
Citation: Ibáñez, J.; Alonso, J.M.;

Defez, E.; Alonso-Jordá, P.; Sastre, J.

Computing the Matrix Logarithm

with the Romberg Integration

Method. Algorithms 2023, 16, 434.

https://doi.org/10.3390/a16090434

Academic Editors: Dunhui Xiao and

Shuai Li

Received: 3 August 2023

Revised: 5 September 2023

Accepted: 6 September 2023

Published: 9 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Computing the Matrix Logarithm with the Romberg
Integration Method
Javier Ibáñez 1 , José M. Alonso 2 , Emilio Defez 1 , Pedro Alonso-Jordá 3 and Jorge Sastre 4,∗

1 Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain; jjibanez@dsic.upv.es (J.I.); edefez@imm.upv.es (E.D.)

2 Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain; jmalonso@dsic.upv.es

3 Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camino de Vera
s/n, 46022 Valencia, Spain; palonso@upv.es

4 Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politècnica de València, Camino de
Vera s/n, 46022 Valencia, Spain

* Correspondence: jsastrem@upv.es

Abstract: The matrix logarithm function has applicability in many engineering and science fields.
Improvements in its calculation, from the point of view of both accuracy and/or execution time, have
a direct impact on these disciplines. This paper describes a new numerical algorithm devoted to
matrix logarithm computation and using the Romberg integration method, together with the inverse
scaling and squaring technique. This novel method was implemented and compared with three
different state-of-the-art codes, all based on Padé approximation. The experimental results, under
a heterogeneous matrix test battery, showed that the new method was numerically stable, with an
elapsed time midway among the other codes, and it generally offered a higher accuracy.

Keywords: Romberg integration method; matrix logarithm; matrix functions

1. Introduction

Let A ∈ Cn×n be a non-singular matrix whose eigenvalues are found in C− (−∞, 0 ].
A logarithm of A is defined as any matrix X ∈ Cn×n such that

A = eX , (1)

where eX = ∑
n≥0

Xn

n!
is the matrix exponential of X. Although any non-singular matrix A has

infinite logarithms, we will only consider the principal logarithm represented by log (A),
which is the only one whose eigenvalues all belong to the set {z ∈ C;−π < Im(z) < π} [1].

The principal matrix logarithm is widely employed in numerous disciplines in science
and engineering, such as sociology [2], optics [3], biomolecular dynamics [4], quantum
chemistry [5], quantum mechanics [6], mechanics [7], buckling simulation [8], the study of
viscoelastic fluids [9,10], control theory [11], computer graphics [12], computer-aided design
(CAD) [13], neural networks [14], machine learning [15–19], brain-machine interfaces [20],
the study of Markov chains [21], graph theory [22], optimization [23], topological distances
between networks [24], statistics and data processing [25], and so on. The following is a
more detailed description of the aforementioned fields in which the matrix logarithm has
direct applicability.

Embeddability and identification issues, which are especially pertinent to modeling
social phenomena using continuous-time Markov structures, when only fragmentary data
are available or when the observations contain errors, are considered in [2]. The logarithm
function is required for estimating the intensity matrix.
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A procedure based on using a linear differential equation expansion, for the extraction
of elementary properties of a homogeneous depolarizing medium from the Mueller matrix
logarithm is provided in [3]. In a polarimetric measurement, the differential matrix and,
consequently, the elementary polarization properties of the medium are obtained using the
matrix logarithm of the experimental Mueller matrix.

In [4], the method for identifying the most important metastable states of a system
with complicated dynamical behavior from time series information was extended to handle
arbitrary dimensions and to enlarge the diffusion classes considered. This approach repre-
sents the effective dynamics of the full system through a Markov jump process between
metastable states and the dynamics within each of these metastable states with diffusions.
In this method, the logarithm of the correlation matrix must be computed.

In [5], the random phase approximation (RPA) correlation energy was expressed in
terms of the exact local Kohn-Sham (KS) exchange potential and the corresponding adiabatic
and non-adiabatic exchange kernels for density-functional reference determinants. This
approach extends the RPA method and yields correlation energies that are more accurate
than the traditional RPA technique. The logarithm matrix function is required in coupling
strength integration.

A classical upper bound for quantum entropy is identified and illustrated in [6], in-
volving the matrix logarithm of the variance in phase space of the classical limit distribution
of a given system.

In [7], micro-dilatation theory or void elasticity was extended to both large displace-
ment and large dilatation using thermodynamic principles. The deformation gradient
tensor was defined by means of the matrix exponential function. The relationship of the
displacement gradient and deformation gradient tensor was implemented using the matrix
logarithm function.

A finite-element-based computational framework for modeling the buckling distortion
of overlap joints due to gas metal arc welding was presented in [8]. The total strain tensor
was obtained thanks to logarithm computation of the displacement tensor.

In [9], the matrix logarithm conformation representation of a viscoelastic fluid flow
was implemented within a finite element method (FEM) context. A different derivation of
the log-based evolution equation was also presented. An extension of the matrix logarithm
formulation of the conformation tensor, to remove instabilities in the simulation of unsteady
viscoelastic fluid flows using the spectral element method, was described in [10].

In the context of the identification of linear continuous-time multivariable systems, a
new series for the computation of the logarithm of a matrix with improved convergence
properties was given in [11].

To facilitate the design of pleasing inbetweening motions that interpolate between an
initial and a final pose (affine transformation), steady affine morph (SAM) was proposed
in [12]. For that purpose, the extraction of affinity roots (EAR) algorithm was designed,
which is based on closed-form expressions in two or three dimensions, using matrix
logarithm computation. SAM applications to pattern design and animation and to key-
frame interpolation were also discussed.

The problem of synthesizing a smooth motion for rigid bodies that interpolates a set
of configurations in space was addressed in [13] by means of the De Casteljau algorithm,
whose classical form was used to generate interpolating polynomials. Lie groups are
the most simple symmetric spaces, and for them expressions for the first- and second-
order derivatives of generalized polynomial curves of arbitrary order, defined using the
mentioned generalized algorithm, were developed. The behavior of the algorithm on
m-dimensional spheres was also analyzed. The algorithm implementation depended on
the ability to compute matrix exponentials and logarithms.

Neural networks are commonly used to model conditional probability distributions.
The idea is to represent the distribution parameters as functions of conditioning events,
where the function is determined by the architecture and weights of the network. In [14],
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the matrix logarithm parametrization of covariance matrices for multivariate normal distri-
butions was explored.

Deep learning methods are popular in many image and video processing applications,
where symmetric positive definite (SPD) matrices appear and their logarithms are required.
In [15], a deep neural network for non-linear learning was devised. It was composed
of different layers, such as a matrix eigenvalue logarithm layer to perform Riemannian
calculations on SPD matrices.

In applications related to machine learning, such as Bayesian neural networks, deter-
minantal point processes, generalized Markov random fields, elliptical graphical models,
or kernel learning for Gaussian processes, a log determinant of a positive definite matrix
and its derivatives must be computed. However, the cost of such a function could be
computationally prohibitive for large matrices, where Cholesky factorization is involved.
Many approaches exploit the fact that the log determinant of a matrix is equal to the trace
of the logarithm of that matrix, and thus this trace must be computed. In this way, this trace
was worked out in [16] using stochastic trace estimators, based on Chebyshev or Lanczos
expansions, which use fast matrix vector multiplications. Alternatively, the trace of the
logarithm of the matrix was approximated under the framework of maximum entropy,
given information in the form of moment constraints from stochastic trace estimation [17],
from Chebyshev series approximations [18], or using a stochastic Lanczos quadrature [19].

Motor-imagery brain–machine interfaces use electroencephalography signals recorded
from the brain to decode a movement imagined by the subject. The decoded information
can be used to control an external device, and this is especially useful for individuals
with physical disabilities. Brain signals must be classified, using machine learning models,
usually embedded in microcontroller units. In [20], a multispectral Riemannian classifier
(MRC)-based model was proposed and incorporated in a low-power microcontroller with
parallel processing units. The MRC was composed of multiple stages, such as the one in
charge of calculating the logarithm of the so-called whitened covariance matrix. The matrix
logarithm was computed via the eigenvalue decomposition by means of the QR algorithm
with a implicit Wilkinson shift.

In [21], it was shown how to obtain the most appropriate true or approximate gen-
erator matrix Q for an empirically observed Markov transition matrix P, with particular
application to credit ratings. Credit rating transition matrices P are traditionally considered
in credit risk modeling and in the financial industry. Given that empirically estimated
matrices P are mostly for a one year period, there is a need to recover a matrix generator Q,
such as Q = log(P), so that a transition matrix P(t) = etQ can be obtained for any arbitrary
period of time t, e.g., with the purpose of assessing a possible default.

Systems involving transient interactions arise naturally in many areas, including
telecommunications, online social networking, and neuroscience. A new mathematical
framework where network evolution is handled continuously over time was presented
in [22], providing a representation of dynamical systems for the concept of node central-
ity. The novel differential equations approach, where the logarithm function of a matrix
resulting from the subtraction of the identity and the continuous-time adjacency matrix
appears, is convenient for modeling and analyzing network evolution. This new setting
is suitable for many digital applications, such as ranking nodes, detecting virality, and
making time-sensitive strategic decisions.

Two algorithms to solve the frequency-limited Riemannian optimization model order
reduction problems of linear and bilinear systems were proposed in [23]. For this purpose,
a new Riemannian conjugate gradient scheme based on the Riemannian geometry notions
on a product manifold was designed, and a new search direction was then generated.
The algorithms are also suitable for generating reduced systems over a frequency interval
in band-pass form. Both algorithms involved the computation of matrix logarithms and
Fréchet derivatives.

Various distance measures for networks and graphs in persistent homology were
surveyed in [24]. The paper was especially focused on brain networks, but the methods
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could be adapted to any weighted graph in other fields. Among these metrics, the log-
Euclidean distance can be found, which provides the shortest distance between two edge
weights matrices and where the logarithm of both matrices must be computed.

Population covariance matrix estimation is an important component of many statistical
methods and applications, such as the optimization and classification of human tumors
from genomic data, among many others. In [25], a method of estimating the covariance
matrix by maximizing the penalized matrix logarithm transformed likelihood function was
introduced. In this function, the matrix logarithm of the covariance matrix appears.

The matrix logarithm can also be used to retrieve the coefficient matrix of a system
driven by the linear differential equation y′ = Xy from observations of the vector y, and to
calculate the time-invariant element of the state transition matrix in ODEs with periodic
time-varying coefficients [26].

The applicability of the matrix logarithm in so many distinct areas has encouraged the
development of different approaches to its evaluation. The traditionally proposed methods
incorporate algorithms based on the inverse scaling and squaring technique [27], the
Schur-Fréchet procedure [28], the Padé approximants [29–36], arithmetic-geometric mean
iteration [37], numerical spectral and Jordan decomposition [38], contour integrals [39], or
different quadrature formulas [40–43]. MATLAB incorporates logm as a built-in function
that uses the algorithms described in [33,34] to compute the principal matrix logarithm.
Recently, an implementation that used matrix polynomial formulas to efficiently evaluate
the Taylor approximation of the matrix logarithm was described in [44].

The inverse scaling and squaring procedure, initially proposed in [27], is an extension
to the matrix domain of the technique used by Briggs to compute his table of logarithms,
collected in [45]. This method takes advantage of the matrix identity log (A) = 2s log (A2−s

)
and evaluates log (A) by combining argument reduction and approximation. By taking
a certain number of square roots of A, the problem is reduced to the computation of the
logarithm of a matrix with eigenvalues close to 1. Indeed, the approximation of the matrix
logarithm is performed in three different stages, as explained in [27]:

1. Find an integer s, so that matrix A2−s
is close to the identity matrix I. For that purpose,

an algorithm that computes matrix square roots must be employed;
2. Approximate log (A2−s

) by rm(A2−s − I), where rm is the diagonal Padé approximant
of degree m to the function log (1 + x);

3. Compute the approximation log (A) ≈ 2srm(A2−s − I).

Taking into account the previous three-stage procedure and the following integral
expression for the logarithm [40]

log(A) =
∫ 1

0
(A− I)((A− I)x + I)−1dx, (2)

our proposal in this work is to compute the matrix logarithm in three phases somewhat
similar to those described above. Notwithstanding, log (A2−s

) is approximated in the sec-
ond stage by means of the expression (2) and using the well-known Romberg method [46].
In addition, the matrix square roots in the first phase are worked out thanks to the scaled
Denman–Beavers iteration explained in [1]. The importance of the method used for ma-
trix square root computation must be emphasized.Working with one method or another
has a direct impact, not only on the accuracy of the result, but also on the associated
execution time.

Romberg’s method employs the trapezoidal rule to approximate numerically the
definite integral I( f ) =

∫ b
a f (x)dx. It reduces the integration step h by half at each iteration

and applies the Richardson extrapolation formula to the previous results. This quadrature
method generates the so-called Romberg tableau, in the form of a lower triangular matrix R,
whose elements are numerical estimates of the definite integral to be calculated. If we take

hi =
b− a
2i−1 , i ≥ 1, (3)
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as the integration step to be applied in the successive iterations, we define the calculation
of each term {Ri,j} as

R1,1 =
b− a

2
( f (a) + f (b))

Ri,1 =
Ri−1,1

2
+ hi

2i−2

∑
k=1

f (a + (2k− 1)hi), i ≥ 2

Ri,j =
4j−1Ri,j−1 − Ri−1,j−1

4j−1 − 1
, 2 ≤ i, 2 ≤ j ≤ i


. (4)

Below is a diagram depicting how the triangular matrix elements are filled after m
iterations, where the arrows indicate the order in which each term is generated from the
previous ones:

R1,1
↓ ↘

R2,1 → R2,2
↓ ↘ ↘

R3,1 → R3,2 → R3,3
↓ ↘ ↘ ↘

R4,1 → R4,2 → R4,3 → R4,4
...

...
...

...
. . .

Rm,1 → Rm,2 → Rm,3 → Rm,4 . . . Rm,m.

(5)

The last diagonal term Rm,m of the matrix is always the most accurate estimate of the
integral. In addition, according to ([46] p. 342) , it is known that if function f has 2m + 2
continuous derivatives, then the asymptotic error is

|I( f )− Rm,m| = O
(

4−mh2m+2
)

. (6)

Moreover, if m is sufficiently large, then

|I( f )− Rm,m| < |Rm,m − Rm−1,m−1|. (7)

Therefore, the previous process must be continued until the difference between two
successive diagonal elements becomes sufficiently small.

In this paper, we represent as In (or I) the matrix identity of order n. The matrix norm
|| · || addresses any subordinate matrix.In particular, || · ||1 is the traditional 1-norm. If
A = (aij) ∈ Cn×n, its 2-norm denoted by ‖A‖2 complies with that in [47]

max
i,j

∣∣aij
∣∣ ≤ ‖A‖ ≤ n max

i,j

∣∣aij
∣∣.

This work is structured as follows: Section 2 presents a theoretical analysis of the error
incurred when computing the matrix logarithm using the Romberg integration technique,
together with the inverse scaling and squaring Romberg numerical method proposed and
the suggested corresponding algorithms. Section 3 includes the results of the experiments
carried out to exhibit the numerical and computational performance of this method under
a state-of-the-art and heterogeneous test battery and with respect to three third-party codes.
Finally, Section 4 provides the conclusions.

2. Romberg Method for the Matrix Logarithm

In this section, a theoretical study of the error committed by the inverse scaling and
squaring Romberg method is carried out. This will allow us to determine the number of
iterations m required by the Romberg method, so that the error incurred in the calculation
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of the logarithm of a matrix, previously scaled s times, is less than or equal to the unit
roundoff. We provide algorithms for the calculation of the suitable values of the scaling
parameter s and the number of iterations m, as well as for computation of the matrix
logarithm using the Romberg technique.

2.1. Theoretical Analysis of the Error

The error E1 incurred when approximating I( f ) =
∫ b

a f (x)dx as R1,1 can be provided
by means of the Euler-MacLaurin formula (see [48] chapter 5), in terms of the derivatives
of function f (x) evaluated at the endpoints of the integration interval, i.e.,

E1 = I( f )− R1,1 = ∑
k≥1

a(1)k h2k,

a(1)k = ck

(
f (2k−1)(b)− f (2k−1)(a)

)
,

ck =
(−1)kB2k
(2k)! ,

where h is the initial value of the integration step and B2k is the Bernoulli number of order
2k. If we initially consider h = 1, then the error E2 in R2,2 satisfies

E2 = I( f )− R2,2 = ∑
k≥2

a(2)k ,

a(2)k = 1−41−k

4−1 a(1)k .

Similarly, the error that occurs when computing R3,3 is

E3 = I( f )− R3,3 = ∑
k≥3

a(3)k ,

a(3)k = 1−42−k

42−1 a(2)k .

Proceeding analogously, the error committed in Rm,m fulfils that

Em = I( f )− Rm,m = ∑
k≥m

a(m)
k ,

a(m)
k = 1−4m−1−k

4m−1−1 a(m−1)
k .

Let us see what the value of |a(m)
k | is:

∣∣∣a(m)
k

∣∣∣ = 1− 4m−1−k

4m−1 − 1

∣∣∣a(m−1)
k

∣∣∣ = 1− 4m−1−k

4m−1 − 1
1− 4m−2−k

4m−2 − 1

∣∣∣a(m−2)
k

∣∣∣
= · · · = 1− 4m−1−k

4m−1 − 1
1− 4m−2−k

4m−2 − 1
· · · 1− 41−k

4− 1

∣∣∣a(1)k

∣∣∣.
Since, in our case and according to (2), I( f ) =

∫ 1
0 (A− I)((A− I)x + I)−1dx, then∣∣∣a(1)k

∣∣∣ = |B2k|
(2k)!

∥∥∥ f (2k−1)(1)− f (2k−1)(0)
∥∥∥,

and
f (2k−1)(x) = (−1)2k−1(2k− 1)!

[
(A− I)((A− I)x + I)−1

]2k
,

where ∣∣∣a(1)k

∣∣∣ = |B2k|(2k− 1)!
(2k)!

∥∥∥∥[(A− I)A−1
]2k
− (A− I)2k

∥∥∥∥
=
|B2k|(2k− 1)!

(2k)!

∥∥∥(A− I)2k
(

A−2k − I
)∥∥∥,
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and ∣∣∣a(m)
k

∣∣∣ = 1− 4m−1−k

4m−1 − 1
1− 4m−2−k

4m−2 − 1
· · · 1− 41−k

4− 1
|B2k|

2k

∥∥∥(A− I)2k
(

A−2k − I
)∥∥∥.

The first coefficient of the error series is∣∣∣a(m)
m

∣∣∣ = 1− 4−1

4m−1 − 1
1− 4−2

4m−2 − 1
· · · 1− 42−m

42 − 1
1− 41−m

4− 1
|B2m|

2m

∥∥∥(A− I)2m
(

A−2m − I
)∥∥∥

=
1
4

1
42 · · ·

1
4m−2

1
4m−1

|B2m|
2m

∥∥∥(A− I)2m
(

A−2m − I
)∥∥∥

=
|B2m|

2m4
m(m−1)

2

∥∥∥(A− I)2m
(

A−2m − I
)∥∥∥.

On the other hand,∣∣∣a(m)
k

∣∣∣ = 1− 4m−1−k

4m−1 − 1
1− 4m−2−k

4m−2 − 1
· · · 1− 41−k

4− 1
|B2k|
(2k)!

∥∥∥ f (2k−1)(1)− f (2k−1)(0)
∥∥∥

=
1− 4m−1−k

4m−1 − 1
1− 4m−2−k

4m−2 − 1
· · · 1− 41−k

4− 1
|B2k|
(2k)!

(2k− 1)!
∥∥∥∥[(A− I)A−1 − (A− I)

]2k
∥∥∥∥

=
1− 4m−1−k

4m−1 − 1
1− 4m−2−k

4m−2 − 1
· · · 1− 41−k

4− 1
|B2k|

k

∥∥∥∥[(A− I)2 A−1
]2k
∥∥∥∥.

Now, if we apply the mean value theorem, it follows that

f (2k−1)(1)− f (2k−1)(0) = f (2k)(α), α ∈ [0, 1],

and

∣∣∣a(m)
k

∣∣∣ = 1− 4m−1−k

4m−1 − 1
1− 4m−2−k

4m−2 − 1
· · · 1− 41−k

4− 1
|B2k|
(2k)!

‖(2k)!

[
(A− I)((A− I)θ + I)−1

]2k+1
∥∥∥∥ ≈ 1− 4m−1−k

4m−1 − 1
1− 4m−2−k

4m−2 − 1
· · · 1− 41−k

4− 1
|B2k|

∥∥∥(A− I)2k+1
∥∥∥,

where we consider that θ is a value close to 0. Thus,∣∣∣a(m)
m

∣∣∣ ≈ 1

4
(m−1)m

2

|B2m|
∥∥∥(A− I)2m+1

∥∥∥. (8)

Taking into account the Romberg method explanation provided in the previous section,
we consider following (4) that

f (x, B) = (B− I)((B− I)x + I)−1

hi =
1

2i−1 , i ≥ 1

R1,1 =
1
2
( f (0, B) + f (1, B))

Ri,1 =
Ri−1,1

2
+ hi

2i−2

∑
k=1

f ((2k− 1)hi, B), i ≥ 2


, (9)

is an approximation of the integral∫ 1

0
(B− I)((B− I)x + I)−1dt, (10)



Algorithms 2023, 16, 434 8 of 22

derived from (2), where B = A2−s
. Once matrices Ri,1 have been determined, we define

Ri,j =
4j−1Ri,j−1 − Ri−1,j−1

4j−1 − 1
, 2 ≤ i, 2 ≤ j ≤ i. (11)

Thus, the block lower triangular matrix is generated row by row, so that

R1,1
R2,1 R2,2
R3,1 R3,2 R3,3
R4,1 R4,2 R4,3 R4,4

...
...

...
...

. . .
Rm,1 Rm,2 Rm,3 Rm,4 . . . Rm,m.

(12)

In this paper, we propose to conclude this process when, for certain values of m and s,
this inequality is achieved:

1

4
(m−1)m

2

|B2m|
∥∥∥(B− I)2m+1

∥∥∥ ≤ u, (13)

where u = 2−53 is the unit roundoff in IEEE double precision arithmetic.
Nevertheless, it should be noted that this value of m will be understood as a maximum.

In practice and according to expression (7), the Romberg method may be stopped before-
hand if the difference in the absolute value between two consecutive diagonal elements is
less than or equal to an established tolerance.

2.2. Description of the Proposed Algorithms

Algorithm 1 approximates L = log(A) using the Romberg method and the inverse
scaling and squaring procedure. First, in Step 1, this algorithm preprocesses matrix A
such as in B = T−1 AT, where T is a permutation of a diagonal matrix whose elements are
integer powers of two. This preprocessing, or balancing, attempts to group the possible
ill-conditioning of the eigenvectors of matrix A into matrix T. As a result, the norm of each
row of matrix B is equal to the norm of the corresponding column. The MATLAB balance
function can be used to achieve this goal.

Then, Steps 2 to 8 scale matrix A by taking successive square roots, until (13) is fulfilled
or the maximum number of square roots to be computed is exceeded. Regardless of the
reason for exiting this iterative process, the maximum number of rows m to be generated in
the Romberg tableau will have been determined. A MATLAB function based on the scaled
Denman–Beavers iteration, as described in [1] (Equation (6.28)), has been developed to
calculate the required matrix square roots. Denman–Beavers iteration is defined by

Xk+1 =
1
2
(µkXk + µ−1

k Y−1
k ),

Yk+1 =
1
2
(µkYk + µ−1

k X−1
k ),

(14)

where X0 = A, Y0 = I, µk = |det(Xk)det(Yk)|−1/(2n) and n represents the size of matrix
A. If convergence is reached, A1/2 is approximated by Xk. Additionally, the 1-norm of
(A− I)2m+1 can be estimated according to [49].

Next, in Steps 9 to 17, we evaluate if it is possible to reduce the value of m and,
consequently, the response time of the algorithm. The matrix logarithm approximation of
A is computed in Step 18 using Algorithm 2, and using the Romberg method previously
described. The squaring phase takes place in Step 19, to recover the logarithm. In Step 20,
the post-processing procedure L = TLT−1 is finally applied, to obtain the matrix logarithm,
provided that the balancing phase was previously considered.
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Algorithm 1 Given a matrix A ∈ Cn×n, a maximum number of square roots max_sqrts
to be computed, a maximum value m ∈ {1, 2, 3, · · · , 15}, and a tolerance tol, this algo-
rithm computes L = log(A) by the Romberg approximation and the inverse scaling and
squaring technique.

1: A = T−1 AT . Balancing of matrix A
2: s = 0
3: f inish = ( 1

4
(m−1)m

2
|B2m|

∥∥∥(A− I)2m+1
∥∥∥

1
≤ u)

4: while f inish == 0 and s < max_sqrts do . Scaling matrix A
5: A =

√
A, using the scaled Denman–Beavers iteration (14)

6: f inish = ( 1

4
(m−1)m

2
|B2m|

∥∥∥(A− I)2m+1
∥∥∥

1
≤ u)

7: s = s + 1
8: end while
9: if f inish == 1 and s > 1 then

10: f inish = 0
11: while f inish == 0 and m > 1 do
12: f inish = ( 1

4
(m−2)(m−1)

2
|B2m−2|

∥∥∥(A− I)2m−1
∥∥∥

1
> u)

13: if f inish == 0 then
14: m = m− 1
15: end if
16: end while
17: end if
18: Compute L = log(A) by Algorithm 2, using a maximum number of iterations m and a

tolerance tol for the difference in (7).
19: L = 2sL . Squaring the logarithm matrix
20: L = TLT−1 . Postprocessing of matrix L

As an aside, it should be noted that it is feasible to estimate the 1-norm of (A− I)2m+1

in the Steps 3 and 6 more quickly if we understand that∥∥∥(A− I)2m+1
∥∥∥

1
=
∥∥∥(A2 − 2A + I)m(A− I)

∥∥∥
1
, (15)

taking into account that A2 − 2A + I can be evaluated without matrix products, as long as
at least one square root of A has been previously computed (and saving matrix A before
computing the square root). A similar improvement can be carried out in the Step 12.

Algorithm 2 works out the matrix logarithm using the Romberg method. In Steps 1 to
5, it initializes the suitable variables and provides the first diagonal term in R1, following
the expression in (9).

At each iteration i, within the while-loop that involves Steps 6 to 21, the integration
step h is halved, and the i-th row of the Romberg tableau is completed in matrices R1 to
Ri. It should be noted that the algorithm does not keep in memory all the elements that
would compose the corresponding whole block of the lower triangular matrix, in a attempt
to optimize computer memory and execution time. To achieve this purpose, each new
element of each row i is saved in the auxiliary matrices T1 and T2 alternately, according
to Formulas (9) and (11), and matrices R1 to Ri−1 are reused to store the terms of the row
currently in process, once the components of the previous one are no longer needed.

In Step 18, the convergence criterion is evaluated by comparing the diagonal term Ri
with the equivalent element of the preceding row, as previously preserved in matrix L.

The storage and computational costs of the two proposed algorithms, together with
the codes on which they depend, are given in Table 1. The cost of storage is expressed as the
maximum number of matrices required to be stored together in memory. The computational
cost is measured in terms of the number of matrix products. Other lineal algebra operations
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such as systems of linear equations and matrix inverses also appear in the expression for the
cost. It is assumed that either of these two operations has a cost of 4/3 matrix products [50].

Algorithm 2 Given a matrix A ∈ Cn×n, this algorithm computes L = log(A) by the
Romberg method, with a maximum number of iterations m and a tolerance tol.

1: h = 1
2: R1 = 0.5( f (0, A) + f (1, A)) . Where f (x, A) = (A− I)((A− I)x + I)−1

3: L = R1
4: i = 2
5: f inish = 0
6: while f inish = 0 and i ≤ m do
7: h = h/2
8: S = 0
9: for k = 1 : 2i−2 do

10: S = S + f ((2k− 1)h, A)
11: end for
12: T1 = 0.5R1 + hS
13: for j = 2 : i do
14: T mod (j−1,2)+1 = (4j−1T mod (j−2,2)+1 − Rj−1)/(4j−1 − 1)
15: Rj−1 = T mod (j−2,2)+1
16: end for
17: Ri = T mod (i−1,2)+1
18: f inish = (‖Ri − L‖ ≤ tol)
19: L = Ri
20: i = i + 1
21: end while

The cost of the algorithms is provided by themselves or together with the various
codes they invoke. For example, Algorithm 1 needs only three matrices to be stored by itself
but, globally, when it is being executed and the different functions in which it is structured
are called, it saves 10 + m matrices simultaneously in memory, at most.

Regarding the computational cost, it should be noted that most of the algorithms are
iterative. As an example, the Denman–Beavers code cost is expressed in terms of number
of iterations k required to reach convergence. In each iteration, the inverse of two matrices
must be calculated, which is equivalent to a cost of 8/3 matrix products. The cost of
Algorithm 2 is provided with the assumption that m iterations are completed, i.e., m rows
are calculated in the Romberg tableau. Finally, it should be understood that, in the total
cost of Algorithm 1, s matrix square roots have been performed or, in other words, the
Denman–Beavers function has been called s times.

Table 1. Space and computational costs for Algorithms 1 and 2, and the codes invoked by them.

Codes Stored Matrices Matrix Products

Function f(x,A) 3 4/3
Algorithm 2 (by itself) 4 + m 0
Algorithm 2 (whole) 6 + m 4/3× (1 + 2m−1)

Balancing 1 14/3
Denman–Beavers 5 8/3× k
Algorithm 2 (whole) 6 + m 4/3× (1 + 2m−1)
Algorithm 1 (by itself) 3 0
Algorithm 1 (whole) 10 + m (14 + 8× k× s + 4× (1 + 2m−1))/3
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3. Numerical Tests

This section collects the results corresponding to the different numerical experiments
carried out using the following four MATLAB codes, to comparatively determine the
accuracy and efficiency of the proposed algorithms:

• logm_romberg: This computes the principal matrix logarithm using the inverse scal-
ing and squaring procedure and the Romberg integration method, as described
above in Algorithms 1 and 2. The code is available at http://personales.upv.es/
joalab/software/logm_romberg.m (accessed on 5 September 2023). Input parameters
max_sqrts, m, and tol were set to 10, 7, and 10−11, respectively, for all the tests;

• logm_iss_full: This consists of Algorithm 5.2 detailed in [33], designated as the
iss_new code. It uses the transformation-free form of the inverse scaling and squaring
technique with Padé approximation to compute the matrix logarithm. Matrix square
roots are calculated by means of the product form of the Denman–Beavers iteration,
as detailed in [1] (Equation (6.29));

• logm_new: This is Algorithm 4.1, denoted as the iss_schur_new function, as detailed
in [33]. This code initially performs the transformation to the Schur triangular form
A = QTQ∗ of the input matrix A. Then, the logarithm of the upper triangular matrix
T is computed by applying the inverse scaling and squaring technique and Padé
approximation. The Björck and Hammarling algorithm, detailed in [1] (Algorithm 6.3)
and [51], is applied to work out the square roots of matrix T;

• logm: This is a MATLAB built-in function that calculates the matrix logarithm from
the algorithms included in [33,34]. Its algorithmic structure is very similar to that of
logm_new, but the square roots of T are calculated using a recursive blocking version
of de Björck and Hammarling method [52]. Matrix multiplications and the Sylvester
equation solution are the main computational problems involved.

Three types of matrices, with very different characteristics from each other, were
generated to build a heterogeneous test battery, which allowed comparing the numerical
and computational performance of these codes. The MATLAB Symbolic Math Toolbox
with 256 digits of precision was employed to compute “exactly” the matrix logarithm
function using the vpa (variable-precision floating-point arithmetic) function. The battery
featured the following three matrix sets, which are practically the same as the ones used
and described in [44]:

(a) Set 1: One hundred diagonalizable 128× 128 complex matrices. For each of them, an
orthogonal matrix V = H/

√
128 was first generated from a Hadamard matrix H. In

addition, from a diagonal matrix D whose eigenvalues were all complex, a matrix
A = V × D× VT was computed. Their 2-norm ranged from 0.1 to 300. The “exact”
logarithm was calculated as log (A) = V × log (D)×VT ;

(b) Set 2: One hundred non-diagonalizable 128× 128 complex matrices. For each of them,
an orthogonal matrix V was obtained first. Elements of V belonged to intervals getting
longer and longer, from [−2.5, 2.5] for the first matrix to [−250, 250] for the last one.
Next, a Jordan matrix J whose complex eigenvalues had an algebraic multiplicity from
1 to 3 was computed. Then, a test matrix A = V × J ×VT was generated. The 2-norm
of these matrices took values from 3.39 to 337.72. As in the previous set, the matrix
logarithm was exactly calculated as log (A) = V × log (J)×VT ;

(c) Set 3: Fifty-two matrices from the matrix computation toolbox (MCT) [53] and twenty
from the Eigtool MATLAB Package (EMP) [54]. The size of these was 128× 128. The
matrix logarithm of each matrix was computed “exactly” according to this protocol, as
described in [44]:

1. Compute the eigenvalues of each matrix A by means of the MATLAB functions
vpa and eig. Consequently, matrices V and D will be provided, such that
A = V × D×V−1. Each element of matrix D that is not strictly greater than 0
is substituted by the sum of its absolute value and a random positive number

http://personales.upv.es/joalab/software/logm_romberg.m
http://personales.upv.es/joalab/software/logm_romberg.m
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less than 1, giving place to a new matrix D̃. If not, D̃ is equivalent to D. Lastly,
matrices Ã = V × D̃×V−1 and L1 = V × log(D̃)×V−1 are generated;

2. Approximate the matrix logarithm via functions vpa and logm, i.e., L2 = logm(Ã);
3. Take into consideration matrix Ã, and consequently, its “exact” logarithm, only if

it is satisfied that
‖L1 − L2‖2
‖L1‖2

≤ u.

For the numerical tests, forty-seven matrices, forty from the MCT and seven from the
EMP, were taken into account. The reasons for not considering the rest were as follows:

• Matrices 17, 18, and 40 belonging to the MCT, and Matrices 7, 9, and 14 contained in
the EMP did not successfully pass the above algorithm;

• Due to their ill-conditioning for the matrix logarithm function, the error committed by
some of the codes was equal to or greater than 1 for Matrices 2, 4, 6, 9, 35, and 38 of
the MCT, and Matrices 1, 4, and 20 of the EMP;

• The code logm_iss_full failed at runtime for Matrices 12, 16, and 26 included in the
MCT, and Matrices 10, 15, and 18 incorporated in the EMP. The explanation for this is
that the function sqrtm_dbp exceeded the maximum number of iterations allowed in
the product form of the Denman–Beavers iteration code, in charge of approximating
the matrix square roots;

• Matrices 8, 11, 13, and 16 from the EMP are also incorporated in the MCT.

The normwise relative error used to test the accuracy of the four codes previously
described, hereinafter referred to as Er(A), was computed for each matrix A in our test
bed as

Er(A) =
‖ log(A)− l̃og(A)‖2

‖log(A)‖2
,

where log(A) stands for the “exact” matrix algorithm and l̃og(A) represents the approxi-
mate one. All the executions were run on a Microsoft Windows 11 x64 PC equipped with
an Intel Core i7-12700H processor and 32 GB of RAM, using MATLAB R2023a.

Figures 1–3 show graphically the behavior of the different methods with respect to
the matrices that composed each test set, respectively. In fact, Figures 1a–3a depict the
normwise relative error Er(A) committed by all the codes when computing the logarithm
of each matrix. The black solid line appearing in these graphs corresponds to function
klog × u, where klog is the condition number of the logarithm function for each matrix and
u is the unit roundoff. Approximately, the value of the function klog ∗ u is equivalent to
the expected relative error for each matrix calculation. In this sense, it is well known that
a code is more stable the closer its results are to these function values, and even more so
if they are located below it, which is highly desirable. In view of these results, it seems
clear that logm_romberg was the most stable code, generally providing the smallest relative
errors. In the case of Set 3, the results of only forty matrices are represented in Figure 3a.
The others (Matrices 19, 21, 23, 27, 51, and 52 of the MCT, and Matrix 17 of the EMP) were
not considered due to the large condition number of our objective matrix function.

These results are consistent with those reported in Table 2, which displays the percentages
of matrices in which the relative error incurred by logm_romberg was lower or higher than
those of the other codes. As indicated, logm_romberg outperformed all of the other codes in
at least 72% of the cases, even reaching 100% against logm_iss_full in Sets 1 and 2.
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Figure 1. Numerical experiment results for Set 1.
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Figure 3. Numerical experiment results for Set 3.
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Table 2. Improvement percentage in the relative error incurred by logm_romberg and the remaining
codes for the three test sets.

Set 1 Set 2 Set 3

Er(logm_romberg) < Er(logm_iss_full) 100% 100% 72.34%
Er(logm_romberg) > Er(logm_iss_full) 0% 0% 27.66%

Er(logm_romberg) < Er(logm_new) 95% 86% 82.98%
Er(logm_romberg) > Er(logm_new) 5% 14% 17.02%

Er(logm_romberg) < Er(logm) 95% 86% 82.98%
Er(logm_romberg) > Er(logm) 5% 14% 17.02%

More in depth, Table 3 distributes these percentages of improvement into four different
error ranges, in an attempt to quantify how much better or worse logm_romberg was in
comparison with the others. For Sets 1 and 2, the highest percentages of improvement for
logm_romberg occurred in the intervals 2 to 4 against logm_iss_full or in the first and
second ranges against logm_new and logm. Instead, the percentages were spread over the
four intervals, regardless of the code considered for Set 3.

Table 3. In detail, improvement percentage in the normwise relative error committed for
logm_romberg (Er1) and the other codes (Er2) for Sets 1, 2, and 3 with respect to the percentages listed
in Table 2.

Er2 < 2Er1 2Er1 ≤ Er2 < 5Er1 5Er1 ≤ E2 < 10Er1 10Er1 ≤ Er2

Er1 < 2Er2 2Er2 ≤ Er1 < 5Er2 5Er2 ≤ Er1 < 10Er2 10Er2 ≤ Er1

Er(logm_romberg) < Er(logm_iss_full) 0.00% 37.00% 35.00% 28.00%
Er(logm_romberg) > Er(logm_iss_full) 0.00% 0.00% 0.00% 0.00%

Er(logm_romberg) < Er(logm_new) 69.47% 30.53% 0.00% 0.00%
Er(logm_romberg) > Er(logm_new) 100.00% 0.00% 0.00% 0.00%

Er(logm_romberg) < Er(logm) 69.47% 30.53% 0.00% 0.00%
Er(logm_romberg) > Er(logm) 100.00% 0.00% 0.00% 0.00%

Er(logm_romberg) < Er(logm_iss_full) 1.00% 55.00% 30.00% 14.00%
Er(logm_romberg) > Er(logm_iss_full) 0.00% 0.00% 0.00% 0.00%

Er(logm_romberg) < Er(logm_new) 55.81% 44.19% 0.00% 0.00%
Er(logm_romberg) > Er(logm_new) 64.29% 21.43% 14.29% 0.00%

Er(logm_romberg) < Er(logm) 55.81% 44.19% 0.00% 0.00%
Er(logm_romberg) > Er(logm) 64.29% 21.43% 14.29% 0.00%

Er(logm_romberg) < Er(logm_iss_full) 20.59% 52.94% 5.88% 20.59%
Er(logm_romberg) > Er(logm_iss_full) 53.85% 30.77% 15.38% 0.00%

Er(logm_romberg) < Er(logm_new) 10.26% 23.08% 35.90% 30.77%
Er(logm_romberg) > Er(logm_new) 50.00% 0.00% 0.00% 50.00%

Er(logm_romberg) < Er(logm) 10.26% 23.08% 35.90% 30.77%
Er(logm_romberg) > Er(logm) 50.00% 0.00% 0.00% 50.00%

Furthermore, and for the sake of completeness, Table 4 contains a variety of statistical
data concerning the relative error of each code, such as the maximum, minimum, mean, and
standard deviation. In addition, Table 4 incorporates the 25th, 50th, and 75th percentiles
(Q1, Q2, or median, and Q3, respectively), and the number of outliers, i.e., those values
outside of the interval [Q1− 1.5 · (Q3−Q1), Q3 + 1.5 · (Q3−Q1)]. Overall, the smallest
values for these parameters were provided by logm_romberg. The maximum error value
attained by the codes for the matrices of Set 3 was remarkable, owing to its ill-conditioning.
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Table 4. Minimum, Q1, Q2 (median), Q3, maximum, mean, and standard deviation values, and number
of outliers for the relative errors incurred by the distinct codes comparatively for the three sets, respec-
tively.

Min. Q1 Q2 Q3 Max. Mean Std. Dev. Outliers

logm_romberg 3.54 × 10−15 5.32 × 10−15 6.15 × 10−15 7.43 × 10−15 1.62 × 10−14 6.78 × 10−15 2.28 × 10−15 7
logm_iss_full 1.05 × 10−14 2.73 × 10−14 3.71 × 10−14 7.53 × 10−14 1.87 × 10−12 9.36 × 10−14 2.27 × 10−13 8
logm_new 5.97 × 10−15 9.90 × 10−15 1.05 × 10−14 1.17 × 10−14 3.29 × 10−14 1.15 × 10−14 3.45 × 10−15 12
logm 7.94 × 10−15 9.90 × 10−15 1.05 × 10−14 1.17 × 10−14 3.29 × 10−14 1.15 × 10−14 3.45 × 10−15 12

logm_romberg 3.73 × 10−15 5.04 × 10−15 6.18 × 10−15 8.72 × 10−15 1.04 × 10−13 9.38 × 10−15 1.23 × 10−14 12
logm_iss_full 1.06 × 10−14 1.79 × 10−14 3.10 × 10−14 6.59 × 10−14 8.77 × 10−12 1.50 × 10−13 8.76 × 10−13 9
logm_new 7.73 × 10−15 1.01 × 10−14 1.09 × 10−14 1.18 × 10−14 3.98 × 10−14 1.15 × 10−14 3.27 × 10−15 7
logm 7.73 × 10−15 1.01 × 10−14 1.09 × 10−14 1.18 × 10−14 3.98 × 10−14 1.15 × 10−14 3.27 × 10−15 7

logm_romberg 1.22 × 10−16 1.26 × 10−15 2.01 × 10−15 6.81 × 10−15 1.00 × 100 2.15 × 10−2 1.46 × 10−1 8
logm_iss_full 1.60 × 10−16 2.27 × 10−15 4.56 × 10−15 1.35 × 10−14 1.00 × 100 2.13 × 10−2 1.46 × 10−1 11
logm_new 3.40 × 10−16 4.81 × 10−15 1.08 × 10−14 4.76 × 10−14 1.00 × 100 2.13 × 10−2 1.46 × 10−1 10
logm 5.26 × 10−16 4.82 × 10−15 1.06 × 10−14 4.76 × 10−14 1.00 × 100 2.13 × 10−2 1.46 × 10−1 10

While Figures 1a–3a show the relative errors in descending order for each matrix
according to its value in the solid line function, Figures 1b–3b plot the same relative errors
for each code but independently of each other, sorted from highest to lowest. There is not,
therefore, a direct correspondence between a matrix on the X-axis and the errors obtained
for the four codes analyzed and collected on the Y-axis. As can be seen, logm_romberg
occupied the bottom of these illustrations for most of the matrices in our test bed, with the
exception of a group of more than a dozen matrices in Set 2 and a few isolated cases in
Set 3. In this sense, the first column of Table 5 gives, for the codes under comparison, the
result of the integral of the discrete function corresponding to the relative error committed
for each matrix. In other words, Table 5 provides the value of the area delimited between
function Er(A), the X axis, and the lines x = 0 and x = 100, for Sets 1 and 2, or x = 47,
for Set 3. Smaller values of this integral are expected to be associated with more accurate
codes. The most reduced area was achieved by logm_romberg in the case of Sets 1 and 2.
For Set 3, the area was very similar and too high for the three codes under analysis, due to
the excessively large errors in calculating the logarithm for some matrices.

Table 5. Value of the area bounded by the relative error discrete function (
∫

Er(A)) and by the
performance profile (

∫
p(α)) according to each code and for all sets.∫

Er(A)
∫

p(α)

logm_romberg 6.683 × 10−13 3.994
logm_iss_full 8.416 × 10−12 0.446
logm_new 1.134 × 10−12 3.194
logm 1.134 × 10−12 3.194

logm_romberg 8.842 × 10−13 3.842
logm_iss_full 1.061 × 10−11 0.831
logm_new 1.122 × 10−12 3.225
logm 1.122 × 10−12 3.225

logm_romberg 3.501 × 10−1 3.470
logm_iss_full 3.357 × 10−1 2.296
logm_new 3.337 × 10−1 1.391
logm 3.337 × 10−1 1.373

The normwise relative error ratio between the other three codes and logm_romberg
is provided in Figures 1c–3c. Logically, most of these quotients were greater than 1. Ma-
trices were arranged according to the rate of the error caused by logm_iss_full and
logm_romberg.



Algorithms 2023, 16, 434 18 of 22

Figures 1d–3d present the performance profile. For an α from 1 to 5, this graph gives
the percentage of matrices in terms of one (p), for which the error of a code is less than or
equal to α times the smallest error achieved by any of them. As α increases, the probability
of the codes desirably tends toward 1. Therefore, those codes with the highest values
in most of the plots are more reliable and accurate. To reduce the influence of relative
errors smaller than the unit roundoff in the performance profile pictures, these errors were
modified according to the transformation described in [55]. Clearly, logm_romberg was the
code generally placed at the top for most test cases, followed in Sets 1 and 2 by logm_new
and logm, with identical values to each other, or by logm_iss_full in Set 3. Nonetheless,
logm_romberg was slightly surpassed by logm_new and logm for an α close to 3 in the
second set of matrices.

Table 5 also lists, in its second column, the value of the integral of the performance
profile function, i.e., the area enclosed between the X-axis, the value of p, and the lines
α = 0 and α = 5. Once again, the largest area values provided by logm_romberg revealed
that it was, broadly speaking and as previously mentioned, more accurate and reliable than
its competitors.

By means of pie charts, Figures 1e–3e represent the matrix percentage for which each
code delivered the smallest or largest relative error. It is noticeable how logm_romberg
always corresponds to the largest sector of the left-hand pies (90%, 83%, and 64%, respec-
tively, for each matrix group) and the smallest part of the right-hand ones (0% for Sets 1
and 2, and 7% for Set 3).

Table 6 collects the minima, maxima, means, and medians achieved for the parameters
m and s. In the case of logm_romberg, m stands for the number of rows actually required in
the Romberg tableau for the logarithm computation of the matrices that compose each set;
that is, the value of the variable i in Algorithm 2. The needed values of m ranged from 6 to
7 for Sets 1 and 2, and from 5 to 7 for Set 3. However, the most frequently used value was 6.
Recall that the maximum allowed value of m was 7 in all our runs. For the rest of the codes,
m represents the Padé approximant degree. Clearly, this means that the values of m should
not be compared between logm_romberg and the others.

On the other hand, s denotes the number of square roots that executed by the codes.
These numerical values of s, included in Table 6, have been also visualized in the form of
box plots in Figures 1f–3f, with the objective of representing them graphically through their
quartiles. Thus, for each box, its bottom, central, and top marks signify the 25th (Q1), the
50th (Q2 or median), and the 75th (Q3) percentiles. Outliers, individually represented by
symbol ‘+’, are the values outside the interval [Q1− 1.5 · (Q3−Q1), Q3 + 1.5 · (Q3−Q1)],
as stated above. The whiskers extend to the most extreme datapoints in the cited range. It
is obvious from these data that logm_romberg performed a smaller number of roots than
the other codes. Except for logm_romberg, the high values of s achieved by the rest of the
codes for some matrices in Set 3 are remarkable.

Different statistical data corresponding to the number of significant digits achieved
in the computed solution by each code are compiled at numerical level in Table 7 and as
a box plot in Figures 1g–3g. On average, logm_romberg provided the largest number of
valid digits. In detail, this code guarantees that its solutions have, in the worst case, at least
13 significant digits for the matrices in Set 1, and 12 digits for Set 2. For this latter set, this
value was improved by logm_new and logm, guaranteeing at least 13 digits. In one way or
another, the values of Q1, Q2, and Q3 were favorable for logm_romberg. The same can be
stated for Set 3 regarding Q1, Q2, and Q3, although unfortunately no significant digit was
guaranteed by any code in the particular case of one of its matrices. The interquartile range,
which measures the distribution of values and is calculated as Q3−Q1, was always 0 in the
case of logm_romberg for all three types of matrix. This indicates the high reliability of the
code, as it guaranteed at least 14 correct digits in the vast majority of the matrices addressed.
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Table 6. Minimum, maximum, mean, and median parameters m and s employed for Sets 1, 2,
and 3, respectively.

m s
Min. Max. Mean Median Min. Max. Mean Median

logm_romberg 6 7 6.05 6 3 4 3.94 4
logm_iss_full 7 15 9.36 8 3 5 4.46 5
logm_new 5 7 5.88 6 4 6 5.08 5
logm 5 7 5.88 6 4 6 5.08 5

logm_romberg 6 7 6.04 6 3 4 3.95 4
logm_iss_full 7 14 9.27 8 3 5 4.48 5
logm_new 5 7 5.79 6 4 6 5.17 5
logm 5 7 5.79 6 4 6 5.17 5

logm_romberg 5 7 6.17 6 0 8 3.21 4
logm_iss_full 6 15 10.21 10 0 36 5.06 4
logm_new 5 7 6.09 6 0 46 6.98 5
logm 5 7 6.09 6 0 46 6.98 5

Table 7. Minimum, Q1, Q2 (median), Q3, maximum, mean, and standard deviation values, and
number of outliers for the number of significant digits in the computed solution by the distinct codes
for Sets 1, 2, and 3, respectively.

Min Q1 Q2 Q3 Max. Mean Std. Dev. Outliers

logm_romberg 13 14 14 14 14 13.91 0.29 9
logm_iss_full 11 13 13 13 13 12.81 0.44 17
logm_new 13 13 13 14 14 13.29 0.46 0
logm 13 13 13 14 14 13.29 0.46 0

logm_romberg 12 14 14 14 14 13.82 0.41 17
logm_iss_full 11 13 13 13 13 12.83 0.40 16
logm_new 13 13 13 13 14 13.21 0.41 21
logm 13 13 13 13 14 13.21 0.41 21

logm_romberg 0 14 14 14 15 13.32 2.92 17
logm_iss_full 0 13 14 14 15 12.99 2.90 5
logm_new 0 13 13 14 15 12.70 2.57 8
logm 0 13 13 14 15 12.70 2.57 8

To conclude this comparative study, Table 8 shows the execution times invested by
the four different codes in calculating the logarithm of the matrices that constituted our
test battery. For Sets 1 and 2, logm_romberg required an intermediate amount of time,
between that of logm_iss_full and logm_new. Even for Set 3, logm_romberg consumed
less time than the abovementioned codes. Clearly, the most cost-effective code was logm.
Notwithstanding, it should be clarified that logm was the only one composed of MATLAB
built-in functions. Let us recall that the code for these functions is not interpreted as for
any other written in MATLAB, but they have already been compiled to machine language
and are part of executable files. Thus, from the point of view of the execution time, the
comparison of logm with the rest of the implementations is far from fair. Moreover, these
time results are graphically illustrated in Figures 1h–3h, in the form of bar graphs.

Table 8. Time (T), in seconds, involved in the execution of all the codes for the three sets.

Set 1 Set 2 Set 3

T(logm_romberg) 6.06 6.01 3.64
T(logm_iss_full) 4.78 4.72 6.16

T(logm_new) 7.12 7.26 4.05
T(logm) 1.69 1.76 0.75
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4. Conclusions

In this paper, a numerical algorithm to calculate the principal logarithm of a matrix
using the Romberg integration method was presented. To improve the accuracy of the
results, the Romberg method was combined with the inverse scaling and squaring tech-
nique. Thus, after an a priori unknown number of square roots, the problem was reduced
to the computation of the logarithm of a matrix with eigenvalues close to one. A theoretical
formulation for determining the number of square roots needed, or the scaling parameter s,
and the maximum number of rows m to be completed in the Romberg tableau was derived
and provided.

As a consequence, two algorithms were supplied. While one of them is in charge of
implementing the above formulation that computes the optimal values of s and m, the
other one is responsible for computing a matrix integral using the Romberg method, with
the lowest memory consumption. Matrix square roots are computed in the first algorithm
thanks to the scaled Denman–Beavers iteration method.

Both algorithms were implemented in MATLAB giving rise to a code, called
logm_romberg, which was numerically and computationally compared in a comprehensive
study with three state-of-the-art codes, all based on Padé approximations. Using a test bed
consisting of a wide range of matrices, the numerical experiments revealed that the new
method offered, in general terms, more accurate results than those of the other codes under
comparison, without the need for increasing the corresponding computational time.
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