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Abstract: Nonlinear (NL) and multilinear (ML) systems play a fundamental role in engineering and
science. Over the last two decades, active research has been carried out on exploiting the intrinsically
multilinear structure of input–output signals and/or models in order to develop more efficient
identification algorithms. This has been achieved using the notion of tensors, which are the central
objects in multilinear algebra, giving rise to tensor-based approaches. The aim of this paper is to
review such approaches for modeling and identifying NL and ML systems using input–output data,
with a reminder of the tensor operations and decompositions needed to render the presentation as
self-contained as possible. In the case of NL systems, two families of models are considered: the
Volterra models and block-oriented ones. Volterra models, frequently used in numerous fields of
application, have the drawback to be characterized by a huge number of coefficients contained in
the so-called Volterra kernels, making their identification difficult. In order to reduce this parametric
complexity, we show how Volterra systems can be represented by expanding high-order kernels using
the parallel factor (PARAFAC) decomposition or generalized orthogonal basis (GOB) functions, which
leads to the so-called Volterra–PARAFAC, and Volterra–GOB models, respectively. The extended
Kalman filter (EKF) is presented to estimate the parameters of a Volterra–PARAFAC model. Another
approach to reduce the parametric complexity consists in using block-oriented models such as those
of Wiener, Hammerstein and Wiener–Hammerstein. With the purpose of estimating the parameters
of such models, we show how the Volterra kernels associated with these models can be written
under the form of structured tensor decompositions. In the last part of the paper, the notion of tensor
systems is introduced using the Einstein product of tensors. Discrete-time memoryless tensor-input
tensor-output (TITO) systems are defined by means of a relation between an Nth-order tensor of
input signals and a Pth-order tensor of output signals via a (P + N)th-order transfer tensor. Such
systems generalize the standard memoryless multi-input multi-output (MIMO) system to the case
where input and output data define tensors of order higher than two. The case of a TISO system
is then considered assuming the system transfer is a rank-one Nth-order tensor viewed as a global
multilinear impulse response (IR) whose parameters are estimated using the weighted least-squares
(WLS) method. A closed-form solution is proposed for estimating each individual IR associated with
each mode-n subsystem.

Keywords: block-oriented nonlinear systems; multilinear systems; parameter estimation; tensor
decompositions; tensor systems; Volterra systems; Wiener–Hammerstein systems

1. Introduction

The continuous development of mathematical knowledge, together with a constantly
renewed and growing need to study, represent and analyze ever more complex physical
phenomena and systems, are at the origin of new mathematical objects and models. In
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particular, the notion of matrices introduced by Gauss in 1810 to solve systems of linear
algebraic equations, with the foundations of matrix computation developed during the
19th century by Sylvester (1814–1897) and Cayley (1821–1895), among several other mathe-
maticians, has later given rise to the notion of tensors. Tensors of order higher than two,
i.e., mathematical objects indexed by more than two indices, are multidimensional gener-
alizations of vectors and matrices which are tensors of orders one and two, respectively.
Such objects are well suited to represent and process multidimensional and multimodal
signals and data, like in computer vision [1], pattern recognition [2], array processing [3],
machine learning [4], recommender systems [5], ECG applications [6], bioinformatics [7],
and wireless communications [8], among many other fields of application. Today, with ever
constantly growing big data (texts, images, audio, and videos) to manage in multimedia
applications and social networks, tensor tools are well adapted to fuse, classify, analyze
and process digital information [9].

The purpose of this paper is to present an overview of tensor-based methods for
modeling and identifying nonlinear and multilinear systems using input–output data, as
encountered in signal processing applications, with a focus on truncated Volterra models
and block-oriented nonlinear ones and an introduction to memoryless input–output tensor
systems. With a detailed reminder of the tensor tools useful to make the presentation
as self-contained as possible and a review of main nonlinear models and their applica-
tions, this paper should be of interest to researchers and engineers concerned with signal
processing applications.

First of all, developed as computational and representation tools in physics and
geometry, tensors were the subject of mathematical developments related to polyadic de-
composition [10], aiming to generalize dyadic decompositions, i.e., matrix decompositions
such as the singular value decomposition (SVD), discovered independently by Beltrami
(1835–1900) and Jordan (1838–1922) in 1873 and 1874, respectively. Then, tensors were used
for the analysis of three-dimensional data generalizing matrix analysis to sets of matrices,
seen as arrays of data characterized by three indices, in the fields of psychometrics and
chemometrics [11–14]. This explains the other name given to tensors as multiway arrays in
the context of data analysis and data mining [15].

Matrix decompositions, such as the SVD, have thus been generalized into tensor de-
compositions, such as the PARAFAC decomposition [13], also called canonical polyadic
decomposition (CPD), and the Tucker decomposition (TD) [12]. Tensor decompositions con-
sist in representing a high-order tensor by means of factor matrices and lower-order tensors,
called core tensors. In the context of data analysis, such decompositions make it possible to
highlight hidden structures of the data while preserving their multilinear structure, which
is not the case when stacking the data in the form of vectors or matrices. Tensor decompo-
sitions can be used to reduce data dimensionality [16], merge coupled data tensors [17],
handle missing data through the application of tensor completion methods [18,19], and
design semi-blind receivers for tensor-based wireless communication systems [8].

In Table 1, we present basic and very useful matrix and third-order tensor decomposi-
tions, namely the reduced SVD, also known as the compact SVD, PARAFAC/CPD and TD,
in a comparative way. A detailed presentation of PARAFAC and Tucker decompositions is
given in Section 4.2. Note that the matrix factors U and V which are column-orthonormal,
contain the left and right singular vectors, respectively, whereas the diagonal matrix Σ

contains the nonzero singular values, and R denotes the rank of the matrix.
A historical review of the theory of matrices and tensors, with basic decompositions

and applications, can be found in [20].
Similarly, from the system modeling point of view, linear models of dynamic systems in

the form of input–output relationships or state space equations have given rise to nonlinear
and multilinear models to take into account nonlinearities inherent in physical systems.
This explains why nonlinear models are appropriate in many engineering applications.
Consequently, standard parameter estimation and filtering methods for linear systems, such
as the least-squares (LS) algorithm and the Kalman filter (KF), first proposed by Legendre
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in 1805 [21] and Kalman in 1960 [22], respectively, were extended for parameter and state
estimation of nonlinear systems. Thus, the alternating least-squares (ALS) algorithm [13]
and the extended Kalman filter (EKF) [23] were developed, respectively, for estimating the
parameters of a PARAFAC decomposition and applying the KF to nonlinear systems.

Table 1. Reduced SVD, PARAFAC/CPD, and TD.

Matrices ... Third-Order Tensors

X ∈ RI×J ... X ∈ RI×J×K

Reduced SVD ... PARAFAC/CPD

xi,j = ∑R
r=1 σrui,rvj,r ⇐⇒ X = UΣVT ... xi,j,k = ∑R

r=1 ai,rbj,rck,r

U ∈ RI×R, V ∈ RJ×R, Σ ∈ RR×R ... A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R

... TD

... xi,j,k = ∑P
p=1 ∑Q

q=1 ∑S
s=1 gp,q,sai,pbj,qck,s

... A ∈ RI×P, B ∈ RJ×Q, C ∈ RK×S,G ∈ RP×Q×S

In Table 2, we present two examples of standard linear models, namely the single-input
single-output (SISO) finite impulse response (FIR) model and the memoryless multi-input
multi-output (MIMO) model, often used for modeling a communication channel between
nT transmit antennas and nR receive antennas, where hi,j is the fading coefficient between
the jth transmit antenna and the ith receiver antenna. The FIR model is one of the most used
for modeling linear time-invariant (LTI) systems, i.e., systems which satisfy the constraints
of linearity and time-invariance, which means that the system output y(t) can be obtained
from the input via a convolution y(t) = (h ? u)(t), where h(.) is the system’s impulse
response (IR), and ? denotes the convolution operator.

The notion of linear dynamical system has been generalized to multilinear dynamical
systems in [24] to model tensor time series data, i.e., time series in which input and
output data are tensors. In this paper, the multilinear operator is chosen in the form
of a Kronecker product of matrices, and the parameters are estimated by means of an
expectation-maximization algorithm, with application to various real datasets. Then,
the notion of LTI system has been extended to multilinear LTI (MLTI) systems by [25]
using the Einstein product of even-order paired tensors, with an extension of the classical
stability, reachability, and observability criteria to the case of MLTI systems. In Table 2,
four examples of nonlinear (NL) and multilinear (ML) models are introduced, namely the
polynomial, truncated Volterra, tensor-input tensor-output (TITO), and multilinear tensor-
input single-output (TISO) models, which will be studied in more detail in Sections 5 and 6,
as mentioned in Table 2.

System modeling and identification is a fundamental problem in engineering appli-
cations. Real-life systems being often nonlinear in nature, NL models are very useful for
various application areas. Parameter estimation using measurements of input and output
(I/O) signals is at the heart of identification methods. In this paper, two main families of
NL models are considered: (i) discrete-time Volterra models, also called truncated Volterra
series expansions; (ii) block-oriented (Wiener, Hammerstein, Wiener–Hammerstein) mod-
els. In the sequel, we assume that the systems to be modeled are time invariant, i.e., their
properties and consequently the parameters of their model do not depend on time.
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Table 2. Some examples of linear, nonlinear and multilinear models.

Linear models

SISO FIR model
y(t) = ∑nu

i hiu(t− i)

Memoryless MIMO model
yi(t) = ∑nT

j=1 hi,juj(t), i ∈ [1, nR]

y(t) = Hu(t), y(t) ∈ RnR , u(t) ∈ RnT , H ∈ RnR×nT

Nonlinear models

Polynomial model (Section 5.1)
y(t) = ∑P

p=1 fp[u(t), · · · , u(t− nu), y(t− 1), · · · , y(t− ny)]

fp(.) = pth-degree polynomial in the system input (u) and output (y) signals

Truncated Volterra model (Section 5.2)

y(t) = h0 + ∑P
p=1 ∑

Mp
m1=1 · · ·∑

MP
mP=1 h(p)

m1,··· ,mP ∏
p
q=1 u(t−mq + 1)

h(p)
m1,··· ,mP = pth-order Volterra kernel with memory Mp

Multilinear models

TITO model (Section 6.2)
yi1,··· ,iP (t) = ∑J1

j1=1 · · ·∑
JN
jN=1 hi1,··· ,iP ,j1,··· ,jN uj1,··· ,jN (t)

U (t) ∈ RJ1×···×JN ,Y(t) ∈ RI1×···×IP

Multilinear TISO model (Sections 6.3 and 6.4)

y(t) = ∑J1
j1=1 · · ·∑

JN
jN=1

( N
∏

n=1
h(n)jn

)
uj1,··· ,jN (t)

Volterra models are frequently used due to the fact that they allow approximating
any fading memory nonlinear systems with an arbitrary precision, as shown in [26]. They
represent a direct nonlinear extension of the very popular FIR linear model, with guaranteed
stability in the bounded-input bounded-output (BIBO) sense, and they have the advantage
to be linear in their parameters, the kernel coefficients [27]. The nonlinearity of a Pth-
order truncated Volterra model is due to products of up to P samples of delayed inputs.
Moreover, they are interpretable in terms of multidimensional convolutions which makes
the derivation of their z-transform and Fourier transform representations easy[28].

Among the numerous application areas of Volterra models, we can mention chemical
and biochemical processes [29], radio-over-fiber (RoF) wireless communication systems
(due to optical/electrical (O/E) conversion) [30,31], high-power amplifiers (HPA) in satellite
communications [32,33], physiological systems [34], vibrating structures and more generally
mechatronic systems like robots [35], and acoustic echo cancellation [36].

The main drawback of Volterra models is their parametric complexity implying the
need to estimate a huge number of parameters which exponentially grows with the order
and memory of the kernels. So, several complexity reduction approaches for Volterra
models have been developed using symmetrization or triangularization of Volterra kernels,
or their expansion on orthogonal bases like Laguerre and Kautz ones, or generalized orthog-
onal bases (GOB). Considering Volterra kernels as tensors, they can also be decomposed
using a PARAFAC decomposition or a tensor train (TT). These approaches lead to the
so-called Volterra–Laguerre, Volterra–GOB–Tucker, Volterra–PARAFAC and Volterra–TT
models [37–42]. In Sections 5.3 and 5.4, we review the Volterra–PARAFAC and Volterra–
GOB–Tucker models. Note that a model-pruning approach can also be employed to adjust
the complexity reduction in considering only nearly diagonal coefficients of the kernels and
removing the other ones which correspond to more delayed input values whose influence
decreases when the delay increases [43].

Another approach for ensuring a reduced parametric complexity consists in consid-
ering block-oriented NL models, composed of two types of blocks: linear time-invariant
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(LTI) dynamic blocks and static NL blocks. The linear blocks may be parametric (transfer
functions, FIR models, state-space representations) or nonparametric (impulse responses),
whereas the NL blocks may be with memory or memoryless. The different blocks are
concatenated in series leading to the so-called Hammerstein (NL-LTI) and Wiener (LTI-NL)
models, extended to the Wiener–Hammerstein (LTI-NL-LTI) and Hammerstein–Wiener
(NL-LTI-NL) models, abbreviated W-H and H-W, respectively. To extend the modeling
potential of block-oriented models, several W-H and H-W models can also be intercon-
nected in parallel. Although such models are simpler but less general than Volterra models,
they allow us to represent numerous nonlinear systems. One of the first applications of
block-oriented NL models was for modeling biological systems [44]. A lot of papers have
been devoted to the identification of block-oriented models and their applications. For
more details, the reader is referred to the book [45] and the survey papers [46,47].

In Section 5.5, we show that the Wiener, Hammerstein and W-H models are equivalent
to structured Volterra models. This equivalence is at the origin of the structure identification
method for block-oriented systems, which will be presented in Section 5.5.4. Tensor-based
methods using this equivalence have been developed to estimate the parameters of block-
oriented nonlinear systems [48–51]. These methods are generally composed of two steps.
In the first one, the Volterra kernel associated with a particular block-oriented system is
used to estimate the LTI component(s). Note that there exist closed-form solutions for
estimating only the Volterra kernel of interest. Such a solution is proposed in [52,53] for a
third-order and fifth-order kernel, respectively. Then, in a second step, the nonlinear block
is estimated using the LS method. An example of a tensor-based method for identifying a
nonlinear communication channel represented by means of a W-H model was proposed
in [54] using the associated third-order Volterra kernel.

On the other hand, multilinear models are useful for modeling coupled dynamical
systems in engineering, biology, and physics. Tensor-based approaches have been proposed
for solving and identifying multilinear systems [24,55,56]. Using the Einstein product of
tensors, we first introduce a new class of systems, the so-called memoryless tensor-input
tensor-output (TITO) systems, in which the multidimensional input and output signals
define two tensors. The LS method is applied to estimate the tensor transfer of such a
system. Then the case of a tensor-input single-output (TISO) system is considered assuming
the system transfer is a rank-one Nth-order tensor, which leads to a multilinear system with
respect to the impulse responses (IR) of the N subsystems associated with the N modes of
the input tensor.

The non-recursive weighted least-squares (WLS) method is used to estimate the
multilinear impulse response (MIR) under a vectorized form. A closed-form method is also
proposed to estimate the IR of each subsystem from the estimated MIR.

The rest of the paper is structured as follows. In Section 2, we present the notations
with the index convention used throughout the paper. In Section 3, we introduce some
tensor sets in connection with multilinear forms. In Section 4, we briefly recall basic tensor
operations and decompositions. Sections 5 and 6 are devoted to tensor-based approaches
for nonlinear and multilinear systems modeling and identification, respectively. Finally,
Section 7 concludes the paper, with some perspectives for future work.

Many books and survey papers discuss estimation theory and system identification.
In the field of engineering sciences, we can cite the fundamental contributions of [57–63]
for linear systems and [27–29,47,64–69] for nonlinear systems. In the case of multilinear
systems, the reader is referred to [55,56] for more details.

2. Notation and Index Convention

Scalars, column vectors, matrices, and tensors are denoted by lower-case, boldface
lower-case, boldface upper-case, and calligraphic letters, e.g., x, x, X, X , respectively. We
denote by ai,r the (i, r) element and by A.r (resp. Ai.) the rth column (resp. ith row) of
A ∈ CI×R. IR denotes the identity matrix of size R× R.
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The transpose, complex conjugate, transconjugate, and Moore–Penrose pseudo-inverse
operators are represented by (.)T , (·)∗, (·)H and (·)†, respectively.

The operator diag(·) forms a diagonal matrix from its vector argument, while Di(A)
stands for a diagonal matrix holding the ith row of A ∈ CI×R on the diagonal.

The operator TM+N−1 , N(·) forms a (M + N − 1)× N Toeplitz matrix from its vector
argument x ∈ CM, whose first column and row are, respectively,

(
x1 · · · xM 0T

N−1
)T

and
(

x1 0T
N−1

)
.

Given Y ∈ CI×J , the vec and unvec operators are defined such that: y = vec(Y) ∈
CJ I ↔ Y = unvec(y) ∈ CI×J , where the order of dimensions in the product J I is linked to
the order of variation of the indices, with the column index j varying more slowly than the
row index i.

The outer, Kronecker and Khatri–Rao products are denoted by ◦, ⊗ and �, respectively.
Table 3 summarizes the notation used for sets of indices and dimensions [70].

Table 3. Notation for sets of indices and dimensions.

iP , {i1, · · · , iP} ; j
N
, {j1, · · · , jN}

IP , {I1, · · · , IP} ; JN , {J1, · · · , JN}

IP , I1 × · · · × IP ; JN , J1 × · · · × JN

IP × JN = I1 × · · · × IP × J1 × · · · × JN

IP × IP = I1 × · · · × IP × I1 × · · · × IP

ΠIP , I1 · · · IP = ∏P
p=1 Ip

We now introduce the index convention which allows eliminating the summation
symbols in formulae involving multi-index variables. For example, ∑I

i=1 aibi is simply
written as aibi. Note there are two differences relative to Einstein’s summation convention:

• Each index can be repeated more than twice in an expression;
• Ordered index sets are allowed.

The index convention can be interpreted in terms of two types of summation, the first
associated with the row indices (superscripts) and the second associated with the column
indices (subscripts), with the following rules [70]:

• The order of the column indices is independent of the order of the row indices;
• Consecutive row and column indices (or index sets) can be permuted.

In Table 4, we give some examples of vector and matrix products using index conven-
tion, where eij , e(I)

i ⊗ e(J)
j , ej

i , e(I)
i ⊗ (e(J)

j )T , ej
ik , e(I)

i ⊗ e(K)k ⊗ (e(J)
j )T .

Table 4. Vector and matrix products using the index convention.

u ∈ KI , v ∈ KJ , w ∈ KK

u⊗ v = uivjeij ∈ KI J

u⊗ vT = uivje
j
i ∈ KI×J

u⊗ vT ⊗w = uivjwkej
ik ∈ KIK×J

A ∈ KI×J , B ∈ KJ×K , C ∈ KK×J

AB = ∑I
i=1 ∑K

k=1(∑
J
j=1 aijbjk)ek

i = aijbjkek
i ∈ KI×K

ACT = aijckjek
i ∈ KI×K
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Using the index convention, the multiple sum over the indices of xi1,··· ,iP yi1,··· ,iP will
be abbreviated to

I1

∑
i1=1
· · ·

IP

∑
iP=1

xi1,··· ,iP yi1,··· ,iP =
IP

∑
iP=1

xiP
yiP

= xiP
yiP

, (1)

where 1 denotes a set of ones whose number is fixed by the index P of the set IP. The
notation iP and IP allows us to simplify the expression of the multiple sum into a single
sum over an index set, which is further simplified by using the index convention.

3. Tensors and Multilinear Forms

In signal processing applications, a tensor X ∈ KI1×···×IN of order N and size
I1× · · · × IN is typically viewed as an array of numbers [xi1,··· ,iN ]. The order corresponds to
the number of indices (i1, · · · , iN) that characterize its elements xi1,··· ,iN ∈ K, also denoted
xi1···iN or (X )i1,··· ,iN

. Each index in ∈ 〈In〉 , {1, · · · , In}, for n ∈ 〈N〉 , {1, · · · , N}, is
associated with a mode, also called a way, and In denotes the dimension of the nth mode.
The number of elements in X is equal to ∏N

n=1 In. For instance, in a wireless communication
system [8], each index of a signal xi1,··· ,iN corresponds to a different form of diversity (in
time, space, frequency, code, etc., domains), and the dimensions In are the numbers of time
samples, receive antennas, subcarriers, the code length, etc.

The tensor X is said to be real (resp. complex) if its elements are real numbers (resp.
complex numbers), which corresponds to K = R (resp. K = C). It is said to have even
order (resp. odd order) if N is even (resp. odd). The special cases N = 2 and N = 1
correspond to the sets of matrices X ∈ KI×J and column vectors x ∈ KI , respectively.

If I1 = · · · = IN = I, the Nth-order tensor X = [xi1,··· ,iN ] ∈ KI×I×···×I is said to be
hypercubic, of dimensions I, with in ∈ 〈I〉, for n ∈ 〈N〉. The number of elements in X is
then equal to IN . The set of (real or complex) hypercubic tensors of order N and dimensions
I will be denoted K[N;I].

A hypercubic tensor of order N and dimensions I is said to be symmetric if it is
invariant under any permutation π of its modes, i.e.,

aπ(i1,i2,··· ,iN) , aiπ(1),iπ(2),··· ,iπ(N)
= ai1,i2,··· ,iN . (2)

The identity tensor of order N and dimensions I is denoted IN,I = [δi1,··· ,iN ], with
in ∈ 〈I〉, for n ∈ 〈N〉, or simply I . It is a hypercubic tensor whose elements are defined
using the generalized Kronecker delta

δi1,··· ,iN =

{
1 if i1 = · · · = iN
0 otherwise

.

It is a diagonal tensor whose diagonal elements are equal to 1 and other elements to
zero, which can be written as the sum of I outer products of N canonical basis vectors e(I)

i
of the space RI

IN,I =
I

∑
i=1

e(I)
i ◦ · · · ◦ e(I)

i︸ ︷︷ ︸
N terms

.

where the outer product operation is defined later in Table 9.
A diagonal tensor X ∈ KI×···×I of order N, whose diagonal elements are the entries

of vector a = [a1, · · · , aI ]
T , will be written as

xi,i2,··· ,iN = ai δi,i2,··· ,iN ⇔ X =
I

∑
i=1

ai e(I)
i ◦ · · · ◦ e(I)

i︸ ︷︷ ︸
N terms

.
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Different matricizations, also called matrix unfoldings, can be defined for a tensor
X ∈ KI1×···×IN . Consider a partitioning of the set of modes 〈N〉 into two disjoint ordered
subsets S1 and S2, composed of p and N − p modes, respectively, with p ∈ 〈N − 1〉. A
general matrix unfolding formula was given by [71] as follows

XS1;S2 =
I1

∑
i1=1
· · ·

IN

∑
iN=1

xi1,··· ,iN

(
⊗

n∈S1

e(In)
in

)(
⊗

n∈S2

e(In)
in

)T
∈ KJ1×J2 , (3)

where e(In)
in is the in-th vector of the canonical basis of RIn , and Jn1 = ∏ In

n∈Sn1

, for n1 = 1 and 2.

We say that XS1;S2 is a matrix unfolding of X along the modes of S1 for the rows and along
the modes of S2 for the columns, with S1 ∩ S2 = ∅ and S1 ∪ S2 = 〈N〉.

For instance, in the case of a third-order tensor X ∈ KI×J×K, we have six flat unfold-
ings and six tall unfoldings. For S1 = 1 and S2 = {2, 3}, we have the following mode-1
flat unfolding XI×JK , X1;{2,3}, while for S1 = {2, 3} and S2 = 1 we obtain the following
mode-1 tall unfolding XJK×I , X{2,3};1 = XT

I×JK.
Vectorized forms of X ∈ KI1×···×IN are obtained by combining the modes in a given

order. Thus, a lexicographical vectorization gives the vector y , xI1···IN with element
xi1,··· ,iN at the position m = i1i2 · · · iN in y, i.e., ym = xi1,··· ,iN , xiN

, with [72]

i1i2 · · · iN , iN +
N−1

∑
n=1

(in − 1)
N

∏
k=n+1

Ik. (4)

By convention, the order of the dimensions in a product ∏N
n=1 In , I1 · · · IN associ-

ated with the index combination i1i2 · · · iN follows the order of variation of the indices
(i1, · · · , iN), with i1 varying more slowly than i2, which in turn varies more slowly than i3,
etc.

The Frobenius norm of X ∈ KI1×···×IN is the square root of the inner product of the
tensor with itself, i.e.,

‖X ‖F =
√
〈X ,X 〉 =

(
I1

∑
i1=1
· · ·

IN

∑
iN=1
|xi1,··· ,iN |

2

)1/2

. (5)

Table 5 presents various sets of tensors that will be considered in this paper, with the
notation introduced in [70].

Table 5. Various sets of tensors.

Order Size Sets of tensors

P IP = I1 × · · · × IP KI1×···×IP , KIP

P IP = I1 × · · · × IP with Ip = I, ∀p ∈ 〈P〉 K[P;I]

P + N IP × JN = I1 × · · · × IP × J1 × · · · × JN KIP×JN

IP × JN = I × · · · × I × J × · · · × J
P + N with K[P+N;I,J]

Ip = I, ∀p ∈ 〈P〉 and Jn = J, ∀n ∈ 〈N〉

2P IP × IP with Ip = I, ∀p ∈ 〈P〉 K[2P;I]

We can make the following remarks about the sets of tensors defined in Table 5:

• For P = N = 1, the set K[2;I,J] is the set KI×J of (real or complex) matrices of size I × J.

• The set K[P;I] is also denoted KI P or TP(K I) by some authors.
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• The set KIP×IP is called the set of even-order (or square) tensors of order 2P and size
IP × IP. The name of square tensor comes from the fact that the index set is divided
into two identical subsets of dimension IP.

• Analogously to matrices, tensors in the sets KIP×JP with Jp 6= Ip and KIP×JN are said
to be rectangular. The set KIP×JN is called the set of rectangular tensors with index
blocks of dimensions IP and JN .

The various tensor sets introduced above can be associated with scalar real-valued
multilinear forms in vector variables and with homogeneous polynomials. Like in the ma-
trix case, we will distinguish between homogeneous polynomials of degree P that depend
on the components of P vector variables and those that depend on just one vector variable.

A real-valued multilinear form, also called a P-linear form, is a map f such as

P
×

p=1
RIp 3 (x(1), · · · x(P)) 7−→ f

(
x(1), · · · x(P)) ∈ R (6)

that is separately linear with respect to each vector variable x(p) when the other variables
x(q), for q 6= p, are fixed. Using the index convention, the multilinear form can be written
for x(p) ∈ RIp , p ∈ 〈P〉, as

f
(
x(1), · · · , x(P)) = I1

∑
i1=1
· · ·

IP

∑
iP=1

ai1,··· ,iP x(1)i1
· · · x(P)

iP
= aiP

P

∏
p=1

x(p)
ip

. (7)

The tensor A ∈ RIP is called the tensor associated with the multilinear form f .
Two multilinear forms are presented in Table 6, which also states the transformation

corresponding to each of them, as well as the associated tensor.

Table 6. Multilinear forms and associated tensors.

Multilin. Forms Transformations Tensors

real-valued in P vectors
P
×

p=1
RIp 3 (x(1), · · · x(P)) 7−→ f

(
x(1), · · · x(P)) ∈ R A ∈ RIP

real-valued in one vector RI 3 x 7−→ f (x, · · · , x︸ ︷︷ ︸
P terms

) ∈ R A ∈ R[P;I]

Table 7 recalls the definitions of bilinear/quadratic forms using the index convention,
then presents the multilinear forms defined in Table 6, as well as the associated tensors
from Table 5 and the corresponding homogeneous polynomials.

Table 7. Multilinear forms and associated homogeneous polynomials.

Forms Matrices/Tensors Homogeneous Polynomials

Bilinear A ∈ RI×J ; y ∈ RI , x ∈ RJ f (x, y) = yTAx = aijyixj , i ∈ 〈I〉 , j ∈ 〈J〉

Quadratic A ∈ RI×I ; x ∈ RI f (x) = xTAx = aijxixj , i, j ∈ 〈I〉

Real multilinear in P vector A ∈ RIP ; x(p) ∈ RIp f
(
x(1), · · · x(P)) = aiP ∏P

p=1 x(p)
ip

, ip ∈ 〈Ip〉 , p ∈ 〈P〉

Real multilinear in one vector A ∈ R[P;I]; x ∈ RI f (x, · · · , x︸ ︷︷ ︸
P terms

) = aiP ∏P
p=1 xi p , ip ∈ 〈I〉 , p ∈ 〈P〉

We can make the following remarks:

• In the same way that bilinear forms depend on two variables that do not necessarily
belong to the same vector space, general real multilinear forms depend on P variables
that may belong to different vector spaces: x(p) ∈ RIp .
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• Analogously to quadratic forms obtained from bilinear forms by replacing the pair
(x, y) with the vector x, real multilinear forms can be expressed using just one vector
x ∈ KI . In the same way symmetric quadratic forms lead to the notion of symmetric
matrices, the symmetry of multilinear forms is directly linked to the symmetry of their
associated tensors.

4. Tensor Operations and Decompositions

In Section 4.1, we introduce different multiplications with tensors. Then, in Section 4.2,
we present the two most used tensor decompositions, namely the PARAFAC (parallel
factors) and Tucker decompositions [12,13].

For a more in-depth presentation of tensor tools, the reader is referred to the recent
book [70] and review papers [73,74].

4.1. Multiplications with Tensors

In Table 8, we present three types of multiplication with tensors, using the notation of
Table 3 and the index convention: mode-p, mode-(p, n), and Einstein products.

Table 8. Different types of multiplication with tensors.

Tensors Operations Definitions

X ∈ KIP , A ∈ KJ×Ip Y = X ×p A yi1,··· ,ip−1 ,j, ip+1,··· ,iP = ∑ip aj,ip xiP = aj,ip xiP

X ∈ KIP , u ∈ KIp Y = X ×p uT yi1,··· ,ip−1,ip ,··· ,iP = ∑ip uip xiP = uip xiP

X ∈ KIP ,Y ∈ KJN Z = X ×n
p Y zi1,··· ,ip−1,ip+1,··· ,iP ,j1,··· ,jn−1,jn+1,··· ,jN =

with Ip = Jn = K ∑K
k=1 ai1,··· ,ip−1, k, ip+1,··· ,iP bj1,··· ,jn−1, k, jn+1,··· ,jN

A ∈ KIP×JN ,X ∈ KJN×KQ Y = A ?N X yiP ,kQ =
JN
∑

jN=1
aiP ,jN

xjN ,kQ = aiP ,jN
xjN ,kQ

The multiplication ×p, called mode-p or Tucker product, corresponds to a summation
over the index ip associated with the mode p of the Pth-order tensor X and the second
index of A, giving a tensor of order P− 1, and size I1 × · · · × Ip−1 × Ip+1 × · · · × IP.

The mode-(p, n) product, denoted ×n
p, corresponds to a contraction operation per-

formed for two arbitrary modes (p, n), such as: Ip = Jn = K. This multiplication gives
a tensor of order P + N − 2 and size I1 × · · · × Ip−1 × Ip+1 × · · · × IP × J1 × · · · × Jn−1 ×
Jn+1 × · · · × JN .

The Einstein product, denoted A ?N X , of the tensors A ∈ KIP×JN of order P + N
and X ∈ KJN×KQ of order N + Q corresponds to a contraction along the N shared indices
j

N
, associated with the N last modes of A and the N first modes of X . The tensor A

can be interpreted as a multilinear operator associated with a multilinear transformation
applied to the tensor X . The Einstein product will be used in section 6 for defining
multilinear systems.

Table 9 presents a few examples of outer products of vectors, matrices, and tensors,
indicating the order and the space to which the tensors resulting from the products belong.

Table 9. Outer products of vectors, matrices, and tensors.

Vectors/Matrices/Tensors Outer Products Spaces Orders

u(p) ∈ KIp , p ∈ 〈P〉 P◦
p=1

u(p) KIP P

A(p) ∈ KIp×Jp , p ∈ 〈P〉 P◦
p=1

A(p) KI1×J1×···×IP×JP 2P

A ∈ KIP ,B ∈ KJN A ◦ B KIP×JN P + N

A(p) ∈ KJNp , p ∈ 〈P〉 P◦
p=1
A(p) KJN1

×···×JNP ∑P
p=1 Np
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4.2. PARAFAC and Tucker Decompositions

The PARAFAC decomposition [13] is also called CANDECOMP (canonical decompo-
sition) by [75] and CP for CANDECOMP/PARAFAC by [76] when applied to decompose a
data tensor. In the context of system modeling, it is called a PARAFAC model. It amounts
to decomposing a tensor into a sum of R polyads, i.e., R rank-one tensors [10]. For an
Nth-order tensor X , each polyad corresponds to the outer product of the rth columns of N

factor matrices A(n) ∈ KIn×R, i.e.,
N◦

n=1
A(n)

.r . When R is minimal, it is called the tensor rank

or canonical rank of X . PARAFAC is also called a canonical polyadic decomposition (CPD),
and concisely written as {A(1), · · · , A(N); R }. When R = 1, X ∈ KIN is a rank-one tensor,
also called a separable tensor. Then, it can be written as the outer product of N non-zero
vectors a(n) ∈ KIn

X =
N◦

n=1
a(n) ⇐⇒ xiN

=
N

∏
n=1

a(n)in . (8)

In the case of a symmetric rank-one tensor X ∈ K[N,I], all the vectors a(n) ∈ KI are
identical [77].

In Table 10, we present different ways of writing a PARAFAC decomposition for a
third-order and Nth-order tensor: scalar writing, with mode-p and outer products, and
matrix unfoldings as defined in (3).

Table 10. PARAFAC decomposition of a tensor of order three and order N.

Third-Order Tensor Nth-Order Tensor

X ∈ KI×J×K X ∈ KIN

A ∈ KI×R, B ∈ KJ×R, C ∈ KK×R, A(n) ∈ KIn×R

xi,j,k =
R
∑

r=1
airbjrckr

Scalar writing xiN =
R
∑

r=1

N
∏

n=1
a(n)in ,r

X = IR ×1 A×2 B×3 C with mode-n products X = IR
N
×

n=1
A(n)

X =
R
∑

r=1
A.r ◦ B.r ◦ C.r

with outer products X =
R
∑

r=1

N◦
n=1

A(n)
.r

XI J×K = (A � B)CT

XJK×I = (B � C)AT Matrix unfoldings XS1 ;S2 =

(
�

n∈S1
A(n)

)(
�

n∈S2
A(n)

)T

XKI×J = (C �A)BT

xI JK = (A � B � C)1R Vectorized form xI1 ·IN = (A(1) �A(2) � · · · �A(N))1R

PARAFAC models have the following two main features:

1. Essential uniqueness, i.e., uniqueness up to trivial indeterminacies corresponding to
permutation and scalar ambiguities of the columns of the factor matrices (see [78,79]);

2. Existence of a simple algorithm, the so-called alternating least-squares (ALS), for
estimating the PARAFAC parameters for a tensor of an arbitrary order N.

The Tucker decomposition [12] of a tensor X ∈ KIN can be viewed as a generalization
of the PARAFAC decomposition in the sense that such a decomposition allows taking into
account all interactions between distinct columns of the factor matrices A(n) ∈ KIn×Rn ,
when a PARAFAC model only involves interactions between the same columns r ∈ 〈R〉
of the factor matrices A(n) ∈ KIn×R. In Table 11, we present different ways of writing
a Tucker decomposition for a third-order and Nth-order tensor. From the writing with
outer products, we can conclude that the Tucker model of a Nth-order tensor consists in
a weighted sum of ∏N

n=1 Rn rank-one tensors, where the coefficients gr1,··· ,rN of the core

tensor G ∈ KRN , define the weights of the interactions between the columns A(n)
.rn of the

factor matrices.
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Note that a Tucker decomposition is generally not essentially unique, unless additional
constraints are imposed, such as a perfect knowledge of the core tensor, certain sparseness
or structural constraints on the core tensor or the matrix factors [80,81]. Consult [82] for a
review of uniqueness results for Tucker models.

Table 11. Tucker decomposition of a tensor of order three and order N.

Third-Order Tensor Nth-Order Tensor

X ∈ KI×J×K X ∈ KIN

G ∈ KP×Q×S, A ∈ KI×P, G ∈ KRN , A(n) ∈ KIn×Rn , n ∈ 〈N〉
B ∈ KJ×Q, C ∈ KK×S

xijk =
P
∑

p=1

Q
∑

q=1

S
∑

s=1
gpqsaipbjqcks

Scalar writing xiN =
R1
∑

r1=1
· · ·

RN
∑

rN=1
gr1 ,··· ,rN ∏N

n=1 a(n)in ,rn

X = G×1A×2B×3C with mode-n products X = G×1A(1)×2A(2)×3 · · · ×NA(N)

X =
P
∑

p=1

Q
∑

q=1

S
∑

s=1
gpqs A.p ◦ B.q ◦ C.s

with outer products X =
R1
∑

r1=1
· · ·

RN
∑

rN=1
gr1 ,··· ,rN

N◦
n=1

A(n)
.rn

5. Tensor-Based Approaches for Nonlinear Systems

The use of tensor-based approaches for nonlinear systems has proved advantageous in
three areas: (i) parametric complexity reduction in order to get efficient and computationally
fast parameters estimation algorithms, (ii) generating new representations of nonlinear
systems thanks to tensor decompositions, and (iii) structural identification of systems which
can be represented as combinations of dynamical linear systems with static nonlinear blocks.
In Section 5.1, we first describe polynomial models. Then, in Section 5.2, we introduce
standard discrete-time Volterra models. To reduce the parametric complexity of such
models, in Section 5.3, we present a tensor approach which consists in using a PARAFAC
decomposition of Volterra kernels. The expansion of Volterra kernels on orthogonal bases is
considered in Section 5.4. Finally, some links between block-oriented models (Hammerstein,
Wiener, and Wiener–Hammerstein) and tensor representations via their associated Volterra
kernels are established in Section 5.5

5.1. Polynomial Models

Polynomial models are a direct extension of linear models. For a single-input single-
output (SISO) system, the output of a recursive polynomial model, at discrete-time instant
t, is given by

ŷ(t) =
P

∑
p=1

fp[u(t), · · · , u(t− nu), y(t− 1), · · · , y(t− ny)], (9)

where fp(.) is a pth-degree polynomial in the system input (u) and output (y) signals, P is
the nonlinearity order, and M = max(nu, ny) is the memory of the model. In the sequel, all
the signals will be assumed to be real-valued.

The input/output (I/O) relationship (9) is also called a nonlinear autoregressive with
exogenous input (NARX) model [83], or a one-step prediction model, i.e., a model whose
output ŷ(t) at time t depends on past values y(t− n) (for n ∈ 〈ny〉) of the system output,
and current and past values u(t − n) (for n = 0, 1, · · · , nu) of the system input. This
model is an extension of the standard autoregressive with exogenous input (ARX) model,
frequently used to study discrete time series, due to the presence of nonlinear terms in the
input–output signals, which explains its success in many industrial applications.

Equation (9) can also be written as a regression model which is linear in its parameters,
namely the polynomial coefficients, and nonlinear in the I/O signals:

ŷ(t) = ϕT(u(t), y(t− 1))θ, (10)
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where u(t) = [u(t) · · · u(t− nu)]T , y(t− 1) = [y(t− 1) · · · y(t− ny)]T , and ϕ is the non-
linear regressor vector whose components are monomials in (i.e., products of) previous
system outputs and previous and current system inputs contained in the vectors y(t− 1)
and u(t), and θ is the parameter vector containing the polynomial coefficients.

If the previous system outputs y(t− 1), · · · , y(t− ny) are replaced by previous model
outputs ŷ(t− 1), · · · , ŷ(t− ny), the polynomial model (9) is then called a simulation or
nonlinear output error (NOE) model, defined as

ŷ(t) =
P

∑
p=1

fp[u(t), · · · , u(t− nu), ŷ(t− 1), · · · , ŷ(t− ny)] = ϕT(u(t), ŷ(t− 1))θ, (11)

with ŷ(t− 1) = [ŷ(t− 1) · · · ŷ(t− ny)]T .
This model is recursive with respect to previous model outputs ŷ(t− n) (for n ∈ 〈ny〉),

while the one-step prediction model (10) is purely feedforward.
As for linear systems, the advantage of NARX and NOE models with output feed-

back is to be more parsimonious than without output feedback, which means a reduced
parametric complexity in terms of dimension of the parameter vector θ. One drawback of
output feedback is that stability is generally not guaranteed. Another drawback of NOE
models is that they need to use a nonlinear optimization method for parameter estimation
due to the dependence of ŷ(t− 1) on θ in the regression Equation (11) implying a nonlinear
dependence of the model output with respect to model parameters. That is not the case for
the NARX model that is linear in its parameters, whose estimation can therefore be carried
out by means of the standard least-squares (LS) algorithm.

5.2. Truncated Volterra Models

When the polynomial functions fp(.) in (9) are independent from the output signal,
i.e., without output feedback, the polynomial model is called a nonrecursive polynomial
model or a discrete-time Volterra model. A Pth-order Volterra model for a causal, stable,
finite-memory, time-invariant SISO system is described by the following I/O relationship:

ŷ(t) = h0 +
P

∑
p=1

Mp

∑
m1=1

· · ·
MP

∑
mP=1

h(p)
m1,··· ,mP

p

∏
q=1

u(t−mq + 1) = h0 +
P

∑
p=1

ŷ(p)(t), (12)

where h0 is the offset, Mp is the memory of the pth-order homogeneous term ŷ(p)(t), and

h(p)
m1,··· ,mP is a coefficient of the pth-order Volterra kernel, assumed to be real-valued.

Note that a truncated Volterra model can be seen as a truncated Taylor series expansion
for approximating a given smooth nonlinear function (around 0 by convention).

Equation (12) can also be written as a polynomial regression model linear in its
parameters and composed of monomials in previous samples of the input signal

ŷ(t) = h0 +ϕT(u(t))θ, (13)

where u(t) = [u(t), · · · , u(t−M)]T , with M = maxp(Mp), and θ is the parameter vector
containing all the kernel coefficients, and the vector ϕ contains all possible monomials in
u up to degree P. In the sequel, we assume that all memories Mp are equal to M. The

coefficient h(p)
m1,··· ,mP being characterized by p indices can be viewed as an element of a

tensorH(p) ∈ R[p,M], of order p, characterized by Mp entries, which is a number growing
very fast with the kernel order p. The pth-order homogeneous term ŷ(p)(t) can then be
written using the Tucker product as

ŷ(p)(t) = H(p)
p
×

q=1
uT(t), (14)

which is a homogeneous polynomial of degree p in the components of the input vector.
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Several adaptive and nonadaptive methods have been proposed to identify truncated
Volterra models from I/O measurements, both in the time and frequency domains. Fre-
quency methods are based on the use of input signal cumulants, which requires estimating
high-order statistics of the input signal, up to order 2P for a Pth-order Volterra model. Such
an approach is mainly interesting with a Gaussian input signal, since the input cumulants of
order higher than two are then zero, which implies a significant simplification of frequency
methods. In the time domain, we can distinguish the optimal minimum mean-square error
(MMSE) estimator, based on the use of input signal statistics, the nonrecursive least-squares
(LS) algorithm, which can be viewed as an approximation of the MMSE solution, and
adaptive methods. Note that estimating the parameters of an homogeneous Pth-order
Volterra kernel, with memory M, using the MMSE and nonrecursive LS solutions requires
inverting an autocorrelation matrix of size MP × MP, which is a time consuming and
numerically difficult task.

Adaptive methods are often associated with adaptive Volterra filters used for rep-
resenting NL time-varying signals and systems as encountered in echo cancellation, for
instance. Parameter estimation of adaptive Volterra filters is carried out using the well-
known least-mean-square (LMS) or recursive LS (RLS) algorithms. See the book [28] and
the references therein for an overview of the methods briefly introduced above.

In the next section, we present an approach for identifying reduced complexity Volterra
models which is based on a PARAFAC decomposition of symmetrized kernels, leading to
the so-called Volterra–PARAFAC models.

5.3. Volterra–PARAFAC Models

As each permutation of the indices m1, · · · , mp corresponds to the same product
∏

p
q=1 u(t−mq + 1) of delayed inputs, we can sum all the coefficients associated with these

permutations to get a symmetric kernel given by

h(p,sym)
m1,··· ,mP =

1
p! ∑

π(.)
h(p)

mπ(1),··· ,mπ(p)
,

where (π(1), · · · , π(p)) denotes a permutation of (1, · · · , p). So, in the sequel, without
loss of generality, the Volterra kernels of order p ≥ 2 will be considered in symmetric form.
Assuming all the kernels have the same memory M, the number of independent coefficients
contained in the symmetric pth-order kernel is equal to CM+p−1

p = (M+p−1)!
p! (M−1)! , showing that

this number, and consequently the parametric complexity of the Volterra model, grows
quickly with M even for moderate p.

In order to reduce the complexity of Volterra models, a PARAFAC decomposition of
symmetrized kernels was exploited in [40,41]. The symmetrized pth-order Volterra kernel
can then be decomposed using a symmetric PARAFAC decomposition, with symmetric
rank rp and matrix factor A(p) ∈ RM×rp , for p ∈ 〈P〉, as [77]

h(p,sym)
m1,··· ,mP =

rp

∑
r=1

p

∏
q=1

a(p)
mq ,r , mq = 1, · · ·M. (15)

Remark 1. Note that a pth-order Volterra kernel is said to be separable if it can be written as the
product of p first-order kernels [28], i.e.,

h(p)
m1,··· ,mP =

p

∏
q=1

a(p)
mq , mq = 1, · · ·M (16)

which corresponds to a rank-one PARAFAC decomposition (15).
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The kernel decomposition (15) allows rewritting the pth-order homogeneous term as
follows:

ŷ(p)(t) =
M

∑
m1=1

· · ·
M

∑
mP=1

h(p,sym)
m1,··· ,mP

p

∏
q=1

u(t−mq + 1) (17)

=
M

∑
m1=1

· · ·
M

∑
mP=1

( rp

∑
r=1

p

∏
q=1

a(p)
mq ,r
) p

∏
q=1

u(t−mq + 1), (18)

or equivalently

ŷ(p)(t) =
rp

∑
r=1

p

∏
q=1

( M

∑
mq=1

a(p)
mq ,ru(t−mq + 1)

)
=

rp

∑
r=1

(
uT(t)A(p)

.r
)p. (19)

We then obtain a homogeneous polynomial of degree p expressed as a sum of powers
of linear forms, which is directly connected to the Waring problem. Note that a Waring’s
decomposition consists in expressing a homogeneous polynomial of degree p in n variables
(i.e., a quantics), associated with a symmetric tensor, as a sum of pth powers of linear
forms [84]. This pth-order homogeneous term can therefore be carried out in parallelizing rp
Wiener models. As introduced later (see Section 5.5.2), each Wiener model is composed of a
FIR linear filter whose coefficients are the components of a column A(p)

.r ∈ RM of the matrix
factor A(p), in cascade with a static nonlinearity equal to the power (.)p. Consequently, the
Volterra model output (12) is obtained as the sum of the offset term h0, and the outputs of
∑P

p=1 rp Wiener models in parallel, as illustrated in Figure 1 for a cubic Volterra–PARAFAC

model, where A(1)
.1 =

[
h(1)1 , · · · , h(1)M

]
and r1 = 1.

+

u(t)
ŷ(t)

h0

A(1)
.1

A(2)
.1

A(2)
.r2

A(3)
.1

A(3)
.r3

(.)2

(.)2

(.)3

(.)3

.

.

.

.

.

.

.

.

.

.

.

.

Figure 1. Realization of a third-order Volterra–PARAFAC model as Wiener models in parallel.

It is worth noting that such a Volterra–PARAFAC model provides a very attractive
modular and parallel architecture for approximating nonlinear systems with a low compu-
tational complexity.
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This Volterra–PARAFAC architecture is to be compared with the parallel cascade
Wiener (PCW) model composed of P Wiener models in parallel and described by the
following equation:

ŷ(t) =
P

∑
p=1
N (p)

( M

∑
m=1

h(p)
m u(t−m + 1)

)
, (20)

where h(p)
m is the mth coefficient of the pth FIR model h(p), and N (p) represents a static

nonlinearity for the pth path, p ∈ 〈P〉. Comparing Equation (20) with Equation (19) allows
us to conclude that the Volterra–PARAFAC model is a PCW one whose the FIR filters
are the columns of the factor matrices of the PARAFAC representations of the Volterra
kernels, and the pth static nonlinearity N (p)(.) is the power (.)p. In [85], it is shown that
any discrete-time, finite-memory nonlinear system can be approximated with an arbitrary
accuracy by a PCW model, with a finite number P of paths. A method based on a joint
diagonalization of third-order Volterra kernel slices is proposed in [50] for identifying
PCW systems.

The extended Kalman filter (EKF) was proposed in [40,41] to estimate the parameters
of a Volterra–PARAFAC model, associated with the following state-space representation

θ(t) = θ(t− 1) + w(t) (21)

y(t) =
P

∑
p=1

rp

∑
r=1

(
uT(t)A(p)

.r
)p

= G(θ(t), u(t)), (22)

where the state vector is the Volterra–PARAFAC parameters vector θ defined as

θ ,
[[

A(1)
.1
]T ,
[
A(2)

.1
]T , · · · ,

[
A(2)

.r2

]T , · · · ,
[
A(P)

.1
]T , · · · ,

[
A(P)

.rP

]T
]T
∈ RM̄ (23)

=
[[

A(1)
.1
]T , vecT(A(2)), · · · , vecT(A(P))

]T
(24)

=
[
[θ(1)]T , [θ(2)]T , · · · , [θ(P)]T

]T
, (25)

with θ(p) , vec(A(P)) ,
[[

A(p)
.1
]T , · · · ,

[
A(p)

.rp

]T
]T

, for p ∈ 〈P〉, and M̄ = M

(
1 +

P
∑

p=2
rp

)
.

Equation (21) corresponds to a random walk model for modeling slowly time-varying
parameters θ, and w(t) ∈ RM̄ is a white Gaussian noise sequence with covariance σ2

wIM̄.
The EKF algorithm can be used online for updating the estimated parameters as input

samples become available, and even for tracking time-varying kernels. It is obtained by
applying the Kalman filter after linearization of the nonlinear function G(θ, u(t)) around
the last estimate θ̂(t− 1)

y(t) ≈ G(θ̂(t− 1), u(t)) + hT(t)(θ− θ̂(t− 1)), (26)

where h(t) is the gradient of G(θ, u(t)) with respect to the parameter vector θ, calculated
at the point θ = θ̂(t− 1)

h(t) ,
∂G(θ, u(t))

∂θ
|θ=θ̂(t−1) ∈ RM̄ (27)

=
[
(h(1)(t))T , (h(2)(t))T , · · · , (h(P)(t))T

]T
(28)

h(1)(t)) =u(t) (29)

h(P)(t) ,
∂G(θ, u(t))

∂θ(p)
|θ=θ̂(t−1), for p ∈ [2, P]. (30)
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Let us define the scalar quantity zp,r(t) as

zp,r(t) , uT(t)A(p)
.r . (31)

The nonlinear function G(θ, u(t)) defined in (22) can then be written as

G(θ, u(t)) =
P

∑
p=1

rp

∑
r=1

zp
p,r(t). (32)

By the chain rule, we have

∂G(θ, u(t))

∂A(p)
.r

=p zp−1
p,r (t)u(t) ∈ RM

⇓

h(P)(t) =

[∂G(θ, u(t))

∂A(p)
.1

]T
, · · · ,

[∂G(θ, u(t))

∂A(p)
.rp

]T
T

θ=θ̂(t−1)

=p
[
ẑp−1

p,1 (t), · · · , ẑp−1
p,rp (t)

]T
⊗ u(t) ∈ RMrp , (33)

where ẑp,r(t) = uT(t)Â(p)
.r .

The EKF equations are then derived from the Kalman filter associated with the lin-
earized state space equations

θ(t) =θ(t− 1) + w(t) (34)

y(t) =hT(t)θ+ n(t), (35)

where n(t) is assumed to be a white Gaussian noise, with variance σ2
n , including both the

measurement noise and the modeling error.
The innovation process associated with the linearized Equation (26) is equal to

e(t) = y(t)− G(θ̂(t− 1), u(t)) (36)

= hT(t)
(
θ− θ̂(t− 1)

)
+ n(t), (37)

with variance s(t) = E[e2(t)] = hT(t)P(t|t− 1)h(t)+ σ2
n , where P(t|t− 1) is the covariance

matrix of the prediction error θ− θ̂(t− 1), and

G(θ̂(t− 1), u(t)) =
P

∑
p=1

rp

∑
r=1

(
uT(t)Â(p)

.r (t− 1)
)p. (38)

The Kalman gain is given by

k(t) =
1

s(t)
P(t|t− 1)h(t), (39)

and the recursive equation for calculating the parameter vector estimate is

θ̂(t) = θ̂(t− 1) + k(t)e(t). (40)

Finally, the equation for updating the covariance matrix of the one-step prediction error is

P(t + 1/t) =
(

IM̄ − k(t)hT(t)
)

P(t|t− 1) + σ2
wIM̄. (41)

The EKF algorithm is summarized in Algorithm 1.
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Algorithm 1: Extended Kalman filter for parameter estimation of a Volterra–
PARAFAC model.

Given σ2
w and σ2

n :
1. Initialize P(0/− 1) and θ̂(0).
2. For t = 1 to t = T, compute:

• The innovation process e(t) using Equations (36) and (38);
• The gradient h(t) using Equations (28), (29), (31) and (33);
• The Kalman gain k(t) using Equation (39);
• The recursive parameter estimate with Equation (40);
• The updated error covariance matrix P(t + 1/t) using Equation (41).

Example 1. In this example, we consider a memory M = 5 third-order Volterra model with rank
one second-order and third-order kernels. Each kernel acts on a specific bandwidth, making the
nonlinear distortion frequency selective. Precisely:

• First-order kernel h(1)m1 = a(1)m1 , with a(1)m1 the m1th entry of

A(1)
.1 =

[
0.0284 0.2370 0.4692 0.2370 0.0284

]T , which represents a low pass FIR
filter with normalized cut-off frequency 0.2.

• Second-order kernel h(2)m1,m2 = a(2)m1 a(2)m2 with ami , i = 1, 2 the entries of

A(2)
.1 =

[
−0.0568 0.0708 0.8698 0.0708 −0.0568

]T , which stands for a bandpass
filter with normalized frequencies 0.3 and 0.5.

• Third-order kernel h(2)m1,m2,m3 = a(3)m1 a(3)m2 a(3)m3 with ami , i = 1, 2, 3 the entries of A(3)
.1 =

[ 0.0302 −0.3463 0.7471 −0.3463 0.0302 ]T , a high-pass filter with normalized fre-
quency 0.9.

We first analyze the output reconstruction capability of Volterra–PARAFAC with parameters
estimated by an EKF. Then, we evaluate the transient behavior of the algorithm in the noiseless case
in comparison with PCWS. Eventually, the steady state results in the noisy case are evaluated. The
considered PCWS has three branches, each branch being a Wiener system of order 3 and memory
5. The parameters of PCWS were estimated using an EKF. The simulation results given hereafter
were obtained by implementing the algorithms with MATLAB R2018b. The code is provided as
Supplementary Material.

Output reconstruction: We consider the composite signal u(t) = 0.5sin(0.01πt) +
0.5sin(0.9πt) as input. Figure 2 depicts output reconstruction obtained with the proposed EKF
filter from a noisy signal. One can note a very good reconstruction after convergence of the filter.

Transient behavior evaluation in the noiseless case: R = 100 Monte Carlo runs are
considered for this analysis. For each run ρ, the square error eρ(t) =

(
y(t)− ŷρ(t)

)2, with ŷρ(t)
the reconstructed output at the ρ-th run, is computed. Then the median value over the R runs
is computed as ε(t) = median

{
eρ(t), ρ = 1, 2, · · · , R

}
. This allows discarding outliers due

to ill convergence of EKF. Indeed, depending on the initialization, the EKF sometimes failed to
converge with the selected number of samples. This is particularly the case for PCWS. Finally, ε(t)

is smoothed with a moving average filter: εL(t) = 1
L

L−1
∑

τ=0
ε(t− τ). The obtained results are given in

Figure 3 where a comparison between PCWS and Volterra–PARAFAC in terms of the square error
εL(t), with L = 100, is depicted. In general, EKF converges faster with Volterra–PARAFAC than
with PCWS in the noiseless case.

Evaluation in steady state: To evaluate the steady state performance, the NMSE (nor-

malized mean square error) is calculated as NMSE = ε̄2

ȳ2 , with ε̄2 = 1
t f−t0

t f

∑
t=t0

ε2(t) and
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ȳ2 = 1
t f−t0

t f

∑
t=t0

y2(t), where the interval [t0, t f ] characterizes the steady state. The evaluation

was carried out with two types of input signals: the composite sum of sines previously used and a
random input. The random input was drawn from a uniform distribution between −1 and 1. The
number of iterations needed for convergence of the EKF with the random input was much less than
with sum of sines; 10,000 samples were generated for a random input and the steady performance
was evaluated from the 1000 last samples of the reconstructed output. In the case of sum of sines,
100,000 samples were generated and the steady state was evaluated from the 10,000 last samples. A
white Gaussian noise was added to the output; its variance depends on a specified signal-to-noise
ratio (SNR). For different values of SNR, Figures 4 and 5 depict the NMSE in steady state for sum
of sines and for the considered random input, respectively. It can be noticed that in steady state, both
Volterra–PARAFAC and PCWS give the same performance whatever the input signal. With a lower
SNR value, Volterra–PARAFAC is slightly better than PCWS.

Figure 2. Top: Original output signal. Bottom: reconstructed output from noisy measurements
(SNR = 30 dB).

Figure 3. Evolution of the square error εL(t), L = 100.



Algorithms 2023, 16, 443 20 of 34

Figure 4. Normalized mean square error in steady state for a sum of sines.

Figure 5. Normalized mean square error in steady state for a random input.

5.4. Volterra–GOB Models

Under stability and causality conditions, a Volterra kernelH(p) can be expanded on a
basis of orthogonal functions [27]. Various functions have been introduced in the literature
(Laguerre, Kautz, generalized orthogonal basis functions (GOBF), etc.). Selection of such a
basis has been widely studied (see [38] for instance). Defining by b(j,p)

kj
(.), k j = 1, 2, · · · , a

set of orthogonal basis functions for expanding the pth-order Volterra kernel along its jth
mode, j ∈ 〈p〉, the GOB expansion of this Volterra kernel in such a basis is given by

h(p)
m1,m2,··· ,mp =

∞

∑
k1=1

∞

∑
k2=1
· · ·

∞

∑
kp=1

g(p)
k1,k2,··· ,kp

p

∏
j=1

b(j,p)
kj

(mj) , mj ∈ 〈Mp〉 , j ∈ 〈p〉, (42)

where g(p)
k1,k2,··· ,kp

are the coefficients of the expansion, also called Fourier coefficients, and

the GOB functions b(j,p)
kj

(.) in the time domain can be derived from the inverse z-transform
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of some transfer function [86]. This expansion is often truncated to a given order Kp for
practical reasons, leading to the following truncated development

h(p)
m1,m2,··· ,mp =

Kp

∑
k1=1

Kp

∑
k2=1
· · ·

Kp

∑
kp=1

g(p)
k1,k2,··· ,kp

p

∏
j=1

b(j,p)
kj

(mj), (43)

where b(j,p)
kj

(mj) is the mjth entry of the k jth column B(j,p)
.kj
∈ RMp of the matrix factor

B(j,p) ∈ RMp×Kp , associated with mode j ∈ 〈p〉.
The development (43) of the pth-order Volterra kernel, viewed as a pth-order tensor

H(p) =
[
h(p)

m1,m2,··· ,mp

]
∈ RMp×···×Mp , can be interpreted as the following Tucker model:

H(p) = G(p)
p
×

j=1
B(j,p), (44)

where the core tensor G(p) ∈ RKp×···×Kp contains the Fourier coefficients.
Consider the FIR linear filter B(j,p)

kj
(q−1) = ∑

Mp
mj=1 b(j,p)

kj
(mj)q

−mj , where q−1 is the unit

delay operator. This filter, with memory Mp, is associated with mode j of the tensorH(p).

Now, let us define the filtered input s(j,p)
kj

(t), for k j ∈ 〈Kp〉 and j ∈ 〈p〉, as

s(j,p)
kj

(t) = B(j,p)
kj

(q−1)u(t) =
Mp

∑
mj=1

b(j,p)
kj

(mj)u(t−mj). (45)

Using the truncated expansion (43) of the pth Volterra kernel and the filtered inputs (45),
the input–output relationship for the pth-order homogeneous Volterra–GOB term can then
be written as

ŷ(p)(t) =
Mp

∑
m1=1

Mp

∑
m2=1

· · ·
Mp

∑
mp=1

h(p)
m1,m2,··· ,mp

p

∏
j=1

u(t−mj) (46)

=
Kp

∑
k1=1

Kp

∑
k2=1
· · ·

Kp

∑
kp=1

g(p)
k1,k2,··· ,kp

p

∏
j=1

s(j,p)
kj

(t). (47)

Taking the Tucker model (44) of the pth order kernel tensor H(p) into account, and

defining the vector s(j,p)(t) =
[
s(j,p)

1 (t), · · · , s(j,p)
Kp

(t)
]T
∈ RKp , the input–output equation

for the Volterra–GOB model then becomes

ŷ(t) = h0 +
P

∑
p=1
G(p)

p
×

j=1
[s(j,p)(t)]T . (48)

Figure 6 illustrates a third-order Volterra–GOB model.

Remark 2. Note that the truncation order Kp, and as a consequence the parametric complexity of the
Volterra–GOB model, is strongly dependent on the choice of the GOB functions , which is a difficult
task. Once these functions are fixed, the Volterra–GOB model is linear in its parameters, the Fourier
coefficients, which can be estimated using the standard least-squares (LS) method. In comparison, the
Volterra–PARAFAC model is nonlinear in its parameters, the PARAFAC coefficients, which requires
the use of a nonlinear optimization method like the extended Kalman filter, for their estimation.
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B(1,1)
1 (.)

B(1,2)
1 (.)

B(1,1)
K1

(.)

B(2,2)
K2

(.)

B(1,3)
1 (.)

B(3,3)
K3

(.)

u(t)
ŷ(t)

+

h0

G(1)

G(2)

G(3)

.

.

.

.

.

.

ŷ(2)(t)

ŷ(3)(t)

ŷ(1)(t)

s(1,1)
1 (t)

s(1,1)
K1

(t)

s(1,2)
1 (t)

s(2,2)
K2

(t)

s(1,3)
1 (t)

s(3,3)
K3

(t)

Figure 6. Realization of a third-order Volterra–GOB model.

5.5. Block-Oriented Models

Nonlinear input–output models constituted by a cascade of linear dynamic subsystems
with memoryless (static) nonlinearities, also called block-oriented (or block-structured)
nonlinear models, have been extensively studied by many authors during the last three
decades. They play an important role in many fields of application owing to their low
parametric complexity implying a low computational cost for system identification. More-
over, they often reflect the structure of physical systems. We review hereafter the three
most common block-oriented models and their tensor representation. According to the
Weierstrass theorem, it is assumed that nonlinear blocks are continuous and therefore can

be represented with a polynomial of a given degree P: c(x) =
P
∑

p=0
cpxp.

5.5.1. Hammerstein Model

It is constituted with a nonlinear functional block followed by a FIR linear one g(.),
with memory Mg. In control applications, as illustrated on Figure 7, the Hammerstein
model is used for representing control systems with nonlinearities in the actuator.

C(.) g(.)

Nonlinear Linear

u(t) y(t)v(t)

Figure 7. Block diagram of a Hammerstein model.

The output y(t) of the Hammerstein model is given by

y(t) =
Mg

∑
i=1

giv(t− i) (49)

=
Mg

∑
i=1

gi
( P

∑
p=0

cpup(t− i)
)

(50)

=
P

∑
p=0

cp

Mg

∑
i=1

giup(t− i). (51)
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This model is therefore equivalent to a Volterra model of order P, with the following
pth-order kernel

h(p)
i,i2,··· ,ip

= cpgiδi,i2,··· ,ip , i ∈ 〈Mg〉, (52)

where δi,i2,··· ,ip is the generalized Kronecker delta. The corresponding tensor is diagonal
and given by [49]

H(p) = cpG(p), (53)

where G(p) ∈ RMg×···×Mg is a diagonal tensor whose diagonal elements are the components
of the FIR coefficients vector g = [g1, · · · , gMg ]

T .

5.5.2. Wiener Model

It is the dual of the Hammerstein model, i.e., the FIR linear functional block l(.), with
memory Mh, comes before the nonlinear one, as illustrated on Figure 8. It allows taking
sensor nonlinearities into account for instance.

l(.) C(.)

Linear Nonlinear

u(t) y(t)w(t)

Figure 8. Block diagram of a Wiener model.

For this model, the output y(t) is given by

y(t) =c(w(t)) =
P

∑
p=0

cpwp(t) (54)

=
P

∑
p=0

cp
( Mh

∑
i=1

liu(t− i)
)p (55)

=
P

∑
p=0

cp

Mh

∑
i1=1
· · ·

Mh

∑
ip=1

p

∏
j=1

lij u(t− ij). (56)

This model is equivalent to a Volterra model of order P, whose the pth-order kernel is
a rank one symmetric tensor defined as

h(p)
i1,i2,··· ,ip

= cp

p

∏
j=1

lij , ij ∈ 〈Mh〉 , j ∈ 〈p〉, (57)

or equivalently

H(p) = cp
P◦

j=1
l, (58)

where l = [l1, · · · , lMh ]
T is the vector of FIR coefficients.

5.5.3. Wiener–Hammerstein Model

The Wiener–Hammerstein model, whose structure is illustrated in Figure 9, is a
combination of the Wiener and Hammerstein models described previously. Its output y(t)
is given by
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y(t) =
Mg

∑
i=1

giv(t− i) =
Mg

∑
i=1

gic(w(t− i)) (59)

=
Mg

∑
i=1

gi

P

∑
p=0

cpwp(t− i) (60)

=
P

∑
p=0

cp

Mg

∑
i=1

gi

p

∏
j=1

Mh

∑
mj=1

lmj u(t− i−mj). (61)

Defining the changes of variables ij = i + mj, for j ∈ 〈p〉, and reordering the sums lead to
the following I/O relationship:

y(t) =
P

∑
p=0

cp

Mv

∑
i1=2
· · ·

Mv

∑
ip=2

Mg

∑
i=1

gi

p

∏
j=1

lij−iu(t− ij), (62)

where Mv = Mg + Mh stands for the memory of the overall system. The Wiener–Hammerstein
model is associated with a Volterra model whose pth-order kernel is given by [49]

h(p)
i1,··· ,iP

= cp

Mg

∑
i=1

gi

P

∏
j=1

lij−i , ij = 2, · · · , Mv , j ∈ 〈p〉. (63)

The corresponding tensorH(p) ∈ RMv−1×···×Mv−1 is a rank Mg tensor admitting a PARAFAC
decomposition written as

H(p) = cp

Mg

∑
i=1

gi
p
◦

j=1
ai = cpIp,Mv−1

p
×

j=1
A(j), (64)

where

ai =

 0i−1
l

0Mg−i

 ∈ RMv−1 , i ∈ 〈Mg〉, (65)

A(j) =
[

a1 · · · aMg

]
= TMv−1 , Mg(l) =



l1 0 · · · 0
... l1

...

lMh

...
. . . 0

0 lMh l1
...

. . .
...

0 0 · · · lMh


, j ∈ 〈p− 1〉, (66)

A(p) =TMv−1 , Mg(l)diag(g) ∈ RMv−1×Mg . (67)

Nonlinear Linear

u(t) y(t)w(t) v(t)

Linear

l(.) C(.) g(.)

Figure 9. Block diagram of a Wiener–Hammerstein model.
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5.5.4. Tensor Rank and Structure Identification

Given the Volterra model associated with a block-oriented system among the three
previously considered, it was shown in [51] that the inherent structure of the system can be
inferred from analyzing the tensor rank of the pth-order Volterra kernelH(p). Indeed, from
the results established in Sections 5.5.1–5.5.3, we can conclude that the tensorH(p) has a
rank less than or equal to Mg. It is precisely rank 1 for a Wiener model and diagonal for a
Hammerstein one. However, the PARAFAC decomposition ofH(p) is not guaranteed to be
of minimal rank. The method is based on a filtering of the system output with a FIR filter
with nonzero random coefficients. The Volterra kernel of this augmented system is ensured
to have minimal rank. For an order M f FIR filter with an impulse response coefficients
vector f, the tensor corresponding to the pth order Volterra kernel of the augmented system
is given by

H̄(p) = cpI
p
×

i=1
Ā(i), (68)

where Ā(i) = TM̄v ,Mg
(l), i ∈ 〈p − 1〉, Ā(p) = TM̄v ,Mg

(l)diag(ḡ), ḡ = TM̄g ,Mg
(f)g,

M̄g = M f + Mg − 1, and M̄v = Mv + M f − 1. The factor matrices are generically full
column rank. Therefore, the matrix unfolding of the tensor along the pth dimension is full
rank and reflects the tensor rank. This leads to the following decision rule

rank(H̄(p)) = M̄v =⇒ Hammerstein structure (Nonlinear–Linear)

rank(H̄(p)) = M f=⇒Wiener structure (Linear–Nonlinear)

rank(H̄(p)) ∈
]

M f , M̄v

[
=⇒Wiener–Hammerstein structure (Linear–Nonlinear–Linear).

Since the factor matrices are full column rank, the tensor rank is precisely given by the
rank of the pth unfolding of tensor, hereafter denoted H̄p. However, in presence of Volterra
kernel estimation errors, H̄p is often full column rank, which can lead to an erroneous
selection of the Hammerstein structure. Thus, it is necessary to check the diagonal structure
of the tensor in order to confirm the decision or not. This is performed by checking if the
sum of diagonal entries of the tensor is much higher than those of off-diagonal ones. If
the matrix is rank deficient, an interesting rule for computing the rank r from the singular
values of the matrix is given in [87] as

r = arg min
i

ρ(i), ρ(i) =
σ2

i+1

σ2
i − 2σ2

i+1
if σ2

i+1 ≤
σ2

i
3

else ρ(i) = 1. (69)

The algorithm for detecting the structure of a block-oriented nonlinear system is then
described in Algorithm 2:
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Algorithm 2: Structure identification of a block-oriented nonlinear system.

Given the coefficients h(p)
i1,i2,··· ,ip

of the pth order kernel of the Volterra model
associated with the block-oriented nonlinear system with memory Mv:

1. Generate the impulse response f of an M f ≥ Mv order FIR filter with random
coefficients.

2. Form the tensor H̄(p) of the augmented system by filtering the Volterra kernel as

h̄(p)
i1,i2,··· ,ip

=

M f−1

∑
i=0

fih
(p)
i1−i,i2−i,··· ,ip−i.

3. Compute the singular values σi of the matrix unfolding H̄p.
4. Compute the rank r of H̄p as the smallest integer such that

k−1

∑
i=1

σi < ε

Mv+M f−1

∑
i=1

σi ≤
k

∑
i=1

σi,

where ε is a constant close to 1.
5. If r = M̄v = Mv + M f − 1, test if H̄(p) is diagonal. If yes then conclude that the

system has a Hammerstein structure.
6. If r < Mv + M f − 1

Compute the rank r using (69).

(a) If r = M f , then the system has a Wiener structure.
(b) If M f < r < Mv + M f − 1, then the system has a Wiener–Hammerstein

structure whose first linear block is of order Ml = Mv + M f − r, while the
second linear block is of order Mg = r−M f + 1.

6. Tensor-Based Approaches for Multilinear Systems

In Sections 6.1 and 6.2, we introduce the notions of tensor system and memoryless
discrete-time tensor-input tensor-output (TITO) system, respectively. Then, in Section 6.3,
we consider a tensor-input single-output (TISO) system whose system transfer is a rank-one
Nth-order tensor, which leads to a multilinear system whose the N vector factors represent
IRs of subsystems associated with the N modes of the input tensor. In Section 6.4, we
present the weighted least-squares (WLS) algorithm for estimating the system transfer
tensor of a multilinear system from input–output (I/O) data. A closed-form solution is also
proposed for estimating the individual IR of each subsystem .

6.1. Tensor Systems

In this section, we introduce the notion of tensor system using the Einstein product [55].
In Table 12, we present two examples of tensor systems: one is linear in the unknown tensor
variable X , while the other one is bilinear in the unknown tensor variables (X ,Z).

Table 12. Examples of tensor systems.

Forms Dimensions Tensor Systems

Linear Y ∈ RIP , A ∈ RIP×JN , X ∈ RJN Y = A ?N X

Bilinear Y ∈ RIP , A ∈ RIP×KM×JN , X ∈ RJN , Z ∈ RKM Y = A ?N X ?M Z

Example 2. To illustrate the notion of tensor system, let us consider the following equation:

Y = A ?2 X. (70)
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This equation can be associated with the following map f : RK×L 3 X 7−→ f (X) = Y ∈ RI×J

such as

yi,j =
K

∑
k=1

L

∑
l=1

ai,j,k,l xk,l (71)

with the associated fourth-order tensor A ∈ RI×J×K×L.
Equation (70) can be solved with respect to the unknown matrix X by minimizing the LS

criterion min
X
‖Y−A ?2 X‖2

F. This minimization is carried out after a vectorization of Equation (70)

using the unfolding AI J×KL of the tensor A and the vectorized forms xKL and yI J of the matrices X
and Y, which leads to a standard system of linear equations in matrix form, with a coefficient matrix.
The LS criterion then becomes

min
xKL
‖yI J −AI J×KL xKL‖2

2. (72)

Minimizing this criterion with respect to the unknown vector xKL gives the following normal
equations:

(AT
I J×KLAI J×KL)x̂KL = AT

I J×KLyI J (73)

⇓ (74)

x̂KL = (AT
I J×KLAI J×KL)

−1AT
I J×KLyI J (75)

if the matrix AT
I J×KLAI J×KL is invertible, i.e., if AI J×KL has full column rank, which implies the

necessary but not sufficient condition that I J ≥ KL.

Remark 3. Let us consider the inner product of the Nth-order real tensorsA ∈ RIN and X ∈ RIN

〈A,X 〉 = A ?N X =
I1

∑
i1=1
· · ·

IN

∑
iN=1

ai1,···iN xi1,···iN = aiN
xiN

. (76)

Assuming X has rank-one, i.e.,

X =
N◦

n=1
x(n) ⇐⇒ xiN

=
N

∏
n=1

x(n)in , (77)

Equation (76) becomes

A ?N X =
I1

∑
i1=1
· · ·

IN

∑
iN=1

ai1,···iN

N

∏
n=1

x(n)in (78)

=A×1 x(1) · · · ×N x(N) = A
N
×

n=1
x(n),

and we obtain a homogeneous multivariate polynomial of degree N in the components of the N
vector factors x(n), n ∈ 〈N〉.

If we assume that A has also rank-one, i.e., A =
N◦

n=1
a(n), Equation (76) can be written as

A ?N X =
I1

∑
i1=1
· · ·

IN

∑
iN=1

N

∏
n=1

a(n)in x(n)in

=
N

∏
n=1

( In

∑
in=1

a(n)in x(n)in

)
=

N

∏
n=1

(a(n))Tx(n). (79)
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In conclusion, when A has rank-one, the multivariate polynomial (78) is equal to the product of
N linear forms, each linear form being an univariate polynomial in the components x(n)in of the
vector x(n).

If A satisfies a rank-R PARAFAC decomposition (see Table 10), i.e., A =
R
∑

r=1

N◦
n=1

A(n)
.r , with

A(n) ∈ RIn×R, Equation (78) becomes

A ?N X =
I1

∑
i1=1
· · ·

IN

∑
iN=1

( R

∑
r=1

N

∏
n=1

a(n)in ,r
) N

∏
n=1

x(n)in (80)

=
R

∑
r=1

(
I1

∑
i1=1

a(1)i1,rx(1)i1
) · · · (

IN

∑
iN=1

a(N)
iN ,rx(N)

iN
)

=
R

∑
r=1

((A(1)
.r )Tx(1)) · · · ((A(N)

.r )Tx(N). (81)

In this case, we obtain a sum of products of N linear forms, to be compared with the Volterra–
PARAFAC model (19) which corresponds to the particular case where x(n) = u(t) and A(n)

.r = A(p)
.r ,

for n ∈ 〈N〉. This last constraint results from the assumption of symmetry of the Volterra kernel.

6.2. Discrete-Time Memoryless Tensor-Input Tensor-Output Systems

Assuming system input and model output data are contained in two tensorsX (t) ∈ RJN

and Ŷ(t) ∈ RIP which depend on time t ∈ [1, T], we define a discrete-time memoryless
tensor-input tensor-output (TITO) model by means of the following I/O relationship:

Ŷ(t) = A ?N X (t), (82)

where X (t) and Ŷ(t) are the tensors of system input and model output signals of the TITO
system, at the time instant t, and A ∈ RIP×JN is the system transfer tensor. Using the index
convention, Equation (82) can be written in scalar form as

ŷiP
(t) , ŷi1,··· ,iP(t) = aiP ,j

N
xj

N
(t). (83)

This equation is associated with the following map:

RJN 3 X (t) 7−→ f
(
X (t)

)
= Ŷ(t) ∈ RIP (84)

with the associated (P + N)th-order tensor A ∈ RIP×JN .
Considering measurements of I/O signals during the time interval T, the sets of input

and output signals are concatenated along the time mode to form the matrix unfoldings
XΠ JN×T ∈ RΠ JN×T and ŶΠ IP×T ∈ RΠ IP×T of the tensors X (T) ∈ RJN×T and Ŷ(T) ∈
RIP×T , respectively, with Π IP and Π JN defined as in Table 3. The I/O relationship of the
TITO model can then be written in the following matrix form:

ŶΠ IP×T = AΠ IP×Π JN XΠ JN×T . (85)

Let us assume the model output (83) is corrupted by a zero-mean additive white
Gaussian noise (AWGN) eiP

(t) such as the measured noisy output signal is given by

yiP
(t) = ŷiP

(t) + eiP
(t) = aiP ,j

N
xj

N
(t) + eiP

(t). (86)

Transposing both members of Equation (85) gives

YT×Π IP = XT×Π JN AΠ JN×Π IP + ET×Π IP . (87)
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From this equation, it is easy to derive the LS estimate of the matrix unfolding AΠ JN×Π IP
of the system transfer tensor, which minimizes the least mean square error between the
model outputs and the noisy system output measurements

min
AΠ JN×Π IP

[
‖ET×Π IP‖

2
F =

I1

∑
i1=1
· · ·

IP

∑
iP=1

e2
iP
(t)
]
= min

AΠ JN×Π IP

‖YT×Π IP − XT×Π JN AΠ JN×Π IP‖
2
F

⇓
ÂΠ JN×Π IP =[XT×Π JN ]

†YT×Π IP . (88)

To ensure uniqueness of this LS solution, it is necessary that XT×Π JN be full column rank,
which implies the necessary condition T ≥ Π JN ; i.e., the number T of input–output
samples must be greater or equal to the number of input signal samples at each time
instant t.

6.3. Multilinear TISO Systems

In the case of a memoryless tensor-input single-output (TISO) system, let us assume
that the system transfer is a rank-one tensor A ∈ RJN written as

A =
N◦

n=1
h(n) ⇐⇒ aj

N
=

N

∏
n=1

h(n)jn , (89)

with h(n) ∈ RJn , for n ∈ 〈N〉. The model output (82) is then given by

ŷ(t) =(
N◦

n=1
h(n)) ?N X (t)

=
J1

∑
j1=1
· · ·

JN

∑
jN=1

( N

∏
n=1

h(n)jn

)
xj

N
(t)

=
( J1

∑
j1=1

h(1)j1
xj1,··· ,jN (t)

)
· · ·
( JN

∑
jN=1

h(N)
jN

xj1,··· ,jN (t)
)

(90)

or using the index convention

ŷ(t) =
N

∏
n=1

(
h(n)jn xj

N
(t)
)

(91)

or equivalently

ŷ(t) =
(
X (t)×1 (h(1))T

)
· · ·
(
X (t)×N (h(N))T

)
=X (t)

N
×

n=1
(h(n))T . (92)

The resulting system output is multilinear (N-linear) with respect to the vector factors
h(n). Each vector can be interpreted as the impulse response (IR) of length Jn of the
subsystem associated to the nth mode of the input tensor X (t). The output signal ŷ(t) is
therefore a multilinear form in the N individual IR vectors (see Table 7).

6.4. Estimation of the System Transfer Tensor from I/O Data

Let us define the lexicographical vectorization u(t) , vec(X (t)) ∈ RΠJN such as

uj1···jN (t) = xj1,··· ,jN (t), (93)
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and the (multilinear) global impulse response (GIR) h as the vectorized form of the system
transfer tensor A

h = vec(
N◦

n=1
h(n)) =

N
⊗

n=1
h(n) = h(1) ⊗ h(2) ⊗ · · · ⊗ h(N) ∈ RΠJN . (94)

The output of the multilinear model can then be rewritten as

ŷ(t) = uT(t) h. (95)

Considering noisy output measurements on the time interval [1, T], the noisy output vector
y(T) ∈ RT is given by

y(T) ,

 y(1)
...

y(T)

 =

 uT(1)
...

uT(T)

 h +

 e(1)
...

e(T)

 , U(T) h + e(T), (96)

where e(t) is a zero-mean AWGN, at the time instant t, and U(T) ∈ RT×ΠJN .
We now determine the weighted least-squares (WLS) estimate of the vectorized form

h of the GIR tensor, which minimizes the following cost funtion min
h
‖e(T)‖2

W, with

‖e(T)‖2
W , eT(T)We(T) =

T

∑
t=1

wt e2(t) = ‖y(T)−U(T)h‖2
W, (97)

where W , diag(w1, · · · , wT) is a diagonal weighting matrix, with wt > 0 for all t ∈ [1, T].
The WLS criterion (97) can be developed as

‖e(T)‖2
W = ‖y(T)‖2

W − 2hTUT(T)Wy(T) + hTUT(T)WU(T)h. (98)

It is a quadratic cost function with respect to the unknown parameters vector h. The
Hessian (2UT(T)WU(T)) being a nonnegative definite matrix, this criterion has a unique
global minimum obtained in canceling its gradient with respect to h, which gives(

UT(T)WU(T)
)

ĥ(T) = UT(T)Wy(T). (99)

Assuming the matrix UT(T)WU(T) is nonsingular, the WLS estimate of h is given by

ĥ(T) =
(

UT(T)WU(T)
)−1

UT(T)Wy(T). (100)

As the diagonal weighting matrix W is positive definite, a condition for ensuring the
uniqueness of the WLS estimate is that U(T) be full column rank, which implies the
necessary condition T ≥ ΠJN . When the weighting matrix is chosen as the identity matrix,
we obtain the standard LS estimate of the GIR given by

ĥ(T) = U†(T)y(T). (101)

In [56], an iterative Wiener filter and LMS-based algorithms are proposed to identify
multilinear systems as described in (91).

Tensorizing the GIR vector estimate ĥ as a Nth-order rank-one tensor Ĥ ∈ RJN , an
estimate ĥ(n) of each individual IR h(n) can be obtained by using the high order singular
value decomposition (HOSVD) of Ĥ, i.e., calculating the left singular vector associated
with the largest singular value of the matrix unfolding ĤJn×J1···Jn−1 Jn+1···JN . For more details
concerning the HOSVD-based estimation of matrix or vector factors of a multiple Kronecker
product, the reader is referred to the following references [70,81]. Uniqueness of individual
estimates ĥ(n) is ensured assuming the first coefficient h(n)1 = 1 for n ∈ 〈N〉.
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7. Conclusions and Perspectives

The aim of this paper is to outline links between tensors and nonlinear and multilinear
systems. In the case of NL systems, a focus has been made on Volterra models, with
the objective of parametric complexity reduction using a PARAFAC decomposition of
symmetrized kernels or their expansion on generalized orthogonal basis functions. The
EKF algorithm has been proposed to estimate the parameters of a Volterra–PARAFAC
model. Then, three block-oriented nonlinear systems have been represented by means
of associated Volterra models in the form of a structured tensor decomposition. It has
been shown how this equivalent tensor representation can be exploited to identify the
structure of a block-oriented system. This tensor representation can also be used for
parameter estimation of a block-oriented system. As perspectives of these results, it would
be interesting to compare the different NL models considered, both in terms of parametric
complexity and quality of modeling via parameter estimation for a given benchmark.

For multilinear systems, a new class of systems called tensor-input tensor-output
(TITO) systems is introduced using Einstein product of tensors. The case of a TISO system
has been studied in more detail assuming that the transfer tensor has rank one. The WLS
algorithm has been derived for estimating the multilinear global impulse response (GIR)
associated with the vectorized form of the system transfer tensor. A closed-form HOSVD-
based solution has been proposed to estimate the individual impulse response of each
subsystem from the estimated GIR. Another line of research will be to consider a sparse
input data tensor modeled using different tensor models and apply tensor completion
methods to reconstruct missing data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/a16090443/s1, Matlab code for simulations results in Figures 2–5.
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