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Abstract: The paper outlines an algorithm for the rapid aerodynamic evaluation of winglet geometries
using the TORNADO Vortex Lattice Method. It is a very useful tool to obtain a first approximation
of the aerodynamic properties and for performing an optimization of the geometry design. The
TORNADO tool is used to systematically calculate the aerodynamic characteristics of various wings
with wingtip devices. The fast response of the aerodynamic models allows obtaining a set of results
in a remarkably short time. Therefore, the development of an algorithm to generate wing geometries
with great ease and complex shapes is of vital importance for the mentioned optimization process.
The basic outline of the algorithm, the equations defining the wing geometries, and the results
for unconventional wingtip devices, such as blended winglets and spiroid winglets, are presented.
Finally, this algorithm allows designing a procedure to study the improvement of aerodynamic
properties (lift, induced drag, and moment). Some examples are included to illustrate the capabilities
of the algorithm.

Keywords: TORNADO tool; VLM; spiroid winglet; blended winglet; automation wing geometry
generation

1. Introduction

Understanding the aerodynamic properties of a flying vehicle is essential for determin-
ing its performance and flight dynamics. These aerodynamic characteristics can be obtained
through experimental, computational, and also flight tests. Computational methods can
solve the Navier–Stokes equations, including viscosity terms (with high computational
cost), or solve the equations with potential models (simplified linearized models). The differ-
ential equations used for solving the most relevant problems in low-speed (incompressible)
aerodynamics will be a simplified version of the equations governing fluid mechanics, that
is, the conservation equations for mass, momentum, and energy (if necessary) [1].

The majority of fluid studies and their engineering applications require a solution
within a fluid domain, usually containing a solid body, with a series of boundaries. The-
oretical potential aerodynamics models are a reduction of the general equations, so it is
important to understand these introduced simplifications. This allows us to appreciate
the power and versatility of the models (both analytical and numerical), as well as the
limitations imposed by the simplifications themselves.

It is known [1] that at high Reynolds numbers (Re > 105), the dimensions of the
boundary layer (inversely proportional to Re0.5 or Re0.2) are small, and the effects of
viscosity are confined to this thin region attached to the obstacle. Therefore, potential
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models will predict lift, induced drag, and aerodynamic moment with good approximation
but not viscous drag.

Potential aerodynamics is valid outside the boundary layer [1,2], outside the shear
layers and wakes, where the viscosity effects are negligible or non-existent; then, outside
these regions, the vorticity is zero. The velocity field in potential aerodynamics derives
from the potential of velocity Φ, then ~V = ∇Φ. That is, the assumptions of the flow will be
incompressible motion and zero viscosity. Thus, with these approximate models, it will
suffice to solve the continuity equation for incompressible flow (∇ · ~V = 0) and the Euler
equation (relationship between pressure p and velocity V, i.e., the Bernoulli equation) [3].

From the theorems of scientist Hermann Von Helmholtz [3] based on vortices for
incompressible flow, we can establish that the intensity of a vortex filament is constant
along its length, and it cannot start or end in the fluid. A moving fluid forms a vortex tube,
and its intensity remains constant to the extent that the tube moves. The induced velocity
by a vortex segment is defined by the Biot–Savart law [2,3].

From the aforementioned conditions, it is possible to establish a set of elementary
solutions of the Laplace equation (∇2Φ = 0). These elementary solutions can be sources,
doublets, and vortices [1–3]. Being elementary solutions of the Laplace equation, the
principle of superposition can be applied, which forms the foundation for solving the fluid
field around complex surfaces. The Rankine oval, flow around a cylinder, and flow over
a sphere [1] are examples of flows around simple surfaces or bodies. With all of this, it is
indicated that the solution of potential flow (incompressible, inviscid) around arbitrary
bodies can be determined by distributing elementary solutions over the surfaces to be
modeled. In other words, the distributions of sources, the distributions of doublets, and
the distributions of vortices can be superposed.

The solution of potential flow could be solved using analytical methods, but obtaining
the mentioned solutions is only possible in very specific and limited cases. If appropriate
simplifications are made on geometric surfaces (curvature, thickness, etc.), it allows lineariz-
ing the problem and applying numerical techniques. There are different software that have
been developed in the past years for different applications and that solve the aerodynamic
problem using the Navier–Stokes equations for potential flow equations [4,5]. To simulate
using the method of small perturbations on a three-dimensional wing, it could be achieved
using distributions of singularities (elementary solutions); a horseshoe vortex distribution
forms the basis of the VLM method. This way, problems can be solved on three-dimensional
lifting surfaces with dihedral, sweep, and even sideslip. This is a generalized solution of
Prandtl’s lifting-line theory.

TORNADO uses the vortex lattice method (VLM), which is an aerodynamic analysis at
steady state. AVL [6], Surfaces [7], XFLR5 [4] and VSPAERO [8] are also vortex lattice-based
and can give good results for preliminary studies. Some articles show the significant evolu-
tion and application capacity of these methods, for example, using non-linear VLM [9,10],
unsteady VLM (UVLM) [5] or even adapting VLM to supersonic aircraft [11]. From this
point on, the focus will be on TORNADO, which was the tool chosen to develop the code
due to the simplicity of adapting the program. The wing is supposed to be divided into
trapezoidal panels (see Figure 1), each of them with an associated horseshoe vortex. The
turbillonary field generated by the vortices is divided in two regions: the free vortices,
which cause the induced velocity, and the bound vortices, which are related to the airfoil
lift effect. The panels have two important points, the control point in 3/4 of the wing
chord (c) and the head of the vortex in 1/4c. Each vortex has a circulation distribution
(associated with the induced velocity and the interaction between vortices), which allows
to calculate the lift distribution. With that distribution and the angle of attack, the lift and
induced drag coefficient can be obtained. The VLM method is one of the most extended
methods to calculate aerodynamics properties based on potential features of the flow, that
is, lift force, moment and induced drag. The computational effort is extraordinarily low
due to the linearized nature of the equations, as well as the final result of solving linear
systems of equations (even of large dimensions). According to this, the VLM method has
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limitations, as it can be applied when low angles of attack are considered (to avoid effects
of stall conditions) to ignore the compressibility effects, and it is a method by which any
type of drag dependent on viscosity cannot be calculated [12].

Figure 1. VLM scheme. In the figure it can be seen the dotted black line 1/4c, and the control points
and horseshoes in red. The horseshoes start in line 1/4c and continue downstream.

The wings to be studied in this article are those that introduce wingtip devices.
Winglets are becoming increasingly important elements in aircraft design, as operating costs
and environmental concerns are on the rise. Therefore, from an aerodynamic point of view,
wingtip devices are able to reduce induced drag [13] and increase aerodynamic efficiency.
Figure 2 presents different configurations that have been used or are in development.

Figure 2. Winglet configurations that have been used or are in development.
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Fredick W. Lanchester was the first person to mention the possibility of creating
a vertical surface (end-plate), in the belief that it would reduce drag by controlling wing
tip vortices [14]. Later, it was Richard T. Whitcomb who developed the first winglet, with
the inspiration of bird wings [15]. One of the conclusions was that the winglets’ presence
helped at a Mach number of 0.78, and keeping the lift coefficient from the state without
winglets decreased the induced drag about 20% and increased the aerodynamic efficiency
about 9% [15]. Another important contribution was made by John M. Kuhlman, who
realized a study about the effects that winglets have in low elongation configurations. He
concluded that the reduction in the induced drag depends solely on the ratio of the winglet
length to the wingspan [16].

Figure 3 shows some winglet examples that are designed with the developed algorithm,
such as the blended winglet [17], the spiroid winglet [18–23] and a first approximation of
the wing grid [24–27]. They were selected due to the previous investigations conducted in
the past years. It is worth noting that companies have already implemented the blended
winglet and the grid wing. The blended winglet is the main design adopted by the
aeronautical industry for commercial airplanes. Top companies, such as Airbus and Boeing,
have implemented those designs for new aircraft models, with satisfactory results in terms
of efficiency and fuel consumption [28].

(a) (b) (c)
Figure 3. Details of some of the types of winglets studied. (a) Blended wing. (b) Prototype of a small
drone with wing grid (in red). (c) Spiroid.

This paper presents an algorithm that facilitates the wing geometry design to com-
plement the use of TORNADO. The aim of this article is to realize a first iteration of the
geometry design of a winglet for its implementation in TORNADO. This software is an
extremely valuable tool that offers first-order approximations of performance and lower
computational cost than CFD, expediting the optimization of geometry design.

2. Methods

The possibility of using an interface similar to TORNADO is a great help to optimize
the design since in the case of CFD, there is a high computational cost, and in the experi-
mental case, it is not feasible to perform all the considered tests but only those that have
been previously optimized. TORNADO can give a first approximation to the problem
using MATLAB, but it has some limitations, especially when defining the geometry. For
that reason, MATLAB is used to provide an algorithm to solve the aerodynamic problem by
using some TORNADO functions. In this article, we focus only on the first geometrical part
with the calculation of more complex geometries by introducing the winglets mentioned
above. This would be almost unthinkable with the TORNADO interface, as it does not
allow easy editing of the geometry changes, and the way parameters are given is less
intuitive.

The function named WingGeometry.m was developed in MATLAB including an algo-
rithm that allows the user to define a complex wing geometry based on a main wing—taper
wing—and the winglets.
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2.1. Definition of the Main Wing

The first parameters required are the number of wings (nwing) and the number of
parts (npart) that each wing has. For simplifying the problem instead of using a nwingxnpart
matrix, the numbers of parts are one in each wing, having only a vector nwingx1:

X =


x1,1
x2,1

...
xm,1


nwingx1

(1)

2.1.1. Aircraft Reference Points

There are two points that need to be defined in the code: the aircraft reference point
and the gravity center. The first is the point in which the momentums are calculated. As it
can be observed in Figure 4 the reference point is placed in [0, 0, 0]m (body axis), and the
gravity center at [0.05, 0, 0]m (the middle point of the root chord). The blue line is the mean
aerodynamic chord.

Figure 4. Example of the reference parameters defined in TORNADO.

2.1.2. Vortex Lattice Method (VLM) Parameters

The wing must be meshed according to the needs for making VLM calculations after
the geometry is defined. It has a lot of importance because of the interpolation that is made
with the VLM; if the number of panels is not enough, the resulting coefficient solution may
not be the correct one as it can be seen in [29]. The parameters for performing the mesh are
the number of panels in chord (nx) and in span (ny), and the mesh type. The main wing
has lower complication than the winglets (depending on the winglet shape, it is divided
into more components), so the selected values were nx = 5 and ny = 5. The mesh can have
different types in which to place the number of panels (see Figure 5): linear, spanwise half-
cosine, spanwise half-cosine/chordwise cosine, and spanwise cosine/chordwise cosine.
For the main wing, the linear distribution was considered (panel.mesh = 1). The followed
process can be seen in Algorithm 1.
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Algorithm 1 Mesh algorithm.

% Number of panels along the chord (X direction)
geo.nx = panel.nx ∗ ones(nWing, nPart);

% Number of panels along the semi-span (Y direction)
geo.ny = panel.ny ∗ ones(nWing, nPart);

% 1 - Linear
% 2 - Spanwise half-cosine
% 3 - Spanwise half-cosine/chordwise cosine
% 4 - Spanwise cosine/chordwise cosine
geo.meshtype = panel.mesh ∗ ones(nWing, nPart);

Figure 5. Mesh types for nx = 8 and ny = 8. The red dot represents the reference point. The blue line
represents the mean aerodynamic chord (mac).

2.1.3. Wing Parameters

For the wing, it is necessary to know the following parameters: wingspan (b), root
chord (cr), taper (λ), sweep in the point c/4 (Λ), dihedral (Γ), geometric twist and airfoil
type (Eppler 186 is used in the main wing). Also, the point where the wing begins has to be
defined. For the main wing it will be [0, 0, 0], but for the winglets, their beginning point
changes depending on the previous geometry. Finally, it has to be determined whether the
wing has symmetry about the XZ plane (see Figure 4).

The building of the geometry struct in TORNADO is made in Algorithm 2. It can
be noticed that a vector with the number of wings is made. The vector is used with the
winglets in Section 2.2 (e.g., in the blended wing, the winglet can be formed with two wings
and a joint between them). The first value is always the value in the root.
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Algorithm 2 Wing parameters algorithm.

nWing = 1; . The main wing is only 1
% Root chord
geo.c = zeros(nWing, nPart);
geo.c(1) = mainwing.cr;

% Semi-span
geo.b = zeros(nWing, nPart);
geo.b(1) = mainwing.b/2;

% Dihedral
geo.dihed = zeros(nWing, nPart);
geo.dihed(1) = mainwing.dihedral ∗ d2r;

. The variable d2r is used to change from degrees to radians
% Taper
geo.lambda = zeros(nWing, nPart);
geo.lambda(1) = mainwing.lambda;

% Sweep
geo.SW = zeros(nWing, nPart);
geo.SW(1) = mainwing.sweep ∗ d2r;

. The variable d2r is used to change from degrees to radians
% Twist is supposed to be zero
geo.TW(:, :, 1) = zeros(nWing, nPart); . Root value
geo.TW(:, :, 2) = zeros(nWing, nPart); . Tip value
% Airfoil, there is a collection of airfoils in TORNADO
% 0→ Flat plate
geo. f oil(:, :, 1) = cell(nWing, nPart); . Root airfoil
geo. f oil(:, :, 2) = cell(nWing, nPart); . Tip airfoil
geo. f oil(:, :, 1) = mainwing. f oil;
geo. f oil(:, :, 2) = mainwing. f oil;
% Symmetry about the plane XZ
% 1→ Yes || 0→ No
geo.symmetric = 1 ∗ ones(nWing, nPart);

2.2. Definition of the Wingtip Devices

For the winglets, it is interesting to notice that the same function WingGeometry.m
can be used. In this case, the number of wings is increased depending on the type of
winglet that is selected. The different types that can be chosen are (winglet.type=): no
winglet (no-winglet), blended (blended), open spiroid (spiroid-open) and closed spiroid winglet
(spiroid-closed).

2.2.1. Blended Winglet

This winglet type is used as the basis of all coding. Each winglet is composed by one
or more elements connected to each other and the main wing through joints. The joints
aim to provide the winglets with smooth coupling without generating pointed geometries.
Each part of the joint is called a component. Due to the greater complexity in this case, the
parameters are connected with each other in some cases and with the main wing.

Starting from the known data, the total taper (λTOT) of the joint can be obtained using
the main wing tip chord (ct) and the winglet root chord (crw ). See Equation (2):

λTOT =
crw

ct
(2)

With λTOT and the component number (in the algorithm, this is the number of wings),
the taper (Equation (3)) and the chord of each component can be calculated (Equation (4)):
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λcomp = λ
1

component number
TOT (3)

crcomp = λcomp · crcomp−1 (4)

The dihedral (Γ) and the sweep (Λ) in the point c/4 have the same calculation by
changing the parameter. The winglet dihedral (Γw) is known. The total dihedral of the
joint (ΓTOT), the dihedral increase (Γ∆) and the dihedral in each component (Γcomp) are
calculated with Equations (5)–(7), respectively.

ΓTOT = Γw − Γ (5)

Γ∆ =
ΓTOT

component number + 1
(6)

Γcomp = Γcomp−1 + Γ∆ (7)

The winglet semi-span is known, and the one in each component is calculated with
the radius according to (rp), ΓTOT and the number of components with the following
Equation (8):

bcomp =
rp · ΓTOT

component number
(8)

The structure of the winglet can be seen in Figure 6.

Figure 6. Detail of the blended winglet structure.

The winglet is supposed to not have a twist. Finally, following the same steps as in the
main wing, the type of airfoil can be selected. NACA0012 is used for the winglets.

The new setting that has to be made with the winglets is to define the start of the
next component. Using Figures 7 and 8, the component xb, yb, and zb coordinates can be
calculated with Equations (9)–(11).

Figure 7. Scheme used for obtaining yb and zb coordinates.
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Figure 8. Scheme used for obtaining xb coordinate.

xcomp = xcomp−1 + bcomp−1 tan Λcomp−1 +
crcomp−1

4
(
1− λcomp−1

)
(9)

ycomp = ycomp−1 + bcomp−1 cos Γcomp−1 (10)

zcomp = zcomp−1 + bcomp−1 sin Γcomp−1 (11)

The algorithm for the blended winglet can be seen in Algorithm 3.

2.2.2. Open and Closed Spiroid Winglet

Both winglets have the same configuration as the blended winglets but with more
joints, which increases the complexity (see Figure 9).

Figure 9. Detail of the sequential joints. The black dotted points are refered to the different compo-
nents and the red points to the joint between them.

The structure of the different winglets can be seen in Figures 10 and 11. It is important
to mention that the last joint with the closed spiroid has to be with the main winglet, and
the process that is represented in Figure 9 is followed backwards.
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Algorithm 3 Blended winglet parameters algorithm.

% Root chord in each component
lambda-TOT = winglet.cr/(mainwing.cr ∗mainwing.lambda);
lambda-comp = lambda-TOT ∧ (1/joint.Ncomp); . Ncomp→ number of components
for i = 2 : nWing do . i=comp

if i == 2 then
geo.c(i) = mainwing.cr ∗mainwing.lambda;

else if then
geo.c(i) = lambda-i ∗ geo.c(i− 1);

end if
end for

% Semi-span, dihedral, taper, and sweep in each component
dihedral-= (winglet.dihedral −mainwing.dihedral) ∗ d2r;
dihedral-comp = dihedral-TOT/(joint.Ncomp + 1);
b-comp = joint.rp ∗ dihedral-TOT/joint.Ncomp;
sweep-TOT = (winglet.sweep−mainwing.sweep) ∗ d2r;
sweep-comp = sweep-TOT/(joint.Ncomp + 1);
if joint.Ncomp == 0 then

geo.b(end) = winglet.b; . The last is always the winglet
geo.dihedral(end) = winglet.dihedral ∗ d2r;
geo.lambda(end) = winglet.lambda;
geo.SW(end) = winglet.sweep ∗ d2r;

else
for i = 2 : nWing− 1 do

geo.b(i) = b-comp;
geo.dihedral(i) = geo.dihedral(i− 1) + dihedral-comp;
geo.lambda(i) = lambda-comp;
geo.SW(i) = geo.SW(i− 1) + sweep-comp;

end for
geo.b(end) = winglet.b; . The last is always the winglet
geo.dihedral(end) = winglet.dihedral ∗ d2r;
geo.lambda(end) = winglet.lambda;
geo.SW(end) = winglet.sweep ∗ d2r;

end if

% Airfoil in each component
for i = 1 : nWing− 1 do

geo. f oil(i, :, 1) = mainwing. f oil;
end for
for i = 1 : nWing− 2 do

geo. f oil(i, :, 2) = mainwing. f oil;
end for
geo. f oil(end, :, 1) = winglet. f oil;
geo. f oil(end− 1, :, 2) = winglet. f oil;
geo. f oil(end, :, 2) = winglet. f oil;

% Starting coordinates of each component
geo.startx = zeros(nPart, nWing);
geo.starty = zeros(nPart, nWing);
geo.startz = zeros(nPart, nWing);
for i = 2 : nWing do

geo.startx(i) = geo.startx(i− 1)+ geo.b(i− 1) ∗ tan(geo.SW(i− 1))+ geo.c(i− 1)/4 ∗
(1− geo.lambda(i− 1));

geo.starty(i) = geo.starty(i− 1) + geo.b(i− 1) ∗ cos(geo.dihedral(i− 1));
geo.startz(i) = geo.startz(i− 1) + geo.b(i− 1) ∗ sin(geo.dihedral(i− 1));

end for
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Figure 10. Detail of the open spiroid winglet structure.

Figure 11. Detail of the closed spiroid winglet structure.

The programming of the last joint can be seen in Algorithm 4.
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Algorithm 4 Blended winglet parameters algorithm.

% Final joint
% Points where the last joint starts
f inal-startx = geo.startx(5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 +
joint.Ncomp4) + geo.b(5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 +
joint.Ncomp4) ∗ tan(geo.SW(5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 +
joint.Ncomp4)) + geo.c(5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 +
joint.Ncomp4)/4 ∗ (1− geo.lambda(5+ joint.Ncomp1+ joint.Ncomp2+ joint.Ncomp3+
joint.Ncomp4));
f inal-starty = geo.starty(5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 +
joint.Ncomp4) + geo.b(5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 +
joint.Ncomp4) ∗ cos(geo.dihedral(5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 +
joint.Ncomp4));
f inal-startz = geo.startz(5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 +
joint.Ncomp4) + geo.b(5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 +
joint.Ncomp4) ∗ sin(geo.dihedral(5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 +
joint.Ncomp4));

x-med = f inal-startx− geo.startx(2);
y-med = f inal-starty− geo.starty(2);
z-med = f inal-startz− geo.startz(2);
x-coor = linspace(x-med, 0, joint.NcompF + 1);
y-coor = linspace(y-med, 0, joint.NcompF + 1);
z-coor = linspace(z-med, 0, joint.NcompF + 1);

initial-joint = 5 + joint.Ncomp1 + joint.Ncomp2 + joint.Ncomp3 + joint.Ncomp4;
for i = 1 : joint.NcompF do

geo.dihedral(initial-joint + i) = 180 ∗ d2r + atan((z-coor(i) − z-coor(i +
1))/(y-coor(i)− y-coor(i + 1)));

geo.b(initial−joint + i) = sqrt((y−coor(i) − y−coor(i + 1)) ∧ 2 + (z−coor(i) −
z−coor(i + 1)) ∧ 2);

geo.lambda(initial-joint + i) = lambda-compF;
geo.SW(initial-joint + i) = atan((x-coor(i + 1) − x-coor(i) − geo.c(initial-joint +

i)/4 ∗ (1− geo.lambda(initial-joint + i)))/geo.b(initial-joint + i));
end for

% Coordinates position
for i = (initial-joint + 1) : nWing do

geo.startx(i) = geo.startx(i− 1)+ geo.b(i− 1) ∗ tan(geo.SW(i− 1))+ geo.c(i− 1)/4 ∗
(1− geo.lambda(i− 1));

geo.starty(i) = geo.starty(i− 1) + geo.b(i− 1) ∗ cos(geo.dihedral(i− 1));
geo.startz(i) = geo.startz(i− 1) + geo.b(i− 1) ∗ sin(geo.dihedral(i− 1));

end for

3. Results and Discussion
3.1. Algorithm Implemented in TORNADO

After describing the algorithms used for obtaining the complete wing geometry, this
section includes the results of the defined geometries. Different types of representation
for the geometry can be obtained. The TORNADO function that is used to obtain the
representation of the geometry was implemented for the structures that were built with
the algorithms. It includes views of the 3D model, the shape of the vortices and different
points of view of the 2D model.

Figure 12 shows the different 2D views in addition to the 3D (ISO), side and top views
that are obtained with the algorithm from the different type of winglet considered. From
the front view, the difference can be seen between not having the winglet and the changing
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of the joints with the winglet type. The side and ISO views give the winglet details with the
number of components. The parts that have an according radius have more components
because the part of the wing–winglet joint that is more complicated needs to have more
panels for its study. In the main wing and the winglets, the linear distribution can be seen
more clearly and is spaced. About the computational cost of the developed algorithm,
which was commented on before, the necessary time to compile the blended wing is 3.2 s,
while the closed spiroid winglet is 22.1 s. It can be noticed that there is an increase in the
time as the geometry gets more complex. With CFD (see Section 3.2), the time increases to
232 s, so for obtaining the optimal geometry, it is better to use the proposed algorithm.

(a)

(b)

Figure 12. Cont.
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(c)

(d)

Figure 12. Depictions of different types of views from the types of winglets used. (a) No winglet.
(b) Blended winglet. (c) Open spiroid winglet. (d) Closed spiroid winglet.

In Figure 13, the different 3D views of the complete wing are presented. In this view,
the components, wing and winglets are observed. Figure 13b–d are the configurations
with winglets, so when the curve part starts, the components of the joints between the
wing and winglet can be seen. It can be noticed that for the open spiroid, the components
are distributed in a more progressive way since the turn is smoother. The blended and
the closed spiroid winglets have closer joints when the winglet starts since the turn is
more aggressive.
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(a)

(b)

(c) (d)

Figure 13. Details of the 3D view for the types of winglets studied. (a) No winglet. (b) Blended
winglet. (c) Open spiroid winglet. (d) Closed spiroid winglet.

Finally, TORNADO has also the option to represent an estimation of the vortex and the
wake structure. Those results are collected in Figure 14, and they depend on the number
of panels that are used for dividing the wing structure. The red lines show the structure
that the wake will follow. The concentration of these red lines at the ends means the
concentration of the vortex in those areas. A first early conclusion can be observed in
Figure 14c,d; they both can change the vortex size, helping in reducing the induced drag.

(a) (b)

Figure 14. Cont.
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(c) (d)

Figure 14. Details of the vortex and wake structure for the types of winglets studied. (a) No winglet.
(b) Blended winglet. (c) Open spiroid winglet. (d) Closed spiroid winglet.

3.2. CFD Comparisons

After the geometry was defined, Ansys-Fluent was used to perform a detailed study
of the closed spiroid winglet. The results of the aerodynamic coefficients were calculated
for the reference wing without winglets, the closed spiroid winglet for TORNADO and
the closed spiroid winglet for Ansys-Fluent (see Table 1). Experimental study of the wing
without the winglet and the closed spiroid winglet was also conducted because of the
TORNADO limitations specified before; the coefficients for the first case are collected in
the table.

Table 1. Aerodynamic coefficients (lift coefficient, CL; drag coeffient, CD) and efficiency, E; calculated
for the reference wing without winglets and the closed spiroid winglet for TORNADO, Ansys-Fluent
and experimental.

Aerodynamic
Coefficient

Reference Wing
TORNADO

Closed Spiroid
Winglet TORNADO

Closed Spiroid
Winglet Ansys-Fluent

Experimental
Reference Wing

CL 0.21 0.27 0.22 0.21

CD 0.0156 0.0187 0.048 0.067

E 13 14.55 4.51 3.05

It can be seen from the table that TORNADO has problems with the coefficients. For
the drag coefficient, as it was explained before, only the induced drag is obtained. The
lift coefficient for the reference wing has a good approximation but for the closed spiroid
winglet, it differs more, which happens because of the complexity of the geometry in the
winglet. The results that are interesting are the closed spiroid winglet with Ansys-Fluent
and the experimental results using the reference wing because they are obtained with
reliable methods (the purpose of using TORNADO was only to obtain the final geometry).
It can be seen that the closed spiroid winglet reduces the drag coefficient and increases the
efficiency as wanted.

4. Conclusions

Although TORNADO encounters challenges in two specific cases (the study of the
separation point and the overall calculation of the drag coefficient), it is a very useful tool,
as evidenced in this article, and the winglet primarily affects induced drag (the studied
one). The algorithm implementation achieved the aim of the article: to make an algorithm
that can create complex geometry in TORNADO using a basic data entry mechanism and to
obtain the optimal geometry with very low computational cost before using CFD. Moreover,
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the algorithm allows the automation of the winglet generation process selecting basic wing
characteristics, such as the root and tip chord, the airfoil, tape, dihedral, the winglet type,
panel distribution, number of joints, and the according radius, among others.

In addition, in order to complete the drag reduction study, TORNADO has the capa-
bility to calculate the lift and induced drag coefficients. This may lead to the development
of a new algorithm (e.g., genetic algorithm) to determine the optimal winglet during the
initial design. The final winglet design could then be subject to CFD and experimental
analysis for validation. Therefore, this article provides a solid basis for the subsequent
phases of winglet development.
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Abbreviations

The following abbreviations are used in this manuscript:
CFD Computational fluid dynamics
nwing Number of wings
npart Number of parts
VLM Vortex Lattice Method
LD Linear dichroism
nx Number of panels in chord
ny Number of panels in semi-span
b Wingspan
cr Root chord
λ Wing taper
Λ Wing sweep
Γ Wing dihedral
TOT Total
w Wing
comp Component
∆ Increment
rp Radius according
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