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Abstract: In this paper, a novel global optimization approach in the form of an adaptive hyper-
heuristic, namely HyperDE, is proposed. As the naming suggests, the method is based on the
Differential Evolution (DE) heuristic, which is a well-established optimization approach inspired by
the theory of evolution. Additionally, two other similar approaches are introduced for comparison
and validation, HyperSSA and HyperBES, based on Sparrow Search Algorithm (SSA) and Bald Eagle
Search (BES), respectively. The method consists of a genetic algorithm that is adopted as a high-level
online learning mechanism, in order to adjust the hyper-parameters and facilitate the collaboration
of a homogeneous set of low-level heuristics with the intent of maximizing the performance of the
search for global optima. Comparison with the heuristics that the proposed methodologies are based
on, along with other state-of-the-art methods, is favorable.

Keywords: global optimization; evolutionary algorithms; genetic algorithm; differential evolution;
sparrow search; bald eagle search

1. Introduction
1.1. Problem

The problem under scrutiny is to find the global minimum of a function f (x), with
x ∈ Rn. Typically, the function has many variables and multiple local minima. The shape
of the function is considered unknown, and we treat it as a black box; in particular, it is im-
possible to apply analytical methods in order to determine the minimum; also, the gradient
is not available.

1.2. State of the Art

Currently, there are a plethora of approaches, namely heuristics, that are able to search
the problem space for optimal solutions. An extensive list of heuristics can be found in [1].
We enumerate a few that are considered representative by being the most cited: Particle
Swarm Optimization (PSO) [2], Simulated Annealing (SA) [3], Ant Colony Optimization
(ACO) [4], Artificial Bee Colony (ABC) [5], Harmony Search (HS) [6], Gravitational Search
Algorithm (GSA) [7], Firefly Algorithm (FA) [8]; many others have original traits. These
methods intelligently evaluate the solution space, attempting to predict where the best
solution is located, considering the past discovered solutions. A partial exploration is
desired because the real world problems are complex; an exhaustive exploration is not
feasible due to time and computational constraints. This being said, it is not guaranteed
that the heuristic has found the global optima at the end of the search.

The stochastic methods that are considered in this paper are enumerated below.
Firstly, inspired by the theory of evolution, we have the basic Differential Evolution

(DE) [9] algorithm along with two variants: the adaptive success-history based named
SHADE [10] together with L-SHADE [11], which has additionally a linear population size
reduction strategy.
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Inspired by the behavior of groups of individuals found in nature, such as animals
and insects, there are various swarm optimization algorithms: Sparrow Search Algorithm
(SSA) [12], Bald Eagle Search (BES) [13], Whale Optimization Algorithm (WOA) [14],
Harris Hawks Optimization (HHO) [15], and Hunger Games Search (HGS) [16]. The
conceptual contribution and the underlying metaphor of some of these algorithms may be
questionable [17], but many of them have good practical behavior.

Inspired by concepts from mathematics, we have Chaos Game Optimization (CGO) [18],
while Slime Mold Algorithm (SMA) [19] can be considered a bio-inspired search algorithm.

Most of the techniques listed above are not far from the state-of-the-art; other methods
are not so recent but are well established. What is to be taken into consideration is that DE
together with SHADE and LSHADE are considered the key contenders in our methodology
validation, the other algorithms being less relevant.

Each enumerated method performs in a different manner, excelling at solving a par-
ticular subset of problems while not being appropriate for solving some other problems.
Many of the available heuristics have hyper-parameters whose values affect the perfor-
mance of the search, therefore being able to tailor the algorithm to the given problem. It
often happens that the methods fail to converge to the global optima, remaining stuck in
a locally optimal solution instead and struggling to find a balance between exploration
and exploitation.

Regarding the development of hyper-heuristics, the field of study is relatively new,
with an increase in publications on this subject over the last three–four years [20]. There are
several methods available, such as approaches based on genetic programming [21], graph-
based [22], VNS-based [23], ant-based [24], tabu search-based [25], greedy selection-based [26],
GA-based [27], simulated annealing-based [28], and reinforcement learning-based [29]. Those
are several relevant examples that initiated the domain in various directions.

More recent hyper-heuristics that merit attention could be a simulated-annealing-
based hyper-heuristic [30], a reinforcement learning-based hyper-heuristic [31], a ge-
netic programming hyper-heuristic approach [32], a Bayesian-based hyper-heuristic ap-
proach [33] and a very appealing, highly general approach for continuous problems [34].

None of the above resembles our proposed method; as revealed in [20], most of
the hyper-heuristics are designed to be applied in different domains, problems such as
scheduling, timetabling, constraint satisfaction, routing policies, not continuous problems
as in our study. Unlike our method, the existent high-level procedures are usually not
population-based and do not make use of parallelization.

1.3. Our Contribution

Our plan is to define an adaptive hyper-heuristic [35] for adjusting the hyper-parameters
of a set of low-level heuristics, in an online manner, such as to maximize the performance
in finding the global minimum.

A hyper-heuristic is a methodology that automates the selection, generation and
adaptation of lower level heuristics in order to solve difficult search problems. Therefore,
instead of exploring the problem space directly, it explores the space of possible heuristics.

Accordingly, our proposed method has two optimization layers:

• The high-level adaptive algorithm, which is variant of the genetic algorithm (GA),
is responsible for the process of online learning of the hyper-parameters of the basic
heuristics.

• The low-level optimization algorithm can be any optimization method characterized
by a set of hyper-parameters that are tuned by the high-level algorithm. The low-level
algorithm acts through agents that directly attempt to solve the optimization problem
by exploring the solution space.

After an analysis that consisted of the evaluation of various heuristics, DE was selected
as the main low-level agent in the context of the proposed optimization method. The
combination of our variant of GA at the high-level and DE at the low-level is called
HyperDE. Two other algorithms, SSA and BES, were also considered appropriate to serve as
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agents. The resulting methods are called HyperSSA and HyperBES, respectively. The three
methods are similar in approach, sharing the same high-level procedure, but differing by
which algorithms are adopted as agents.

Each of the above optimization algorithms that are used as agents presents a set of
hyper-parameters that influence the performance of their search. The most important in
this paper, DE, has the following hyper-parameters: F ∈ [0, 1], weighting factor; CR ∈ [0, 1],
crossover rate; S ∈ [0, 5] (integer), index of the mutation strategy (See Section 2 for details).
In the HyperDE algorithm, a population of DE instances is managed by our GA, which
tunes the triplets (F, CR, S) in the attempt to improve the search compared to the case where
a single triplet of hyper-parameters is used.

By this endeavor, it is expected to obtain a methodology that is more general in its
applicability, adapting without intervention to the given problem, resulting in a superior
average performance given a set of problems without additional effort from the human
agent. We consider it to be one possible approach to deal with the “No Free Lunch”
theorem [36] successfully.

The evaluation and analysis of the proposed hyper-heuristics in comparison with the
other enumerated algorithms was conducted on 12 benchmark functions provided by CEC
2022 competition. We show that HyperDE has indeed the best average performance and
Friedman rank, followed by L-SHADE, while HyperSSA and HyperBES demonstrate to be
significant improvements over their counterparts.

1.4. Content

In Section 2, the Differential Evolution algorithm is briefly presented, as it represents
an important part of the proposed method; also, in Section 3, we recall the principles of
the BES and SSA algorithms. In Section 4, a short description of the genetic algorithm
can be found, which is the second key component of our method. In Section 5, we give
a thorough presentation of the proposed methodology, containing also algorithms and
diagrams. Finally, in Section 6, the results of the proposed method in comparison with
some other algorithms are presented. Section 7 contains the conclusion of the paper.

2. Differential Evolution Algorithm Overview

Differential Evolution algorithm (DE) [9,37] is a population-based optimization method
inspired by the theory of evolution. The algorithm starts from a set of solutions that are
gradually improved by using operators such as selection, mutation and crossover. There
are many variants of the algorithm; we concentrate on the ones that do not have self-
adaptive capabilities or an external history, considering several mutation strategies that are
of interest.

The DE basic structure is given in Algorithm 1. The population of NP vectors is
initialized randomly and then improved in itermax iterations. In each iteration, each
individual xi can be replaced with a better one. A so-called donor vector is built with

vi ← xr1 + F · (xr2 − xr3) (1)

where xr1 , xr2 , xr3 are individuals chosen randomly; they are distinct one from each other
and from xi and F ∈ [0, 1] is a given weighting factor.

Then, a trial vector ui is produced by crossover from xi and the donor vector, with

ui,j =

{
vi,j, if ri,j ≤ CR or j = jrand

xi,j, otherwise
(2)

where i = 1:NP, j = 1:n, ri,j ∈ U(0, 1) is a uniformly distributed random number generated
for each j and jrand ∈ 1 : n is a random integer used to ensure that ui 6= xi in all cases. The
crossover rate CR ∈ [0, 1] dictates the probability with which the elements of the vector xi
are changed with elements of the donor vector.
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Algorithm 1 Differential evolution algorithm.

NP← population size
F← weighting factor
CR← crossover probability
Initialize randomly all individuals xi, i = 1:NP
t← 0
while t < itermax do

for i = 1 : NP do
Randomly choose xr1 , xr2 , xr3 from current population
MUTATION: form the donor vector using the Formula (1)
CROSSOVER: form trial vector ui with (2)
EVALUATE: if f (ui) ≤ f (xi), replace xi with trial vector ui

end for
t = t + 1

end while

To the two hyper-parameters that influence the behavior of the method (F and CR), we
add a third, the integer S ∈ 0 : 5, representing the index of the mutation strategy. Among
the many mutation operators that have been conceived and that can be an alternative to (1),
in this paper we consider the following, singled out as “the six most widely used mutation
schemes” in [37]:

0: “DE/rand/1” vi ← xr1 + F · (xr2 − xr3), which is (1)
1: “DE/best/1” vi ← xbest + F · (xr1 − xr2)
2: “DE/rand/2” vi ← xr1 + F · (xr2 − xr3) + F · (xr4 − xr5)
3: “DE/best/2” vi ← xbest + F · (xr1 − xr2) + F · (xr3 − xr4)
4: “DE/current-to-best/1” vi ← xi + F · (xbest − xi) + F · (xr1 − xr2)
5: “DE/current-to-rand/1” vi ← xi + rand · (xr1 − xi) + F · (xr2 − xr3)

where the indexes r1, r2, r3, r4, r5 are random integers that are all distinct, in the range 1:NP,
and different from i; they are generated for each mutant vector. xbest represents the best
individual from the current iteration.

Given the hyper-parameter or index S, the corresponding mutation strategy as defined
above will be used by the DE agent, the algorithm remaining unchanged beyond that
aspect. All the enumerated hyper-parameters will be manipulated by the genetic algorithm
that will be presented.

3. Other Parameterized Heuristics

We briefly recall here information on two evolutionary algorithms that will be used,
similarly with DE, as basic heuristics with which our hyper-heuristic works.

The Bald Eagle Search (BES) algorithm takes inspiration from the hunting behavior of
bald eagles. The algorithm comprises three stages: selection of the search space, searching
within the chosen space, and swooping.

In the selection stage, the eagles identify the best area within the search space where
the maximum amount of food is available.

In the search stage, they scan the vicinity of the chosen space by spiraling and moving
in various directions to look for prey.

During the swooping stage, the eagles move towards their target prey by shifting
from their current best position. Overall, all points in the search space move towards the
best point.

There are five hyper-parameters that need adjustment: a ∈ [2, 20] (integer), deter-
mining the corner between point search in the central point; R ∈ [0.1, 3], determining the
number of search cycles; α ∈ [0.5, 3], controlling the changes in position; c1 ∈ [0, 4] and
c2 ∈ [0, 4], increase the movement intensity of bald eagles towards the best and center
points. Note that the above intervals are those recommended in the Python implemen-
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tation from the library MEALPY [38] and we have used them. In the original work [13],
the recommendations are a ∈ [5, 10], α ∈ [1.5, 2], R ∈ [0.5, 2], c1, c2 ∈ [1, 2].

Sparrow search algorithm (SSA) [12] is a relatively new swarm optimization method
inspired by the behavior of sparrows, specifically by the group wisdom, foraging and
anti-predatory behaviors. There are two types of sparrows, producers and scroungers.
The producers actively search for food while the scroungers exploit the producers by
obtaining food from them. The roles are not fixed; an individual can shift from one foraging
strategy to the other depending on its energy reserve. Each individual constantly tries to
avoid being located at the periphery of the group to be less exposed to danger. Additionally,
when one or more birds detect danger, they will chirp, the whole group flying away from
the predator.

The hyper-parameters of SSA are ST ∈ [0.5, 1], the alarm value; PD ∈ [0, 1], the ratio
of producers; SD ∈ [0, 1], the ratio of sparrows who perceive the danger. Note that in [12],
PD and SD are integers between 1 and n. We modify them in fractions of n in order to be
able to optimize them more easily in the genetic algorithm.

4. Genetic Algorithm Overview

Genetic algorithm (GA) is a well established population-based optimization method
inspired by the theory of evolution [39]. The approach is based on the Darwinian theory
of survival of fittest in nature, adopting various biological-inspired operators such as
crossover, mutation and fitness selection, operators that manipulate a set of chromosome
representations. Algorithm 2 shows the basic GA structure.

Algorithm 2 Genetic Algorithm.

G ← the maximum number of iterations
P0 ← initial random population of individuals
t← 0
while t < G do

Compute the fitness values of Pt
Pp ← Select the parent population from Pt
Pc ← Crossover individuals from parent population Pp
Pc ← Mutate individuals from offspring population Pc
Compute the fitness values of Pc
Pt+1 ← Obtain the next generation’s population from Pt and Pc
t← t + 1

end while
return PG

The algorithm starts by generating a random population of solutions P0. The solutions
are evaluated via obtaining the corresponding fitnesses. Based on the fitnesses, a subset of
the current population Pt is selected as the parent population Pp. The crossover operator is
applied on the individuals from Pp, obtaining a new set of solutions Pc that may also mutate
and are evaluated. At the end of the generation, the population of the next generation is
obtained based on Pt and Pc. This process is repeated for a number of G iterations, resulting
in PG, the final set of solutions to the problem.

In the HyperDE context, the chromosome associated with a DE instance is given by
the hyper-parameters F, CR and S; for HyperSSA the genes are ST, PD and SD; while for
HyperBES we have as genes of the chromosome a, α, R, c1 and c2. We denote np as the
number of hyper-parameters. The implementations of the basic GA operators are as follows.
Single-point crossover was used, meaning that the first c values of the hyper-parameters
(in the order given above) are taken from the first parent and the remaining np − c from the
second parent, where c is a random integer between 0 and the number of hyper-parameters.
Mutation is implemented as the simple choice of a uniformly random real number (or



Algorithms 2023, 16, 451 6 of 18

integer, for S) in the interval of definition of each hyper-parameter. The fitness function
will be described in the next section.

5. HyperDe Algorithm

As stated in Section 1.1, the goal is to find the minimum value of a function f (x),
with x ∈ Rn. The proposed hyper-heuristic, HyperDE, works like many other global
optimization algorithms, by generating tentative solutions. The modality in which the
solution space is explored gives the specific of a method.

In the two-layer structure mentioned in Section 1.3, HyperDE adopts as a high-level
algorithm a form of steady-state Genetic Algorithm (GA). The (hyper-)population in this
context is composed of various instances of DE, each with different hyper-parameters.
Therefore, HyperDE orchestrates the collaboration and execution in parallel of the DE
agents, manipulating the hyper-parameters and generated solutions.

The proposed method is an adaptive hyper-heuristic, where the genetic algorithm
plays the role of an online learning mechanism, adjusting the hyper-parameters of the agent
ensemble and adapting to the state of the problem while exploring the solution space. Thus,
there is a learning process based on the performance shown in the past of each particular
DE agent, exploring also the space of heuristics by the means of the standard GA operators:
selection, crossover and mutation. Ergo, the optimization is accomplished on two levels,
simultaneously, searching primarily the space of possible DE instances, but also the actual
space of solutions to the given problem, as depicted in Figure 1.

F CR S

DE
agent

n_quota
solutions

F CR S

DE
agent

n_quota
solutions

F CR S

DE
agent

n_quota
solutions

· · ·

n_window
iterations

(hyper-iteration)

︸ ︷︷ ︸
final solutions

GA

G hyper-iterations

tournament

initial solutions

Figure 1. Structure of the proposed adaptive hyper-heuristic approach.

The algorithm manages the hyper-population of DE agents, named HP, which is
initialized with random values of the hyper-parameters F, CR, S. It also maintains a solution
population SP, also initialized at random.

In order to evaluate the hyper-population HP, the DE agents are executed in parallel
for a number of n_window iterations. Each agent is responsible for the generation of
n_quota solutions; in other words, each DE agent has n_quota individuals. Therefore,
the entire hyper-population explores the problem space in a parallel manner, obtaining at
the end a set of solutions. The history set of solutions for agent g is denoted Hg. The history
Hg consists of n_window sets of solutions, each corresponding to an iteration executed by
agent g. Hg,i represents the set of solutions obtained by agent g at the end of iteration i,
and has the size |Hg,i| = n_quota.

In order to assign a fitness HF to each agent of HP, the obtained histories of solutions
are utilized in the procedure AgentsFitness (Algorithm 3). For each window iteration
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i, we compute the union Oi of the agents solutions set Hg,i in that particular iteration.
The obtained union Oi is sorted in ascending/descending order, depending on whether the
problem to solve is one of minimization or maximization. Afterwards, a count is performed
for each agent, counting how many of its solutions are found in the first third of the sorted
union set, the count being then divided with |Oi|/3 for normalization. After the entire
process, the average is computed over the entire window of iterations, thus obtaining the
fitness value HFg for each agent g.

Algorithm 3 Computation of the fitness function for all agents.

procedure AGENTSFITNESS(HP, H, n_window)
for each DE agent g in HP do

HFg ← 0
end for
for each iteration i = 1 : n_window do

Oi ← ∅
for each DE agent g in HP do

Oi ← Oi ∪ Hg,i
end for
Sort in ascending/descending order by fitness the set Oi
for each DE agent g in HP do

Cg,i ← Number of solutions from Hg,i that are in the first third of set Oi

HFg ← HFg +
Cg,i

n_window· |Oi |
3

end for
end for
return HF

end procedure

The above-described operations are used in Algorithm 4, which updates the solution
population SP and computes the fitness HF by calling Algorithm 3. For each agent,
the current set of solutions SP is reduced firstly to half by random selection, after which the
best n_quota solutions are retained. This set is the starting solution set for the agent in the
next hyper-iteration, which consists of running the DE algorithm for n_window iterations.
For the loop on the DE, agents can be executed in parallel. Finally, the procedure returns
the union of the last sets of solutions of the entire ensemble of size |HP| · n_quota, which is
the new set of solutions SP, and also the set containing the HF fitnesses associated with
the agents.

Algorithm 5 gathers the main operations. The evaluation procedure, as described
above in Algorithm 4, which also explores the problem space with DE agents, is executed
in each hyper-iteration. Based on the obtained HF fitnesses of the agents, the ensemble of
the next hyper-iteration HPt+1 is computed. This is accomplished by firstly retaining the
best half of the hyper-population of agents. Then, |HP|/2 agents are randomly selected as
parents in order to crossover and mutate (as described in Section 4), obtaining |HP|/2 new
agents; along with the elite of |HP|/2 agents, they constitute the next hyper-generation.
This process is sustained for G hyper-generations, or G·n_window DE iterations.

As explained, besides the fitnesses of the agents, the set of solutions SP is also updated,
representing the union of all sets of solutions produced by each agent in the last iteration
of the execution window; or simply, the solutions to the problem obtained at the end of
hyper-iteration t.
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Algorithm 4 Evaluate and Explore algorithm.

HP: hyper-population of DE agents
SP: solutions population
Hg: history of solutions of agent g
procedure EVALUATEANDEXPLORE(HP, SP, n_quota, n_window)

for each DE agent g in HP do
S← Select |SP|

2 random solutions from SP
S← Retain the best n_quota solutions of set S
Hg ← solutions generated by the DE algorithm run for n_window iterations on

population S
end for
HF ← AGENTSFITNESS(HP, H, n_window)
SP← ∅
for each DE agent g in HP do

SP← SP ∪ Hg,n_window
end for
return SP, HF

end procedure

Algorithm 5 HyperDE algorithm.

1: G ← the maximum hyper-generations
2: HP0 ← initial random hyper-population of SSA agents
3: SP0 ← initial random set of n_quota·|HP0| solutions
4: n_quota← quota of solutions (number of sparrows) for each SSA agent
5: n_window← number of iterations for each SSA agent’s execution
6: t← 0
7: while t < G do
8: SPt+1, HF ← EVALUATEANDEXPLORE(HPt,SPt, n_quota, n_window)

9: HPt+1 ← Select the best |HPt |
2 agents based on HF

10: Pp ← Select |HPt |
2 agents for the parent population from HPt

11: Pc ← Crossover agents from parent population Pp
12: Pc ← Mutate agents from offspring population Pc
13: HPt+1 ← HPt+1 ∪ Pc (obtain population of next hyper-generation)
14: t← t + 1
15: end while
16: return HPG

We note that the above algorithm has a high degree of generality. It is written for
DE agents, which are characterized by three hyper-parameters. However, the algorithm
can be adapted to any other global optimization heuristic, with any (nonzero) number
of hyper-parameters.

As examples, we implemented the HyperSSA and HyperBES algorithms. The methods
resemble the HyperDE hyper-heuristic in most regards, differing just by what type of agents
are used. We have as agents the time instances of SSA heuristics in one case and instances
of BES heuristics in the other case. Since the top-level procedure is highly decoupled from
the agent’s inner workings, the algorithmic flows of the hyper-heuristics is the same as for
HyperDE. We simply use the chromosomes presented in Section 3.

6. Results

The proposed adaptive hyper-heuristic methods are compared with 10 relatively new,
state-of-the-art heuristics and well-established algorithms (including the basic heuristics
that we employ: DE, BES, SSA), over a set of n_problems = 12 difficult problems, more
exactly on the benchmarks provided by the CEC 2022 competition: (https://github.com/P-

https://github.com/P-N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf
https://github.com/P-N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf
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N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf, accessed on 20 September
2023). We have implemented our method in Python. The algorithms used for comparison,
listed in Table 1 (to be later explained), have been taken from the MEALPY library [38]
implementation in Python. Our programs can be found at https://github.com/mening120
01/HyperHeuristica, accessed on 20 September 2023).

Our HyperDE hyper-heuristic is parameterized as follows: the number of hyper-
iterations is G = 40, the evaluation window size is n_window = 5 iterations, the hyper-
population has size |HP| = 10 (the number of DE instances, or agents), where each agent
has n_quota = 20 (the size of the solution population). In order for the comparison to be
valid, the HyperDE hyper-heuristic along with the other methods should explore the same
number of solutions. We note that HyperDE performs G · n_window = 200 DE iterations
and computes a population of |HP| · n_quota = 200 solutions per iteration, resulting in
a total of 200 · 200 = 40,000 evaluated solutions. Therefore, the other methods will have
as parameters: the number of iterations to be executed iterations = 200, and the size of
population pop_size = 200; hence, the same volume of the solution space is explored at the
end of execution. The other hyper-parameters specific to each method are set with default
values, as recommended by the literature.

Each heuristic is evaluated by computing the relative error as described in Algorithm 6.
The global minimum being known, the relative distance between the obtained result and
the optimum is calculated.

For each problem, the heuristic in this case is evaluated n_tests = 60 times as described,
averaging the relative error obtained in each evaluation. Finally, the average relative error
obtained on each problem is aggregated again, obtaining the final relative error that reflects
the overall performance of that algorithm (smaller is better).

Algorithm 6 Evaluation, relative error.

overall_error_sum← 0
for each problem in n_problems do

error_sum← 0
for each test in n_tests do

best_solution← heuristic(pop_size = 200, iterations = 200)
if global_best 6= 0 then

relative_error ← (best_solution− global_best)/|global_best|
else

relative_error ← (best_solution− global_best)
end if
error_sum← error_sum + relative_error

end for
overall_error_sum← overall_error_sum + error_sum/n_tests

end for
f inal_error ← overall_error_sum/n_problems

As can be seen from Table 1, HyperDE has the minimal error on the selected suite
of problems. We note also that HyperBES and HyperSSA perform better than their basic
heuristics, BES and SSA.

Additionally, the Friedman ranking is computed, more precisely, the average rank
over all the problems. The median was determined over the n_tests = 60 tests, for each
problem and method. If, for a particular problem, the difference between the medians for
two methods does not exceed 1× 10−7 , then the two methods have the same rank, which
is the average of the corresponding ranks.

https://github.com/P-N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf
https://github.com/P-N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf
https://github.com/mening12001/HyperHeuristica
https://github.com/mening12001/HyperHeuristica
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Table 1. Errors BD: 1. ok 2. Bold is necessary! of the evaluated methods on the CEC problems.

Heuristic Name Error

HyperDE 0.045
LSHADE 0.078
SHADE 0.085

HyperSSA 1.068
HyperBES 1.073

Chaos Game Optimization (CGO) 1.213
Whale Optimization Algorithm (WOA) 1.303

Sparrow Search Algorithm (SSA) 1.462
Slime Mold Algorithm (SMA) 1.741
Hunger Games Search (HGS) 1.795

Bald Eagle Search (BES) 2.068
Harris Hawks Optimization (HHO) 2.103

Differential Evolution (DE) 3.603

The results are given in Table 2 and show that HyperDE is the best from the entire
suite of methods, at a significant distance from SHADE. Unlike in the error evaluation,
SHADE is better then LSHADE. HyperBES preserves its fifth place, but HyperSSA falls
down the ranking to tenth place, in particular below SSA.

Table 2. Friedman ranking of the evaluated methods on the CEC problems.

Heuristic Name Rank

HyperDE 1.875
SHADE 2.680

LSHADE 3.097
Slime Mold Algorithm (SMA) 4.222

HyperBES 4.916
Sparrow Search Algorithm (SSA) 5.097

Differential Evolution (DE) 5.458
Chaos Game Optimization (CGO) 5.638

Whale Optimization Algorithm (WOA) 6.041
HyperSSA 6.208

Hunger Games Search (HGS) 6.791
Bald Eagle Search (BES) 8.166

Harris Hawks Optimization (HHO) 8.305

One aspect that is consistent in both evaluations is that HyperDE proves to behave
remarkably well relative to the other algorithms, it being conclusive that our hyper-heuristic
is the best performer in the given context.

The execution times of the top performing algorithms are given in Table 3. They were
measured on a MacBook Air computer with an M1 chip having a max CPU clock rate
of 3.2 GHz and 8 GB memory. Note that the implementation of our methods is purely
sequential and does not take advantage of the inherent parallelism of the agents; also,
the implementation is plain and does not use any speeding-up trick. So, as expected,
HyperDE is more time-consuming than the simpler methods such as SHADE and LSHADE,
due to the additional computations and manipulations. HyperDE is roughly 60–80% slower.
HyperSSA and HyperBES do not seem that efficient; this is because of the agents that are
used, which are not as fast as DE.

We reiterate that the number of function evaluations is the same for all methods; as
long as the implementations are not fully optimized, this is the most important aspect in
ensuring fairness of comparison. If the implementations would be equally well optimized
for a specified computer, which is not an easy task, the results after a given time could
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be compared; even then, it may be argued that ideal conditions, like the inexistence of
background processes, are nearly impossible to obtain. So, in these circumstances, we
consider that our comparisons are reasonably fair.

Table 3. Average times of the best methods (in minutes).

Function HyperDE HyperSSA HyperBES LSHADE SHADE

F1 4.09 6.61 10.72 2.43 2.34
F2 4.12 6.45 10.83 2.33 2.37
F3 4.29 7.16 11.39 2.36 2.37
F4 4.30 6.56 11.39 2.37 2.37
F5 4.20 6.51 11.09 2.34 2.32
F6 4.88 7.82 12.75 2.76 2.76
F7 5.41 6.71 14.22 3.17 3.22
F8 5.76 9.23 15.16 3.59 3.47
F9 4.51 7.26 11.87 2.62 2.65
F10 4.54 6.97 11.94 2.73 2.69
F11 4.76 7.42 12.48 2.80 2.82
F12 4.77 7.23 12.54 2.78 2.78

The convergence of the top five methods on the entire suite of problems is illustrated
in Figures 2 and 3. The average over n_tests = 60 tests is shown, resulting in an average
convergence curve, thus smoothing the stochastic behavior. The methods are executed
for 200 iterations each, but only each fifth iteration is plotted in order to be aligned with
the results of our hyper-heuristics, where the best result at the end of each hyper-iteration
is shown.

It is visible that HyperDE converges nearest to the global minimum on four functions:
F2, F4, F6 and F7. For functions F1 and F3, HyperDE reaches about the same value as other
methods, but it converges at the fastest rate. The convergence of HyperDE is more abrupt
also on the other functions.

LSHADE and SHADE seem to take the lead on some of the other problems, not
being drastically distant from our main method. HyperBES and HyperSSA are performing
noticeably worse then the others. HyperBES is the most unimpressive on F1, F2, F3 and F11
while surpassing HyperSSA on F5, F6, F7, F8, F9, F10 and F12.

Box plots are shown in Figure 4, illustrating in more detail the distribution of the
n_tests = 60 results of the algorithms. In most of the figures, the proposed method has a
very reduced variance around the global optima, similarly to the other two DE variants.
For F9, the variance is large while the median is aligned with the best result. In the F4 plot,
HyperDE has the lowest median, followed by the other two proposed hyper-heuristics.
However, HyperSSA and HyperBES perform worse on the other problems, with fairly large
variance and a median quite far from the best solution, not being very clear which is the
best of the two.

In Table 4, we can see a comparison of the performance of the proposed optimization
method, HyperDE, with the other three methods from the DE family. The performance
metrics include the best solution found (Best), the mean solution obtained (Mean), and the
standard deviation (Std. Dev) of the solutions.

As can be concluded, our method demonstrates an impressive performance, where it
consistently outperforms the others in terms of the best solution. Regarding the mean, this
is not always the case, as for F5, F8, F10, F11 and F12 the mean is slightly worse then for
SHADE and LSHADE, while for F6 and F9 the inferiority is quite significant. Moreover,
HyperDE achieves fairly low standard deviation values, indicating its reliability and ability
to deliver stable and high-quality solutions.
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Table 4. Method comparison for multiple problems.

Problem Method Best Mean Std. Dev

F1 HyperDE 300.0 300.0 3.11× 10−14

SHADE 300.000000106882 300.0000004073815 2.43× 10−7

LSHADE 300.0000001404671 300.00000041613555 2.21× 10−7

DE 1235.4661553234967 4130.32659367826 1205.22

F2 HyperDE 400.00006692489313 405.7762007938934 3.18
SHADE 400.3938197535978 407.5481893148344 2.13

LSHADE 400.3851128433223 408.0876491551797 1.55
DE 410.80352316352435 417.77563978207604 3.27

F3 HyperDE 600.0 600.0 2.08× 10−14

SHADE 600.0 600.0 0.0
LSHADE 600.0 600.0 0.0

DE 600.0000112734627 600.0000363216427 1.05× 10−5

F4 HyperDE 800.0971590987756 800.29929127267 0.19
SHADE 800.2721523050697 800.4602925668243 0.09

LSHADE 800.2506108454668 800.397114829017 0.08
DE 800.2004337865635 800.4850824190988 0.09

F5 HyperDE 900.0 900.0436061309064 0.11
SHADE 900.0000000000498 900.0000000002758 1.74× 10−10

LSHADE 900.0000000000752 900.0000000001007 5.35× 10−12

DE 900.0308300706507 900.2115266993348 0.04

F6 HyperDE 1800.550008569961 2349.376836704244 1611.13
SHADE 2527.2166249124543 3318.210953638849 515.35

LSHADE 2448.651779056926 3156.2346074618913 433.08
DE 18,245.220034908845 55,938.99918382257 23,898.85

F7 HyperDE 2001.494972244204 2020.428895032187 8.00
SHADE 2023.69169017458 2028.6419318989665 1.74

LSHADE 2014.5645721366564 2027.7440931323101 2.78
DE 2024.5036568238922 2028.4449058504215 1.99

F8 HyperDE 2200.226924720861 2218.3297256215615 6.73
SHADE 2209.5886930417746 2218.297973263973 4.32

LSHADE 2208.325106401539 2217.383152114902 4.02
DE 2230.0941806086953 2245.28243788769 9.28

F9 HyperDE 2300.0 2437.838567116613 174.83
SHADE 2300.0001089307398 2300.0048868578 0.03

LSHADE 2300.0001212533975 2300.0061751439484 0.03
DE 2396.4069384108525 2646.9062600644074 60.17

F10 HyperDE 2598.5455167771906 2605.156197642855 25.86
SHADE 2598.5468912550587 2598.5620204350707 0.07

LSHADE 2598.5468210921954 2598.551948117506 0.00
DE 2608.799360629708 2614.908013661977 3.19

F11 HyperDE 2600.0 2601.8934468491198 6.28
SHADE 2600.0000050187055 2600.0000090069157 2.17× 10−6

LSHADE 2600.0000049464516 2600.000009874206 2.98× 10−6

DE 2607.8865627810346 2624.76104595252 4.06

F12 HyperDE 2863.76941226926 2865.838163178578 1.26
SHADE 2821.118856642622 2864.1391105809807 5.62

LSHADE 2864.224719298684 2864.904468801826 0.50
DE 2866.84004856121 2867.9027213119152 0.50
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Table 5 gives the results of the Wilcoxon signed-rank test. They show a statistically
significant difference of HyperDE from the other methods on F1, as indicated by the ex-
tremely low p-values (approximately 1.63× 10−11). This is also the case for F2, F4, F6,
and F7, exhibiting fairly low p-values in comparison with the other three methods, whereas
on F10, F11, and F12, our methodology is surpassed by the other two self-adaptive algo-
rithms. For F3, there is no significant difference between HyperDE and SHADE/LSHADE,
the p-value being large, 0.16; however, DE is clearly worse than HyperDE. This situation
is found for the other remaining problems (F5, F8, F9), where an actual winner cannot be
proclaimed, except in comparison with the basic DE.

Table 5. Results of Wilcoxon signed-rank test.

Problem Method p-Value

F1 HyperDE vs. SHADE 1.63× 10−11

HyperDE vs. LSHADE 1.63× 10−11

HyperDE vs. DE 1.63× 10−11

F2 HyperDE vs. SHADE 1.41× 10−4

HyperDE vs. LSHADE 3.50× 10−7

HyperDE vs. DE 1.63× 10−11

F3 HyperDE vs. SHADE 0.16
HyperDE vs. LSHADE 0.16

HyperDE vs. DE 1.63× 10−11

F4 HyperDE vs. SHADE 3.78× 10−7

HyperDE vs. LSHADE 1.27× 10−5

HyperDE vs. DE 5.78× 10−8

F5 HyperDE vs. SHADE 0.44
HyperDE vs. LSHADE 0.83

HyperDE vs. DE 1.80× 10−11

F6 HyperDE vs. SHADE 5.11× 10−8

HyperDE vs. LSHADE 1.86× 10−8

HyperDE vs. DE 1.63× 10−11

F7 HyperDE vs. SHADE 1.66× 10−10

HyperDE vs. LSHADE 2.71× 10−9

HyperDE vs. DE 1.44× 10−10

F8 HyperDE vs. SHADE 0.20
HyperDE vs. LSHADE 0.04

HyperDE vs. DE 1.63× 10−11

F9 HyperDE vs. SHADE 0.12
HyperDE vs. LSHADE 0.12

HyperDE vs. DE 2.62× 10−8

F10 HyperDE vs. SHADE 7.20× 10−10

HyperDE vs. LSHADE 7.20× 10−10

HyperDE vs. DE 4.63× 10−9

F11 HyperDE vs. SHADE 4.20× 10−6

HyperDE vs. LSHADE 4.20× 10−6

HyperDE vs. DE 1.80× 10−11

F12 HyperDE vs. SHADE 1.50× 10−5

HyperDE vs. LSHADE 9.35× 10−6

HyperDE vs. DE 1.66× 10−10
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In summary, the results suggest that HyperDE consistently outperforms or shows
comparable performance to the other optimization methods on most of the problems.

Figure 2. Overall convergence of the best methods.
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Figure 3. Overall convergence of the best methods.

Figure 4. Cont.
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Figure 4. Box plots of the best methods.

7. Conclusions

In this paper, a novel search methodology for global optimization was proposed in
the form of an adaptive hyper-heuristic based on the Differential Evolution algorithm
along with two other similar approaches. These approaches are highly general in their
applicability, having a low number of hyper-parameters that need no adjustments. It was
shown that the performance of the main algorithm, HyperDE, is superior relative to the
other existent heuristics, obtaining a smaller relative error and the best Friedman rank on
a benchmark from the CEC competition. The other two methods are not to be ignored,
showing a significant improvement over their counterparts.

There are many possible directions of future work. We plan to improve the efficiency
of our implementation, possibly by trying to take advantage of its inherent parallelism.
Extension of our technique to other performant heuristic that use a small number of hyper-
parameters is envisaged. Also, we plan to compare our method with other methods that
tune the hyper-parameters.
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