gigabytes fewer Giga
Floating Point Operation per Second (GFlops).

Keywords: road damage detection; pavement detection; YOLOv5; ECA-Net; Focal Loss; K-means++

1. Introduction

Global spending on road repair and maintenance exceeds USD 400 billion annually [1].
Road pavement is the uppermost surface layer of a road designed to support vehicular traf-
fic and provide a durable and seamless driving surface. Several studies and investigations
have been carried out regarding the impact of road pavement damage on both safety and
the economy [2,3]. The principal aim of researchers in this field is to reduce expenditures as-
sociated with inspections and maintenance. Furthermore, creating efficient and economical
technologies for detecting road surface cracks is crucial in establishing a sustainable road
management framework [4]. The present techniques utilized for evaluating road pavement
damage can be classified into three distinct categories: manual assessment, automatic
assessment, and image processing. Road assessment in developing nations often involves
the utilization of manual inspection techniques. Members of the maintenance department
must assess the severity of road damage in real time. However, in practical circumstances,
the manual procedure proves to be tedious due to the extensive nature of the testing routes
and the significant resource requirements of the task. The employment of automated
detection systems for road pavement assessment is on the rise. Using sensor-equipped
vehicles exemplifies technological progress [5]. However, the complexity of pavement

Algorithms 2023, 16, 452. https://doi.org/10.3390/a16090452 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16090452
https://doi.org/10.3390/a16090452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-5488-6973
https://orcid.org/0000-0002-4213-8169
https://orcid.org/0000-0002-7345-0999
https://orcid.org/0000-0003-1740-5517
https://doi.org/10.3390/a16090452
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16090452?type=check_update&version=1


Algorithms 2023, 16, 452 2 of 23

conditions poses a challenge for automated assessment tools. Consequently, the attainment
of precision and swiftness becomes increasingly challenging. Additionally, the equipment
requires costly hardware, which incurs high maintenance expenses.

Image processing techniques can integrate high efficiency while maintaining low
cost. As technological advancements are made, the precision of detection is increasing.
As a result, many researchers have employed image processing methodologies to identify
pavement deterioration [6,7]. The complexity of road surroundings makes manual feature
extraction impractical using conventional image processing techniques. In contrast to tradi-
tional image processing methods, deep learning-based image processing techniques have
gained widespread adoption to detect pavement damage due to their superior accuracy,
speed, and embeddability [8].

Deep learning technology has made significant advancements in detecting road dam-
age. The authors Naddaf et al. (2019) [9] employed the Faster Region Convolutional Neural
Network (Faster R-CNN network) to detect road damage. They additionally evaluated the
impact of different lighting and weather conditions on the detection process. A study by
Mandal et al. [10] presented a novel approach for detecting pavement damage using the
one-stage YOLO CSPDarknet53 network. The authors’ work contributes to the growing
research on the pavement damage dataset, further expanding the range of models explored
in this domain. Although the research in pavement damage detection has made progress,
there remains significant potential for improvement in accuracy and detection speed.

In recent years, the maintenance of roads has become a critical responsibility for
traffic management departments due to the rapid expansion of the traffic network. Road
pavement damage detection and classification application can be used for various purposes.
Some of its applications are Structural Health Monitoring, Autonomous Personal Mobility
Vehicles, and Intelligent Transportation Systems (ITS). This study aims to design a deep
neural network model that utilizes object detection techniques to identify instances of
pavement damage in photographic representations of outdoor road surfaces, as manual
inspection is labor-intensive and time-consuming, requiring individuals to capture images
to evaluate road damage in real time. Object detectors based on deep learning, such as
YOLOv5, have the advantage of efficiently identifying road pavement damage caused
by a moving vehicle. This method eliminates the restrictions inherent to manual road
inspection. Road pavement damage detection tasks using YOLOv5 are primarily motivated
by YOLOv5’s impressive accuracy and detection speed as an object detection algorithm.
YOLOv5 is one of the most popular and easily customizable object detection algorithms,
making it ideal for custom object detection tasks [11,12]. YOLOv5 proves to be a perfect
fit for this study due to its speed and considerable accuracy. The contributions can be
summarized below:

• The Efficient Channel Attention module (ECA-Net) was initially incorporated into the
model’s backbone and neck network to enhance the model’s accuracy.

• Label smoothing techniques are employed as a way of enhancing the generalization
of the model.

• The K-means++ algorithm was utilized to identify an acceptable anchor box for the
dataset instead of the default COCO dataset-based anchor box.

• Subsequently, this research utilizes Focal Loss, a cost-sensitive loss function, to address
the class imbalance by assigning higher importance to challenging data points.

• Finally, an additional prediction layer has been incorporated to extend the model’s
learning capacity across various objects and scales.

2. Related Work

The employment of methods based on deep learning has gained substantial acceptance
because of their remarkable efficacy across a wide range of domains, such as computer vi-
sion, soil science, and solar flare prediction [13]. The transportation industry is subject to the
effects of technological advancements. The rapid progress and extensive implementation
of deep learning technologies can potentially enhance the ability to detect road pavement
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damage. According to current studies, maintaining road infrastructure is essential for
establishing a secure, economically feasible, sustainable transportation system. Therefore,
researchers are now aiming to utilize techniques such as deep learning to evaluate road
pavement damage and optimize cost reduction.

Several methodologies based on deep learning have achieved noteworthy advance-
ments. The efficacy of deep learning techniques has catalyzed the creation of additional
algorithms that rely on feature extraction and pattern recognition to detect road pavement
damage. Oliveira and Correia [14] proposed using the mean and standard deviation from
unsupervised learning to discriminate between road pavement cracks and non-crack blocks.
Cord and Chambon [15] suggested using the Adaboost algorithm to select structural de-
scriptors that effectively depict fractured images and produce the crack saliency map.
Despite the impressive outcomes produced by these techniques, their practical utility is
significantly limited by their dependence on extracted features. The detection of objects
can be achieved through various techniques, with Faster R-CNN and YOLO being two of
the approaches most commonly used. The Faster R-CNN approach was utilized by Li et al.
to propose a method for the recognition of road surface damage [16]. The system can
discriminate among six distinct categories of road surface defects and accurately pinpoint
the precise location of the affected region within a given image. The research employed
5966 photographs, resulting in an average precision rate of 96.3%.

Researchers use two distinct image types for road pavement damage detection study.
One is a snapped photo of the top view, while the other is of the front perspective. It is
described in Figure 1. Top-view photographs are acquired from the road’s surface, while a
dashboard-mounted camera captures front-view images.

Top-view damage photos are less complicated, and most studies on top-view damage
have excellent detection accuracy. However, most of these models solely exhibit damage
caused by cracks. Most studies based on top-view images did not attempt to classify
different types of road pavement damage. Naddaf et al. [17] used a Bayesian technique to
optimize CNN design to maximize the abstraction of the final model with a 97% percent
accuracy rate. In their study, Yusof et al. [18] conducted fine-tuning of the filter sizes in a
Convolutional Neural Network (CNN) to attain a satisfactory accuracy rate of 94.5% in
determining various types of cracks in road photographs. The authors’ findings suggest
that this approach may be effective in road maintenance and inspection. The majority of
research about top-view images is centered around semantic segmentation. Liu et al. [19]
utilized the U-Net architecture to identify cracks in concrete. The model that has undergone
training exhibits a high degree of accuracy in identifying cracks present in images. FCNs
can be outperformed by this approach, as it requires a smaller number of training sets to
achieve superior results. Wu et al. achieved a recall rate of 97% through the utilization of
diverse image processing techniques on the UNET model, as reported in their study [20].
Zhang et al. [21] developed a CrackNet architecture that does not incorporate a pooling
layer to detect cracks on roads. The model achieved a high level of accuracy, specifically
90.1%. The model exhibited impressive results by attaining a precision of 98.00% and an
accuracy of 97.92% in the classification of various types of crack damage. While the models
mentioned above exhibit remarkable detection capabilities, their practical implementation
is restricted. The acquisition of such road images through specialized vehicles regularly
incurs substantial costs.

The road damage detection model using front-view images focuses on developing
detection and classification models employing images captured by dashboard-mounted
cameras. Identifying road pavement damage through automated means is a viable and
pragmatic approach in real-world scenarios, with extensive ongoing research being con-
ducted in this domain. However, the procedure is considered challenging due to the
complex and obscure nature of the damage in this particular type of image. Furthermore,
apart from the road surface, the contextual elements captured in these photographs include
environmental factors such as atmospheric conditions, geographical features, and other
noise, which pose challenges to identifying pavement damage. Nevertheless, effectively
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utilizing these images for damage detection would yield significant benefits in pavement
monitoring activities. Currently, the repositories of front-view images are extensive. Fur-
thermore, it has the potential to be swiftly and effortlessly augmented. Again, utilizing
comprehensive pavement coverage images during inspections and camera installation
procedures is simple and cost-effective. Despite the numerous benefits of using images
as a resource, studies in this area remain limited due to images’ diverse and complex
textures. Deep learning-based models have been proposed as a viable solution to tackle
these challenging requirements effectively [22]. However, only a few models have their
performance evaluated using images taken by dashboard-mounted cameras.

Shim et al. [23] proposed a lightweight semantic segmentation method. This is note-
worthy, as most research on front-view images typically focuses on object detection. Their
proposed approach enhances precision, decreases parameters by 85.7%, and improves com-
putational speed by 6.1%. Furthermore, they enhanced the model’s parameters without
considering any potential impact on its detection speed. They proposed additional research
utilizing a lightweight auto-encoder network with a hierarchical layout to detect pavement
damage [24,25]. Most of these models did not attempt to categorize damage into distinct
classifications. Instead, researchers employ object detection models, such as Faster R-CNN,
YOLO, and SSD, to identify and categorize instances of pavement damage. Maeda et al. [26]
proposed combining a Single shot detector (SSD) with an Inception backbone and an SSD
with a MobileNet backbone to detect and classify eight categories of pavement damage
with a 71% Recall score. Jeong et al. [27] proposed a model based on the YOLOv5x archi-
tecture, which yielded an F1 score of 67%. However, the detection speed could be more
satisfactory. Wang et al. [28] identified and classified pavement damage with a 62.5% F1
score using a Faster R-CNN model with data augmentation techniques. Guo et al. [29]
employed the Mobilenetv3 architecture as the backbone and trained YOLOv5s using the
RDD 2020 dataset. The algorithm utilized by the authors integrates coordinate attention,
K-means, and label smoothing techniques. Incorporating diverse techniques in their algo-
rithm resulted in a 2.5% enhancement of the F1 score compared to the YOLOv5 baseline
model. Wan et al. [30] trained RDD 2020 using ShuffleNetv2 as the backbone and ECA-Net
as the attention mechanism in YOLOv5s. They use Focal Loss and BiFPN neck instead
of YOLOv5’s original neck. Their model increases the efficiency of image recognition by
22.3%. Recently, Pham et al. [31] employed the YOLOv7 model with coordinate attention
and label smoothing techniques on the RDD 2022 dataset. In addition, they customize
the default image enhancement settings of YOLOv7. This exhibits enhanced capacity for
generalization and resilience.

Rapid and precise road damage identification can greatly benefit the road maintenance
industry and contribute significantly to the economy. The maintenance of road pavement
technology is of utmost importance in ensuring the preservation of pavement quality, injury
prevention, and prompt detection and resolution of road surface issues.

(a) Top-view image (b) Front-view image

Figure 1. Different types of image used in road pavement damage detection research. (a): Top-view
image. (b): Front-view image.
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3. Methodology

YOLOv5 was chosen as the object detection model to be utilized for detecting and
classifying pavement damage. Initially, a thorough exposition of the YOLOv5 framework
will be presented. Subsequently, we shall expound upon our proposed adapted framework
tailored to suit our designated objective. Finally, a comprehensive elucidation of every al-
tered constituent will be presented, delineating the modifications implemented to augment
the precision and efficacy of the model.

3.1. YOLOv5s Architecture

The YOLOv5 model is a one-stage object detection framework that comprises four
distinct versions, namely YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. These versions
are regulated by two parameters, namely multiple-depth and multiple-width. The smallest
and quickest model is YOLOv5s, with a parameter of 7.0 M, while the most prominent
model is Yolov5l, with 76 M. The architectural structure is partitioned into four distinct
components, the input, backbone, neck, and head, as illustrated in Figure 2.

Figure 2. A brief overview of YOLOv5s architecture.

3.1.1. Input

The YOLOv5 network initiates image pre-processing, then resizes the image to
640 × 640 × 3 before feeding it into the backbone network. The greater efficiency of YOLO
with a 640 × 640 image can be linked to the algorithm’s built-in design [32]. The YOLO
algorithm partitions an image with dimensions of 640 × 640 into a grid consisting of
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20 × 20 cells, where each cell measures 32 × 32 pixels. This particular grid dimension
facilitates an optimal equilibrium in detecting objects of varying sizes.

The YOLOv5 input undergoes adaptive image scaling and mosaic data enhancement
for processing. The process of adaptive image scaling involves resizing the source image
to a predetermined size, followed by its input into the neural network for detection.
The utilization of mosaic data enhancement is observed during the training phase of the
model. The mosaic data enhancement technique involves the integration of four images
employing random arrangement, random cropping, and random scaling to augment the
training dataset. Subsequently, the image integrated with mosaic undergoes rotation,
panning, flipping, and color adjustment.

3.1.2. Backbone

The primary constituents of the backbone network are the Convolution Module
(Conv), the C3 module, and the Spatial Pyramid Pooling Fusion (SPPF) module. Conv is a
fundamental component encompassing Convolution, Batch Normalization, and Sigmoid
Linear Unit operations that extract features from input data. These operations of conv
aid in detecting and highlighting relevant image patterns and structures. The C3 module
plays a crucial role in feature extraction by facilitating cross-stage connections. It enables
data exchange between the various phases or layers of the neural network. This exchange
contributes to a greater understanding of the input data by simultaneously capturing low-
level and high-level features. The parameter N in C3 specifies using the BottleNeck module
N times within a single module. Including a residual structure within the BottleNeck
module has been observed to effectively address the gradient disappearance arising from
the deepening of neural networks. The SPPF structure evolved from Spatial Pyramid
Pooling (SPP) to alleviate computational pressure and increase network speed. This module
is designed to capture information at multiple spatial dimensions. It divides the input
feature maps into various grid sizes, and the network’s feature extraction is accomplished
via maximum pooling with varying pooling kernel sizes independent of each grid. This
process enables the model to concentrate on multiple image details regardless of their
spatial dimension, thereby improving object detection accuracy.

3.1.3. Neck

The neck can be regarded as the feature fusion network. The neck includes the Conv
module, C3 module, an upsampling module, and a Concat module. The neck structure
employs a fusion approach that combines top-down and bottom-up features. The bottom-
up approach facilitates the effective transmission of positional data from the lower to the
upper layers. The fusion of high-level and low-level features through the top-down path
enhances the detection efficacy of small objects. Integrating the two paths can consolidate
the characteristics of distinct detection layers originating from diverse backbone layers.
The utilization of this particular structure has the potential to enhance the detection efficacy
of dense objects.

3.1.4. Head

The YOLOv5 algorithm’s head mechanism employs three different YOLO Head classi-
fiers to identify feature images of varying scales: large-scale, medium-scale, and small-scale.
The prediction outcome encompasses the projected category, level of confidence, and po-
sitioning of each predicted box. Hence, it is essential to compute the losses of the three
predicted results distinctly during the formulation of the loss function. The YOLOv5
model’s loss function comprises three parts, namely the confidence loss (Lobj), localization
loss (Lbox), and classification loss (Lcls). The aggregate loss is computed as the summation
of three distinct losses, and each is assigned a specific weight. Equation (1) represents the
full loss function.

LOSS = a× Lobj + b× Lcls + c× Lbox (1)
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The weighting factors denoted by a, b, and c correspond to the three partial losses.
Equations (2)–(4) represent all these partial losses. We utilized the default settings as
suggested in the YOLOv5 implementation, wherein we set the values of a, b, and c to
1.0. This decision also corresponds with the results of other cutting-edge research, such as
YOLOv4 and YOLOv3, where these setup values have exhibited favorable compromises
between accuracy and computational efficacy [33,34].

Lbox = 1−CIOU (2)

Lcls =
S2

∑
i=0

obj

∏
i

∑
c∈class

(pi(c)− p̂i(c))2 (3)

lobj =
S2

∑
i=0

B

∑
j=0

obj

∏
ij
(Ci − Ĉi)

2 + λnoobj

S2

∑
i=0

B

∑
j=0

obj

∏
ij
(Ci − Ĉi)

2 (4)

The symbol ∏
obj
i is utilized to ascertain the presence of a detection object in cell i.

The ∏
obj
ij is utilized to ascertain the responsibility of the jth (j = 0, . . . , B) prediction box

located in cell i (i = 0, . . . , S2) for detecting the given object. The notation pi(c) is utilized
to indicate the classification score of a specific category C, whereas p̂i(c) denotes the actual
value of the category linked with the prediction box. The weight coefficient in the absence
of an object is denoted as λnoobj, while Ci represents the confidence score. Additionally,
the intersection portion of the prediction box and the actual box is defined by Ĉi.

Binary cross-entropy loss (BCE) is mainly used in classification and confidence loss,
while CIoU (Complete Intersection Over Union) loss is commonly used for localization
loss.

Lp(q) = −
1
N

N

∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (5)

Equation (5) defines the binary cross-entropy loss. In the given equation, yi denotes
the actual label of the sample in the real-world scenario, whereas p(y) signifies the antici-
pated likelihood of the data point being affirmative, taking into account all N data points.
The augmented form of the localization loss is described in Equation (6).

Lbox(l, g) = 1−CIoU(l, g) = 1− IoU(l, g) +
ρ(l, g)2

c2 + αv (6)

IoU(l, g) =
l ∩ g
l ∪ g

(7)

ν =
4

π2

(
tan−1

(
gw

gh

)
− tan−1

(
lw
lh

))2
(8)

α =
ν

(1− IoU(l, g)) + ν
(9)

The symbols l and g in the equation represent the ground truth and prediction box,
respectively. The symbol ρ denotes the Euclidean distance. The parameter c represents
the diagonal length of the smallest possible closed box that can cover both boxes above.
The intersection degree of IoU of two boxes is represented by Equation (7). v in Equation (8)
denotes the aspect ratio’s consistency. Finally, the symbol α, denoted in Equation (9),
represents the trade-off parameter.

3.2. Improved YOLOv5s

The YOLO architecture size varies considerably from nano to extra-large based on
multiple-depth and multiple-width parameters, and selecting the appropriate model for
training is essential. Accuracy will improve as the model size increases, but model deploy-
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ment will become problematic. The YOLOV5m and other large versions are unsuitable for
real-time road damage detection and classification because they require excessive param-
eters. So, an effort was made to improve the YOLOv5s model, which contains 7 million
parameters suitable for detection speed. Figure 3 represents our improved YOLOv5s
network architecture. It satisfies the requirements for road pavement damage detection
tasks, particularly regarding detection speed. The primary obstacle in pavement dam-
age detection and classification is sustaining detection speed while improving accuracy.
To accomplish this, we modify the architecture of YOLOv5s significantly. Comparing
diverse backbones, the default backbone of YOLOv5, CSPDarknet, is chosen as the model’s
backbone network.

Figure 3. A brief overview of improved YOLOv5 architecture.

Our modifications to the YOLOv5 model include several essential techniques designed
to improve its performance in detecting road damage. Our YOLOv5 model enhancements
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include incorporating the efficient Channel Attention module (ECA-Net) into the network’s
backbone and neck. ECA-Net recalibrates channel-specific feature responses, improving the
model’s precision by focusing on relevant information and reducing noise. This refinement
enables the model to capture intricate details and contextual information from images
of road damage, significantly enhancing its accuracy. Secondly, label smoothing was
used to improve the generalizability of the model. This method replaces rigid labels with
smoothed probabilities, making the model more resistant to data variations and less prone
to overfitting. Label smoothing is preferable when dealing with various road pavement
damage images and lighting conditions, enhancing the model’s performance on unseen
data for real-world applications. Thirdly, the K-means++ algorithm, instead of the default
K-means algorithm, was used to iteratively analyze the dataset to identify an appropriate
anchor box for our dataset instead of the default COCO dataset-based anchor box. This
modification ensures that anchor boxes align closely with pavement damage object features,
increasing the accuracy of the model’s bounding box predictions. Fourth, Focal Loss was
utilized instead of binary cross-entropy loss because it is more effective when there is an
imbalance between positive and negative examples. Focal Loss places greater emphasis
on complex examples, ensuring that the model does not prioritize straightforward cases
when calculating loss. This modification allows the model to concentrate more intently
on identifying instances of pavement damage. Finally, we have added an additional layer
of prediction to improve the model’s ability to learn across numerous objects and scales.
It enables the model to capture fine-grained details and adapt to objects of varying sizes,
which is crucial for accurate pavement damage detection. Collectively, these techniques
improve the YOLOv5 model’s accuracy, robustness, and adaptability, making it an effective
instrument for pavement damage detection in real-world scenarios.

3.2.1. Enhancing Object Detection with Attention Mechanism

The analysis of human vision yielded the concept of attention mechanisms. Thus,
attention mechanisms in deep learning are comparable to the selective attention mechanism
of humans. Their primary objective is to select more critical information regarding the cur-
rent task objective from many pieces while disregarding other unimportant details. Spatial,
channel, and mixed mechanisms are the three primary categories of attention mechanisms.

The ECA-Net is a recently developed attention mechanism characterized by its
lightweight and efficient design [35]. It improves the Squeeze and Excitation Network
(SENet) framework [36]. The YOLOv5 model was enhanced by integrating an ECA atten-
tion mechanism to enrich defect detection accuracy in complex scenes. Figure 4 depicts
the ECA attention mechanism. This integration facilitated the model’s focus on object
regions while training and reducing insignificant information representation. ECA employs
the one-dimensional sparse convolution filter to generate channel weights to replace the
full connection layer in the SENet. According to the study’s findings, implementing the
proposed method can enhance the precision of predictions without imposing additional
computational demands. Furthermore, the method can be readily integrated into mobile
networks, facilitating widespread deployment.

Figure 4. The ECA-Net structure.

The ECA-Net model utilizes Global Average Pooling (GAP) to transform the input
feature map X, a real-valued matrix with dimensions W × H × C, into a singular real value.
The resulting features are Xavg, a matrix with 1 × 1 × C dimensions. The variables W, H,
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and C correspond to the feature’s width, height, and channel, respectively, as indicated in
Equation (10). The feature extraction process from Xavg is achieved through a convolutional
operation using a one-dimensional convolution kernel of size K. K is represented as
Equation (11).

X̄ =
1

WH

W

∑
i=1,j=1

Xij (10)

K =
log2 C + 1

2
(11)

The sigmoid activation function is commonly employed to trigger the output result
following convolution to obtain the weight parameter. This parameter reflects the corre-
lation and significance of all the channels. Then, the weight variable W is applied to the
input feature map, resulting in the completion of the capturing of each channel feature of
the feature map. This approach amplifies significant characteristics by assigning greater
weights, whereas insignificant factors are subdued by assigning lesser weights.

To complete the objective, four attention modules were examined. Various positions
were utilized for their incorporation, including after each C3 module in the backbone,
solely after the final C3 module in the backbone, the neck portion of the architecture,
and the neck and backbone. Our findings indicate that incorporating an attention module
into the backbone of the model results in increased weightiness due to the substantial
number of parameters present in each C3 block of the backbone. The feature extraction
process that passes through these attention modules also contributes to this increased
weightiness. The attention module was added right after the final C3 block and before the
SPPF. By placing the attention module before the SPPF, the refined feature representation
from the attention module can be efficiently combined with the spatially pooled features.
This strategic placement facilitates enhanced network performance by enabling selective
focus on the most relevant features [37]. Furthermore, including ECA-Net after every C3
block in the downsampling process can improve the network’s performance by augmenting
its capacity to capture long-range interdependencies among distinct spatial locations within
the feature map [38].

3.2.2. Optimized Anchor Generation

The initial dimensions of the anchor box in YOLOv5 are determined through edge
clustering using the K-means algorithm [39] on the MS COCO dataset [40]. However,
the MS COCO dataset predominantly comprises large and medium-sized targets. In con-
trast, this study’s Road Damage Detection dataset encompasses small and medium-sized
targets that deviate from the COCO dataset. Hence, the initial dimensions of the anchor
box in YOLOv5 are deemed unsuitable for the RDD-2022 dataset samples. To address this
issue, The K-means++ clustering algorithm was used instead of the K-means algorithm
to reconfigure the anchor box’s dimensions for the samples present within the RDD 2022
dataset. K-means++ is an enhanced variant of the K-means clustering algorithm that
addresses certain limitations of the original K-means algorithm [41]. These limitations in-
clude random initialization of centroids, slower convergence speed, and reduced accuracy.
The present study employs the K-means++ algorithm to perform clustering on the training
set, acquiring 12 anchor boxes that serve as the initial clustering boxes. Upon completing
dataset reclustering, a novel anchor box was discovered, comprising the following coordi-
nates: ‘15, 15, 44, 26, 33, 63’, ‘116, 24, 81, 62, 44, 120’, ‘228, 36, 92, 142, 175, 97’, and ‘191, 190,
126, 464, 410, 199’.

3.2.3. Utilizing Focal Loss Strategy

Focal Loss was utilized to substitute the binary cross-entropy loss. The Focal Loss is a
variant of the conventional cross-entropy loss function, which aims to decrease the impact
of accurately classified instances on the overall loss while emphasizing the significance of
misclassified cases [42]. In addition, Focal Loss is a technique utilized in object detection



Algorithms 2023, 16, 452 11 of 23

to tackle the problem of disproportionate representation of foreground and background
classes. YOLOv5 can increase detection performance by employing focus loss, particularly
for small objects that are difficult to identify due to their small size and low contrast.
Furthermore, focus loss can reduce the probability of incorrect identifications by assigning
relatively lower weights to less complicated instances, reducing the influence of unwanted
information on the final detection outputs.

The YOLOv5 model employs the Focal Loss function on the classification branch of the
network. This branch forecasts every anchor box’s objectness score and class probabilities.
The calculation of the Focal Loss is as in Equation (12):

FL(pt) = −(1− pt)
γ log(pt) (12)

The equation involves the predicted probability for the actual class, denoted as pt,
and a hyperparameter γ, which modulates the degree of weighting assigned to challenging
examples. When γ equals zero, the Focal Loss function simplifies to the conventional
cross-entropy loss.

The modified formula for binary cross-entropy with Focal Loss is given in Equation (13):

FL(pt) = −αt(1− pt)
γ log(pt)− (1− αt)pγ

t log(1− pt) (13)

where pt is the projected likelihood of the actual class, alphat is a binary class sign (i.e.,
αt = 1 if the actual class is present and αt = 0 otherwise), and γ is the focusing parameter
that regulates how much weight is placed on complex examples.

3.2.4. Label Smoothing Algorithm

Label smoothing is a widely employed regularization technique in deep neural net-
works (DNNs) that effectively mitigates the issue of overfitting during training. Its im-
plementation has been observed to enhance the classification accuracy of Deep Neural
Networks [43]. Overfitting is a prevalent issue arising during deep learning models’ move-
ment. It refers to a scenario where the model exhibits good performance on the training set,
but its performance on the test set is unsatisfactory. This poor generalization ability renders
the model ineffective in predicting unknown data. It is widely accepted that including
mislabeled labels is a crucial measure for reducing the potential for excessive confidence in
identifying data used for training.

The technique of label smoothing involves the integration of a uniform distribution,
wherein the conventional label vector yi is substituted with the modified label vector ŷi.
Equations (14) and (15) represent label smoothing.

ŷi = yi(1− δ) +
δ

K
(14)

The total count of K multicategory groups and the small hyperparameter δ (typically
set to 0.1) are the focal points of assessment.

ŷi =

{
1− δ, i = target
δ
K , i 6= target

(15)

In our study, the effectiveness of the label smoothing method was analyzed with a
default value of 0.1, which has yielded favorable results in various scenarios [44].

3.2.5. Added Prediction Layer

Initially, YOLOv5 only performed feature prediction on the final three C3 layers.
The utilization of multiple feature images with varying dimensions is employed to detect
objects of varying sizes. The network acquires three feature images of different dimensions
from the initial input image using downsampling at 8×, 16×, and 32×. After deep con-
volution, the feature image contains lots of semantic information. Nevertheless, the loss
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of certain positional information about the object occurs during multiple convolutions,
rendering it impractical to detect tiny objects. The present study incorporates a 4× down-
sampling in the spatial resolution of the initial input image utilizing the YOLOv5 backbone
network. As illustrated in Figure 3, the initial image undergoes a downsampling process
four times. It is subsequently inputted into the feature fusion network, acquiring a feature
map with a different size. As each C3 has been followed by an ECA-Net, the detection head
obtains its feature map from ECA-Net. The image in question exhibits a reduced receptive
field and increased location information. By utilizing the multilevel feature information
of complex objects, the featured image can enhance the detection efficacy of the model in
complex environments.

4. Result Analysis

In this section, we endeavored to present all of our experiments. Through the execution
of these tests, we aimed to conduct a comprehensive evaluation of our proposed model.
First, we will discuss the training configuration and dataset employed, followed by a
discussion of the implemented study.

4.1. Dataset Description

Various intelligent equipment, such as drones and dashcams, have made the automatic
collection of road damage data much more accessible in recent years. Especially the
dashboard-mounted camera is quicker to install and more effective than manual scanning
techniques in detecting road damage. Moreover, classifying road damage data manually
is a time-consuming process. An existing benchmark dataset was employed to train
the road damage detection model. Most top-view datasets do not have the class name;
hence, classification is impossible. The road damage detection dataset (RDD 2022) is the
largest front-view road damage dataset ever compiled about road pavement damage,
encompassing four types of damage in six countries. This dataset follows the preceding
RDD dataset and is an expanded version of the earlier RDD 2020 [45] and RDD 2018 [26]
datasets. While the RDD 2018 dataset has 9053 photos and the RDD 2020 dataset contains
26,336 images from three countries, the RDD 2022 dataset [46] comprises 47,420 images
compiled from numerous sources in six nations. It includes Japan, the United States,
Norway, the Czech Republic, India, China Motorbike, and China Drone. Figure 5 depicts
the distributions of damage types (of the four main damage types) among the six countries.
It also illustrates the diversity of road pavement damage across countries by showing that
India has a more significant number of D40, whereas D00 is adequately represented in
the dataset for all countries. Moreover, Japan, India, and Norway have a higher rate of
pavement damage than the other three nations. From the present standpoint, this cutting-
edge dataset is the most practical and effective for road pavement damage detection
and classification.

4.2. Data Processing and Training Configuration

RDD 2022 contains 47,420 images, of which 36,000 have annotations from six distinct
countries. Approximately 14,700 of the 36,000 annotation files were found to be empty
as they did not contain an object, so those images were manually removed by us. YOLO
is designed to detect objects in a single pass across the entire image; unlike two-stage
detectors (such as Faster R-CNN), this method does not require negative photos for training.
The dataset had a country-specific sub-folder for each country’s images and corresponding
annotations. China-Drone was omitted in our work because it needed to be obtained from
a front-mounted vehicle image for this research. A close inspection of the RDD 2022 dataset
provides us with a few insights for selecting images efficiently. Countries such as Norway
and Japan had various image sizes. For example, the resolution of the Norway photos
(3072 × 3720) is incompatible with our GPU configuration. Each image was manually
scaled to 640 × 640 to train the YOLOv5 model. Numerous photos have distinct labels for
a single country. For instance, China Motorbike has a label named Repair. Japan and India
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have multiple labels with the uncommon names D01, D11, D43, D44, and D50. In light
of this, the unique classes were manually eliminated, the remaining classes were merged,
and the four common categories were retained for six countries. Four types of damage
were included: D00: longitudinal cracks, D10: transverse fractures, D20: alligator cracks,
and D40: potholes. Figure 6 depicts an example of these four classes.

Figure 5. Damage category distribution in the current benchmark state-of-the-art dataset.

(a) (b) (c) (d)

Figure 6. Different kinds of damage used in this research. (a) D00: longitudinal crack; (b) D10:
transverse crack; (c) D20: alligator crack; (d) D40: pothole.

The dataset was split 70:20:10 for training, validation, and testing purposes. After all
preprocessing is completed, the model is evaluated using 1542 images. The testing size is
sufficient for estimating the model’s performance on new, unobserved data. This model
was trained with 10,798 images and validated with 3042 images to prevent overfitting.
The results of the different classes of this study and their quantity are presented in Figure 7,
which includes details about the dataset’s class and amount.

Upon creation of the training set, the YOLOv5s model is subsequently trained through
the utilization of the yolov5s.pt pretraining weights, and a “custom.yaml” was created as
the configuration file to specify the model architecture. Logarithmic and weight files are
recorded and stored throughout the training process. The training configuration is given in
Table 1. For this research, the Google Colab Pro platform was utilized, operating in a Linux
environment and offering substantial computational resources. These included an Intel
Xeon CPU with a clock speed of 2.2 GHz, 32 GB of RAM, and Nvidia A100 GPU. These
resources played a pivotal role in meeting the demanding computational requirements of
deep learning experiments and model training.
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Figure 7. Different classes of this study and their quantity.

Table 1. Training configuration of our improved YOLOv5s.

Hyper Parameter Value

Optimizer SGD
Epochs 100
Batch size 16
Image Size 640 × 640
workers 6
Auto Anchor False (Default = True)
Label_smoothing 0.1 (Default = None)

4.3. Evaluation Metric

This research utilizes various evaluation metrics, including precision, recall rate,
F1 score, mean Average Precision (mAP), number of parameters, and GFlops (i.e., One
billion Floating-Point Operations per second). The precision metric of a model determines
the proportion of correctly predicted positive labels compared to the overall number of
predicted positive labels. The precision formula is presented in Equation (16).

Precision Score =
TP

(FP + TP)
(16)

Recall is a metric that evaluates the accuracy of a model’s ability to predict posi-
tive outcomes based on actual positive results, in contrast to other performance metrics.
The metrics of True Positive (TP), False Positive (FP), and False Negative (FN) are employed
in the calculation of precision and recall. The Recall equation is provided in Equation (17).

Recall Score =
TP

(FN + TP)
(17)

The F1 score is a metric that evaluates a model’s effectiveness by considering both
its precision and recall scores. The F1 score is a performance metric that assigns equal
importance to Precision and Recall when assessing the effectiveness of a machine learning
model. The technical expression for this is the harmonic mean of the precision and recall
scores. The mathematical expression for the F1 score is presented in Equation (18).

F1 Score =
2 ∗ Precision Score ∗ Recall Score
(Precision Score + Recall Score)

(18)

The Mean Average Precision (mAP) is a typically used metric for assessing object
detection models. Initially, the precision and recall metrics are calculated for every detection
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within the category across a spectrum of confidence threshold values. Subsequently,
the mean Precision is determined by utilizing the region beneath the class’s precision–
recall curve (AUC). Upon computation of the AP score for every class, the mAP score
is derived using the average of these individual scores. The mAP score is a significant
metric that provides a comprehensive evaluation of the detection performance of the model
across all categories in the dataset. The mathematical expression for mAP is presented in
Equation (19).

mAP =
1
n

k=n

∑
k=1

APk (19)

where APK = the AP of class k and n = the number of classes.
GFlops are employed for assessing the efficacy of a model or algorithm. Typically,

a lower GFlops value corresponds to reduced computational demand for model rendering,
lower hardware performance requirements, and increased feasibility for implementation in
low-end devices. Measuring parameters is crucial in assessing a model’s complex nature
and computational requisites. A model’s complexity is directly proportional to its number
of parameters. A more significant number of parameters signifies the complexity of a
model, which could require more computational resources for training and deployment.
Hence, it is essential to evaluate the efficacy of object detection models by examining their
parameter count and performance on relevant metrics such as mAP, Precision, and Recall.

4.4. Evaluation of Performance

In this section, the effectiveness of our proposed method is evaluated through vari-
ous experiments.

Finding Suitable Backbone

The first study aimed to determine the most effective backbone for the given task.
The objective of our study was to maximize the outcome by limiting the parameter count.
Different kinds of backbones were tested to meet our requirements. Table 2 represents
this experiment. The baseline yolov5s model yields a mean average precision of 65.91%
while utilizing 7.01 million parameters and a GFlops of 16. With the Swin transformer,
the result drops to 3.44% in terms of mAP, attaining 62.47%, and a 4.07% decrease in the F1
score, achieving 61.14%. Moreover, the GFlops increased hugely, reaching a value of 102.00.
The parameter count displayed a rise of 1.59 million. Using the RepVGG backbone resulted
in a mean average precision (mAP) of 61.32% and an F1 score of 60.51%. Mobilnet v3 and
Mobileone backbone were examined, and their parameter count and GFlops are relatively
less than other backbone architectures. The MobileNet V3 model achieved a mean average
precision (mAP) of 56.72%. The model’s parameter count and GFlops were recorded at
5.21 million and 10, respectively. Mobileone, a recently invented novel architecture by
APPLE, attained 58.81% mAP and a 58.67% F1 score. The parameter count for this is higher
than Mobilenet v3, though both have the same GFlops of 10. Finally, the default backbone
CSPDarknet was selected by us as our backbone, representing the best performance while
containing an acceptable amount of parameters.

Table 2. Experimental results of the different backbones with YOLOv5s architecture.

Backbone Precision
(%)

Recall
(%)

F1 Score
(%)

mAP@0.5
(%)

No. of
Params. (M) GFlops

CSPDarknet 66.70 63.80 65.21 65.91 7.01 16.00
Swin Transformer 64.11 58.45 61.14 62.47 8.60 102.00
RepVGG 63.12 58.24 60.51 61.32 7.30 17.14
Mobilenet v3 59.43 54.16 56.36 56.72 5.21 10.00
MobileOne 61.27 56.36 58.67 58.80 8.15 10.14
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4.5. Experiment of Different Attention Mechanisms

The study revealed that the CBAM necessitates more parameters and GFlops, en-
compassing 8.35 million parameters, significantly higher than the other three attention
modules. This is attributed to the CBAM providing both spatial and channel attention,
despite not obtaining the optimal result. Table 3 depicts this experiment. In our study, it
was determined that the utilization of Squeeze and Excitation (SENet) and Convolutional
Block Attention Module (CBAM) did not yield significant benefits compared to Channel
Attention (CA) and Efficient Channel Attention (ECA) in our specific scenario. The results
indicate that CBAM produces a mAP of 64.81%, whereas SE and CA yield mAP values of
64.72% and 65.57%, respectively. Therefore, the ECA attention module was identified as
the optimal choice due to its relatively low parameter count compared to other attention
modules and its ability to yield the highest performance metrics of 65.99% mAP and 65.35%
F1 score when compared to other attention modules.

Table 3. Experimental results of different attention mechanisms with YOLOv5s architecture.

Attention
Mechanism

Precision
(%)

Recall
(%)

F1 Score
(%)

mAP@0.5
(%)

No. of
Params. (M) GFlops

CBAM 66.34 63.02 65.15 64.81 8.35 18.41
SE 65.56 62.31 63.89 64.72 7.41 17.56
CA 66.67 62.57 64.68 65.57 7.27 17.10
ECA 66.85 63.93 65.35 65.99 7.18 16.00

4.6. Ablation Experiment

The reliability and importance of individual enhanced modules within the model
are assessed by utilizing YOLOv5s as a benchmark and gradually integrating improved
modules to perform ablation experiments. The assessment criteria used in this investi-
gation comprise Precision, Recall, F1 Score, mAP, Number of parameters, and frames
per second (FPS). Table 4 displays the results of the experimental findings. The default
version of YOLOv5s exhibits a mAP of 65.91 and comprises 7.06 parameters. Including
ECA-Net in the architecture has resulted in a 0.08% improvement in mAP. Additionally,
there was an increase of 0.12 million parameters and a reduction of 9 FPS. Incorporating
Focal Loss resulted in a 0.27% increase in mAP, while the number of parameters and FPS
remained constant. Incorporating an adaptive anchor box by utilizing the K-means++

algorithm resulted in a 0.31% increase in mAP and a 0.97% increase in precision. Reducing
parameters by 110,000 resulted in a corresponding increase of 7 FPS. Upon increasing
the label smoothing value by 0.01, a notable enhancement of 0.39% was observed in the
Recall metric. Ultimately, incorporating an additional detection layer resulted in a 67.81%
mAP score, an F1 score of 66.51%, accompanied by a parameter increase of 1.05 million.
The obtained FPS value in this experiment is 58, with an increased mAP of 1.9% from the
Yolov5s baseline.

Our newly added prediction layer helps to locate tiny objects, thus improving the
detection performance. Figure 8 represents our model’s effectiveness in detection perfor-
mance. This implies that this model is reliable in detecting and classifying road pavement
damage in real-time scenarios. Figure 9 demonstrates our proposed model detection re-
sults. We thoroughly analyzed the training and validation curves for class_loss, box_loss,
and object_loss and presented the results in Figure 10 of the paper. Our findings indi-
cate no overfitting, as there was neither an increase in validation loss nor any substantial
fluctuations after the initial decrease.
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Table 4. Ablation study on improved YOLOv5s.

Model Precision
(%)

Recall
(%)

F1 Score
(%)

mAP@0.5
(%)

No. of
Params. (M) FPS

YOLOV5s-Baseline 66.70 63.80 65.22 65.91 7.06 68
YOLOV5s-Baseline + ECA 66.83 63.93 65.33 65.99 7.18 59
YOLOV5s-Baseline + ECA
+ Focal 67.94 62.96 65.35 66.26 7.18 59

YOLOV5s-Baseline + ECA
+ Focal + K-means++ 68.91 62.64 65.62 66.57 7.07 66

YOLOV5s-Baseline + ECA
+ Focal + K-means++ + label
smoothing

67.94 63.03 65.39 66.74 7.07 66

YOLOV5s-Baseline + ECA
+ Focal + K-means++ + label
smoothing + Newly Added
Detection layer

70.14 63.24 66.51 67.81 8.11 58

(a) (b)

Figure 8. Demonstration of tiny object detection using our improved YOLOv5s: (a) YOLOv5s; (b) our
improved YOLOv5s.

4.7. Comparison of Different YOLO-Based Object Detectors

All state-of-the-art large, medium, and small-sized versions of the Yolo model’s results
are given in Table 5. The YOLOv8l, YOLOv5l, YOLOv8m, and YOLOv5m represent all the
large and medium models that we trained with the RDD 2022 dataset where we obtained the
best mAP and F1 score but with a large number of parameters and low FPS. The YOLOv8l
attains the highest mAP of 71.50% with 43.7 million parameters among these models.
The YOLOv8m achieved 70.79% mAP and 68.63% F1 score with 25.80 million parameters.
With YOLOv5l and YOLOv5m, we obtained 70.90% and 69.23% mAP, corresponding
to 46.50 and 21.2 million parameters. These large and medium-sized models’ parameter
counts and higher GFlops make the model heavyweight and unsuitable for real-time
damage detection. All the small-sized models were experimented with, and they are
suitable for real-time damage detection and more lightweight to integrate into mobile



Algorithms 2023, 16, 452 18 of 23

devices. To assess this, we trained the dataset with YOLOv7-tiny, YOLOv5s, YOLOv8s,
and our improved YOLOv5s.

(a) (b) (c)

Figure 9. Demonstration of our improved YOLOv5s model detection results: (a) input image;
(b) ground truth; (c) detection output.

(a) (b)

(c)

Figure 10. Training vs. validation curve of our improved YOLOv5s: (a) class_loss; (b) box_loss;
(c) object_loss.
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Table 5. Comparison among different object detectors.

Model F1 Score
(%)

mAP@0.5
(%)

No. of
Params. (M) GFlops FPS

YOLOv8l 69.06 71.50 43.70 165.2 23
YOLOv8m 68.63 70.79 25.80 78.70 32
YOLOv5l 68.78 70.90 46.50 109.5 26
YOLOv5m 66.55 69.23 21.20 49.00 36
YOLOv7-tiny 63.68 65.67 6.27 13.80 65
YOLOv5s 65.22 65.91 7.01 16.00 63
YOLOv8s 66.46 67.70 11.21 28.40 53
Ours Improved YOLOv5s 66.51 67.81 8.11 16.30 58

The YOLOv5s attains 65.91% mAP with 7.01 million parameters. YOLOv7-tiny consists
of 6.27 million parameters, and there is a decrease of 0.24% in mAP from the YOLov5s.
Yolov8s consists of 11.2 million parameters, which is 4.2 million more than the v5s, and
contains larger GFlops than YOLOv5s, and it achieved 67.70% mAP. However, we obtained
a 1.9% improvement from Yolov5 in terms of mAP and 1.29% in terms of F1 while increasing
by only 1.1 million parameters. Moreover, a 0.11% improvement in mAP and 0.05% in
F1 score was achieved from YOLOV8s while having 3 million fewer parameters and
12 gigabytes less GFlops.

4.8. Comparison with Existing Methods Regarding Road Pavement Damage Detection
and Classification

Table 6 shows the drastic performance gap between our improved YOLOv5s and
other object detection methods on the RDD 2018, RDD 2020, and RDD 2022 datasets.
Singh et al. used Mask RCNN with the RDD 2018 dataset to acquire an F1 score of
52.8% [47]. Numerous studies utilized RDD 2020, the successor to RDD 2018, and produced
a higher F1 score than previous research [48,49]. Using the RDD 2020 dataset and other
object detection algorithms, the researcher discovered that the YOLO-based approach
outperformed most of the other studies [27]. An average F1 score of 66.46% was obtained
by the only research found using RDD 2022, with 28.46 million parameters [31]. Their
average F1 score was exceeded by 0.05% with 20 million fewer parameters. Moreover, all
previous studies that utilized RDD 2018 and RDD 2020 datasets were outperformed by
a significant margin in this study. Figure 11 represents the precision–recall curve of our
proposed improved YOLOv5s model.

Table 6. Comparison with existing methods regarding road pavement damage detection and classifi-
cation.

Model F1 Score (%)

Mask R-CNN with RDD 2018 [47] 52.80
Multi-stage Faster R-CNN with Resnet-101 backbones with RDD 2020 [48] 54.26
Ensemble(YOLO-v4+Faster-RCNN) with RDD 2020 [49] 57.07
YOLOv5x with RDD 2020 [27] 57.10
Improved YOLOv5s with RDD 2020 [29] 60.92
YOLOv7 with RDD 2022 [31] 66.30
YOLOv5s with RDD 2022 (ours) 65.22
YOLOv8s with RDD 2022 (ours) 66.46
Improved YOLOv5s with RDD 2022 ( Ours proposed model) 66.51
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Figure 11. Precision–recall curve of our proposed improved YOLOv5s.

5. Discussion

Modern societies depend on efficient road infrastructure, enabling safe and cost-
effective transportation. Traditional manual road inspection is time-consuming and dan-
gerous, resulting in repair delays. The detection of road pavement damage is crucial to
sustaining a functional transportation network. Limited research has been conducted on the
effectiveness of the RDD 2022 dataset, which encompasses road damage from six nations,
including Japan, Norway, the United States, the Czech Republic, and China. Automated
methods, such as deep learning models, have emerged as valuable instruments for identi-
fying road pavement damage types with high accuracy. These developments contribute
to a safer and more sustainable transportation system by mitigating risks, decreasing
maintenance costs, and enhancing overall road management.

Our framework for object detection using deep learning, YOLOv5, has produced signif-
icant outcomes. Accuracy and generalization were substantially improved by incorporating
techniques such as the Efficient Channel Attention module, label smoothing, the K-means++

algorithm, Focal Loss, and an additional prediction layer. Despite containing a different
1.1 million parameters, our model showed an extraordinary 1.9% improvement in mAP
and 1.29% improvement in F1-Score over Yolov5s. In addition, it demonstrated a 0.11%
improvement in mAP and a 0.05% improvement in F1 score over YOLOv8s while contain-
ing 3 million fewer parameters. These results underscore the effectiveness of our model
in advanced road pavement damage detection, contributing to the creation of safer and
more efficient transportation networks. Figure 12 shows the comparison of performance
between the YOLOv5s-baseline and our improved YOLOv5s.

In real-world scenarios, it is essential to observe that our model is primarily trained
to detect four common types of pavement damage found in six countries. If the detection
setup encounters a damage type that lies outside the scope of our model’s training data,
it may not be recognized as damage. Future work includes crafting a substantial dataset
for our country. While object detection is standard, instance segmentation can be valuable
in locating damage precisely. We plan to develop an instance segmentation model with a
robust instance-segmentation-based dataset to accurately find road damage in front-view
images, as this task has yet to be carried out due to its labor-intensive nature. Moreover,
we would like to develop a model for indoor road environments that includes areas such
as indoor car parking areas, tunnels, and underground facilities.
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(a) (b)

(c)

Figure 12. Comparison of performance between YOLOv5s-baseline and our improved YOLOv5s:
(a) mAP0.5 comparison; (b) precision comparison; (c) recall comparison.

6. Conclusions

Rapid and accurate identification of road damage can tremendously benefit the road
maintenance industry and significantly contribute to the economy. Applying deep learning
techniques becomes crucial as it considerably facilitates road pavement inspection and
provides a comprehensive view of the pavement’s condition. The present study introduces
an enhanced approach for detecting pavement damage utilizing the YOLOv5s model. Ini-
tially, our task involved the identification of an optimal backbone for our model that would
exhibit excellent accuracy and low computational complexity. After the model’s backbone
was identified, experiments were conducted using diverse attention mechanisms at various
locations within the YOLOv5s architecture. Several alterations have been proposed that
lead to a notable enhancement in the results, following the adoption of the ECA attention
mechanism. The Focal Loss function is utilized instead of the binary cross-entropy (BCE)
loss function, while the K-means++ algorithm is employed to determine the optimal anchor
box for our model. Subsequently, a label smoothing algorithm is used. Ultimately, a novel
detection head was integrated into a new prediction module at the neck of the YOLOv5s
framework. Our research emphasizes the essential significance of deep learning in rev-
olutionizing road pavement inspection, thereby providing a more efficient and effective
road infrastructure management solution. While our model is specialized for detecting
common types of pavement damage, it contributes to developing safer and more efficient
transportation networks in line with the evolving needs of modern civilizations.
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