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Abstract: Visualization techniques for understanding and explaining machine learning models
have gained significant attention. One such technique is the decision map, which creates a 2D
depiction of the decision behavior of classifiers trained on high-dimensional data. While several
decision map techniques have been proposed recently, such as Decision Boundary Maps (DBMs),
Supervised Decision Boundary Maps (SDBMs), and DeepView (DV), there is no framework for
comprehensively evaluating and comparing these techniques. In this paper, we propose such a
framework by combining quantitative metrics and qualitative assessment. We apply our framework
to DBM, SDBM, and DV using a range of both synthetic and real-world classification techniques
and datasets. Our results show that none of the evaluated decision-map techniques consistently
outperforms the others in all measured aspects. Separately, our analysis exposes several previously
unknown properties and limitations of decision-map techniques. To support practitioners, we also
propose a workflow for selecting the most appropriate decision-map technique for given datasets,
classifiers, and requirements of the application at hand.

Keywords: decision boundary; classification; dimension reduction; inverse projection; visual analytics

1. Introduction

Machine learning (ML) has become a dominant force in various fields, leading to many
applications in healthcare, finance, and autonomous driving, and advancing scientific
research in areas such as geoscience, biology, and physics [1–4]. However, as ML models
become more complex and are increasingly used to make critical decisions, their lack of
interpretability becomes a significant issue. The ‘black box’ nature of many such models,
particularly deep learning ones, can lead to mistrust and misuse of the models, as users may
not understand how the model is making its decisions [5,6]. This lack of transparency can
also hinder troubleshooting and the improvement of the models [7,8]. To address this issue,
researchers have proposed interpretable machine learning and visualization frameworks
that aim to provide insights into the inner workings of these models [9–12].

Decision maps are one such visualization framework. Simply put, decision maps
are two-dimensional (2D) depictions of the way a classification model splits its high-
dimensional feature space into areas that are assigned the same label (so-called decision
zones), separated by so-called decision boundaries. Decision boundaries play a pivotal role
not only in model interpretation but also in contexts like active learning, decision making,
domain adaptation, and adversarial attacks [13–16]. Several techniques exist to visualize
decision boundaries and construct such decision maps for arbitrary classifiers [17–22], the
most notable being Decision Boundary Maps (DBMs) [21], Supervised Decision Boundary
Maps (SDBMs) [22], and DeepView (DV) [20]. These techniques offer different perspectives
on the decision-making process of a classifier, allowing users to gain a better understanding
of the model’s behavior. These techniques have found applications in areas like model
steering [23], detecting backdoor attacks [20], and even interpreting geoscience models [24].
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Overall, these techniques take away some of the complexity of interpreting the working of
a machine learning model while depicting the functioning of the model in more detailed
ways than classical aggregate performance metrics. As such, decision-map techniques are
particularly attractive for users of machine learning who are not domain experts in the
operation of the underlying ML algorithms.

Despite their growing popularity, there has been no in-depth assessment of the quality
of decision maps [22]. From a technical perspective, it is unclear how effectively different
decision-map techniques capture information present in high-dimensional decision zones
and boundaries. For instance, it is unclear whether the smoothness or fragmentation visible
in decision boundaries truly depicts the same properties of the actual, high-dimensional
boundaries. Similarly, it is unclear whether a sample located close to a decision boundary
in the map genuinely reflects its proximity to the high-dimensional point where a classifier
changes output. From a practical perspective, this lack of evaluation makes it hard to select
the most suitable decision-map technique for a given dataset and classifier.

We aim to fill this gap by proposing a framework that evaluates decision-map tech-
niques. We proceed by identifying the desirable aspects that a decision-map technique
should have—accuracy, reliability, interpretability, and computational efficiency. Next,
we design several metrics to quantify these aspects. Taken together, these metrics aim
to capture the concept of the ‘quality’ of a decision-map technique, much like classical
metrics used in ML, such as accuracy, the area under the ROC curve, F1 scores, and so
on, aim to capture the concept of the quality of an ML model. We then use these metrics
to conduct a multi-faceted comparison of existing decision-map techniques over several
classifiers and datasets. This helps us identify several strengths and limitations of the
evaluated decision-map techniques. Finally, we propose a workflow for choosing the best
decision-map technique for a given dataset given a set of desirable requirements.

Summarizing the above, our key contributions are as follows:

• We propose a suite of metrics to quantitatively evaluate decision-map techniques.
• We conduct a comprehensive comparison of existing decision-map techniques, both

quantitatively (by comparing the aforementioned metrics) and qualitatively (by visu-
ally comparing the obtained decision-map images).

• We propose a workflow to guide the selection of the most suitable decision-map
technique for a given dataset based on a set of desirable requirements.

2. Related Works
2.1. Preliminaries

We start by introducing a few notations. Let D = {xi} ⊂ Rn, 1 ≤ i ≤ N be a dataset
of n-dimensional data points (samples) xi = (x1

i , x2
i , . . . , xn

i ), with the corresponding labels

yi ∈ C. Let xj = {xj
1, xj

2, · · · , xj
N}, 1 ≤ j ≤ n be the j-th feature, or dimension, of D.

Thus, D can be seen as a table with N rows (samples) and n columns (dimensions), with
y = {y1, y2, . . . , yN} being their label vector. Given a dataset D and its corresponding labels
y, a classifier constructs a function f : Rn → C so that f (xi) = yi ideally for all xi ∈ Dt, where
Dt ⊆ D is the training set. After training, the classifier f is typically further evaluated in
the same way on a test set DT ⊂ D, DT ∩ Dt = ∅. After training and testing, the classifier
f can be used to predict the labels of new samples x ∈ Rn \ D.

A dimensionality reduction (DR) method, also called a projection, is a function P :
Rn → Rq that maps an n-dimensional sample x ∈ Rn to a q-dimensional sample P(x) ∈ Rq,
where q� n. Typically, one uses q = 2 or 3 for visualization purposes. An inverse projection
P−1 : Rq → Rn, also called backprojection or unprojection [25], is a function that maps a
q-dimensional sample z ∈ Rq to an n-dimensional sample x ∈ Rn so that it approximates
the inverse of P, i.e., P−1(P(x)) ≈ x. We next denote as P(D) the application of P to all
points of a dataset D (and analogously for P−1).
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2.2. Overall Workflow of Decision Map

Given a classifier f , a decision boundary is a surface inRn that separates high-dimensional
data points x ∈ Rn into regions, also called decision zones. All points in a given zone are
assigned the same label y ∈ C by the model f . Decision zones are separated by decision
boundaries, which are hypersurfaces embedded in Rn, where the classifier f changes the
output. Understanding how the high-dimensional space is partitioned into such decision
zones and how data samples in a training or test set are distributed across the zones
effectively helps understand how a classifier behaves [20,21]. For example, seeing how
labeled samples distribute close to decision boundaries can help categorize misclassification
problems, and seeing how unlabeled samples (whose class is to be predicted by f ) spread
across decision zones can help understand how well f can handle a given data distribution.

Decision-map algorithms are techniques that aim to create 2D representations of the
decision zones and boundaries of any classifier f [20–22]. Their general workflow is as
follows (see also Figure 1):

1. Train a classifier f on a dataset Dt. This is the classifier whose decision map we next
want to visualize.

2. Construct a direct projection P and inverse projection P−1 using a dataset D′.
3. Project D′ to create a 2D scatter plot P(D′).
4. Sample the extent of P(D′) on a uniform pixel grid I.
5. Backproject all pixels y ∈ I to the data space using P−1.
6. Use f to predict the labels of the backprojected points P−1(y).
7. Color I according to the predicted labels f (P−1(y)).

P

4. Create

2D girds

P
-1

6. Predict 

labels 

5. Create 

synthetic

nD points

7. Color

pixels

f

3. Project 

nD data 

to 2D

1. Train a classifer f    2. Train a direct projection P and inverse projection P-1

Figure 1. General workflow of decision-map techniques (see Section 2.2).
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In the above, D′ can be, at a minimum, a subset of the training set Dt. However, if
more samples of the target domain are available, such as in the form of test data DT or
even unlabeled data, these can be added to D′. By doing this, the constructed decision map
can better sample the actual data distribution of the investigated phenomenon and thus
the classifier’s behavior. In this paper, we set D′ = Dt following earlier examples of this
workflow [22].

We next describe three specific techniques that implement the above workflow and
introduce some of their key features.

2.3. Decision Boundary Maps (DBMs)

Decision Boundary Maps (DBMs) [21] closely follow the above workflow. While
the original DBM used t-SNE [26] and, alternatively, UMAP [27] for the projection P, any
user-chosen projection method can be used, such as PCA [28], LAMP [29], Least-Square
Projection (LSP) [30], or Piecewise Laplacian Projection (PLP) [31]. For the inverse projec-
tion P−1, DBM evaluated two techniques, namely iLAMP [32] (the inverse of the LAMP
projection technique mentioned above) and NNinv [33]. Compared to iLAMP, which con-
structs the backprojection by interpolating between the samples of D and P(D) using linear
or radial kernels, NNinv deep learns a regressor to output D using P(D) as input. NNinv
achieves inverse projections with a lower mean absolute error than P and is also simpler
to implement and significantly faster [21,33]. Note that the same deep learning idea has
been used to construct direct projections with similar speed, quality, and implementation
simplicity advantages [34].

A DBM is simple to implement and allows one to use any direct and inverse projection
techniques. Also, a DBM works without requiring label information, which means that con-
structing decision maps only depends on the distribution of points in D′ in the feature space.
In our subsequent evaluation, we use DBM with UMAP for the direct projection P and
NNinv for P−1, as this combination led to the best results in earlier DBM evaluations [21].
More information about DBMs is available at https://mespadoto.github.io/dbm/ (ac-
cessed on 1 September 2023).

2.4. Supervised Decision Boundary Maps (SDBMs)

Although they are flexible, the independent choice of P and P−1 in DBMs means
that these operations have to be constructed separately (including fine-tuning their hyper-
parameters), which incurs additional effort. Self-Supervised Neural Network Projection
(SSNP) [35] alleviates this by constructing P and P−1 jointly. Briefly put, SSNP follows a
classical autoencoder architecture but adds a classification loss atop the standard recon-
struction loss. To minimize this classification loss, either true labels (supervised mode) or
pseudo-labels (semi-supervised mode; labels are obtained by running a clustering algo-
rithm on the feature space) can be used. The encoder part then delivers P, whereas the
decoder delivers P−1.

Supervised Decision Boundary Maps (SDBMs) [22] directly apply SSNP to construct
decision maps following the workflow in Figure 1. Like DBMs, SDBMs are also simple to
implement and have a similar speed. More interestingly, SDBMs seem to produce smoother
decision boundaries compared to DBMs, and these boundaries appear to agree better with
the ground-truth information on the visualized classifiers. The price to pay for this is the
inability to choose a specific direct projection P. This can be suboptimal in cases where one
has such a technique that is known to be best for depicting the structure of a given dataset.
The code of SDBMs is available at https://github.com/mespadoto/sdbm. (accessed on 1
September 2023).

2.5. DeepView (DV)

DeepView (DV) [20] constructs the direct projection P using UMAP. However, in
contrast to classical UMAP, the points’ similarities are computed using a Fischer distance,
which combines their high-dimensional features with the classification function f . This

https://mespadoto.github.io/dbm/
https://github.com/mespadoto/sdbm


Algorithms 2023, 16, 438 5 of 26

approach, also called discriminative dimensionality reduction [19], favors grouping points
in the projection that are similar both feature-wise and in terms of classification by f . The
inverse projection P−1 of DV also uses UMAP, with the roles of input and output swapped.
The inverse projection is next extrapolated to all 2D points by minimizing a Kullback–
Leibler (KL) divergence that captures the probabilities of closeness in both 2D and the data
space. Once P−1 is available, DV colors the 2D pixels following the same approach used in
DBMs and SDBMs (Figure 1, step 7).

Although DV produces decision maps with smooth boundaries, the process is quite
expensive, given that the computation of the Fisher distance is squared in the number of
samples in D′. Also, the process involves optimizing several hyperparameters to construct
an accurate P−1. As with DBMs, the direct and inverse projections P and P−1 can be, in
principle, freely chosen. However, given the aforementioned optimization complexity,
we next use the original proposal in [20] to construct both P and P−1. The code of DV is
available at https://github.com/LucaHermes/DeepView. (accessed on 1 September 2023).

2.6. Limitations

By far the most evident issue with current decision-map techniques is the very limited
evaluation they come with. The DBM was evaluated qualitatively using 28 projection
techniques for P (and iLAMP for P−1) [21] to conclude that UMAP and t-SNE are among
the best options for P to create smooth decision boundaries. However, this evaluation
was purely qualitative, i.e., based on visually examining the respective decision maps for
smoothness. The SDBM was evaluated on four classifiers and four real-world datasets and
compared against the DBM. However, as in the previous case, the comparison was purely
qualitative and was based on a visual assessment of the decision map’s smoothness. Finally,
DV was evaluated on two real-world datasets. Its quality was measured by computing two
metrics related to our map accuracy and data consistency (described further in Section 3.1).
However, it was not compared to any other decision-map techniques. We expand on all
these aspects with our proposed evaluation method described in the following section.

3. Evaluation Method

As mentioned in Section 2.6, the current evaluations of decision-map techniques are
limited. Due to inevitable errors in the decision-map creation process (detailed next in
Section 3.1), using the classifier’s accuracy to gauge a decision map’s quality is neither
appropriate nor comprehensive. Simple visual inspections of a decision map are equally
limited in gauging its ability to correctly capture a classifier’s behavior since we do not
usually know this ground-truth behavior upfront. We aim to improve on this by proposing
an extensive set of both quantitative and qualitative evaluations, each characterizing a
different desirable property of decision maps, as described below.

3.1. Global Metrics

Global metrics aim to characterize the quality of a decision map with a single (scalar)
value, much like the metrics used for direct projections such as trustworthiness, continuity,
or normalized stress [36]. We propose five such metrics, as described below (see also
Figure 2).
Classifier accuracy, ACCC: Accuracy is one of the most common metrics for evaluating
the performance of a classifier and is defined as the ratio of correct predictions made by the
model f to the total number of predictions, i.e.,

ACCC =
|{xi ∈ D | C(xi) = f (xi)}|

|D| , (1)

where | · | indicates the set size, D is the sample set used for evaluation, and C(xi) is xi’s
ground-truth label yi assigned by the trained model f . We use these notations throughout
this section when defining global metrics. In the following, we set D to either Dt (training
set) or DT (test set) and compute the corresponding classifier accuracies, which we denote

https://github.com/LucaHermes/DeepView
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as ACCt
C and ACCT

C , respectively. The range of ACCC is [0, 1], where ACCC = 1 indicates
perfect classification. Although accuracy does not, as we already noted, gauge the quality
of a decision map, it helps calibrate the understanding of subsequent metrics. For example,
if we know a classifier is accurate, we expect its decision map to reflect this accordingly.

y
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2D image space  nD data space

2D image space  nD data space
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2D image space  nD data space 2D image space  nD data space

P

P
Decision zones in 2D

P −1

P −1

P −1

P −1

−1

P −1

Figure 2. Illustration of the metrics used to evaluate decision maps (see Section 3).

Map accuracy, ACCM: We define map accuracy as the fraction of data points (of a given
dataset D) that are drawn in the correct decision zones. We define map accuracy as

ACCM =
|{xi ∈ D | C(xi) = f (P−1(P(xi)))}|

|D| . (2)

Intuitively, this says that data points xi, for which we have ground-truth labels yi, are
indeed colored correctly (i.e., by yi) in the computed decision map. As for class accuracy,
we compute ACCt

M and ACCT
M for the training and test sets, respectively. Note that map

accuracy only evaluates the map pixels onto which the data in D projects since for all
other pixels, we do not have ground-truth labels. The range of ACCM is [0, 1], where
ACCM = 1 indicates that all data points are drawn on the pixels with the same color as
their ground-truth labels. Another way to evaluate map accuracy is to employ an additional
2D classifier, as used in the DV evaluation (see QkNN in [20]). We do not use this option
since we believe it introduces an additional degree of complexity in the selection and
training of this additional classifier.

Data consistency, Consd: In general, both the direct and inverse projections P and P−1

unavoidably introduce errors [32,33,37,38]. That is, in general, P−1 is not an exact inverse
of P, i.e., P−1(P(x)) 6= x, for several data points x. Such errors can be evaluated using
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the mean square error MSE = ∑x∈D ‖x− P−1(P(x))‖2/|D| computed over the set D [25].
However, for decision maps, the MSE is not the most relevant metric to consider: a
pixel P(x) may be backprojected away from x, i.e., the MSE may be nonzero; still, if the
backprojection has the same label as the original point x, then there is no visible error in the
map. To account for this, we gauge whether the error introduced by the ‘round-trip’ direct
and inverse projections creates inconsistencies in the decision maps. For this, we define the
projection consistency metric

Consd =
|{xi ∈ D | f (P−1(P(xi))) = f (xi)}|

|D| . (3)

Simply put, Consd measures the fraction of so-called consistent projections, i.e., samples,
xi, from a given set D that keep the same classification label after one round trip given by
the projection P and inverse projection P−1. This metric is also used in DV’s evaluation,
denoted as Qdata [20]. As for class and map accuracy, we compute Const

d and ConsT
d for the

training and test sets, respectively. Note that in contrast to ACCC and ACCM, Consp does
not use ground-truth labels yi. That is, consistency only assesses how much the decision
map can represent a given classifier and not whether the DBM is correct with respect to
the ground-truth labels. The range of Consd is [0, 1], where Consd = 1 indicates perfect
consistency.

Map consistency, Consp: All the above metrics only evaluate a decision map at locations
where an actual data point in D would project. However, as already noted, most pixels in
such a map are not covered by data points. We extend Consd to cover all pixels in a map by

Consp =
|{p ∈ I | f (P−1(P(P−1(p)))) = f (P−1(p))}|

|I| , (4)

where p is a pixel of the decision-map image I. Consp calculates the fraction of consistent
pixels in the decision map, that is, pixels whose corresponding data points (obtained by
inverse projection P−1) have the same classification label after a round trip of projection
P and inverse projection P−1. Note that Consp extends the idea of using the round trip to
visually evaluate an inverse projection [25] with a quantitative metric used to evaluate a de-
cision map. Consp ranges in [0, 1], where Consp = 1 implies perfect pixel-level consistency
in a decision map.

Class stability, S̄: One application of decision maps concerns improving a classifier, for
instance, by adding extra labeled training samples by backprojecting selected decision-map
pixels. In this case, multiple round trips between the 2D map space and data space occur.
Since P−1 is not an exact inverse of P, several such round trips can increasingly accumulate
errors. We measure this as follows. Given a pixel in the decision map, we apply P−1 to
obtain a data point and then apply the classifier to it. Next, we project this point to the 2D
space and repeat the backprojection and labeling process until the class label changes or
a maximum number of iterations (set to kmax = 10 in our experiments) is reached. Let S
be an image recording this maximum iteration count (normalized by kmax), which keeps
the class label constant at every map pixel. We then define the class stability S̄ as the
average of S over all pixels, with values in [0, 1], where a value of S̄ close to 1 indicates a
stable decision map with consistent class assignments through multiple P and P−1 round
trips. Conversely, a value of S̄ close to 0 suggests an unstable decision map, sensitive to
distortions introduced by (inverse) projection, potentially misrepresenting the classifier’s
decisions. As explained in Section 3.2, we also directly visualize S to obtain local insights
into the class stability over the map.
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Average gradient, Ḡ: Since P−1 is a function of two variables (the x- and y-coordinates of
a pixel), one can measure its gradient magnitude G at every pixel p through the central
differences [25] as follows:

Gx(p) =
P−1(p + (1, 0))− P−1(p− (1, 0))

2
,

Gy(p) =
P−1(p + (0, 1))− P−1(p− (0, 1))

2
,

G(p) =
√
‖Gx(p)‖2 + ‖Gy(p)‖2. (5)

Large gradient values indicate pixels where the decision map has a high likelihood of being
incorrect, since neighboring pixels correspond to faraway data points; thus, data points
can be classified differently. Separately, discontinuous changes in this map indicate areas
where P−1 is not smooth, where we expect to see errors in the decision map.

We can reduce G to a scalar value by computing the average Ḡ of the normalized
values G(p)/Gmax over all the decision-map pixels, where Gmax is the maximal value of
G over the set of decision maps being compared. The value 1− Ḡ ranges in [0, 1], thus
signaling how smooth a decision map is. Values close to 0 indicate a smooth map (with low
average gradients). Values close to 1 indicate a map with many discontinuities, which are
thus more prone to errors, as explained above.

3.2. Local Metrics

The metrics presented so far aggregate the quality of a decision map to a single scalar
number. Although simple to interpret, such metrics only provide a global assessment
of the decision map. Since typical direct projections and inverse projections are nonlin-
ear functions, large errors can occur locally in such maps. Such local errors—if not too
numerous—will not show up in global metrics. Moreover, the position of such local errors
is very important for interpreting a decision map. For example, errors appearing close to a
decision boundary will influence the shape of this boundary and, subsequently, how one
uses the map to interpret and/or improve a given ML model.

To gain more insights into these local phenomena, one can use so-called local metrics.
Introduced to study direct projections [39], these metrics evaluate the quality of a map at
every 2D spatial position and typically display the result as a color-coded visualization.
We propose three local metrics to assess the quality of decision maps, as described below
(see also Figure 2).

Gradient map: We display the gradient map G, computed as explained in Section 3.1, to
help understand the smoothness of the inverse projection and, as outlined earlier, check for
the presence of high-gradient regions that are prone to creating errors in the map.

Distance to boundary: Due to the nonlinearity of the mappings P and P−1, if a pixel is
visually close to a decision boundary in the map, this does not necessarily mean that its
corresponding data point is close to the classifier’s decision boundary in the data space.
Yet, a key aim of decision maps is precisely to indicate points that are close to decision
boundaries, since these are prone to misclassifications upon slight changes in the data or
model parameters. Rodrigues et al. [21] addressed this by computing the actual distance in
the data space between the backprojection of each pixel and its closest decision boundary.
However, the methods they proposed for doing this, based on an iterative search in
the data space of the precise location of the decision boundaries, are both inexact and
computationally very expensive.

We mitigate this by computing the aforementioned distance to the boundary by
resorting to an adversarial example generation technique [16,40]. Specifically, we employ
DeepFool [41]. An adversarial example of a given classifier is a synthetic data point
x̃ = x + ∆x, such that f (x̃) 6= f (x), where ‖∆x‖ is as small as possible. Here, ∆x indicates
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a small perturbation or change in the sample x. In practice, it is complicated to generate
the smallest perturbation possible that generates an adversarial example so DeepFool
approximates it instead for every map pixel p as

B(p) ≈ min
‖∆x‖

s.t. f (P−1(p) + ∆x) 6= f (P−1(p)) (6)

In other words, B(p) indicated how close P−1(p) is to a change in the class predicted by f ,
i.e., to the closest decision boundary to the backprojection of p.

To compute the above, a differentiable classifier is needed. For this, we use a logistic
regression classifier implemented in PyTorch.
Distance to data: Besides knowing how close a decision-map pixel p is to its closest
decision boundary, it is also useful to know how close such a pixel is (via backprojection)
to the nearest data point in the training set Dt used to construct f . We compute this as

N(p) = min
x∈Dt
‖P−1(p)− x‖, (7)

that is, the smallest distance between the data point P−1(x) corresponding to the pixel p
and samples in the training set Dt. Interpreting N works as follows: the decision-map
pixels p, which are close (in 2D) to the projections P(x) of the training set points x ∈ Dt,
should represent data points that are close to such x. If this is not the case, i.e., if we
see high N(p) values for pixels close to the training set projection, it means that the
decision map has issues with extrapolating from the training set, that is, it takes classifier
values from points far from the training set and depicts them close to the projection of the
training set.
Class stability map: As outlined in Section 3.1, the class stability map S can act as a local
metric. As explained, pixels with high S values will have the same class label, even after
multiple round-trip P and P−1 iterations. When a pixel is close to a decision boundary, S is
likely to be lower since the chance that a point there ‘jumps’ to the other side of a decision
boundary due to these round trips increases. However, if the pixel is far from a decision
boundary, its S value should be higher. If this is not the case, then the decision map may be
unreliable in such areas. As such, visualizing how S matches the distances to the depicted
boundaries in a decision map indicates how confident we are about the quality of that map.

3.3. Datasets

We evaluate the three decision-map techniques (DBM, SDBM, and DV) using both a
synthetic dataset and real-world datasets. The real-world datasets are chosen following the
same criteria as in [22]. They are chosen because they are openly accessible, representative
of different types of data (e.g., time series, image, text), and have different numbers of
classes and dimensions. The datasets used are listed below and are summarized in Table 1.

Synthetic Blobs: This is a synthetic dataset with five classes, 100 dimensions, and
1500 samples. All data points in a blob (following a Gaussian distribution) have the
same label. Therefore, it is an easily classifiable dataset, for which we expect all three
decision-map techniques to produce good-quality metric values.

Human Activity Recognition (HAR) [42]: This is a dataset with time-series data from
smartphone sensors. The goal is to classify the type of physical activity (e.g., walking,
climbing stairs) performed by the user. This dataset has 10,299 samples, 561 dimensions,
and six classes.

MNIST [43]: This dataset is a collection of handwritten digits that is commonly used
for training various image classification systems. The dataset contains 60,000 training
images and 10,000 testing images. Each image is a 28 × 28 grayscale image associated with
a label from 0 to 9. The dataset is downsized to 10 k samples for all our experiments.

FashionMNIST [44]: This is a dataset containing images of Zalando items, spanning
10 fashion categories. It is the same size as MNIST and is downsized to 10 k samples for
our experiments.
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Reuters Newswire Dataset [45]: This dataset contains 8432 samples of news report
documents, from which 5000 features were extracted using the standard TF-IDF [46] text
processing method. From the full dataset, we only use the six most frequent classes.

Table 1. Datasets used in our decision-map evaluations and their properties.

Dataset Type |Dt| |DT | Dimensionality No. of Classes

Synthetic Blobs Synthetic 1000 500 100 5
HAR Time Series 5000 2352 561 6

MNIST Image 5000 5000 784 10
FashionMNIST Image 5000 5000 784 10

Reuters Newswire Text 5000 2432 5000 6

3.4. Classifiers

We evaluate decision maps using four classifiers—logistic regression [47], random
forest (200 estimators) [48], neural network (with three hidden layers, each with 200 units),
and support vector machine (SVM, with an RBF kernel) [49]—which are all extensively used
in machine learning. They represent different families of algorithms: logistic regression
is a linear classification model; random forest is an ensemble method; neural network
represents deep learning; and SVM is a maximum margin classifier. Importantly, these
classifiers are frequently studied in existing decision-map research, thus allowing for
meaningful comparisons. The four machine learning classifiers are implemented using
scikit-learn [50].

We train all four classifiers on 5000 samples from the four real-world datasets, using
the remaining samples for testing and constructing the corresponding three decision maps
for each combination. As a result, we obtain 4× 4× 3 = 48 combinations of datasets,
classifiers, and decision maps.

4. Comparison Results

We now discuss the results of our evaluation metrics for the constructed decision
maps.

4.1. Global Metrics of Real-World Datasets

Figure 3 shows the global metrics for all combinations of decision-map techniques,
classifiers, and datasets. Note that DV failed to run with SVM on the real-world datasets
and thus is not included in the figure. From a dataset perspective, the results varied
significantly based on the specific dataset being considered. On HAR, the SDBM and
DV achieved comparable (high metric) results, whereas the DBM achieved slightly lower
scores. On MNIST, the DBM achieved the best results in all aspects, even though the DBM’s
training did not use label information. On FashionMNIST, the SDBM achieved the highest
scores, whereas DV achieved comparable results in the data-level metrics (ACCC, ACCM,
Consd) but much lower results in the pixel-level metrics (Consd, S̄). Finally, on Reuters, DV
achieved the best results. From a classifier perspective, the results were more stable. The
accuracy of the classifiers themselves varied only slightly. The most noticeable difference
was that random forest always achieved lower scores (in all global metrics, except for ACCC
and 1− Ḡ) compared to the other classifiers in all the considered metrics, particularly on
the MNIST dataset. For 1− Ḡ, almost all the results were close to 1. This was due to a
large maximum value of DV, which influenced the normalization (see the definition of Ḡ in
Section 3.1). We explore this in more detail in Section 4.3.

The datasets in Figure 3 are sorted (from top to bottom) by increasing dimensionality
(see also Table 1). The higher the dimensions, the more difficult for the models to learn.
So, it is not surprising that the DBM, which is a fully unsupervised method, experienced
trouble when aiming to depict classifiers for higher-dimensional datasets like Reuters
(5000 dimensions). In contrast, on this dataset, the SDBM achieved higher quality metrics,
whereas DV achieved the highest values. This suggests that DV is the decision-map
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method of choice—from the perspective of the global quality metrics—for high-dimensional
datasets. However, as we will demonstrate, there are other factors that influence the three
decision-map methods in different ways.

Figure 3. Aggregated global metrics for each decision map, classifier, and dataset combination. ACCC,
ACCM, Consd, Consp, S̄, and 1− Ḡ are the global metrics defined in Section 3.1. Red dashes show the
highest values across each dataset (row). The top-left numbers in each plot show the average values
of ACCC

T , ACCM
T , Consd

T , Consp, and S̄. Bold values indicate the highest value among the dataset
(row).

4.2. Interpreting Local Metrics on a Synthetic Dataset

We start by explaining the local metrics proposed in Section 3.1 using the simple
synthetic blobs dataset, which is, as explained earlier, straightforward to classify. As such,
we only studied its decision maps for the simple logistic regression classifier (we obtained
very similar results for the other three considered classifiers). The blobs dataset is split
into 1000 training and 500 testing samples. All three map methods—DBM, SDBM, and
DV—achieved 100% on the test set for all data-wise global metrics. We then used the blobs
dataset to establish and validate our expectations for a ‘good’ decision map based on the
local metrics introduced in Section 3.2 as follows:

1. Distance to the nearest data N: We expected this distance to be small for pixels close
to the actual projections of data points and larger for pixels far away from these points.
In other words, we expected the 2D distance (to the projections of the data points) to
mimic the nD distance (to the actual data points).

2. Distance to the decision boundary B: Similar to the above, we expected that the points
close to the decision boundaries (in 2D) would also be close to the decision boundaries
(in nD), and vice versa.

3. Class stability map S: Ideally, we would have liked most pixels to have high stabil-
ity values, especially those close to the decision boundaries (where we were most
interested in studying in a decision map).

4. Gradient map G: We expected a smooth gradient map without any discontinuities
or peaks. Ideally, we also would have liked low gradients close to the decision
boundaries (for the same reason mentioned above for class stability).

With these expectations in mind, we analyzed the results shown in Figure 4 for the
three decision-map methods and the above-mentioned four local metrics. The first row
in Figure 4 shows the decision maps and projected data points for the three methods.
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At a glance, all maps appeared to be similar. However, a deeper analysis of the local
metrics revealed more details. The results for N (second row) and B (third row) met our
expectations across all methods. Some discontinuities in DV, however, were noticeable—the
N and S images appear to contain some ‘cuts’ that perturbed their overall smoothness. S
(fourth row) primarily manifested as expected, with all low-value pixels situated around
the decision boundaries. A notable difference arose with the SDBM, which exhibited larger
regions of unstable pixels, indicating its vulnerability to projection errors. Regarding G,
the DBM and SDBM were smooth, whereas DV exhibited peaks, thus not satisfying our
first expectation regarding G. Even more interestingly, the local maxima regarding G for
DV took the form of lines roughly connecting the clusters of the projected points. As for
our second expectation, we observed a surprising result: the DBM and SDBM exhibited
relatively higher values close to the decision boundaries, whereas DV exhibited lower
values in these areas. Consequently, no method simultaneously satisfied both expectations
of G.
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Figure 4. Decision maps and local metrics of the synthetic blob dataset (see Section 4.2). Row 1:
Decision map with data points projected onto it (marked in black). The brightness of pixels encodes
the confidence of f ’s prediction (dark = low, bright = high confidence). Row 2: Distance of each
map pixel to the nearest data point N, depicted using a blue (low distance) to yellow (high distance)
colormap. Row 3: Distance of each map pixel to the closest decision boundary B, using the same
colormap as in row 2. Row 4: Class stability map S, depicted using a red–white–blue colormap. Blue
values indicate stable pixels, whereas red values indicate pixels for which fewer direct and inverse
projection round trips changed the classifier’s decision depicted at that pixel. Row 5: Gradient map
G depicted using a rainbow colormap. Blue and red pixels, respectively, indicate low and high values
of the derivatives of the inverse projection function.

In conclusion, on the synthetic blob dataset, all three methods generally aligned with
our expectations of the local metrics. However, despite the decision maps’ similarities in
this simple example, there were subtle but significant differences between them. This is the
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first indication that, while superficially similar, the three studied decision-map techniques
behave quite differently. We examine this aspect further on real-world datasets.

4.3. Analyzing Local Metrics on Real-World Datasets

To refine our preliminary insights concerning the differences between the three studied
decision-map techniques, we now use our four proposed local metrics to study their
behavior on the four real-world datasets shown in Table 1. We start by presenting the actual
decision maps (Section 4.3.1). The next sections (Sections 4.3.2–4.3.5) interpret these maps
using our four local metrics.

4.3.1. Decision Maps

Figure 5 shows the decision maps computed using training and testing data, respec-
tively. The decision zones are color-coded by category, whereas the brightness of the pixels
indicates the confidence of f ’s prediction (as used earlier for all decision-map techniques).
The projected samples are also color-coded according to their class but are made slightly
brighter to distinguish them from their surrounding zones. Misclassified samples, i.e.,
samples for which f (xi) 6= yi, are marked with a white outline. Theoretically, the points
near decision boundaries represent the samples for which the classifiers are most uncertain.
This can be observed at the boundaries between the pink and the yellow zones in the HAR
dataset, where some misclassified points are highlighted with white outlines. Notably,
there are even some misclassified light-blue points at the boundaries of the pink and yel-
low zones. Knowing the nature of this dataset—classification of human activities—this
observation aligns well with the understanding that static activities (corresponding to the
class labels yellow and pink) are more challenging to distinguish compared to dynamic
activities, such as various walking activities.

Figure 5. Decision maps using training data (top) and test data (bottom).
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We can see that each decision-map technique has its own ‘signature’: the DBM is
more random; the SDBM shows radial patterns; and DV presents blob-like patterns.
Also, we can see that prediction confidences are always lower near the decision bound-
aries and higher within the decision zones, which is expected. In more detail, the
DBM shows some ‘island’ decision zones that have no data points. Without more infor-
mation, it is hard to tell whether these islands actually exist in the high-dimensional
data or are artifacts of the decision map. In contrast, DV shows some discontinuities,
indicated by ‘breaks’ or ‘jumps’ in the decision boundaries. Regarding the smooth-
ness of the decision boundaries, the SDBM displays the smoothest ones; the DBM
has more complex but still smooth boundaries; and DV exhibits the least smoothness.
The shapes of the decision zones seem to be strongly influenced by the underlying
projection method used for P: the SDBM consistently shows radial, elongated, star-
like structures (a property of autoencoders used for dimensionality reduction); DV
presents well-separated, blob-like, structures (likely due to its use of discriminative
dimensionality reduction); and the DBM exhibits more variable structures (due to its
UMAP projection). It is worth noting that the DBM failed on the Reuters dataset, as
also reflected in the low global metrics score in Figure 3.

Separately, we examined the issue of overfitting. By displaying both the training and
test data, we can check whether the decision maps can visually indicate overfitting. This
overfitting was reflected by the noisier scatters plotted on incorrect background colors
in the test sets (Figure 5 bottom). For the test data, we observed overfitting in all three
methods across all four datasets, except for the simplest one, the HAR dataset. Among
the three methods, DV appeared more prone to overfitting, a fact also evident from the
noticeable difference between ACCt

M − ACCT
M and Const

d − ConsT
d in Figure 3.

4.3.2. Smoothness

The gradient map G, as defined in Equation (5), captures the smoothness of decision
maps. Figure 6 shows this map for the three studied decision-map techniques. We can
see that each technique created its own unique type of gradient. The DV technique shows
high gradient values close to the projected points, which indicates a high degree of data
compression during the projection P in these areas. Additionally, the DV technique shows
some high gradient ‘lines’ connecting the clusters of the projected points, indicating discon-
tinuities. The remaining areas have uniformly low gradient values. In contrast, the SDBM
shows low gradient values almost everywhere, with slightly higher values in the gap areas
between point clusters. Both the above patterns for DV and the SDBM are similar to what
we observed on the blob dataset in Figure 4. Finally, the DBM’s gradient map presents
a more complex pattern, unlike what we observed on the easily classifiable blob dataset
(Figure 4). As stated in Section 4.2, we expected that the gradient maps would not show
peaks and would have low values in areas close to the decision boundaries. However, no
method simultaneously exhibited these two properties. Notably, the SDBM’s relatively
high gradient values in the gap areas between point clusters were still low in absolute
terms, making the SDBM the method that best satisfied the two mentioned gradient-map
properties. The SDBM’s high smoothness can be attributed to the joint training of P and
P−1. DV was clearly the least smooth method, as indicated by the number of discontinuities
reflected in the ‘peaks’ in its gradient map. The DBM fell in between, exhibiting a complex
pattern that displayed less smoothness but still maintained continuity.
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Figure 6. Gradient maps G of the studied decision-map methods. Gradient values are scaled to [0, 1]
within each dataset. The number in the bottom-right corner of each plot is the average Ḡ of each map.

4.3.3. Class Stability Map

As explained earlier in Section 3.1, the global average value for class stability S̄
indicates whether a decision map is robust to (inverse) projection errors. The class stability
map S reveals where the decision map is susceptible to such errors. Figure 7 shows the S
maps for the three studied decision-map techniques. As explained in Section 4.2, pixels
with low S values were expected to appear primarily near the decision boundaries. This
assumption held true, especially for simpler datasets, such as the HAR dataset.

Figure 7. Class stability map S. The number in the bottom-right corner of each plot is the S̄ of each
map.
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However, some anomalies can be seen for each decision-map technique: the DBM
exhibited large zones with low S values. Referring to the decision map (Figure 5), most
of these zones were no data zones (NDZs), in which no data points were projected—see
the zones circled with dotted green lines in Figure 7 (leftmost image). Another interesting
observation is that the most unstable pixels tended to change their labels immediately after
the first round trip in the DBM. This observation was also made for DV. Unlike these two
methods, the SDBM continued to be affected by round-trip errors. This can be observed
by the gradual changes in the S values for the SDBM in Figure 7. After several rounds,
most of the pixels in the SDBM changed their labels, except for those with the most robust
labels, which almost never changed. DV exhibited another salient pattern: given the
blob-like patterns in this decision map, a particular class often formed the ‘base’ of the
blob-like shapes in some cases, e.g., the MNIST dataset using the random forest and neural
network classifiers. The pixels in these areas were more prone to round-trip errors. In
summary, the SDBM performed the worst regarding S, as also indicated by the results for
the global metrics (Figure 3) on the synthetic blob dataset (Figure 4). The DBM and DV
exhibited similar patterns for S, with the DBM slightly outperforming DV on the MNIST
and FashionMNIST datasets. However, all three methods were prone to instabilities, and
many such instabilities existed along their decision boundaries, which, as explained earlier
in Section 4.2, is an undesirable aspect of trustworthy decision maps.

4.3.4. Distance to Decision Boundary

A key application of decision maps is to show how close a point on the map is to the
actual decision boundary of the studied classifier. For this, the 2D distances in the map
should depict the corresponding nD distances as closely as possible. Figure 8 (left) shows,
for each map pixel, its distance to its closest decision boundary in the high-dimensional
space, computed using Equation (6). In this figure, we can see that our expectations align
with the observations—pixels close to the decision boundaries in the map are dark (meaning
that they mapped points close to the actual decision boundaries in nD), whereas pixels
deep in the decision zones are bright (meaning that they mapped points far away from
the nD decision boundaries). Yet, we can also see variations in these distances across the
decision-map methods. The SDBM and DV display patterns closer to the desired outcome
compared to the DBM. DV shows a wider area with low distance values, whereas the
SDBM shows a more concentrated area. This follows the patterns observed in the gradient
maps (Figure 6), where DV expanded the gaps between point clusters, whereas the SDBM
compressed them. The DBM exhibits a complex pattern, where certain zones display low
distance values, even for pixels located in the center of the decision zones. These zones
are particularly noticeable in the upper areas of the HAR and FashionMNIST datasets, as
well as the leftmost area of the MNIST dataset. Interestingly, these zones (circled with red
dotted lines in Figure 8, left) are also NDZs, which coincide with the zones of low S (see
Figure 7). This correlation indicates reduced confidence in the inverse projection in those
zones. The importance of confidence in extrapolation is underscored by these findings and
is discussed further in Section 4.3.5.

4.3.5. Distance to the Nearest Training Data

The distance to the nearest data point N (Equation (7)) indicates how far the inverse
projection for a given pixel is from the actual data distribution. If an inverse projection
is significantly far from this data distribution, t likely corresponds to a point where the
classifier will have generalization difficulties. Ideally, a decision map should not contain
points that are far away from the actual training or testing points, and the pixels close to
these points in the map should actually also be close to the respective data points.

Figure 8 (right) shows the distance N for the three decision-map methods. Data points
are marked as white dots. For DV, the pixels near the data points exhibit low distance
values, as expected. However, this pattern is less evident for the DBM and SDBM. In the
SDBM representation of the FashionMNIST dataset, a zone on the right-hand side displays
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high distance values, even though a data point cluster is projected there. For the DBM, an
entire region in the HAR dataset map also shows very high distance values. Unlike the
SDBM’s case, this is an NDZ, which also has low S values and low B values in the entire
zone (see Figrues 7 and 8 (left), respectively). This high-value region, which is considerably
distant from the data distribution, indicates that the inverse projections in this zone are
unlikely to align with user expectations based on the class labels. This might be due to
the square shape of the 2D map. Depending on the distribution of the data, the inverse
projection is unlikely to uniformly populate the square region. In this case, the inverse
projection has to extrapolate certain pixels that correspond to locations further away from
the training data. This scenario underscores the value of the distance N in offering insights
into potential issues.

Figure 8. (Left) Distance to decision boundary B. (Right) Distance to the nearest training data N.
Projections of the training data are shown as white dots.

Another interesting observation is that the pattern of the N metric is prone to outliers.
For instance, we can see some ripple-like patterns in HAR with the DBM and DV. Although
these patterns appear slightly different in each case, they are consistently caused by the
presence of outliers. Other NDZs not showing high N values might be caused by the same
issue.

Furthermore, a closer examination of the data point locations (white dots) reveals that
not all the close decision-map pixels correspond to data samples that are close to each other.
That is, the 2D distance we can see on the map is not the same as the high-dimensional
distance we have in the data space. In other words, decision-map pixels equally (and very)
close to data points actually depict points at various distances from such data. This can
lead to interpretation problems of the decision maps created by all three methods, more so
for the DBM and SDBM, where this pattern is more visible, and less so for DV.

4.4. Computational Efficiency

We measured the training and inverse projection time of the three studied decision-
map techniques on an Intel Core i7-12700 CPU machine with 32 GB of RAM and an NVIDIA
GeForce RTX 3070 GPU with 8GB of RAM. For this, we used the synthetic blob dataset
with varying dimensions (10–500) and numbers of samples (250–5000). In particular, we
evaluated DV, which requires a pre-trained classifier, with logistic regression, random
forest, neural network, and SVM classifiers. It is important to note that DV’s training time
varied based on the classifier used (as detailed below).

Figure 9 shows the training times for the compared methods (that is, the time needed
to construct the functions P and P−1). When the number of samples N and dimensions
n were both small (N < 1000, n < 50), the training time of DV (with logistic regression)
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was comparable to that of the SDBM and DBM. For larger n and/or N, compared to the
real-world datasets (Table 1), the DBM and SDBM showed comparable training times. DV,
however, exhibited substantially higher training times. The SDBM remained the fastest
method, with average training times of less than 10 s across all tested scenarios. The DBM’s
training time was affected more by the number of samples N and far less by the number
of dimensions n. DV’s training time, when using SVM, increased drastically for larger n
and/or N—training DV with SVM for n = 500 and N = 5000 took over 2.7 h. This steep
increase made SVM-based DV experiments unfeasible on our real-world datasets.

Figure 10 shows the time required to create the decision maps (given trained direct and
inverse projections P and P−1) for various numbers of dimensions n, samples N, and grid
resolution I. As for training, DV took the longest and was heavily influenced by all these
parameters, even failing to handle resolutions over I = 150 pixels squared. Conversely,
both the DBM and SDBM achieved relatively high and consistent performance, roughly
linear in the number of pixels in the map and the number of samples N. In summary, we
conclude that the DBM and SDBM are practical methods for creating decision maps for
real-world datasets, whereas DV is not.
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5. Discussion
5.1. Decision Maps for Deep Learning Variations

Previous evaluations covered the way the three studied decision-map methods—DBM,
SDBM, and DeepView—perform over a wide range of classification models. However, in
the respective study, we used a single model based on a deep learning architecture (see
Section 3.4). It can be argued that with the increasing prominence of deep learning, it is
especially important to gather insights into how decision-map methods perform on this
particular family of algorithms.

We discuss this next by separately studying the decision maps created for four such
deep learning architectures. First, we considered the original and relatively simple neural
network architecture, already used in previous evaluations, for comparison purposes. This
architecture contains three fully connected layers, each with 200 units. Note that, although
small, it is an architecture that has been used in previous deep learning applications to
compute direct projections [34], inverse projections [25], and decision maps [22]. We then
used two larger variants of this architecture, with four layers of 1024 units and four lay-
ers of 2048 units, respectively. Finally, we used TabNet [51], a very recent architecture
designed for tabular data, which combines the principles of decision trees and neural net-
works and uses attention mechanisms [52] to prioritize important features during decision
making. We did not include more specialized architectures, such as convolutional neural
networks (CNN) [53], recurrent neural networks (RNN) [54], long short-term memory
(LSTM) networks [55], or deep belief networks (DBMs) [56], in this comparison. Although
these architectures are quite powerful, they are usually designed to be used with one
particular type of data, e.g., images or time-dependent signals.

Figure 11 shows the performance metrics for the three decision-map techniques trained
to classify four datasets using the above-mentioned four deep learning architectures. We can
see that the four deep learning techniques—that is, within one set of four colored bars in the
respective plots—were quite similar. The large differences that occurred were dependent
on the dataset or metric, similar to what we saw for the architectures evaluated earlier (see
Figure 3). The only outlier in this respect was TabNet when run on the Reuters dataset to
compute the SDBM map and, to a much lesser extent, when run on the FashionMNIST
dataset to compute the DBM map. We examine these two situations separately below.
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Figure 11. Label-related metrics for different neural networks. NN m ∗ n denotes a neural network
with m hidden layers, each with n units.

In the latter case, TabNet achieved low ACCC but relatively higher Consd and Consp
values. This demonstrates the situation when the classifier f performs poorly and the
decision map is of good quality. This is a very good example of the use of DBMs—the maps
can serve as a reliable indicator of the classifier’s under-performance.
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In the former case, TabNet achieved lower scores in all metrics. If we look at the actual
decision maps (Figure 12), we can see that these were, for all four architectures, overall
quite similar for the same dataset. Moreover, these maps look quite different from those of
the other classifiers depicted in Figures 4–6, apart from the neural network classifier for the
two sets of images. In other words, the variability of the decision maps was much smaller
over one type of architecture (neural networks) than across different architectures, which
was expected. However, Figure 12 also shows some subtle differences between the maps in
the middle of the depicted data clusters, that is, close to the locations where the decision
boundaries appear. This indicates that the four studied deep learning classifiers, indeed,
behaved slightly differently in the most uncertain areas. Also, we can see that the more
complex the model, the more complex its decision boundaries. For example, in the case of
SDBM–HAR, the decision boundary along the green zone is relatively simple for the NN
3 ∗ 200 model. For the NN 4 ∗ 1024 model, the dark blue intersects between the green zone
and the other zones (pink and yellow). Further, for the most complex model NN 4 ∗ 2048,
the pink zone thrusts into the middle of the green zone and the light-blue zone. Finally,
with TabNet, the decision boundary of the green zone becomes rugged, and the whole
decision boundaries become more complicated. This can be explained by the fact that the
more complicated the classifier, the greater the chance it will overfit the given training data.
Although this aspect is known in machine learning, the fact that we can show it directly
using decision maps has, to the best of our knowledge, not been done previously.

In summary, our findings highlight the consistent performance of the decision-map
methods across different datasets and classifiers. The absence of a clear best method
for computing decision maps underscores the importance of a comprehensive selection
workflow for decision maps. We propose such a workflow for choosing the decision-map
method in the next section (see Section 5.2).

Figure 12. Decision maps for different neural networks (see Section 5.1).

5.2. Workflow to Guide the Selection of a Decision-Map Technique

After combining all the results of our evaluation, we can see that there was no clear
winner among the studied decision-map techniques. When we considered the global
quality metrics (Section 3.1), we found that each method reached its maximal quality on
different datasets. Surprisingly, the unsupervised method (DBM) sometimes scored higher
than the supervised ones (SDBM and DV) on the MNIST dataset. However, the DBM’s
failure on the Reuters dataset indicates that more challenging datasets may still require
some level of supervision.
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The results of the local metrics provide more insights into our conclusion about there
being no winner. For the synthetic dataset, all methods exhibited quite similar patterns,
except for DV’s poor smoothness and the SDBM’s slightly worse class stability. For the
real-world datasets, the patterns were less distinct. Yet, some trends can be discerned.
The smoothness of DV was consistently low, regardless of the simplicity or complexity of
the datasets. Additionally, DV and the SDBM consistently showed more representative
distances (B and N) compared to the DBM.

Concerning speed, the SDBM and SBM were clear winners—they definitely surpassed
DV in both training and inference (map construction) times by up to three orders of
magnitude, which makes the latter unsuitable for creating decision maps in real-world
application scenarios, especially when using more time-consuming classifiers such as SVM.

Compared to the SDBM and DV, the DBM has a separate advantage. As outlined in
Section 2, the DBM allows one to use any chosen direct projection function P to create
decision maps. This can be important in cases where one knows that a given P is optimal,
either for quantitative reasons or because it creates projections that are easier to interpret
by users.

In conclusion, since there was no clear winner, the choice of a decision-map method
should be guided by the specific requirements and constraints of individual use cases.
We encapsulate this by proposing a workflow for choosing a method to create decision
maps, as illustrated in Figure 13. Given a specific dataset and a set of potential classifier
candidates, the workflow can assist users in making a choice by following the steps below:

1. If the user has already chosen a projection function P, they should select the DBM, as
this is the only method that can accommodate a predefined P, and proceed to step 4.

2. If the user does not have a specific P, the next key aspect to consider is computational
efficiency. If speed is important and the data to be visualized are large, DV should be
excluded from consideration, and the workflow proceeds to step 4.

3. If the user does not have a specific P and computational efficiency is not a concern,
one should consider if smoothness is important. If yes, DV should be excluded, and
one can proceed to step 4.

4. If more than a single classifier–decision map combination remains to be chosen from,
global quality metrics can be used to select the optimal one. The key metrics to use
here are ACCC, ACCM, and Consd (defined in Section 3.1), which can be computed
for any combination of direct projection, inverse projection, and classifier. Note that
Consp and S̄ are not available when the selected projection P cannot infer new data,
such as in the case of non-parametric, non-out-of-sample projections like t-SNE.

5. Finally, visualizations of local metrics can be used to gain more trust in and/or a
better understanding of the behavior of the chosen decision map, as described in the
scenarios in Section 4.

5.3. What Decision Maps Really Are

A key observation running through all our experiments is that decision maps are
imperfect instruments that map a part of the high-dimensional space of a classification
model to a 2D surface or map. Although our various metrics have demonstrated differences
between the three evaluated decision-map methods, it is still unclear how these 2D maps
are created. To gain more insights into this, we consider a simple experiment. First, we
create a three-dimensional dataset with six concentrated blobs (data-point clusters), each
of a separate class. Next, we use the three studied techniques to construct the respective
decision maps for a given classifier (note that the classifier choice is not important). Finally,
we backproject the map pixels onto the data space, which is three-dimensional in our case,
and directly visualize the obtained set of 3D points.

Figure 14 shows these ‘backprojected’ decision maps for the DBM, the SDBM, and
DV, with colors mapping the six classes. Strikingly, in all three cases, the backprojected
shapes are actually surfaces embedded in 3D, which connect the six data-point clusters.
The SDBM and DBM create smoother surfaces, whereas DV creates a tighter, locally less
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smooth surface that connects the six clusters (this fully matches the earlier observations
concerning the line-like gradient maxima of the DV method). The fact that decision maps
are actually sampling a surface from the high-dimensional data space is, to the best of our
knowledge, an insight that has not been described in any earlier works on decision maps.
Note that this is not a trivial finding—the fact that the backprojection of a 2D decision map
is itself a surface may not be immediately apparent based on the construction of current
decision-map techniques. Also note that the actual decision boundaries in the data space
(which are themselves surfaces) are not visualized by the decision maps as such—rather,
what the decision maps do show are the intersections of these decision boundaries with the
aforementioned surface. As such, the way this surface is constructed by a given decision-
map method will strongly influence which parts of the actual decision surfaces will be
shown in the final decision map.

Given a dataset and a
set of classifiers

Do you have
specified P?

Is short
computation time

desired?

Yes

Is smoothness
desired?

Global metrics on
DBM, SDBM.

Pick the
combination with the

best core

Global metrics on all
3 methods.

Pick one combination
with highest score

end

Yes

Yes

No

No

No

Global metrics on
DBM with each

classifier. Choose the
one combination with

the best  score

Optional: compute the
local metrics to assist

interpretation 

Figure 13. Workflow for choosing the most suitable decision map in a given user application context.

DBM (UMAP+NNinv) SDBM DeepView

Figure 14. Decision maps for a synthetic blob dataset with 3 dimensions and 6 classes (see Section 5.3).
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5.4. Limitations

We single out two limitations of our current work.
Decision maps: Although they significantly simplify the understanding of how a

trained ML model works, decision maps require significant effort to become actionable, that
is, leading to concrete insights that explain and/or improve the working of a given ML
model. In other words, it is still challenging for users to make decisions using decision
maps. Our work partially helps in this direction by helping users to make decisions about
(a) how and where they trust a given decision map, and (b) which decision-map technique
to use in practice in a given context. Improvements can, and should, be made to the
understandability of decision-map visualizations, e.g., explaining which parts of a given
training set, training process, or model are responsible for visible patterns in such a map.
Such extensions are not the scope of this work but are very promising directions for future
work.

Evaluation: Our evaluation, which covered only five datasets and seven classifiers, is
necessarily limited in its generalizability. More models and architectures exist in machine
learning. How the three decision-map techniques studied (DBM, SDBM, and DeepView)
cope with these models is not necessarily the same as for the models we have studied so far,
so our evaluation can be extended by considering additional models. However, we argue
that our choice for our initial evaluation, which consisted of the aforementioned datasets
and classifiers, was as follows: (1) As no similar evaluation of decision maps existed before
our work, we had to start with relatively simple cases, that is, datasets and classifiers with
known behavior. This way, we could use these datasets and classifiers as ‘ground truth’
to actually assess the produced decision maps. (2) Our limited evaluation pointed out
several key insights, such as the very limited computational scalability of DeepView and
the fact that all decision-map methods only visualize a surface subset that passes close to the
training samples in the data space. These limitations will exist for any more complex model
visualized using the current methods. As such, future work should focus on removing
these limitations before applying decision-map techniques to more complex models.

6. Conclusions

In this paper, we have presented a framework for exploring and comparing methods
for constructing decision maps used to visualize the behavior of general-purpose classifiers
of high-dimensional data. To this end, our framework proposes six global metrics and
four local metrics to, respectively, gauge the overall quality and the local quality of a
decision map. We validated our framework by applying it to a simple synthetic dataset, for
which the expected behavior of the decision maps constructed using three state-of-the-art
decision-map techniques was known. Furthermore, we compared these three techniques
with combinations of four real-world datasets and four classifiers.

Our results showed that there is no decision-map method that consistently scores better
than its competitors in all aspects deemed relevant for quality. Furthermore, we highlighted
that all the studied decision-map methods have inherent limitations in various quality
aspects and that these limitations can fluctuate significantly depending on the studied
dataset and/or classifier being explored. To aid users in choosing a suitable decision-map
method for practical applications, we proposed a workflow that considers all the studied
quality aspects and proceeds with an elimination, followed by the optimization of these
aspects.

Separately, we showed that all the studied decision maps have an inherent, previously
unknown limitation—they can only visualize a surface from the entire high-dimensional
space. The way this surface is constructed depends on the actual decision-map technique.
As a consequence, the decision-map visualization reflects both the actual decision bound-
aries in the data and the way these intersect with the surface constructed implicitly by the
decision-map technique.

There are several directions for future work. First, our evaluation can be extended
by considering more datasets and classifiers and, when these are available, more decision-
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map techniques. Separately, our finding that decision maps actually visualize a single
surface from the high-dimensional space can turn this inherent limitation of decision-map
techniques into a strength. We can imagine ways to parameterize this implicit surface
under user control to let it ‘slice’ through the actual high-dimensional decision boundaries
in an interactive way, thereby offering the user the possibility to examine these decision
boundaries in a more controlled and global way.
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