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Abstract: This article reviews several implementation aspects in estimating regularized single-group
and multiple-group structural equation models (SEM). It is demonstrated that approximate estima-
tion approaches that rely on a differentiable approximation of non-differentiable penalty functions
perform similarly to the coordinate descent optimization approach of regularized SEMs. Further-
more, using a fixed regularization parameter can sometimes be superior to an optimal regularization
parameter selected by the Bayesian information criterion when it comes to the estimation of structural
parameters. Moreover, the widespread penalty functions of regularized SEM implemented in several
R packages were compared with the estimation based on a recently proposed penalty function in
the Mplus software. Finally, we also investigate the performance of a clever replacement of the opti-
mization function in regularized SEM with a smoothed differentiable approximation of the Bayesian
information criterion proposed by O’Neill and Burke in 2023. The findings were derived through
two simulation studies and are intended to guide the practical implementation of regularized SEM in
future software pieces.

Keywords: structural equation modeling; confirmatory factor analysis; regularized estimation;
Bayesian information criterion

1. Introduction

Confirmatory factor analysis (CFA) and structural equation models (SEM) are among
of the most important statistical approaches for analyzing multivariate data in the social
sciences [1–7]. In these models, a multivariate vector X = (X1, . . . , XI) of I observed
variables (also referred to as items) is modeled as a function of a vector of latent variables
(i.e., factors) η. SEMs represent the mean vector μ and the covariance matrix Σ of the random
variable X as a function of an unknown parameter vector θ. In this sense, they apply
constrained estimation for the moment structure of the multivariate normal distribution [8].

SEMs impose a measurement model that relates the observed variables X to latent
variables η:

X = ν + Λη+ ε . (1)

In addition, we denote the covariance matrix Var(ε) = Ψ, and η and ε are multivariate
normally distributed random vectors. Moreover, η and ε are uncorrelated random vectors.
The issue of model identification has to be evaluated on a case-by-case basis [9,10]. We now
describe two different specifications: the CFA and the more general SEM approach.

In the CFA approach, the multivariate normal (MVN) distribution is represented as
η ∼ MVN(α, Φ) and ε ∼ MVN(0, Ψ). Hence, one can represent the mean vector μ(θ) and
the covariance matrix Σ(θ) in CFA as a function of an unknown parameter vector θ as

μ(θ) = ν + Λα and Σ(θ) = ΛΦΛ� + Ψ . (2)

The parameter vector θ contains freely estimated elements of ν, Λ, α, Φ, and Ψ.
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In the general SEM approach, a matrix B of regression coefficients is specified such that

η = Bη+ ξ with E(ξ) = α and Var(ξ) = Φ . (3)

Note that (3) can be rewritten as

η = (I − B)−1ξ with E(ξ) = α and Var(ξ) = Φ , (4)

where I denotes the identity matrix. Hence, the mean vector and the covariance matrix are
represented in SEM as

μ(θ) = ν + Λ(I − B)−1α and Σ(θ) = Λ(I − B)−1Φ[(I − B)−1]�Λ� + Ψ , (5)

The estimation of SEM often follows an ideal measurement model. For example,
a simple-structure factor loading matrix Λ is desired in a multidimensional CFA. In this
case, an item loads on one and only factor η, meaning that the number of non-zero entries in
a row of Λ is one. However, this assumption on the simple-structure loading matrix could
be somewhat violated in practice. For this reason, some cross-loadings could be assumed
to be different from zero. Such sparsity assumptions on SEM model parameters can be
tackled with regularized SEM [11]. Moreover, deviations in the entries of the observed and
modeled mean vector (i.e., μ − μ(θ)) can be quantified in non-zero entries of the vector
of item intercepts ν (see [12]). Again, model errors could be sparsely distributed, which
would allow for the application of regularized SEM. In a similar manner, model deviations
Σ − Σ(θ) can be tackled by assuming sparsely distributed entries in the matrix of residual
covariances Ψ. Notably, regularized SEM estimation is now becoming more popular in
the social sciences and is recognized as an important approach in the machine learning
literature [13].

In this article, we review several implementation aspects in estimating regularized
SEMs with single and multiple groups. A recent article by Orzek et al. [14] recommended
avoiding differentiable approximations for the non-differentiable optimization function
in regularized SEM. We critically evaluate the credibility of this statement. Furthermore,
we compare the currently used regularization estimation approach in most software, such
as the regsem R package [15], with a recently proposed optimization function in the
commercial SEM software package Mplus [16]. Finally, we also investigate the performance
of a clever replacement of the optimization function in regularized SEM with a smoothed
differentiable approximation of the Bayesian information criterion [17]. The findings were
derived through two simulation studies. They are intended to provide guidance for the
practical implementation of regularized SEM in future software pieces.

The remainder of the article is organized as follows. Different approaches of reg-
ularized maximum likelihood estimation methods of SEMs are reviewed in Section 2.
In Section 3, research questions are formulated that are addressed in two subsequent sim-
ulation studies. In Section 4, results from a simulation study involving a multiple-group
CFA model with violations of measurement invariance in item intercepts are presented.
Section 5 reports findings from a simulation study of a single-group CFA in the presence of
cross-loadings. In Section 6, the findings of the two simulation studies are summarized,
and the research questions from Section 3 are answered. Finally, the article closes with a
discussion in Section 7.

2. Estimation of Regularized Structural Equation Models

We now describe regularized maximum likelihood (ML) estimation approach for
multiple-group SEMs. Note that some identification constraints must be imposed to
estimate the covariance structure model (5) (see [2]). For modeling multivariate normally
distributed data without missing values, the empirical mean vector x and the empirical
covariance matrix S are sufficient statistics for estimating μ and Σ. Hence, they are also
sufficient statistics for the parameter vector θ = (θ1, . . . , θK).
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Now, assume that there exist G groups with sample sizes Ng and empirical means xg
and covariance matrices Sg (g = 1, . . . , G). The population mean vectors and covariance
matrices are denoted by μg and Σg, respectively. The model-implied mean vectors and
covariance matrices are denoted by μg(θ) and Σg(θ), respectively. Note that the parameter
vector θ does not have an index g to indicate that there can be common and unique param-
eters across groups. In a multiple-group CFA, equal factor loadings and item intercepts
across groups are frequently imposed (i.e., measurement invariance holds).

Let ξg = (xg, Sg) be the sufficient statistics of group g. The combined vector con-
taining all sufficient statistics for the multiple-group SEM is denoted by ξ = (ξ1, . . . ,ξG).
The negative log-likelihood function l for the multiple-group SEM (see [2,4]) is given by

l(θ;ξ) =
G

∑
g=1

Ng

2

(
−I log(2π) + log|Σg(θ)|+ tr(SgΣg(θ)

−1) + (xg − μg(θ))
�Σg(θ)

−1(xg − μg(θ))
)

. (6)

In empirical applications, the model-implied mean vectors covariance matrices will fre-
quently be misspecified [18–20], and θ can be interpreted as a pseudo-true parameter
defined as the maximizer of the fitting function l in (6).

In regularized SEM estimation, a penalty function is added to the log-likelihood
function that imposes some sparsity assumption on a subset of model parameters [11,12,21].
Frequently, the penalty function P is non-differentiable in order to impose sparsity. We
define a known parameter δk ∈ {0, 1} for all parameters θk, where δk = 1 indicates that for
the kth entry θk in θ, a penalty function is applied. The penalized log-likelihood function is
given by

lpen(θ, λ;ξ) = l(θ;ξ) + N∗ K

∑
k=1

δkP(|θk|p, λ) , (7)

where λ is a nonnegative regularization parameter, and N∗ a scaling factor that frequently
equals the total sample size N = ∑G

g=1 Ng. The power p in the penalty function usually
takes values in [0, 2]. Most of the literature on regularized SEMs employs the power p = 1,
but p = 0.5 has been recently suggested [16] (but see also [22]). The minimizer of l(θ) is
denoted as the regularized (or penalized) ML estimate.

We now discuss typical choices of the penalty function P . For a scalar parameter x,
the least absolute shrinkage and selection operator (LASSO) penalty is a popular penalty
function used in regularization [23], and it is defined as

PLASSO(x, λ) = λ|x| , (8)

where λ is a nonnegative regularization parameter that controls the extent of sparsity in
the obtained parameter estimate. Note that the LASSO penalty function combined with
p = 0.5 is equivalent to the alignment loss function (ALF [16]):

PALF(x, λ) = λ

√
|x| . (9)

It is known that the LASSO penalty introduces bias in estimated parameters. To circumvent
this issue, the smoothly clipped absolute deviation (SCAD [24]) penalty has been proposed.

PSCAD(x, λ) =

⎧⎨⎩
λ|x| if |x| < λ

−(x2 − 2aλ|x|2 + λ2)(2(a − 1))−1 if λ ≤ |x| ≤ aλ
(a + 1)λ2 if |x| > aλ

(10)

In many studies, the recommended value of a = 3.7 (see [24]) has been adopted (e.g., [25,26]).
The SCAD penalty retains the penalization rate and the induced bias of the lasso for model
parameters close to zero, but continuously relaxes the rate of penalization as the absolute
value of the model parameters increases. Note that PSCAD has the property of the lasso
penalty around zero, but has zero derivatives for x values strongly differing from zero.
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Note that the minimizer of lpen is a function of the fixed regularization parameter λ;
that is,

θ̃(λ) = arg min
θ

lpen(θ, λ;ξ) . (11)

Hence, the parameter estimate θ̃(λ) of θ depends on a parameter that must be known. To cir-
cumvent this issue, the regularized SEM can be repeatedly estimated on a finite grid of reg-
ularization parameters λ (e.g., on an equidistant grid between 0.01 and 1.00 with increments
of 0.01). The Bayesian information criterion (BIC), defined by BIC = 2l(θ,ξ) + log(N)H,
where H denotes the number of parameters, can be used to select an optimal regularization
parameter. Because the minimization of BIC is equivalent to the minimization of BIC/2,
the final parameter estimate θ̂ is obtained as

θ̂ = θ̃(λ̂) with λ̂ = arg min
λ

{
l(θ̃(λ),ξ) +

log(N)

2

(
K

∑
k=1

δkχ0(θ̃k(λ))

)}
, (12)

where the function χz as an indicator whether |x| is larger than z for any z ≥ 0:

χz(x) =
{

1 if |x| > z
0 if |x| ≤ z

. (13)

In particular, the quantity ∑K
k=1 δkχ0(θ̃k(λ)) in (12) counts the number of parameter esti-

mates θ̃k(λ) for k = 1, . . . , K for which the penalty function is applied (i.e., δk = 1) and
which differ from 0.

Note that the minimization of the BIC depends on two components. First, the model fit
can be improved by minimizing the negative log-likelihood function while freely estimating
more parameters. Second, sparse models are preferred in BIC minimization because
the second term in (12) minimizes the number of estimated model parameters that are
different from zero. Hence, there is always a trade-off between model fit improvement and
parsimonious model estimation.

It should be emphasized that BIC is frequently preferred over the Akaike information
criterion (AIC) in regularized estimation [11,27]. In typical sample sizes, BIC imposes
stronger penalization of the number of estimated parameters than AIC. In fact, alter-
native information criteria with even stronger penalization are discussed in regulariza-
tion [25,28,29].

Regularized estimation of single-group and multiple-group SEMs are widespread in
the methodological literature [11,21,30–34]. In these applications, cross-loadings, entries in
the covariance matrix of residuals, or the vector of item intercepts are regularized. Applying
regularized estimation in SEMs allows for flexible yet parsimonious model specifications.

2.1. Regularized SEM Estimation Approaches

Regularized estimation of (11) typically involves a non-differentiable optimization
function because the penalty function is non-differentiable. In [14], exact and approximate
solutions are distinguished for minimizing the penalized log-likelihood function lpen in (11).

Exact estimation operates on the non-differentiable penalized log-likelihood function.
In coordinate descent (CD), the penalized log-likelihood function is cyclically minimized
across all entries of the parameter vector θ (see [23]). If the function lpen is minimized in
the kth coordinate θk of θ, the remaining entries in θ are fixed to the estimate from the
previous iteration. This coordinate-wise estimation can be repeated for all parameters and
iterated until convergence is reached. The advantage of CD when using the LASSO or
the SCAD penalty is that regularized parameters are exactly zero, while nonregularized
parameters differ from zero. Hence, a sparse estimate θ is obtained. However, CD can be
computationally demanding [14]. In addition, it can also not be generally ensured that a
global minimum (instead of a local minimum) is found with CD estimation.
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Alternatively, the non-differentiable optimization function can be replaced by a dif-
ferentiable one [12,35–38]. The penalty function involves the non-differentiable absolute
value function that can be replaced by

|x| ≈ (x2 + ε)1/2 or more generally |x|p ≈ (x2 + ε)p/2 (14)

for a sufficiently small ε > 0, such as ε = 10−3 or ε = 10−4. Fortunately, general-purpose
optimizers that rely on derivatives can be relied on when using differentiable approxima-
tions based on the penalized log-likelihood function. These optimizers are widely available
in software and are reliable if good starting values are available. The disadvantage of the
differentiable approximation (DA) approach is that there are no estimated parameters that
are exactly zero. To determine a parameter estimate θ̂, a threshold τ [14] must be specified
that defines which small parameter entries should be set to zero. Hence, the final parameter
estimate in DA is given by

θ̂ = θ̃(λ̂) with λ̂ = arg min
λ

{
l(θ̃(λ),ξ) +

log(N)

2

(
K

∑
k=1

δkχτ(θ̃k(λ))

)}
. (15)

Note that the threshold τ is typically a function of ε [14], and τ should be (much) larger
than ε. In general, the penalized ML estimate based on DA defined in (15) relies on two
tuning parameters, ε and τ, that must be properly chosen. Orzek et al. [14] argue that there
is typically not enough knowledge on how to choose these tuning parameters in practical
applications. Therefore, they generally prefer CD over DA.

2.2. Direct BIC Minimization Approach of O’Neill and Burke

The estimation approaches described in Section 2.1 require repeatedly fitting a SEM
on a grid of regularization parameters λ. Such an approach is computationally demanding,
in particular for SEMs with a large number of parameters. The final parameter estimate
is obtained by minimizing the BIC across all estimated regularized SEMs. A naïve idea
might be directly minimizing the BIC to avoid introducing the penalty function and the
unknown regularization parameter λ in the optimization. Only a subset of parameters for
which sparsity should be imposed is relevant in the BIC computation. Hence, a parameter
estimate by minimizing the BIC is given by

θ̂ = arg min
θ

{
l(θ,ξ) +

log(N)

2

(
K

∑
k=1

δkχ0(θk)

)}
. (16)

The optimization function in (16) employs a L0 penalty function [39–41] with a fixed regu-
larization parameter log(N)/2. This optimization function contains the non-differentiable
indicator function χ0. However, like in the DA of the non-differentiable penalty function,
the function χ0 could also be replaced by a differentiable approximation. O’Neill and
Burke [17] had the brilliant idea of approximating the indicator function χ0 by

N (x) =
x2

x2 + ε
(17)

for a sufficiently small ε > 0. Hence, the minimization problem (16) can be replaced by

θ̂ = arg min
θ

{
l(θ,ξ) +

log(N)

2

(
K

∑
k=1

δkN (θk)

)}
. (18)

The estimation approach from (18) is referred to as the smoothed direct BIC minimization
(DIR) approach. This estimation approach has been applied to distributional regression
models [17].
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2.3. Standard Error Estimation

We now describe the computation of the variance matrix of parameter estimates θ̂

from penalized ML estimation for a fixed regularized parameter λ or the direct BIC mini-
mization approach. Both estimation approaches minimize a differentiable (or differentiable
approximation) function F(θ,ξ) with respect to θ as a function of sufficient statistics ξ (see
also [6]). The vector of sufficient statistics ξ̂ is approximately normally distributed (see [3]);
that is,

ξ̂− ξ0 ∼ MVN(0, V ξ) (19)

for a true population parameter ξ0 of sufficient statistics. We denote by Fθ = (∂F)/(∂θ)
the vector of partial derivatives with respect to θ. The parameter estimate θ̂ is given as the
root of the non-linear equation

Fθ(θ, ξ̂) = 0 . (20)

General M-estimation theory (i.e., the delta method [18]) can be applied to derive the
variance matrix of θ̂. Assume that there exists a (pseudo-)true parameter θ0 such that

Fθ(θ0,ξ0) = 0 . (21)

We now derive the covariance matrix of θ̂ by utilizing a Taylor expansion of Fθ. We
denote by Fθθ and Fθξ the matrices of second-order partial derivatives of Fθ with respect
to θ and ξ, respectively. We obtain

Fθ(θ̂, ξ̂) = Fθ(θ0,ξ0) + Fθθ(θ0,ξ0)(θ̂− θ0) + Fθξ(θ0,ξ0)(ξ̂− ξ0) = 0 . (22)

As the parameter estimate θ̂ is a non-linear function of ξ̂, the Taylor expansion (22) provides
the approximation

θ̂− θ0 = −Fθθ(θ0,ξ0)
−1Fθξ(θ0,ξ0)(ξ̂− ξ0) . (23)

By defining A = −Fθθ(θ0,ξ0)
−1Fθξ(θ0,ξ0), we get by using the multivariate delta for-

mula [18]:
Var(θ̂) = AVξA�. (24)

An estimate of A is obtained as Â = −Fθθ(θ̂, ξ̂)−1Fθξ(θ̂, ξ̂). This approach is ordinarily
used for differentiable discrepancy functions in the SEM literature [3,7,42]. Standard errors
for entries in θ̂ can be obtained by taking the square root of diagonal elements of Var(θ̂)
computed from (24).

3. Research Questions

In the following two simulation studies, several implementation and algorithmic
aspects of regularized SEM estimation are investigated. Five research questions (RQ) are
imposed in this section that will be answered by means of the simulation studies.

The research questions are tackled through two simulation studies. The first, Sim-
ulation Study 1, considers the case of regularized multiple-group SEM estimation with
noninvariant item intercept. In the second, Simulation Study 2, regularized SEM estimation
is applied for data simulated from a two-factor model in the presence of cross-loadings.

3.1. RQ1: Fixed or Estimated Regularization Parameter λ?

In the first research question, RQ1, we consider the choice of the regularization param-
eter λ regarding statistically efficient parameter estimation if structural parameters, such as
factor means or factor correlations, are the primary analytical focus. We study whether an
optimal regularization parameter is obtained by information criteria or a pre-chosen regu-
larization parameter. Using only a fixed value of the regularization parameter instead of
estimating the regularized SEM on a sequence of regularization parameters would decrease
the computational burden of the estimation.
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3.2. RQ2: Exact Optimization or Differentiable Approximation?

In the second research question, RQ2, we compare exact optimization and approximate
optimization approaches based on differentiable approximations for regularized SEMs.
Previous work argued that the exact approach should be generally preferred. We thor-
oughly investigate whether this preference is justified. Notably, approximate optimization
with differentiable optimization functions is easier to implement because general-purpose
optimizers are widely available and provide reliable convergence guarantees if adequate
starting values are used in the estimation.

3.3. RQ3: Direct BIC Minimization or Minimizing BIC Using a Grid of λ Values?

The third research question, RQ3, investigates whether the direct one-step BIC mini-
mization approach provides comparable results to the indirect estimation approach that
requires the estimation of the regularized SEM on a grid of regularization parameters.
If the one-step BIC minimization approach provides similar findings to the indirect ap-
proach, substantial computational gains would be achieved, which eases the application of
regularized SEM.

3.4. RQ4: Always Choosing the Power p = 1 in the Penalty Function?

In the fourth research question, RQ4, we investigate whether there are considerable
differences in the choice of the power p in the penalty. While the majority of regularization
approaches employ the absolute value function p = 1, a recent implementation in the
popular Mplus software utilizes p = 0.5. The outcome of this comparison gives hints on
how future regularized SEM software should be implemented.

3.5. RQ5: Does the Delta Method Work for Standard Error Estimation?

Finally, in the fifth research question, RQ5, the quality of standard error estimation
in terms of coverage rates (see Section 2.3) is studied. It is interesting whether the stan-
dard errors based on the delta method are reliable if they are applied for differentiable
approximations of the optimization function in regularized SEM.

4. Simulation Study 1: Noninvariant Item Intercepts (DIF)

In Simulation Study 1, we investigated the impact of group-specific item intercepts
in a multiple-group one-dimensional factor model. In the data-generating model (DGM),
measurement invariance was violated.

4.1. Method

The setup of the simulation study mimics the one presented in [43]. Datasets were
simulated from a one-dimensional factor model involving five items and three groups.
The factor variable η1 was normally distributed with group means α1,1 = 0, α2,1 = 0.3,
and α3,1 = 0.8. The group variances were set to φ1,11 = 1, φ2,11 = 1.5, and φ3,11 = 1.2,
respectively. All factor loadings were set to 1, and all measurement error variances were
set to 1 in all groups and uncorrelated with each other. The factor variable, as well as the
residual variables, were normally distributed.

Some non-zero group-specific item intercepts were simulated that indicate measure-
ment noninvariance. These differential item functioning (DIF [44]) effects in item intercepts
were simulated in one and only one of the five items in each group. In the first group,
the fourth item intercepts had a DIF effect δ. In the second group, the first item had a DIF
effect −δ, while the second item had a DIF effect −δ in the third group. The DIF effect
δ was chosen as either 0.3 or 0.6. The sample size per group was chosen as N = 500 or
N = 1000.

A regularized multiple-group one-dimensional SEM was specified as the analysis
model. In this model, invariant factor loadings were assumed. For identification reasons,
the mean of the factor variable in the first group was fixed at 0, and the standard deviation
in the first group was fixed at 1. The SCAD penalty function was imposed on group-
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specific item intercepts. In the penalty function, the powers p = 1 and p = 0.5 were
investigated. The SEM was estimated on a grid of regularization parameters between 0.025
and 0.40, with increments of 0.025. The exact estimation approach was implemented by the
coordinate descent (CD). In the differentiable approximation (DA) of the non-differentiable
SCAD penalty function, we chose ε = 10−4. The optimal regularization parameter λ was
obtained by minimizing the BIC. Because no estimated item intercepts are exactly set
to 0 in the estimation, the thresholds τ = 0.01, 0.02, and 0.05 were chosen as the cutoff
values for treating model parameters as a value of 0 in the BIC computation. Furthermore,
the smoothed direct BIC minimization (DIR) approach of O’Neill and Burke was carried
out using ε = 0.01. This relatively large value was found to be optimal in preliminary
simulation studies in which the tuning parameter ε was varied as 0.1, 0.01, 0.001, and 0.0001.
The lowest RMSE and a small bias for parameter estimates were obtained for ε = 0.01.

For the direct BIC minimization method DIR and regularized ML estimation for a set
of fixed regularization parameters λ, standard errors were computed by means of the delta
method described in Section 2.3. Confidence intervals were calculated based on the normal
distribution assumption (i.e., the confidence interval of an estimate θ̂ was computed as
[θ̂− 1.96 · SE(θ̂), θ̂+ 1.96 · SE(θ̂)], where SE(θ̂) is the estimated standard error).

In total, 1,000 replications were conducted for all 2 (DIF effect size δ) × 2 (sample
size N) = 4 conditions of the simulation study. We investigated the estimation quality of
factor means and factor variances. Bias and root mean square error (RMSE) were utilized
to assess the performance of different estimators. Let θ̂r be a model parameter estimate in
replication r = 1, . . . , R. The bias was estimated by

Bias(θ̂) =
1
R

R

∑
r=1

(θ̂r − θ) , (25)

where θ denotes the true parameter value. The RMSE was estimated by

RMSE(θ̂) =

√√√√ 1
R

R

∑
r=1

(θ̂r − θ)2 . (26)

Coverage rates at the confidence level of 95% were computed as the percentage of the
events that a computed confidence interval covers the true parameter value. The models
were estimated using the sirt::mgsem() function in the R [45] package sirt [46]. Replication
material can be found in the directory “Simulation Study 1” located at https://osf.io/7kzgb
(accessed on 21 August 2023) .

4.2. Results

Figures 1 and 2 display the absolute bias and the RMSE of the factor mean α2,1 in
the second group as a function of the regularization parameter λ for the two sample
sizes, N = 500 and N = 1000, and the two powers of the penalty function p = 1 and
p = 0.5, respectively. It can be seen in the two figures that there is a range of values of the
regularization parameter λ, which results in unbiased and least variable (i.e., in terms of
RMSE) estimates. The optimal fixed regularized parameter was larger for p = 0.5 than for
p = 1. However, the minimal RMSE was similar for p = 1 and p = 0.5 in Simulation Study 1.
Furthermore, the RMSE of the factor mean estimate based on the optimal regularization
parameter selected by the minimal BIC did not generally outperform a well-chosen fixed
regularization parameter λ.
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Figure 1. Simulation Study 1: Absolute bias and root mean square error (RMSE) of the factor mean
α2,1 in the second group as a function of the regularization parameter λ for a DIF effect of the item
intercept of δ = 0.3 for sample sizes N = 500 and N = 1000 and powers p = 1 and p = 0.5 of the
penalty function. The RMSE of the estimate obtained by the optimal BIC and coordinate descent
(BIC-CD) is displayed by the blue line. The location of the average optimal regularization parameter
obtained by BIC-CD is displayed by the blue triangle.

Interestingly, Figure 2 illustrates in the condition of a larger DIF effect δ = 0.6 that
too small regularization parameters λ resulted in biased parameter estimates. The issue
occurred both for p = 1 and p = 0.5. Moreover, by comparing Figures 1 and 2, it is evident
that the optimal regularization parameter is a function of the size of DIF effects δ. That is,
larger DIF effects δ resulted in larger regularization parameters λ.
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Figure 2. Simulation Study 1: Absolute bias and root mean square error (RMSE) of the factor mean
α2,1 in the second group as a function of the regularization parameter λ for a DIF effect of the item
intercept of δ = 0.6 for sample sizes N = 500 and N = 1000 and powers p = 1 and p = 0.5 of the
penalty function. The RMSE of the estimate obtained by the optimal BIC and coordinate descent
(BIC-CD) is displayed by the blue line. The location of the average optimal regularization parameter
obtained by BIC-CD is displayed by the blue triangle.

Table 1 presents the bias and the RMSE of the estimated group means of the second
and the third group. In this table, the direct BIC minimization approach DIR is compared
with the exact estimation approach (CD) and the differentiable approximation (DA) using
the optimal regularization parameter λ based on the minimal BIC, as well as for fixed
regularization parameters λ = 0.05 for the power p = 1 and λ = 0.10 for p = 0.5. The
DA estimation approach is shown using the threshold τ = 0.02. Values of the fixed
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regularization parameters were chosen based on the findings in Figures 1 and 2. Overall,
there was only a negligible bias in factor mean estimates. Regarding RMSE, all different
estimation methods resulted in relatively similar estimates. Furthermore, there were
essentially no differences between the exact solution (CD) and the approximate solution
(DA). If researchers seek toknow a close-to-optimal regularization parameter λ, regularized
ML estimation must not involve the choice of an optimal λ based on a minimal BIC. Finally,
the computationally cheap direct BIC minimization approach (DIR) performed similarly
to BIC estimation that requires fitting a regularized SEM at a sequence of regularization
parameters λ. A slight increase in RMSE of the DIR method was only observed for N = 500
and δ = 0.3, which was the consequence of slightly biased parameter estimates.

Table 1. Simulation Study 1: Bias and root mean square error (RMSE) of factor means as a function of
sample size N and the size of the DIF effect of item intercepts δ.

p = 1 p = 0.5

BIC BIC λ = 0.05 BIC λ = 0.10

Par N δ DIR CD DA CD DA CD DA CD DA

Bias

α2,1

500
0.3 −0.012 −0.005 −0.005 −0.004 −0.005 −0.005 −0.006 −0.007 −0.007
0.6 0.000 0.000 0.001 −0.001 −0.001 0.000 0.000 −0.019 −0.019

1000
0.3 −0.005 −0.001 0.000 0.000 0.000 −0.001 −0.001 −0.001 −0.001
0.6 0.001 0.002 0.002 0.002 0.002 0.002 0.002 −0.010 −0.010

α3,1

500
0.3 −0.013 −0.007 −0.006 −0.006 −0.006 −0.007 −0.007 −0.008 −0.008
0.6 0.001 0.001 0.002 0.000 0.000 0.001 0.001 −0.017 −0.017

1000
0.3 −0.004 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000
0.6 0.004 0.004 0.004 0.004 0.004 0.004 0.004 −0.008 −0.008

RMSE

α2,1

500
0.3 0.090 0.086 0.086 0.086 0.086 0.083 0.083 0.082 0.082
0.6 0.081 0.081 0.081 0.081 0.081 0.080 0.080 0.084 0.084

1000
0.3 0.057 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056
0.6 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.060 0.061

α3,1

500
0.3 0.096 0.090 0.090 0.090 0.090 0.087 0.087 0.086 0.086
0.6 0.083 0.082 0.082 0.082 0.082 0.082 0.082 0.083 0.084

1000
0.3 0.058 0.058 0.058 0.058 0.058 0.057 0.057 0.057 0.057
0.6 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.061 0.061

Note . Par = parameter; αg,1 = factor mean in group g = 2, 3; estimation using the optimal regularization parameter
based on the BIC; p = power used in the penalty function; λ = fixed regularized parameter; DIR = direct BIC
minimization using the differentiable approximation of O’Neill and Burke (2023) with ε = 0.01; CD = coordinate
descent; DA = differentiable approximation using the threshold parameter τ = 0.02.

Table 2 compares the average number of regularized parameters of the exact approach
(CD) and the differentiable estimation approach (DA) using the thresholds τ of 0.01, 0.02,
and 0.04. It turned out that the number of regularized item intercepts in the selected models
was very similar. Only for N = 500 and δ = 0.3 was the number of regularized parameters
slightly too low. Notably, lower values of thresholds such as τ = 0.005 or τ = 0.001 would
result in a substantially lower average number of regularized parameters.
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Table 2. Simulation Study 1: Average number of regularized item intercepts using the optimal
regularized parameter λ based on the BIC as a function of sample size N and the size of the DIF effect
of item intercepts δ.

p = 1 p = 0.5

DA with τ = DA with τ =

N δ CD 0.01 0.02 0.04 CD 0.01 0.02 0.04

500
0.3 11.86 11.45 11.93 12.08 11.95 11.96 11.96 11.96
0.6 11.94 11.96 11.97 11.99 11.97 11.97 11.97 11.97

1000
0.3 11.95 11.87 11.98 12.00 11.95 11.96 11.96 11.96
0.6 11.99 12.00 12.00 12.00 11.98 11.99 11.99 11.99

Note. p = power used in the penalty function; CD = coordinate descent; DA = differentiable approximation using
a threshold parameter τ.

Table 3 focuses on the coverage rates of selected model parameters. It can be seen that
coverage rates for a model parameter were acceptable for both powers p = 1 and p = 0.5 if
the respective parameter estimate was approximately unbiased. Interestingly, the coverage
rates were also satisfactory for the direct BIC minimization approach (DIR).

Table 3. Simulation Study 1: Bias and coverage rates as a function of sample size N and the size of
the DIF effect of item intercepts δ.

Bias Coverage

p = 1 p = 0.5 p = 1 p = 0.5

BIC DA with λ = DA with λ = BIC DA with λ = DA with λ =

Par N δ DIR 0.05 0.10 0.10 0.15 DIR 0.05 0.10 0.10 0.15

α2,1

500
0.3 −0.02 −0.01 −0.08 −0.01 −0.06 94.1 93.7 81.9 92.4 82.8

0.6 0.00 0.00 0.00 −0.01 0.00 95.4 95.0 95.1 95.2 95.3

1000
0.3 0.00 0.00 −0.09 0.00 −0.06 95.3 95.5 67.5 95.3 74.2

0.6 0.00 0.00 0.00 0.00 0.00 94.5 94.5 94.5 94.5 94.5

α3,1

500
0.3 −0.01 0.00 −0.08 −0.01 −0.05 94.1 94.7 81.8 92.9 85.1

0.6 0.00 0.00 0.00 0.00 0.00 95.5 94.9 95.0 94.5 94.9

1000
0.3 0.00 0.00 −0.09 0.00 −0.05 95.8 95.6 66.0 95.2 75.7

0.6 0.00 0.00 0.00 0.00 0.00 95.3 95.1 95.2 95.1 95.2

φ2,11

500
0.3 0.01 0.01 0.01 0.01 0.01 95.4 95.3 95.3 95.2 95.3
0.6 0.01 0.01 0.01 0.00 0.00 95.6 95.4 95.5 95.2 95.3

1000
0.3 0.01 0.01 0.01 0.00 0.01 95.2 95.0 95.0 94.9 95.0
0.6 0.00 0.00 0.00 0.00 0.00 95.5 95.2 95.2 95.2 95.2

φ3,11

500
0.3 0.01 0.01 0.01 0.01 0.01 94.8 94.6 94.7 94.4 94.6
0.6 0.01 0.01 0.01 0.01 0.01 95.2 95.2 95.2 95.1 95.1

1000
0.3 0.00 0.00 0.00 0.00 0.01 95.2 95.2 95.4 95.4 95.3
0.6 0.00 0.00 0.00 0.00 0.00 95.8 95.3 95.3 95.2 95.2

ν2,1

500
0.3 0.02 0.01 0.16 0.02 0.12 94.5 93.9 35.1 91.6 48.3

0.6 0.00 0.00 0.00 0.03 0.00 95.3 94.3 95.2 85.7 95.2

1000
0.3 0.01 0.00 0.18 0.00 0.12 96.0 95.7 32.1 94.8 52.0

0.6 0.00 0.00 0.00 0.02 0.00 95.1 94.7 94.5 85.3 94.5
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Table 3. Cont.

Bias Coverage

p = 1 p = 0.5 p = 1 p = 0.5

BIC DA with λ = DA with λ = BIC DA with λ = DA with λ =

Par N δ DIR 0.05 0.10 0.10 0.15 DIR 0.05 0.10 0.10 0.15

ν3,2

500
0.3 0.02 0.01 0.17 0.02 0.12 94.2 93.5 29.6 92.0 48.4

0.6 0.00 0.00 0.00 0.03 0.00 95.8 95.1 95.4 86.1 95.4

1000
0.3 0.00 0.00 0.19 0.00 0.11 95.6 95.2 23.7 94.5 52.1

0.6 0.00 0.00 0.00 0.02 0.00 95.3 95.0 94.9 85.9 95.0

Note. Par = parameter; αg,1 = factor mean in group g = 2, 3; φg,11 = factor variance in group g = 2, 3; νg,i = item
intercept of item i in group g = 2, 3; estimation using the optimal regularization parameter based on the BIC;
p = power used in the penalty function; λ = fixed regularized parameter; DIR = direct BIC minimization using the
differentiable approximation of O’Neill and Burke (2023) with ε = 0.01; DA = differentiable approximation using
the threshold parameter τ = 0.02; Absolute biases larger than 0.04 are printed in bold. Coverage rates smaller
than 91 or larger than 98 are printed in bold.

5. Simulation Study 2: Two-Dimensional Factor Model with Cross-Loadings

In Simulation Study 1, regularized ML estimation of a two-dimensional factor model
with cross-loadings was investigated.

5.1. Method

The data-generating method involves a two-dimensional factor model involving ten
manifest variables X1, . . . , X10 (i.e., items), and two latent (factor) variables η1 and η2.
The data-generating model is graphically presented in Figure 3. The first five items load on
the first factor, while the last five items load on the second factor. Three cross-loadings for
items X1, X9, and X10 were introduced.

X3 X4 X5X2X1

η1

X6 X7 X8 X9 X10

η2

Figure 3. Simulation Study 2: Data-generating model.

All variables had zero means and were normally distributed. Furthermore, the latent
variables η1 and η2 were standardized (i.e., they had a true variance of 1). The true factor
correlation φ12 of the two factor variables was set to 0.5. The primary factor loadings of
the ten items were 1.000, 0.858, 0.782, 0.877, 0.888, 1.000, 0.815, 0.721, 0.880, and 0.749.
The variances of the normally distributed residual error variables were chosen as 0.115,
0.464, 0.572, 0.345, 0.411, 0.122, 0.536, 0.680, 0.383, and 0.627.

All cross-loadings were simulated with the size δ. In the simulation, δ was chosen as
0.2 or 0.4. Furthermore, the sample size N was chosen to be either 500 or 1000.

The two-dimensional factor model with the SCAD penalty function on the cross-
loadings was specified as the analysis model. For identification reasons, the variances of the
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factor variables were fixed to 1. The estimation method followed those used in Simulation
Study 1. Again, ε = 10−4 was employed in the differentiable approximation method (DA)
utilizing thresholds τ = 0.01, 0.02, and 0.04 in the BIC minimization. The smoothed direct
BIC minimization approach (DIR) was again conducted with ε = 0.01.

In total, 1000 replications were conducted for all 2 (size of cross-loadings δ) × 2 (sample
size N) = 4 conditions of the simulation study. We analyzed the estimation quality of model
parameter estimates through bias, RMSE, and coverage rates.

The models were again estimated using the sirt::mgsem() function in the R [45]
package sirt [46]. Replication material and the data-generating parameters can be found
in the directory “Simulation Study 2” located at https://osf.io/7kzgb (accessed on 21 August
2023) .

5.2. Results

Figures 4 and 5 display the absolute bias and the RMSE of the factor correlation
φ2,11 of the two factors as a function of the regularization parameter λ for the two sample
sizes, N = 500 and N = 1000, and the two powers of the penalty function p = 1 and
p = 0.5, respectively. In contrast to Simulation Study 1, the two figures showed that using
a regularization parameter λ that is smaller than the optimal λ selected by BIC resulted in
parameter estimates with a smaller RMSE. This property somehow questions the standard
procedure of searching for a parsimonious model according to the BIC if a structural
parameter should be estimated with low variance. Furthermore, parameter estimates with
the power p = 0.5 in the penalty function resulted in a lower RMSE than using the power
p = 1.

Table 4 presents the bias and the RMSE of the estimated factor correlation and the
four factor loadings for the first two items. According to the findings in Figures 4 and 5,
we also display the parameter estimates for the fixed regularization parameter λ = 0.025.
The estimated parameters were unbiased. Hence, we focus on differences between the
estimation approaches regarding the RMSE. Like in Simulation Study 1, the exact estima-
tion approach (CD) performed similarly to the differentiable estimation approach (DA).
The only exception was the case of p = 0.5 and the fixed regularization parameter λ = 0.025.
In this case, the DA approach resulted in fewer variables estimated than the CD approach
for the factor correlation φ2,11. Moreover, the direct BIC minimization approach (DIR) was
similar or superior to the CD and DA estimation approaches based on BIC. This is an inter-
esting finding because repeatedly fitting the regularized SEM on a grid of regularization
parameters is not required in DIR.

Table 4. Simulation Study 2: Bias and root mean square error (RMSE) of factor means as a function of
sample size N and the size of cross-loadings δ.

p = 1 p = 0.5

BIC BIC λ = 0.025 BIC λ = 0.025

Par N δ DIR CD DA CD DA CD DA CD DA

Bias

φ12

500
0.2 0.000 0.011 0.009 −0.001 −0.001 0.001 0.001 0.000 0.000
0.4 0.000 0.001 0.000 0.000 −0.001 0.001 0.001 0.000 0.000

1000
0.2 0.000 0.002 0.001 −0.001 −0.001 0.000 0.000 0.000 0.000
0.4 −0.001 0.000 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.000

λ11

500
0.2 −0.001 −0.002 −0.002 −0.001 −0.001 0.000 −0.001 −0.001 −0.001
0.4 0.000 −0.001 −0.001 0.000 0.000 0.000 0.000 −0.001 −0.001

1000
0.2 0.000 0.000 −0.001 0.000 0.000 0.000 0.000 0.000 0.000
0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.001
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Table 4. Cont.

p = 1 p = 0.5

BIC BIC λ = 0.025 BIC λ = 0.025

Par N δ DIR CD DA CD DA CD DA CD DA

λ12

500
0.2 −0.001 −0.006 −0.005 0.000 0.000 −0.001 −0.001 0.000 0.000
0.4 −0.001 −0.002 −0.001 −0.001 −0.001 −0.002 −0.001 0.000 0.000

1000
0.2 −0.001 −0.002 −0.001 0.000 0.000 −0.001 0.000 0.000 0.000
0.4 −0.002 −0.002 −0.002 −0.002 −0.001 −0.002 −0.002 −0.001 −0.001

λ21

500
0.2 −0.001 −0.003 −0.002 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001
0.4 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.002

1000
0.2 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001
0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

λ22

500
0.2 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001
0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002

1000
0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001
0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RMSE

φ12

500
0.2 0.040 0.049 0.048 0.044 0.043 0.041 0.041 0.028 0.024
0.4 0.039 0.040 0.040 0.043 0.043 0.040 0.040 0.029 0.024

1000
0.2 0.028 0.030 0.030 0.030 0.029 0.028 0.028 0.022 0.017
0.4 0.028 0.028 0.028 0.030 0.029 0.028 0.028 0.023 0.017

λ11

500
0.2 0.040 0.042 0.042 0.041 0.041 0.040 0.040 0.034 0.034
0.4 0.040 0.041 0.041 0.041 0.041 0.040 0.040 0.034 0.034

1000
0.2 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.024 0.023
0.4 0.029 0.029 0.029 0.030 0.029 0.029 0.029 0.025 0.024

λ12

500
0.2 0.031 0.038 0.037 0.035 0.035 0.032 0.032 0.029 0.027
0.4 0.032 0.033 0.033 0.036 0.035 0.033 0.033 0.029 0.027

1000
0.2 0.022 0.024 0.023 0.023 0.023 0.022 0.022 0.022 0.019
0.4 0.023 0.023 0.023 0.025 0.024 0.024 0.024 0.022 0.020

λ21

500
0.2 0.042 0.043 0.043 0.045 0.045 0.042 0.042 0.043 0.042
0.4 0.042 0.042 0.042 0.045 0.045 0.042 0.042 0.043 0.043

1000
0.2 0.030 0.030 0.030 0.031 0.031 0.030 0.030 0.030 0.030
0.4 0.030 0.029 0.030 0.031 0.031 0.030 0.030 0.030 0.030

λ22

500
0.2 0.010 0.018 0.018 0.029 0.029 0.013 0.012 0.036 0.035
0.4 0.011 0.009 0.010 0.029 0.029 0.011 0.010 0.036 0.035

1000
0.2 0.006 0.009 0.009 0.015 0.014 0.007 0.007 0.025 0.024
0.4 0.007 0.005 0.004 0.016 0.015 0.008 0.007 0.026 0.024

Note. Par = parameter; φ12 = factor correlation; λid = factor loading of ith item on the dth factor; estimation
using the optimal regularization parameter based on the BIC; p = power used in the penalty function; λ = fixed
regularized parameter; DIR = direct BIC minimization using the differentiable approximation of O’Neill and
Burke (2023) with ε = 0.01; CD = coordinate descent; DA = differentiable approximation using the threshold
parameter τ = 0.02.
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Figure 4. Simulation Study 2: Absolute bias and root mean square error (RMSE) of the factor
correlation φ12 as a function of the regularization parameter λ for a cross-loading of δ = 0.2 for
sample sizes N = 500 and N = 1000 and powers p = 1 and p = 0.5 of the penalty function. The
RMSE of the estimate obtained by the optimal BIC and coordinate descent (BIC-CD) is displayed by
the blue line. The location of the average optimal regularization parameter obtained by BIC-CD is
displayed by the blue triangle.
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Figure 5. Simulation Study 2: Absolute bias and root mean square error (RMSE) of the factor
correlation φ12 as a function of the regularization parameter λ for a cross-loading of δ = 0.4 for
sample sizes N = 500 and N = 1000 and powers p = 1 and p = 0.5 of the penalty function. The
RMSE of the estimate obtained by the optimal BIC and coordinate descent (BIC-CD) is displayed by
the blue line. The location of the average optimal regularization parameter obtained by BIC-CD is
displayed by the blue triangle.

Table 5 displays the average number of regularized cross-loadings. It turned out
that the choice of the threshold parameter τ was less critical for p = 0.5 than for p = 1.
Furthermore, using τ = 0.02 in the DA approach resulted in a similar average number of
regularized parameters to the exact approach (CD).
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Table 5. Simulation Study 2: Average number of regularized cross-loadings using the optimal
regularized parameter λ based on the BIC as a function of sample size N and the size of cross-
loadings δ.

p = 1 p = 0.5

DA with τ = DA with τ =

N δ CD 0.01 0.02 0.04 CD 0.01 0.02 0.04

500
0.3 6.50 5.85 6.64 7.03 6.98 7.01 7.01 6.99
0.6 6.92 6.72 6.94 6.98 6.94 6.95 6.95 6.94

1000
0.3 6.72 6.35 6.86 6.99 6.95 6.96 6.96 6.91
0.6 6.97 6.95 6.99 6.99 6.95 6.95 6.95 6.90

Note. p = power used in the penalty function; CD = coordinate descent; DA = differentiable approximation using
a threshold parameter τ.

Finally, Table 6 displays the coverage rates and bias of the estimated factor correlation
and the factor loading of the first item. Coverage rates were satisfactory for the DIR
approach as well as for the DA approach with fixed regularization parameters. There was
a tendency of overcoverage for the power p = 0.5 for a small regularization parameter
λ = 0.025.

Table 6. Simulation Study 2: Bias and coverage rates as a function of sample size N and the size of
cross-loadings δ.

Bias Coverage

p = 1 p = 0.5 p = 1 p = 0.5

BIC DA with λ = DA with λ = BIC DA with λ = DA with λ =

Par N δ DIR 0.025 0.05 0.025 0.05 DIR 0.025 0.05 0.025 0.05

φ12

500
0.2 0.00 0.00 0.00 0.00 0.00 94.2 96.2 93.8 97.3 97.9
0.4 0.00 0.00 0.00 0.00 0.00 94.3 96.0 94.7 98.0 98.3

1000
0.2 0.00 0.00 0.00 0.00 0.00 95.1 95.9 94.7 97.0 97.0
0.4 0.00 0.00 0.00 0.00 0.00 95.1 95.8 95.1 97.7 96.9

λ11

500
0.2 0.00 0.00 0.00 0.00 0.00 94.4 95.4 94.6 99.6 96.7
0.4 0.00 0.00 0.00 0.00 0.00 94.9 95.8 95.0 99.7 96.9

1000
0.2 0.00 0.00 0.00 0.00 0.00 94.7 94.9 94.5 99.8 95.9
0.4 0.00 0.00 0.00 0.00 0.00 95.1 95.4 95.1 99.9 96.4

Note. Par = parameter; φ12 = factor correlation; λid = factor loading of ith item on the dth factor; estimation
using the optimal regularization parameter based on the BIC; p = power used in the penalty function; λ = fixed
regularized parameter; DIR = direct BIC minimization using the differentiable approximation of O’Neill and
Burke (2023) with ε = 0.01; DA = differentiable approximation using the threshold parameter τ = 0.02; Absolute
biases larger than 0.04 are printed in bold. Coverage rates smaller than 91 or larger than 98 are printed in bold.

6. Summary of Simulation Findings

In this section, the main findings of the two simulation studies are discussed regarding
the research questions posed in Section 3.

6.1. RQ1: Using a Fixed Regularization Parameter λ Can Be Advantageous Regarding Bias
and RMSE

First, the findings of Simulation Study 2 demonstrated that using a fixed regularized
parameter λ instead of an optimally chosen λ by means of minimizing BIC can result in
more efficient estimates of structural parameters (research question RQ1). This finding
undermines the fact that obtaining efficient parameter estimates is not necessarily related
to the search for a parsimonious model in terms of minimal information criteria.
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6.2. RQ2: Differentiable Approximations of Penalty Functions Generally Work

Second, differentiable approximation approaches of the non-differentiable penalty
function in regularized estimation using appropriate tuning parameters performed simi-
larly to exact estimation approaches that employed coordinate descent (research question
RQ2). This result contradicts recommendations in the recent literature that differentiable
approximation approaches should generally be avoided. Note that the latter approaches
can utilize widely availably general-purpose optimizers. Moreover, regularized estimation
with the differentiable approximation of the penalty function is frequently faster than
specialized optimizers.

6.3. RQ3: Direct BIC Minimization Is a Competitive Estimation Method

Third, even if differentiable approximation were used in regularized estimation, se-
lecting the optimal regularization parameter λ based on the minimal BIC requires repeated
estimation of the SEM which can be computationally demanding. A recently proposed
smooth direct BIC minimization approach by O’Neill and Burke [17] avoids the specifica-
tion of a regularization parameter and directly minimizes a smoothed version of the BIC.
In our simulation studies that involved SEMs, the direct BIC minimization approach per-
formed surprisingly well and had similar performance to the ordinarily employed indirect
BIC minimization approach that requires repeated estimations (research question RQ3).
This finding is remarkable because it could change the practice of the implementation of
regularized estimation.

6.4. RQ4: The Power p = 0.5 in the Penalty Function Can Be Sometimes Beneficial

Fourth, the choice of the power p of the penalty function is ordinarily p = 1, but a
recent implementation used p = 0.5 in SEM. Our simulations demonstrated similar per-
formance of both power values (research question RQ4). However, in Simulation Study 2,
p = 0.5 with a particular fixed regularization parameter λ outperformed the estimation
based on p = 1. Moreover, the determination of the number of estimated parameters de-
pended less on a chosen threshold for p = 0.5 than p = 1 if a differentiable approximation
of regularized estimation was utilized.

6.5. RQ5: Reliable Standard Error Estimation Using the Delta Method

Fifth, our simulation studies demonstrated that standard error computation based on
the delta method was satisfactory for the direct BIC minimization approach as well as for
regularized estimation with a fixed regularization parameter λ (research question RQ5).

7. Discussion and Conclusions

In this article, implementation aspects of regularized maximum likelihood estimation
of SEMs were investigated. We obtained some insights into how regularized SEMs could
be efficiently implemented in practice. In contrast to statements in the literature, differ-
entiable approximations of the non-differentiable penalty functions in regularized SEM
perform comparably well to specialized estimation methods if tuning parameters in these
approximations are thoughtfully chosen.

Our preliminary conclusion for regularized SEM estimation from our simulation stud-
ies is that the direct BIC minimization approach or the fixed regularization parameter ap-
proach should deserve more attention in future research. By focusing on these approaches,
the computational burden of regularized SEM is noticeably reduced. Future research might
investigate whether the findings obtained for SEMs transfer to other models involving
latent variables such as item response models [47–52], latent class models [28,53–55],
or mixture models [56,57].

In this article, we focused on a differentiable approximation of the BIC. However,
the same approximation technique could be applied to estimating regularized SEMs that
minimize the AIC. However, we have preliminary simulation evidence that convergence
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issues appeared more frequently when minimizing the differentiable approximation of the
AIC compared to BIC.

Hopefully, the availability of the direct BIC minimization approach could lead to more
widespread use of regularized estimation. Nevertheless, the regularization approaches
discussed in this paper still hinge on the assumption that there is sparsity with respect
to regularized model parameters. Such sparse models or parameter deviations might not
always be appropriate for modeling real-world datasets.

The simulation studies showed that the optimal regularization parameter λ regarding
the bias and RMSE of the model parameters of interest does not necessarily coincide with
the optimal λ obtained by minimizing the BIC. Determining the optimal regularization
parameter λ for particular regularized SEMs is, therefore, difficult for researchers. Maybe
only simulation studies that involve a similarly complex model and a similar sample
size could help to determine an appropriate λ. If the researcher’s interest lies in the
interpretation of model parameters in a regularized SEM, it is uncertain as to why model
fitting is aimed at minimizing a prediction error, as in BIC, because such a criterion can
only be weakly related to estimating optimal model parameters (see [58]).
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Abbreviations

The following abbreviations are used in this manuscript:

AIC Akaike information criterion

BIC Bayesian information criterion

CD coordinate descent

CFA confirmatory factor analysis

DA differentiable approximation

DGM data-generating model

DIF differential item functioning

LASSO least absolute shrinkage and selection operator

ML maximum likelihood

RMSE root mean square error

SCAD smoothly clipped absolute deviation

SEM structural equation model
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