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Abstract: Heart rate variability (HRV) has emerged as an essential non-invasive tool for understand-
ing cardiac autonomic function over the last few decades. This can be attributed to the direct con-
nection between the heart’s rhythm and the activity of the sympathetic and parasympathetic nerv-
ous systems. The cost-effectiveness and ease with which one may obtain HRV data also make it an 
exciting and potential clinical tool for evaluating and identifying various health impairments. This 
article comprehensively describes a range of signal decomposition techniques and time-series mod-
eling methods recently used in HRV analyses apart from the conventional HRV generation and 
feature extraction methods. Various weight-based feature selection approaches and dimensionality 
reduction techniques are summarized to assess the relevance of each HRV feature vector. The pop-
ular machine learning-based HRV feature classification techniques are also described. Some notable 
clinical applications of HRV analyses, like the detection of diabetes, sleep apnea, myocardial infarc-
tion, cardiac arrhythmia, hypertension, renal failure, psychiatric disorders, ANS Activity of Patients 
Undergoing Weaning from Mechanical Ventilation, and monitoring of fetal distress and neonatal 
critical care, are discussed. The latest research on the effect of external stimuli (like consuming alco-
hol) on autonomic nervous system (ANS) activity using HRV analyses is also summarized. The 
HRV analysis approaches summarized in our article can help future researchers to dive deep into 
their potential diagnostic applications. 
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1. Introduction 
Heart rate variability, often known as HRV, measures time fluctuation correspond-

ing to two consecutive heartbeats [1]. This fluctuation is estimated by measuring the dis-
tance between succeeding R-peaks (RR interval) of the electrocardiogram signals, result-
ing in the generation of the RR interval or HRV features [2]. HRV is denoted to reflect the 
heart’s ability to adapt to changing circumstances by recognizing and responding quickly 
to different stimuli. HRV features can be used as a valuable marker of cardiac autonomic 
function. It provides information on the autonomic nervous system (ANS) state, which 
helps to tune the circulatory system and heart, thereby inducing a natural fluctuation in 
the heart rate (HR) [3]. The ANS encompasses the parasympathetic nervous system (PNS) 
and the sympathetic nervous system (SNS). Together, these branches are responsible for 
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controlling the heart rate. Increased activity of SNS or decreased activity of PNS causes 
cardio-acceleration. Contrastingly, cardio-deceleration can be caused by two different rea-
sons: increased PNS activity and decreased SNS activity. 

In the last few decades, there has been a growing consciousness in the scientific com-
munity to understand the connection between the ANS and cardiovascular pathophysiol-
ogy that may lead to cardiac morbidity and mortality due to cardiac failure [4–6]. In many 
recent published studies, HRV has been highlighted as a marker of overall cardiac well-
being, which may be explored as a diagnostic tool. The measurements of HRV are easy to 
perform [1]. It does not require any invasive procedure. HRV analysis reliability is de-
pendent on the consistency in ECG recording conditions, electrode placement, and ECG 
signal quality [7]. An HRV analysis is usually performed using the time and frequency 
domain linear approaches. Nevertheless, various researchers have considerably explored 
the application of some non-linear methods like recurrence and Poincare plots for HRV 
analyses. In recent years, new dynamic procedures of HRV measurement (e.g., Lyapunov 
exponents [8], approximation entropy (ApEn) [9], and a detrended fluctuation analysis 
(DFA) [10]) have been proposed to detect the complex variations in HRV features, provid-
ing deeper comprehension of an HRV analysis.  

An analysis of HRV features has allowed clinicians to identify a diverse range of ab-
normalities, illnesses, and possible indications of impending death. For example, Kim et 
al. (2018) described that an HRV analysis can function as a label for psychological stress 
when necessary [2]. HRV has been explored for monitoring car drivers’ drowsiness, ex-
haustion, and anxiety levels [11]. Similarly, an HRV analysis has also found applications 
in detecting athletic performance and fatigue and assessing depression, anxiety, and other 
chronic conditions [12]. It has also been reported that HRV can correlate between a sed-
entary life and a person’s mental/physical well-being. The current study reviews various 
signal processing strategies used for processing and analyzing HRV features, popular ML 
models employed in association with HRV features for classifying pathologies, and the 
different applications of HRV research. 

2. Generation of RR Interval Time Series 
HRV denotes the RR interval time sequence resulting from an ECG signal. The pro-

cess requires the recognition of the QRS complex from the ECG signal. Various techniques 
have been developed for detecting the QRS waves, like Pan-Tompkin’s algorithm [13,14] 
and wavelet transform-based algorithms [15]. Pan-Tompkin’s algorithm analyzes the an-
gle, amplitude, and QRS width using a sequence of filters and mathematical operators. 
The process includes band-pass filtering, derivative, squaring, integration, and adaptive 
thresholding. The block diagram representation of QRS complex recognition using Pan-
Tompkin’s system is shown in Figure 1. On the other hand, the wavelet transform-based 
approach involves the disintegration of the ECG signals using a suitable mother wavelet 
followed by reconstruction using the required sub-bands [15]. Then, the envelope is com-
puted, smoothing is performed, and peak detection takes place to extract the QRS com-
plexes. 

Historically, the examination of HRV has been conducted using conventional ECG 
recordings, which typically have a duration of several minutes or longer. Nevertheless, 
technological progress has facilitated the acquisition of ultra-short ECG recordings, char-
acterized by significantly shorter durations ranging from 10 s to 150 s [16]. The appeal of 
ultra-short recordings lies in their convenience and efficiency, rendering them more viable 
in specific contexts, including ambulatory monitoring, remote patient monitoring, and 
wearable devices. 
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Figure 1. QRS complex detection using Pan-Tompkin’s algorithm. 

A predicament arises when attempting to compare the outcomes derived from ultra-
short ECG recordings with those acquired from normal ECG recordings. There exist mul-
tiple aspects that contribute to the issue of comparability. 
• Signal quality can be compromised in ultra-short ECG recordings as a result of a 

shorter length, leading to the presence of noise, artifacts, and a reduction in signal 
quality [17,18]. The potential consequences of this phenomenon include potential in-
consistencies in an HRV analysis when compared to standard recordings, which may 
compromise the accuracy of the results. 

• An HRV analysis can be conducted through two distinct approaches, namely a time-
domain analysis and frequency-domain analysis [19]. The selection of the analytical 
approach can have an impact on the outcomes and the capacity to compare ultra-
short recordings with regular recordings. 

• The examination of HRV in research often operates under the assumption that the 
fundamental physiological mechanisms remain constant during the duration of the 
recording [2]. The validity of this premise may be compromised when dealing with 
long-term recordings, as the longer duration could potentially impact the outcomes 
due to motion artifacts, electrode movements, signal drift, and patient movements, 
etc. [2]. 

• The statistical power of ultra-short recordings may be diminished due to a restricted 
number of data points, resulting in a decrease in comparison to lengthier conven-
tional recordings. The data points are representative of the voltage measurements 
acquired from the electrodes positioned on the body. The frequency spectrum of the 
ECG data depicts the allocation of various frequencies that are present within the 
signal [20]. Increased recording duration leads to enhanced frequency resolution, en-
abling the detection and capture of lower-frequency elements of the cardiac signal, 
including the T-wave and QRS complex. 

• The identification and rectification of artifacts in recordings can vary depending on 
whether the recordings are ultra-short or standard in duration, resulting in discrep-
ancies in the resulting heart rate variability (HRV) measures [16]. 
In order to effectively tackle these concerns and enhance the level of comparison, 

scholars have the option of employing diverse methodologies, such as the following: 
• Standardization refers to the establishment of rules and protocols that dictate the 

proper procedures for conducting a heart rate variability (HRV) analysis on ultra-
short recordings [21]. The purpose of standardization is to ensure uniformity in the 
methods employed across different studies and platforms. 

• Validation Studies: This research aims to compare the measures of heart rate varia-
bility (HRV) derived from ultra-short recordings with standard recordings in the 
same individuals. The purpose is to assess the level of agreement and identify any 
potential inconsistencies between the two methods [22]. 
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• The application of data augmentation techniques enables the generation of lengthier 
recordings from ultra-short segments, hence expanding the available dataset for 
analysis purposes [23]. 
The resolution of the comparability issue is crucial in order to maintain the use and 

dependability of an HRV analysis using ultra-short ECG records for clinical and research 
purposes. It is imperative for researchers and practitioners to possess a comprehensive 
understanding of the constraints and difficulties linked to ultra-short recordings, while 
simultaneously persisting in their exploration of the potential advantages they offer. 

3. Pressure Support Ventilation (PSV) 
The procedure of adapting raw information into numerical attributes that can be em-

ployed in place of the original data is referred to as feature extraction. It helps to reduce 
the computational burden during a signal analysis while maintaining the integrity of the 
data confined to the original statistics. The feature extraction from HRV data is commonly 
accomplished using various methods, including but not limited to (i) time-domain meth-
ods, (ii) frequency-domain methods, and (iii) non-linear methods. The HRV features ex-
tracted from both time and frequency domain approaches are considered linear HRV fea-
tures [24]. 

The linear HRV characteristics are studied following the international guidelines 
made available by the North American Society of Pacing and Electrophysiology task force 
and the European Society of Cardiology [6]. On the other hand, the non-linear HRV fea-
tures are calculated per the recommendations presented in the most recent research liter-
ature [25–27]. Apart from the methods mentioned above, researchers have also attempted 
to extract proper HRV parameters using signal decomposition techniques and time-series 
modelling techniques [28]. The following subsections describe the popular HRV feature 
extraction methods.  

3.1. Time-Domain Methods 
The time-domain HRV parameter extraction methods comprise the geometrical and 

statistical methods [6]. The statistical methods provide the parameters derived either ex-
plicitly from the RR intervals or indirectly after the alteration in the length of the RR in-
tervals [29]. Parameters like standard deviation (SD) of the heart rate (HR SD), average 
heart rate, mean of the NN intervals (or RR intervals), and standard deviation of the NN 
intervals (SD NN) can be attained straight from the RR intervals. In this instance, the con-
straints HR SD and SD NN reveal details related to the dispersion of the HR and NN 
intermission values from their respective mean values. Conversely, the statistical con-
straints RMSSD, NN50, and pNN50 offer additional material about the high-frequency 
aberration in the HR. These parameters are based on the variances amid the RR intervals. 
The root-mean-square standard deviation, or RMSSD, is the average variation in the in-
termission between beats and is represented by the square root of the consecutive variance 
involving the RR intervals. The value of NN50 reveals data regarding the number of suc-
cessive NN interval differences with more than 50 milliseconds. The value of the param-
eter pNN50 can be calculated by dividing NN50 by the overall number of NN intervals 
that are longer than 50 milliseconds. TINN, which stands for “triangular interpolation of 
NN interval histogram,” and the HRV triangular index, are examples of time-domain ge-
ometrical parameters. TINN denotes the reference size of the RRI (or NN intermission) 
histogram when it is calculated using triangular interpolation [30]. The HRV triangular 
index is obtained from the RRI histogram (Figure 2) by computing the proportion of the 
entire amount of RRIs to the stature of the RRI histogram [6]. 
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Figure 2. A sample histogram of a 5 min HRV, plotted using LabVIEW (National Instruments Cor-
poration, Austin, TX, USA). 

3.2. Frequency-Domain Methods 
The frequency-domain technique uses the estimation of power spectral density (PSD) 

of the HRVs as the basis for the parameter’s extraction. The parameters of the frequency 
domain are determined through the application of the Fast Fourier transform (FFT) (Fig-
ure 3) and autoregressive modelling (AR) (Figure 4). The PSDs of the very low frequency 
(VLF; 0.003–0.04 Hz), the low frequency (LF; 0.04–0.15 Hz), and the high frequency (HF; 
0.15–0.4 Hz) are considered as the frequency domain HRV features. Absolute power com-
ponents, like ms2, and relative power components, such as percent, are typically used to 
measure the VLF, LF, and HF power components, respectively. However, one may also 
use the normalized units to measure the LF and HF components (n.u.). The power disper-
sal over numerous constituents of the PSD is unfixed and changes with the autonomic 
variation of the heart [6]. This is because the PSD is not a fixed function. It has not been 
determined what precise functional procedure is accountable for producing the VLF 
power constituent [6], but research is continuing in this direction. Atropine has been re-
ported to eliminate the VLF component. As a result, the VLF power constituent is re-
garded as a pointer of parasympathetic commotion [29]. Nevertheless, the nature of the 
LF power constituent is complicated. Both sympathetic and parasympathetic nerve inner-
vations influence the LF power [29]. This makes the LF power component a problematic 
variable to analyze. Accordingly, the LF/HF proportion is generally utilized to describe 
the sympathetic activity [29] or the sympathovagal balance [31] rather than the LF power 
component. 

 
Figure 3. A typical FFT spectrum of a 5 min HRV, plotted using LabVIEW. 
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Figure 4. A typical AR spectrum of a 5 min HRV, plotted using LabVIEW. 

3.3. Non-Linear Methods 
The heart has been represented as an intricate control system [32]. Hence, the HRV 

description, which relies solely on linear methods, is insufficient to analyze the signals in 
many cases. Hence, non-linear approaches are also suggested to represent the HRVs’ 
properties [32]. Popular non-linear methods include the Poincare plot, detrended fluctu-
ation analysis (DFA), and recurrence plot. The Poincare plot visually represents the cor-
relation between the consecutive RRIs (Figure 5). In the Poincare plot, an ellipse is drawn 
along the line of identity, and then it is tailored to the statistics points. The width (SD1) 
and the length (SD2) of the ellipse are used to calculate two non-linear HRV features. Such 
values are used as indicators of both short- and long-term variance [33]. 

 
Figure 5. A representative Poincare graph of a 5 min HRV, plotted using LabVIEW. 

Various non-linear techniques exist for quantifying the correlations in nonstationary 
physiological time series data [34]. The DFA method, developed in the 1970s, is a tech-
nique divulging correlation information. In the context of the HRV study, associations are 
split up into short-term and long-term variations, depending on the time frame under 
consideration. These variations are measured and quantified with the DFA method using 
parameters like alpha1 (α1) and alpha2 (α2), respectively [30]. The slope of the log–log 
graph is utilized to determine the parameters α1 and α2. These values offer a measure-
ment of association (in terms of fluctuation, Fn) that is dependent on the amount of col-
lected data (n) (Figure 6). 
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Figure 6. A representative DFA plot of a 5 min HRV, plotted using LabVIEW. The x-axis of a DFA 
plot indicates the logarithmically scaled window widths, also known as time scales. Meanwhile, the 
y-axis represents the logarithmically scaled root-mean-square variation of the detrended data. The 
analysis of the slope of the plot offers valuable insights into the existence and characteristics of cor-
relations within the examined HRV time series data. 

Poincare introduced the concept of recurrence at the end of the 19th century. Recur-
rence is a fundamental characteristic of every deterministic dynamic scheme [35]. It refers 
to the phenomenon in which the stages of a dynamic scheme repeatedly appear in phase 
space [36]. A phase space plot is an imaginary multi-dimensional region where in every 
point indicates a state of the system. Taken’s theorem [37] has served as the foundation 
for reconstructing the phase region graphs of the dynamical systems. The theorem pro-
poses that if a variety of parameters governs the dynamics of a system, but a solitary pa-
rameter is recognized, at that point, the solitary parameter can still represent the entire 
dynamics of the system. However, the prediction of the entire system dynamics requires 
drawing a graph using the quantities of the recognized parameter compared to them-
selves for a definite amount of times at a predetermined time delay. The selection of ap-
propriate quantities for the embedding dimension and the time delay plays a significant 
role during the rebuilding of the phase space graph of a dynamic arrangement. The visu-
alization of the vital recurrence property of a phase space plot in two dimensions (2D) has 
been reported by Eckmann et al. (1987), from whom the idea of recurrence plots was pro-
posed [38]. A recurrence graph is typically described as a symmetrical square matrix in 
two dimensions. This matrix illustrates the time at which two states of the arrangement 
become state–space neighbors depending on a cut-off threshold space. However, the in-
formation that can be gleaned from this graph is quality-based [39,40]. A recurrence quan-
tification study (abbreviated as RQA) is developed to extract quantity-based variables out 
of the recurrence plot. The concentration of the reappearance loci and the diagonal, verti-
cal, and horizontal lines present in the recurrence plot are employed for the extraction of 
quantitative parameters using the RQA method. The popular signal parameters extracted 
using the RQA method include the recurrence rate (RR), the average number of neighbors 
(AN), determinism (DET), the length of the longest diagonal line (Lmax), entropy (ENT), 
laminarity (LAM), trapping time (TT), the maximum length of vertical lines (Vmax), the 
average length of diagonal lines (AD), the ratio of determinism to the recurrence rate (RA-
TIO), and so on [41].  

Chaos theory, a mathematical discipline concerned with the study of intricate and 
unpredictable systems, has also been used for HRV feature extraction. The utilization of 
chaos theory principles, including fractals and non-linear dynamics, has been employed 
in the examination of the intricacy and fluctuation of patterns in HRV [42]. Lyapunov 
exponents are a sophisticated mathematical construct that originate from the field of chaos 
theory. These notions find utility in the realm of HRV feature extraction, enabling a deeper 
understanding of the intricate dynamics inherent in the cardiovascular system. The metric 
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quantifies the speed at which neighboring trajectories in a dynamical system either move 
apart or come together. A Lyapunov exponent with a larger positive value signifies the 
presence of chaotic dynamics, whereas a Lyapunov exponent with a negative value shows 
convergence towards a stable attractor. Through the utilization of Lyapunov exponents 
derived from time series data of HRV, scholars are able to evaluate the presence of chaotic 
patterns or ascertain the degree of determinism and stability within the dynamics of heart 
rate. The provided information can be utilized to gain insights into the regulatory mech-
anisms of the autonomic nervous system on the heart rate and to detect possible anomalies 
in cardiovascular well-being [43]. 

3.4. Signal Decomposition Methods 
3.4.1. Empirical Mode Decomposition (EMD) 

EMD is a comparatively recent signal processing method utilized to decay the signals 
into their parts. The processing of non-linear and nonstationary signals is one of its many 
applications [44]. In this method, the principal (basis) functions are deduced out of the 
signal, contrasting the Fourier transform or the wavelet transform, which has a fixed basis 
function. A process known as sifting is implemented in the EMD method to break down 
a signal into many intrinsic mode functions (IMFs) and a residue (Equation (1)) [45].  

The IMFs are a collection of AM-FM (amplitude-modulated–frequency-modulated) 
signal constituents. They fulfil two criteria: (i) the count of maximum and minimum 
points has to be similar or slightly differ by one to the count of zero crossings, and (ii) the 
mean of the covers designed by linking local maxima and minima of the signal is null [46]. 
Many researchers have reported using the EMD method to decompose the HRVs to ex-
tract useful parameters [47]. This may be attributed to the non-linear and nonstationary 
nature of the HRV features [42].  

1
( ) ( ) ( )

M

k M
k

x t f t r t
=

= +  (1)

where M signifies the amount of IMFs, fk(t) shows the kth IMF, and rM links to the residual 
value.  

3.4.2. Discrete Wavelet Transform (DWT) 
Discrete wavelet transform (DWT) is a popular combined time–frequency analysis 

technique [42]. In this context, the “wavelet” denotes a non-symmetric, irregular, and 
small-duration waveform that possesses a zero mean, finite energy, and a real value of the 
Fourier transform [43]. Wavelets can be utilized to inspect the occurrences of typically 
hidden events within a signal. In the last few decades, the DWT method has emerged as 
an effective tool for analyzing nonstationary signals. In this method, the signals are sub-
jected to a sequence of high- and low-pass filtering at every stage of disintegration to ex-
tract the detail and approximation coefficients, respectively. The detail coefficient does 
not participate in the following levels of decomposition. However, the estimation coeffi-
cient is involved in the subsequent disintegration level, leading to generating a fresh pair 
of detail and approximation coefficients. This procedure is sustained until the essential 
stage of signal breakdown is achieved. Therefore, the signal can be mathematically ex-
pressed, as revealed in Equation (2) [44]. The disintegration of HRVs utilizing the DWT 
method has been employed by researchers for various diagnostic applications like an au-
tomated diagnosis of diabetes [48] and sleep staging classification [49] in the last few dec-
ades. 

0

0
( ) ( ) ( )

m

m m
m

x t x t d t
=−∞

= +   (2)
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where xm0(t) represents the signal, xm0(t) represents the estimation coefficient at measurer 
m0, and dm(t) corresponds to the feature coefficient at scale m. 

3.4.3. Wavelet Packet Decomposition (WPD) 
WPD corresponds to a generalization of the DWT technique that offers a more effi-

cient breakdown of the high-frequency constituents of the input signal [50]. It contrasts 
with the DWT technique in that both the approximation and the detail constants partici-
pate in disintegration at each WPD decomposition level. This is in contrast to DWT de-
composition, where just the approximation coefficient takes part in decomposition. WPD 
causes the segregation of the time–frequency space into boxes with a fixed characteristic 
proportion as the decomposition process continues [51]. To put it another way, as the level 
of disintegration increases, the side of the box that represents the time axis expands, while 
the side that represents the frequency axis contracts along with it. The WPD method has 
been gaining more popularity for HRV analyses in recent years than other decomposition 
methods mentioned above [52]. Notable applications of a WPD-based HRV analysis in-
clude automatic sleep apnea detection [53], depression [54], etc. 

3.5. Parametric Modeling Techniques 
The parametric models refer to the techniques that need some parameters to be spec-

ified before becoming eligible for making predictions [55]. A number of parametric mod-
elling approaches, including autoregressive (AR), moving average (MA), autoregressive 
moving average (ARMA), and autoregressive integrated moving average (ARIMA), have 
been proposed for the analysis of RR intervals [56]. AR, MA, and ARMA models have 
been used to analyze RR intervals of a small duration (e.g., 5 s) [57]. This may be attributed 
to the stationary nature of the small-duration RR intervals. The stationarity of the RR in-
tervals is usually verified using techniques like Augmented Dickey–Fuller (ADF). On the 
other hand, models like ARIMA have been suggested for the relatively longer RR inter-
vals, which are nonstationary [56]. 

4. Weight-Based Feature Selection Methods 
The feature assortment on the basis of weight refers to a set of approaches used to 

evaluate each input feature’s contribution to the output variable. These algorithms use the 
weight matrix to determine the relative significance of every input feature in relation to 
the outcome. They rank the features in order of their importance. This section describes 
several weight-based feature selection methods that can be performed in Rapidminer soft-
ware (Rapidminer Inc., Boston, MA, USA). 

4.1. Information Gain (IG) 
IG is a weighted attribute-selecting approach that uses continuous progress related 

to the entropy diminution to define the relationship among a parameter X and a category 
indicator Y. In other words, it is the mutual information of X and Y, where mutual infor-
mation is the total entropy for classifying attributes [58]. IG is also known as the Kullback–
Leibler divergence, a probability distribution proposed by Solomon Kullback and Richard 
Leibler. It is an entropy-based feature selection model for selecting the exact number of 
data values to be processed to reduce redundancy and improve memory space [59]. IG 
can be calculated using Equation (3): 

( ) ( | ) ( ) ( | )IG H Y H Y X H X H X Y= − = −   (3)

where H(Y) is the entropy of Y, and H(X) is the entropy of X. H (Y|X) represents the con-
ditional entropy of Y given X.  

IG provides the importance of an attribute to be noted in the case of feature vectors. 
It is used to measure the amount of information in bits while class prediction is carried 
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out. The properties of IG include (i) inequality, (ii) symmetry, and (iii) distance function, 
which are briefly discussed below. 

4.1.1. Inequality 
The IG is always greater than or equal to zero according to Jensen’s inequality, and it 

is represented as Equation (4) [60]: 

( , ) 0IG X Y ≥   (4)

4.1.2. Symmetry 
IG follows the symmetrical property, and it can be evaluated from either of the vari-

ables regardless of its class variable (Equation (5)). 

( , ) ( , )IG X Y IG Y X=  (5)

4.1.3. Distance Function 
The metric or distance function measures the distance between two random variables 

from a set of points. This is mainly used in finding the Euclidean distance in various algo-
rithms used in ML. The distance function for IG can be computed using Equation (6). 

( , ) ( | ) ( | )d X Y H X Y H Y X= −  (6)

4.2. Information Gain Ratio (IGR) 
Inverse gradient descent (IGR) is a technique for selecting attributes developed by 

reducing IG using the attribute entropy. The bias inherent in the IG approach is mitigated 
with the use of IGR [61]. It maintains accuracy in the IG by considering the intrinsic infor-
mation (i.e., the instant entropy distribution) from the split data. The intrinsic information 
reduces the value of IGR, as they are inversely proportional. The intrinsic information of 
the split data from entropy is given in Equation (7) [61]. This method is widely used dur-
ing the implementation of a decision tree algorithm. 

| | | |( , ) log( )
| | | |
i i

i

S SIntI S A
S S

= −
 

(7)

where S is the split data, and A is the attribute in S.  

4.3. Uncertainty 
Uncertainty is a feature-selecting technique that emphasizes removing the intrinsic 

predisposition presented with the IG technique. It is calculated as the proportion of twice 
of IG to the entirety of the entropies of the feature (X) and the category parameter (Y) 
(Equation (8)) [58]: 

2
( ) ( )

IGU
H X H Y

×=
+   

(8)

where U is the uncertainty of Y, and H(X) and H(Y) are the entropies of X and Y.  
The uncertainty sources are found in the test and training data. It is predominant 

when the classes tend to overlap or there is a mismatch in the data. The predictions made 
without the uncertainty quantification may not be considered reliable and may lead to 
lower accuracy outputs. Uncertainty is widely used in traditional ML applications and 
deep learning [62].  
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4.4. Gini Index (GI) 
GI is a feature collection technique based on contamination. It designates the possi-

bility of incorrectly classifying a randomly selected variable [58]. It is also referred to as 
the Gini Impurity or coefficient, which is an alternative to the information gain (IG). Italian 
statistician Corrado Gini proposed GI. GI is based on the Lorenz curve, which depicts a 
graphical representation of inequality between two attributes. At times, the Lorenz curve 
does not provide a complete analysis. So, GI can be improved by interpolating the missing 
data in the analysis to function properly. It works on the frequency distribution among 
the values to be computed. GI values range from 0 to 1, with 0 as the complete equality 
and 1 as the absolute inequality [63]. For assumed information S (i.e., s1, s2, s3, …, sn) and a 
category parameter Ci (1 ≤ i ≤ k), GI is computed using Equation (9). When the samples are 
uniformly distributed, GI attains a maximum value [64].  

2

1
( ) 1

m

i
i

Gini S P
=

= −
  

(9)

where Pi is the likelihood of any instance in Ci and m is termed to be different classes.  

4.5. Chi-Squared Statistics (CSS) 
CSS is a widespread non-parametric process of feature choice used in ML algorithms. 

This works out the significance of a feature by means of the chi-squared statistics (χ2) [58]. 
CSS is used to calculate the similarity between two probability distributions. If two distri-
butions are similar, then the resultant value is 0. Otherwise, it obtains a larger value com-
pared to 0. It compares and contrasts the independence of two events using the expected 
and the observed values [65]. The formula for chi-squared statistics is given in Equation 
(10): 
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O E
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−
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(10)

where Oij is the forecasted frequency, and Eij is the anticipated value of the same. 

4.6. Correlation 
We may think of correlation as a technique for selecting characteristics by how simi-

lar they are. Correlation coefficients can take on values between −1 and 1, with the sign 
indicating the nature of the relationship (negative or positive) [58]. As soon as there is no 
correlation between the attributes, its quantity reaches 0. The r-value of a pair of variables 
(X, Y) indicates their level of resemblance. It is characterized by Equation (11): 
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− −
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(11)

where i designates the augmentation parameter and n denotes the amount of examples of 
the features X and Y.  

The correlation coefficient is an efficient method in feature selection processes [66]. If 
the correlation feature is extended in a graphical format, and the points at each instant 
tend to form a straight line, it is termed linear correlation. If they cluster around a curve 
other than a straight line, then the correlation is non-linear. 
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4.7. Deviation 
The deviation is the standard deviation (SD) of the characteristics after normaliza-

tion. Formula (12) is used to obtain SD for variable X, and then the variable is normalized 
by taking either the highest or lowest result [58]. Standard deviation is an analysis method 
to measure variability [67]. When the value of SD is small, the feature is mapped to its 
mean. On the other hand, when the SD returns a higher value, it is spread over a broad 
range from its mean value.  

2

1
( )

1

n

i
X X

SD
n

=

−
=

−


  

(12)

where i designates the augmentation parameter and n denotes the amount of instances of 
the attribute X.  

4.8. Relief 
Kira and Rendall introduced “relief” as a supervised attribute-selecting technique 

[68]. This technique chooses the examples randomly out of the provided database. Once 
this is carried out, we can locate the closest instances that fall into both the identical cate-
gory (near-Hit) and the opposite category (near-Miss) as the original one. Applying for-
mula 13, we may give the attribute in evaluation a rating (St). After comparing their S 
ratings, all of the attributes are narrowed down to the highest K. The disadvantage of the 
relief-based algorithm is that its susceptibility to noise is higher. It is generally used in 
classification problems. 

1
( ) ( )( ) ( ) t t

t t
d x nearHit d x nearMissS i S i

n n−
− −= − +

  
(13)

where xt designates the indiscriminately selected instance from the provided input infor-
mation at repetition figure t, n signifies the entire figure of examples, and d (.) parallels 
Euclidean detachment.  

4.9. Rule 
The “rule” signifies a feature-choosing technique that creates a rule for each feature 

and calculates the fault for them. Every feature is allotted an error-based weight related 
to it. The significance of the attributes is marked using the score of the weights allocated 
to them. The other names for “rule” are “OneR” or “One Rule” [58]. Practically, a rule-set 
is designed to identify the relevance of the features. Each rule is represented as a single 
region named Ri. Unlike trees, rules can have non-disjoint regions. Some applications re-
quire ordered rule-sets, and such rule-sets are termed “decision lists.” Rule induction is 
processed by adding a single component at a time. The component must be the best min-
imizer of the distance.  

4.10. Support Vector Machine (SVM) 
SVM is a popular technique of ML that utilizes hyperplanes (also known as normal 

vectors) to classify the sample data of a signal into numerous categories. The coefficients 
linked with the hyperplanes are utilized to rank the features and assign weights [58]. On 
the other hand, for SVM to function as a method for feature selection, the features them-
selves must have numeric values. In two-dimensional representations, the linearly and 
non-linearly separable components are categorized using the SVM. When viewed from a 
linear perspective, the discriminate function of SVM is given with Equation (14) [69]. For 
constructing the hyperplane, Equation (14) can be re-written as Equation (15). 

( ) .g x x bω= +   (14)
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( . ) 0x bω + =   (15)

where w corresponds to the slope of the hyperplane and b refers to the margin. 
The value of g(x) determines the further process in classification or regression prob-

lems. If the value of g(x) = 1, then the distance between the two separate classes or class 

intervals would be calculated as 
2
|| ||w

. 

5. Dimensionality Reduction Techniques 
Different researchers have employed various dimensionality reduction methods to 

decrease the feature dimension of the HRV features. The following section describes the 
dimensionality reduction methods that can be performed in Rapidminer software 
(Rapidminer Inc., USA). 

5.1. Principal Component Analysis (PCA) 
PCA is a renowned unsupervised ML technique that employs an orthogonal conver-

sion algorithm to alter many associated features to a set of unrelated features identified as 
principal components [58]. The orthogonal alteration is performed utilizing the eigen-
value breakdown of the covariance matrix, which is produced using the features of the 
specified signal. PCA selects the dimensions containing the most significant information 
while discarding the dimensions containing the least important information. This, sequen-
tially, assists to lessen the dimensionality of the data [70]. The samples in the PCA-based 
approach are placed in a lower-dimensional space, such as 2D or 3D. Because it makes use 
of the signal’s variation and changes it to alternate dimensions with lesser characteristics, 
it is a useful tool for attribute choosing. However, the transformation preserves the vari-
ance of the signal components. 

The PCA technique is generally executed via either the matrix or data methods. The 
matrix method uses all the data contained in the signal to compute the variance–covari-
ance structure and represents it in the matrix form. Here, the raw data are transformed 
using matrix operations through linear algebra and statistical methodologies. And yet, the 
data process works directly on the information and matrix-based operations are not re-
quired [70]. Various features like the mean, deviation, and covariance are involved in im-
plementing a PCA-based algorithm. The mean or average (µ) value of the data samples 
(xi) calculated during the implementation of PCA is given in Equation (16) [70]. 

1

1 n

i
i
x

n
μ

=
= 

 
(16)

where xi represents the data samples. 
The deviation ( iφ ) for the dataset can be mathematically expressed using Equation 

(17) [70]. 

i ixφ μ= −  (17)

where xi represents the data samples, and µ represents the deviation. 
Covariance (C) determines the variable value that has changed randomly and how 

much it has deviated from the original data [71]. This value may be either positive or neg-
ative and is based on the deviation it has gone through in the previous steps. The covari-
ance matrix is calculated using the deviation formula and then transposing it [70]. 

1 1

1 1 1( )( )
n n

T T T
i i

i i
C x x AA

n n n
μ μ φ φ

= =

= − − = = 
  

(18)

where A= [Φ1, Φ2... Φn] is the set of deviations observed from the original data. 
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In order to apply PCA for dimensionality reduction purposes, the eigenvalues and 
the respective eigenvectors of the covariance matrix C need to be computed [70]. Among 
all the eigenvectors (say m), the first k number of eigenvectors with the highest eigenval-
ues are selected. This corresponds to the inherent dimensionality of the subspace regulat-
ing the signal. The rest of the dimensions (m-k) contain noise. For the representation of 
the signal using principal components, the signal is projected into the k-dimensional sub-
space using the rule given in Equation (19) [70]. 

( )T
i iY U x μ= −   (19)

where U represents an m × k matrix whose columns comprise the k eigenvectors. 
PCA helps to obtain a set of uncorrelated linear combinations as given in the matrix 

form below (Equation (20)) [71]. 
TY A x=  (20)

where Y = (Y1, Y2, …, Yp)T, Y1 represents the first principal component, Y2 represents the 
second principal component, and so on. A is an orthogonal matrix having ATA = I. 

5.2. Kernel PCA (K-PCA) 
K-PCA is an extension of the principal component analysis (PCA) approach that may 

be used with non-linear information by employing several filters, including linear, poly-
nomial, and Gaussian [58]. This method transforms the input signal into a novel feature 
space employing a non-linear transformation. A kernel matrix K is formed through the 
dot product of the newly generated features in the transformed space, which act as the 
covariance matrix [72]. For the construction of the kernel matrix, a non-linear transfor-
mation (say φ(x)) from the original D-dimensional feature space to an M-dimensional fea-
ture space (where M >> D) is performed. It is then assumed that the new features detected 
in the transformed domain have a zero mean (Equation (21)) [73]. The covariance matrix 
(C) of the newly projected features has an M × M dimension and is calculated using Equa-
tion (22) [73]. The eigenvectors and eigenvalues of the covariance matrix represented in 
Equation (23) are calculated using Equation (24) [73]. The eigenvector term vk in Equation 
(23) is expanded using Equation (24) [73]. By replacing the term vk in Equation (23) with 
Equation (24), we obtain the expression in Equation (25) [73]. By defining a kernel func-
tion, ( , ) ( ) ( )T

i j i jk x x x xφ φ= , and multiplying both sides of Equation (25), we obtain 
Equation (26) [73]. Using matrix notation for the terms mentioned in Equation (26) and 
solving the equation, we obtain the principal components of the kernel (Equation (27)) 
[73]. If the projected dataset does not have a zero mean feature, the kernel matrix is re-
placed using a Gram matrix represented in Equation (28) [73]. 
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(22)

k k kCv vλ=   (23)

where k = 1, 2, …, M, vk = kth eigenvector, and λk corresponds to its eigenvalue. 
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1 1 1
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(27)

where aki represents the coefficient of the kth eigenvector and k(xl, xi) represents the kernel 
function. 

1 1 1 1N N N NK K K K K= − − +
  (28)

where 1N represents the matrix with N × N elements that equals 1/N. 
Lastly, PCA is executed on the kernel matrix (K). In the K-PCA technique, the prin-

cipal components are correlated, meaning the eigenvector is projected in an orthogonal 
direction with more variance than any other vectors in the sample data. The mean-square 
approximation error and the entropy representation are minimal in the principal compo-
nents. Identifying new directions using the kernel matrix enhances accuracy compared to 
the traditional PCA algorithm. 

5.3. Independent Component Analysis (ICA) 
An Independent Component Analysis (ICA) is an analysis system used in ML to sep-

arate independent sources from the input mixed signal, which is also known as blind 
source separation (BSS) or the blind signal parting problem [74,75]. The test signal is trans-
formed linearly into components that are independent of each other. In ICA, the hidden 
factors are analyzed, viz., sets of random variables. ICA is more similar to PCA. ICA is 
proficient in discovering the causal influences or foundations. Before the implementation 
of the ICA technique on the data, a few preprocessing steps, like whitening, centering, 
and filtering, are usually performed on the data to improve the value of the signal and 
eliminate the noise. 

5.3.1. Centering 
Centering is regarded as the most basic and essential preprocessing step for imple-

menting ICA [74]. In this step, the mean value is subtracted from each data point to trans-
form the data into a zero-mean variable and simplify the implementation of the ICA algo-
rithm. Later, the mean can be estimated and added to the independent components.  

5.3.2. Whitening 
A data value is referred to as white when its constituents become uncorrelated, and 

their alterations are equal to one. The purpose of whitening or sphering is to transform 
the data so that their covariance matrix becomes an identity matrix [74]. The eigenvalue 
decomposition (EVD) of the covariance matrix is a popular method for the implementa-
tion of whitening. Whitening eliminates redundancy, and the features to be estimated are 
also reduced. Therefore, the memory space requirement is reduced accordingly. 

5.3.3. Filtering 
The filtering-based preprocessing step is generally used depending on the applica-

tion. For example, if the input is time-series data, then some band-pass filtering may be 
used. Even if we linearly filter the input signal xi(t) and obtain a modified signal xi*(t), the 
ICA model remains the same [74]. 
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5.3.4. Fast ICA Algorithm 
Fast ICA is an algorithm designed by AapoHyvärinen at the Helsinki University of 

Technology to implement ICA effectively [62]. The Fast ICA algorithm is simple and re-
quires minimal memory space. This algorithm assumes that the data (say x) are already 
subjected to preprocessing like centering and whitening. The algorithm aims to find a di-
rection (in terms of a unit vector w) so that the non-Gaussianity of the projection wTx is 
maximized, where wTx represents an independent component. The non-Gaussianity is 
computed in negentropy, as discussed in [74]. A fixed-point repetition system is used to 
discover the highest non-Gaussianity of the wTx projection. Since several independent 
components (like w1Tx, …, wnTx) need to be calculated for the input data, the decorrelation 
between them is crucial. The decorrelation is generally achieved using a deflation scheme 
developed using Gram–Schmidt decorrelation [74]. The estimation of independent com-
ponents is performed one after another. This is similar to a statistical technique called a 
projection pursuit, which involves finding the possible number of projections in multi-
dimensional data. The Fast ICA algorithm possesses the advantage of being parallel and 
distributed, and possesses computational ease and less of a memory requirement. 

5.4. Singular Value Decomposition (SVD) 
Another approach that builds on PCA is singular value decomposition (SVD), which 

uses attribute elimination to cut down on overlap [58]. Its consequence is a smaller num-
ber of components than PCA but it retains the maximum variance of the signal features. 
The process is based on the factorization principle of real or complex matrices of linear 
algebra. This method performs the algebraic transformation of data and is regarded as a 
reliable method of orthogonal matrix decomposition. The SVD method can be employed 
to any matrix, making it more stable and robust. This method can be used for a dimension 
reduction in big data, thereby reducing the time for computing [76]. SVD is used for a 
dataset having linear relationships between the transformed vectors.  

The SVD algorithm is a powerful method for splitting a system into a set of linearly 
independent components where each component has its energy contribution. To under-
stand the principle of SVD, let us consider a matrix A of dimensions M × N and another 
matrix U of M × M dimensions. The vectors of A and U are assumed to be orthogonal. 
Further, let us assume another matrix S, which has a dimension of M × N. Another orthog-
onal matrix, VT, having a dimension of N × N is also assumed. Then, matrix A is repre-
sented by Equation (29) using the SVD method [77]. 

TA U V= ×Σ×  (29)

where the columns of U are called left singular vectors, and those of V are called right 
singular vectors. 

5.5. Self-Organizing Map (SOM) 
The self-organizing map (SOM) or the Kohonen map corresponds to a neural net-

work that helps in dimensionality-reduction-based feature selection. The map here signi-
fies the low-dimensional depiction of the features of the specified signal. SOM is based on 
unsupervised ML with node arrangement as a two-dimensional grid. Each node in the 
SOM is connected with a weighted vector to make computing easier [78]. SOM imple-
ments the notion of a race network, which aims to determine the utmost alike detachment 
between the input vector and the neuron with weight vector wi. The architecture of SOM 
comprising both the input vector ‘x’ and output vector ‘y’ is shown in Figure 7. 
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Figure 7. The architecture of SOM. 

The size of the weight vector ‘wi’ in SOM is controlled using the learning rate func-
tions like the linear, the inverse of time, and the power series as given in Equations (30)–
(32) [79]. 
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α α= ⋅   (30)
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  (31)

( , ) (0)
t
Tt T eα α= ⋅   (32)

where T represents the number of iterations and t is the order number of a certain it. 
It is distinct from the other ANNs in the case of implementing the neighborhood 

function. A neighborhood function is a function that computes the rate of neighborhood 
change around the winner neuron in a neural network. Usually, the bubble and Gaussian 
functions (Equations (33) and (34)) are used as neighborhood functions in SOM. 
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where Nc = the index set of neighbor nodes close to the node with indices c, Rc, and Rij = 
indices of wc and wij, respectively, and ηcij = the neighborhood rank between nodes wc and 
wij. 

6. Classification Techniques 
The classification techniques are used to determine the category of new observations 

based on the training data. In the classification process, an algorithm first learns from the 
dataset or observations provided and then sorts each new observation into one of the 
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classes. It enables us to divide enormous amounts of data into distinct classes. Various 
classification techniques that can be used for HRV features and can be executed in 
RapidMiner software are described below. 

6.1. Generalized Linear Model 
A generalized linear model is based on the global generalization of simple linear re-

gression (GLM). Nelder and Wedderburn created it to consolidate a wide variety of sta-
tistical methods [80]. GLM consists of three elements, i.e., an error dispersal function, a 
linear forecaster, and an algorithm [81]. The probability distribution functions like Gauss-
ian, binomial, and Poisson are used as the error distribution function. The linear predictor 
reveals the consistent impact sequence, and the technique delivers the best estimate of the 
design variables possible. 

6.2. Naive Bayes  
An example of a likelihood classifier, Naive Bayes (NB), is one that makes strong 

(naive) independent assertions across attributes and relies on Bayes’ theorem. With the 
class variable in place, it presumes that each attribute may be considered separately. If the 
fruit is red, round, and around 10 centimeters in diameter, we call it an apple. An NB 
technique would attribute equal weight to every parameter when calculating the chance 
that this item is an apple, irrespective of any correlations among color and sphericity or 
length. In numerous practical applications, the maximum likelihood method estimates 
parameters for the NB model (Figure 8). Despite its naïve design and simplistic assump-
tions, NB classifiers have performed well in various challenging real-world scenarios. 
Mathematically, the NB model can be expressed with the help of the discriminant func-
tion, as shown in Equation (35) [82].  

( ) ( ) ( )
1

|
N

i j i i
j

f X P x c P c
=

= ∏   (35)

where X = (x1, x2, …, xN) corresponds to the feature vector, ci indicates the class levels, P(ci) 
represents the prior likelihood, and P(xj | ci) denotes the restrictive likelihood. 

  
Figure 8. Simple diagram of Naïve Bayes classifier . 

6.3. Support Vector Machine 
One standard supervised learning method, a support vector machine (SVM), may be 

used to address categorization and regression issues simultaneously. Its purpose is to find 
the ideal contour (called the hyperplane) for categorizing n-dimensional space into 
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categories. The features in the dataset determine the dimension of the hyperplane. The 
SVM can be linear or non-linear based on the nature of the dataset. Data that can be split 
into two groups in a linear fashion are said to be differentiable, and the SVM classifier 
used in such cases is known as a linear SVM. A non-linear support vector machine can be 
employed if a linear classification scheme fails to work on a given dataset. A simple graph-
ical representation of both the linear and non-linear SVM is presented in Figure 9 below.  

 
(a) (b) 

Figure 9. Graphical representation of (a) linear and (b) non-linear support vector machines. 

6.4. Logistic Regression 
Logistic regression (LR) corresponds to a probabilistic statistical model widely used 

in classification problems. It aims at defining the connotation among a dichotomous de-
pendent attribute and numerous independent attributes of the dataset [83]. The use of the 
logistic function f(z) (given with Equation (36)) mainly contributes to the wide acceptance 
of the LR classifier as its values always lie in the range of 0 to 1 [84]. In addition, the logistic 
function gives an attractive S-shaped representation of the cumulative outcome (z) of the 
independent attributes on the dependent attribute f(z) (Figure 10) [85]. It is clear from Fig-
ure 10 that the logistic regression is different from the linear regression in the case of its 
ability to limit the output in the range of 0 to 1. 

1( )
1 zf z
e−=

+
  (36)

where z is the cumulative effect of the independent variables, and f(z) is the dependent 
variable. 

Equation (36) can be written as 
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where [p/(1 − p)] indicates the odds of the event occurring. 
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Figure 10. A standard S–shaped illustration of the logistic function. 

6.5. Deep Learning 
Deep learning (DL) is a progressive unsupervised strategy for knowledge features or 

representations. It has created a novel tendency in ML and pattern identification [86,87]. 
The hypothetical foundation for DL is the notion of neural nets. DL models employ sev-
eral hidden neurons and layers (often more than two) associated with conventional neural 
networks. In addition, the DL models incorporate advanced learning techniques, such as 
the autoencoder technique and restricted Boltzmann machine (RBM), which are not used 
in conventional neural networks [87]. A DL network enables automated attribute choos-
ing by abstracting raw data at a high level. These networks can reveal hidden input attrib-
utes, enhancing classification performance [88]. Figure 11 displays the overall DL frame-
work [73]. 

 
Figure 11. A standard illustration of a deep neural network. 

6.6. Decision Tree 
The decision tree (DT) procedures are widespread categorization techniques in ML 

[89]. They separate the data recursively into two categories to construct a tree on the basis 
of its input attributes [82]. Various established mathematical procedures, such as an infor-
mation gain, chi-square test, Ginni index, etc., are used to partition the data [89]. These 
methods provide the variables and threshold for subdividing the dataset input into 
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distinct subgroups. The process of splitting is continued until a mature tree is created. A 
DT categorizer typically consists of internal nodes, divisions, and leaf nodes (Figure 12) 
[90]. The internal node represents a test on a feature, while the branches represent the 
test’s outcome and the leaf nodes denote class levels. 

 
Figure 12. A standard illustration of the DT classifier. 

6.7. Random Forest (RF) 
The RF model belongs to the composite classifications’ group of algorithms. It is use-

ful for making predictions on the basis of the combination of a number of different deci-
sion trees [89]. All decision trees are produced using the portrayal of a subsection of the 
drilling subsets via replacing values or bagging. The concluding estimate is founded upon 
the most gained of the votes these decision trees give (Figure 13). The choice of two vari-
ables, specifically, the number of decision trees to be produced and the number of attrib-
utes to be nominated for budding the trees, shows a critical part in determining the effi-
ciency of the RF architecture [91].  

 
Figure 13. The graphic illustration of a standard RF classifier. 
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6.8. Gradient Boosted Tree (GBT) 
A gradient boosted tree (GBT) is an advanced decision tree approach that divides the 

dataset into subgroups using an optimization model like XGBoost. It is one of the popular 
models due to its capacity to deal with absent data and reduce the loss function [92]. It 
can determine the higher-order relationships between the input attributes [93] too. In each 
time step, the gradient-boosted tree builds a new tree to minimalize the residual of the 
existing system (Figure 14). 

 
Figure 14. The graphic depiction of an archetypal GBT classifier. 

6.9. Fast Large Margin (FLM) 
The FLM algorithm is a form of linear SVM. It originated from the fast-margin learner 

developed by Fan et al. (2008) [94]. This classifier yields similar results to traditional SVM 
and LR approaches. Nevertheless, the FLM classifier can deal with datasets, including 
millions of samples and attributes. 

7. Applications of HRV Analysis 
There are various applications of an HRV analysis. It has emerged as an important 

diagnostic tool in fields as diverse as cardiology, endocrinology, psychiatry, fetal moni-
toring, neonatal care, and many others. An HRV analysis can also help in understanding 
the effects of various external consumption factors, like alcohol, drugs, smoking, etc., on 
the pursuit of the autonomic nervous system. Some of the prominent applications are de-
scribed in this section. 

7.1. Diabetes Detection 
Diabetes has emerged as one of the most common diseases worldwide. When blood 

sugar levels are not under control, the extra blood sugar builds up in the blood vessels 
and impacts how blood flows to different organs in the body. An inappropriate amount 
of secretion of insulin causes diabetes [94]. Primarily, two forms of diabetes exist. 

Type 1 diabetes: If a person has type 1 diabetes, they need insulin injections or other 
treatments to receive enough insulin into the body. This is because the body loses the 
ability to make the right amount of insulin, which can cause high blood sugar levels and 
other health issues. 
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Type 2 diabetes: An individual with this form of diabetes does not need insulin and 
is not resistant to it. In this case, the body makes enough insulin, but it does not use that 
insulin for energy conversion. Since there is not enough energy, the body makes even 
more insulin, which causes the blood sugar to rise to abnormal levels [95].  

Diabetes has been proven to be the leading cause of heart disease, renal malfunction, 
strokes, limb paralysis, and vision loss in individuals all over the globe. The majority of 
diabetes patients have other co-morbidities, such as obesity or hypertension. Diabetes has 
been linked to cholesterol, blocked arteries, myocardial infarction, and other serious con-
sequences [96].  

Recent studies reveal a strong link between HRV and glucose levels, indicating that 
diabetes causes gradual autonomic dysfunction and reduced heart rate variability [97]. A 
reduction in HRV features can indicate the potential of a volunteer being diabetic. Several 
studies attempt to develop viable solutions to the problem of diabetes detection based on 
an HRV analysis. Yildirim et al. (2019) proposed the automatic identification of diabetic 
patients by employing deep learning models on spectrogram images of RR intervals. The 
deep learning (DL) approach included pre-trained CNN models like DenseNet, AlexNet, 
ResNet, and VGGNet [98]. The spectrogram images were constructed utilizing the short-
time Fourier transform (STFT) on the RR intervals. Among all the DL models, the Dense-
Net model presented an accuracy of 97.62% and a sensitivity of 100% for diagnosing dia-
betic patients. In another study, Rathod et al. (2021) analyzed the effect of type 2 diabetes 
mellitus (T2DM) on HRV features to determine the resultant autonomic dysfunction in 
diabetic patients [99]. The time-domain attributes (mean RRI and SDNN), frequency-do-
main features (total power, LF, and HF), and non-linear features (SD1 and SD2) were 
lower in diabetic patients than those of the control group in the resting state. When an 
orthostatic challenge was conducted as a stimulus to study the ANS reactivity, a blunted 
response of the ANS reactivity was exhibited by the T2DM patients. The authors then 
implemented the ML algorithms to detect autonomic dysfunction in T2DM patients. The 
Classification and Regression Tree (CART) model was able to identify the extent of auto-
nomic dysfunction in individuals with TD2M with the highest accuracy of 84.04%. Thus, 
the authors recommended the use of HRV features in amalgamation with the CART 
model for the detection of autonomic dysfunction in TD2M patients. Table 1 lists some 
other papers issued in the last 5 years discussing the application of an HRV analysis in 
diabetes detection. 

Table 1. List of published papers in the last 5 years with novel approaches for diabetes detection 
based on HRV analysis.

Author,  
Year 

Feature Ex-
traction Meth-

ods Used 

Feature Selection/ 
Reduction Methods 

Employed 
Classifiers Used Inference 

Swapna et al. (2018) 
[100] - - 

Deep learning 
(CNN and CNN 

LSTM) 

Diabetic and normal HRV features 
could be distinguished with 93.6% and 
95.1% accuracy using CNN and CNN-

LSTM networks, respectively. 

Aggarwal et al. 
(2020) [97] 

Poincare plot, 
recurrence 

plot, entropy, 
DFA, and cor-

relation di-
mension 

- ANN and SVM 

An ANN design (13:7:1) with a learn-
ing rate of 0.01 yielded a classification 
accuracy of 86.3%. At the same time, 

SVM had a slightly higher accuracy of 
90.5% in distinguishing diabetic and 
control patients. Non-linear HRV at-
tributes exhibit changes as a result of 
diabetes and can thus be employed in 

the construction of a prognostic system 
for detecting diabetes. 
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Materko et al. (2021) 
[101] 

Cardiac decel-
eration rate in-

dex (CDRI) 
- SVM 

This study evaluated the seriousness of 
T2DM in women between 60 and 70 
years of age. The SVM classifier was 
validated using 10-fold cross-valida-

tion. An accuracy of 97.5% was 
achieved. 

Novikov et al. (2019) 
[102] 

Time and fre-
quency do-

main methods 
- Decision tree 

The study proposes two mathematical 
models to determine the blood glucose 
level of an individual. The first model 

considers the age of the individual and 
the HRV features, while the second 
model also considers the individual 
HRV values. The second model was 
found to be 10.1% more sensitive to 

critically high glycemic levels than the 
first. 

Venkataramanaiah et 
al. (2020) [103] 

Adaptive 
neuro-fuzzy 

methods 
- KNN 

Biomedical sensors, an ARM processor, 
and an FPGA were employed to iden-

tify, test, analyze, and report normal or 
abnormal situations. The KNN classi-
fier used in this paper attained a maxi-
mum accuracy of 99%, which is greater 
than that achieved with other ML algo-

rithms such as ANN, SVM, softmax, 
random forest, and PCA. 

Shaqiri et al. (2020) 
[104] 

Time-domain 
methods (fea-
tures: SDNN, 

RMSSD) 

-  
DL architecture 

with three hidden 
layers 

The authors used DL to design a model 
to predict glucose levels with the help 
of HRV features. A dataset of 155 pa-

tients was used. The resulting architec-
ture has three hidden layers. These lay-
ers are made up of 32 neurons, 256 neu-
rons, and 64 neurons, respectively. The 
outlier removal methods, IQR and Z-

Score, result in a higher F1 score value 
and accuracy, respectively.  

Bekkink et al. (2019) 
[105] 

Time and fre-
quency do-

main methods 
T-test - 

This study aimed to develop a func-
tional hypoglycemia alert device for 
T1DM patients. It was found that the 

LF/HF ratio increased, and RMSSD in-
creased in the case of hypoglycemic 

events, although some instances 
showed opposing effects. 

Maritsch et al. (2020) 
[106] 

Time and fre-
quency do-

main methods 
- 

Gradient boosting 
decision tree 

This study proposes a model that de-
tects hypoglycemia based on data from 
smartwatch sensors. The authors used 
SHAP (Shapley additive explanations) 
values to mitigate false positive values. 
SHAP assigns an attribution value to 

all the instances and classes. The model 
considers the sensor data and the 
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historical patterns and alerts the user if 
need be. 

Tuttolomondo et al. 
(2021) [107] 

Time and fre-
quency do-

main methods 

Chi-squared statistics 
(CSS) and ANOVA - 

This study considers increased activa-
tion of the PNS in patients with dia-

betic feet. It also discusses the resultant 
upsurge in HF values and the de-

creased LF/HF ratio.  

Cha et al. (2018) [108] 
Time and fre-

quency do-
main methods 

- - 

The lowest 10th percentile of the HRV 
features was proven to indicate adverse 
cardiovascular outcomes. However, the 

LF/HF ratio did not significantly pre-
dict cardiovascular diseases. 

7.2. Sleep Apnea Detection 
Sleep is important for the proper functioning of the human body [109]. The brain 

passes through various stages of sleep as a person sleeps. They are mainly classified as 
rapid eye movement (REM) and non-rapid eye movement (NREM) [110]. Both of these 
phases are continually repeated during sleep [109]. When a person does not have typical 
cycles of REM and non-REM sleep, the body may face a variety of negative impacts, in-
cluding weariness, a decrease in capacity to focus, disruptions in body metabolism, and 
other similar symptoms, even stroke [111]. Sleep apnea is one of the many diseases that 
disrupt these healthy sleeping cycles. It is a sleeping ailment categorized by recurrent 
starting and stopping of breathing while sleeping. Sleep apnea patients experience mus-
cles at the back of their throats getting stretched and becoming more constricted, thus 
disrupting the normal breathing process [112]. This is a highly prevalent condition often 
observed more frequently in males than in women. Patients of any age can be affected by 
this ailment. However, middle-aged individuals are more likely to have it [113]. Sleep 
apnea can be treated if the patient is aware of the symptoms of sleep apnea, which reduces 
risk factors, and discusses future treatment options with their doctor [114]. Snoring and 
occasional breathing disruptions during sleep are the common symptoms of this disorder. 
Other indications include an abrupt awakening accompanied by shortness of breath, a 
headache upon waking, insomnia, focus issues, irritability, and hypersomnia. Sleep apnea 
has been related to various significant health problems such as diabetes, stroke, hyperten-
sion, obesity [115], and high blood pressure. Although this cannot be cured, it can be 
treated with various methods such as behavioral therapy, positive pressure therapy, oral 
breathing equipment, and even surgery [116,117]. Several pieces of research have been 
executed in the arena of sleep apnea diagnoses since an early diagnosis of the disease can 
reduce patient mortality. An HRV analysis has found several applications in the field of 
sleep, including assessing the severity of sleep apnea, categorizing sleep stages, and de-
tecting sleep apnea events [118,119]. The consequence of disruptive sleep apnea (OSA) 
severity on HRV features was examined by Qin et al. (2021) [120]. The research was con-
ducted on 1247 persons, among which 426 were healthy and 821 had OSA. The time-do-
main and non-linear HRV features exhibited less complexity and increased sympathetic 
dominance in OSA patients. Thus, the authors proposed an HRV analysis as a potential 
marker of cardiovascular activity in such patients. Recently, Nam et al. (2022) studied the 
relationship between the apnea–hypopnea index (AHI) and HRV in OSA patients. The 
authors analyzed the 24 h Holter monitoring-based HRV data and polysomnography data 
of 62 OSA patients. The results suggested that day/night VLF and LF ratios decreased with 
the increased severity of OSA. These features were also observed to associate inde-
pendently with the AHI. Table 2 shows some HRV analysis research conducted for sleep 
apnea detection. 
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Table 2. Studies conducted for sleep apnea diagnoses utilizing HRV analysis in the last 5 years. 

Author, Year 
Feature Ex-

traction Meth-
ods Used 

Feature Selection/Re-
duction Methods Em-

ployed 
Classifiers Used Inference 

Bozkurt et al. 
(2019) [121] 

Time and fre-
quency do-

main methods 

The F-score algorithm 
and PCA 

KNN, probabilistic neural 
network (PNN), SVM, and 

multilayer feed-forward 
neural network (MLFFNN) 

The study proposed a respiration 
scoring algorithm for OSA patients. 
The Photoplethysmography (PPG) 
signal and derived HRV features 

were used to achieve a classification
accuracy up to 95%. 

Fedorin et al. 
(2019) [122] 

Time and fre-
quency do-

main methods 

Cohen’s Kappa coeffi-
cient of agreement and 
Pearson correlation co-

efficient 

Linear discriminant analysis 
(LDA) 

A novel approach for the classifica-
tion of four sleep stages (REM, 

NREM, combined light, and deep) 
was proposed. The HRV and mo-
tion statistics-based features were 

employed to achieve an accuracy of 
up to 85%. 

Nakayama et 
al. (2019) [123] 

Time and fre-
quency do-

main methods 
- Random forest  

A simple OSA screening method 
was proposed using HRV features 

and a random forest-based A/N dis-
criminant architecture. The sug-

gested approach showed 76% sensi-
tivity and 92% specificity. 

Bozkurt et al. 
(2020) [124] 

Time and fre-
quency do-

main methods 

F-score feature selec-
tion algorithm 

KNN, PNN, MLFNN, SVM 
 

This study proposed AI models 
based on PPG and HRV features to 
diagnose OSA. The model achieved 

an accuracy of 91.09%. 

Hayano et al. 
(2020) [125] 

Time and fre-
quency do-

main methods 
T-test 

aggregated  
Cauchy  

association test  
(ACAT) 

The study proposed a model using 
the ACAT algorithm on PPG and 

HRV data. The model could detect 
cyclic variation of heart rate 
(CVHR) with 85% accuracy. 

7.3. Myocardial Infarction Detection 
Myocardial infarction (MI) is a widespread illness known as a heart attack. The prev-

alence of heart attacks in India is 64.37 cases per 1000 individuals. According to a recent 
assessment, around 1.5 million myocardial infarctions occur annually in the United States 
(US) [1]. Myocardial infarction takes place when a segment or segments of the heart mus-
cle are deprived of oxygen. This happens when there is a restriction in the blood supply 
to the heart’s muscles. The leading cause of MI is complete or partial artery blockage. 
Plaque deposits in coronary arteries can rupture and cause a blood clot. If the clot stops 
the arterial blood flow, the cardiac muscle will not receive enough blood, causing a heart 
attack. The risk factors for this cardiac issue have two aspects, i.e., genetic and acquired 
(from lifestyle, diseases, age, trauma, etc.) (Figure 15). 
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Figure 15. The risk factors for heart attack. 

The HRV features of patients who suffered from an acute myocardial infarction 
(AMI) are being analyzed extensively. According to most studies, patients with a de-
creased or abnormal HRV risk are dying within a few years of having an AMI. Many 
measures of HRV, including time-domain, spectral, and non-linear, have been employed 
in the risk stratification of post-AMI patients [126]. Sharma et al. (2019) proposed a model 
for accurately detecting heart failure utilizing decomposition-based attributes mined via 
HRV features. Three healthy volunteer datasets and two CHF datasets were used in the 
study. The Eigen Value Decomposition of the Hankel Matrix (EVDHM) technique was 
applied in this case for feature extraction. It employed least-square SVM with a radial 
basis function kernel as the classifier. The suggested approach produced an accuracy of 
93.33%, a sensitivity of 91.41%, and a specificity of 94.90% utilizing 500 HRV samples 
[127]. Further, Shahnawaz et al. (2021) presented an ML model for automated uncovering 
of myocardial infarction founded on ultra-short-term HRV [128]. They used artificial neu-
ral networks (ANN), random forest, KNN, and SVM for categorization purposes and the 
Relu Activation Function to select and reduce features for the model. This model yielded 
an accuracy of 99.01% and a sensitivity of 100%. 

7.4. Cardiac Arrhythmia Detection 
A cardiac arrhythmia is when the heart beats erratically [129]. The primary reason 

for an arrhythmia can be a heart rate that is abnormally high, abnormally low, or irregular 
[130]. This happens due to abnormal signals from the heart. Mainly two kinds of heart 
arrhythmias exist. They are usually categorized using the heart rate, namely tachycardia 
and bradycardia (Figure 16) [131]. Tachycardia is a medical term used to describe an ele-
vated heart rate that exceeds the normal range, often above 100 beats per minute in adult 
individuals. In contrast, bradycardia is characterized by a diminished heart rate, typically 
falling below 60 beats per minute among adult individuals. Both tachycardia and brady-
cardia can manifest within the context of sinus rhythm, wherein the heart’s electrical im-
pulses originate from the sinus node, which serves as the heart’s intrinsic pacemaker. Var-
ious approaches to analyzing HRV signals may exhibit distinct behaviors when employed 
on individuals experiencing tachycardia or bradycardia as discussed below. 
• Time-Domain Analysis: 

In subjects with tachycardia, shorter RR intervals can result in reduced variability 
between consecutive intervals, potentially affecting time-domain measures such as the 
standard deviation of NN intervals (SDNN) and the root mean square of successive NN 
interval differences (RMSSD) [29]. 

In subjects with bradycardia, longer RR intervals might lead to increased variability, 
potentially influencing the same time-domain measures [132]. 
• Frequency-Domain Analysis: 
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In subjects with tachycardia, the faster heart rate can lead to higher-frequency power 
dominating the spectrum [133], potentially obscuring the interpretation of low-frequency 
(LF) and high-frequency (HF) components. 

In subjects with bradycardia, the opposite might occur, making frequency-domain 
interpretation more straightforward [134]. 
• Non-linear Analysis: 

Non-linear HRV analysis methods, such as Poincaré plots and fractal analyses, might 
be affected by the irregularity of the heart rate in tachycardia and the extended RR inter-
vals in bradycardia [135]. These methods might need adjustments or specific considera-
tions for accurate interpretation. 
• Geometric Analysis: 

Geometric methods, like the triangular index and Lorenz plot, might be sensitive to 
the distribution of RR intervals [136], which can differ in tachycardia and bradycardia. 
These methods might need normalization or transformation to account for such differ-
ences. 

 
Figure 16. Types of cardiac arrhythmias. 

In general, the issues that might arise from arrhythmias include the risk of having a 
stroke and heart failure [137]. Arrhythmias have also been linked to a higher risk of blood 
clots. A blood clot can move from the heart to the brain and cause a stroke if it breaks 
away [138]. Many researchers have suggested different detection methods for cardiac ar-
rhythmias. Atrial fibrillation (AF) is an arrhythmia that may modify heart rhythm dynam-
ics and ECG morphology. It is distinguished by the presence of irregular and rapid elec-
trical impulses inside the atria, resulting in an irregular and frequently elevated heart rate. 
The measurement of HRV in individuals diagnosed with AF might offer valuable insights 
into the impact of the autonomic nervous system on the development and progression of 
this condition. Furthermore, such an analysis may have significant consequences for the 
process of assessing an individual’s risk level and managing their treatment plan. Never-
theless, it is crucial to acknowledge that the study of HRV in patients with AF can present 
challenges owing to the irregularity of the cardiac rhythm. Conventional approaches for 
measuring HRV may not be well-suited for examining datasets characterized by irregular 
intervals between successive heartbeats. Various algorithms and methodologies have 
been specifically designed to tackle these challenges and derive significant metrics related 
to HRV from the data of individuals with AF. 

The examination of HRV in patients with AF has the potential to provide significant 
insights into the role of the autonomic nervous system in the development of the arrhyth-
mia, as well as its potential for predicting unfavorable outcomes or informing treatment 
strategies. However, it is imperative to use caution when interpreting the findings and to 
consider them in connection with other clinical and diagnostic factors. Relying just on an 
HRV analysis may not yield a thorough understanding of a patient’s cardiac well-being. 
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A study by Christov et al. (2018) ranked HRV features for atrial fibrillation detection [139]. 
They found that the PNN50, SD1/SD2, and RR mean are the three top ranked HRV fea-
tures, as well as the full set of HRV features achieving a 13%-point higher arrhythmia 
detection performance compared to the set of beat morphology features. Other recent 
studies for arrhythmia detection with an HRV analysis can be found in [140–143]. The 
experimental results revealed that the HRV descriptors are effective measures for AF iden-
tification. In another study, Singh et al. (2019) proposed an arrhythmia detection tech-
nique using a time–frequency (T-F) analysis of HRV features [144]. The back-propagation 
neural networks, in combination with three different types of decision rules, were em-
ployed to achieve the classification accuracy of 95.98% for the low-frequency (LF) band 
and 97.13% for the high-frequency (HF) band [144]. A study by Ahmed et al. (2022) high-
lighted the development of a client–server paradigm for analyzing HRV features to detect 
arrhythmias [145]. The proposed platform performed all the real-time steps, from feature 
extraction to classification. Smoothed Pseudo Wigner–Ville Distribution (SPWVD) was 
used for the HRV analysis, and SVM was used as the classifier to achieve a classification 
accuracy up to 97.82%. The classification result can be further sent to clinicians for an in-
terpretation and diagnosis.  

7.5. Blood Pressure/Hypertension Detection 
Blood pressure (BP) refers to the force of pumping blood against the walls of the 

arteries. The condition is called hypertension when this pressure is too high [146]. Two 
numbers are used to express someone’s blood pressure. The first number, the systolic 
pressure, indicates the pressure in the blood arteries whenever the heart beats or contracts. 
The second number, the diastolic pressure, indicates the pressure in the blood vessels 
while the heart rests between the beats [147]. If the systolic BP and the diastolic BP are 
≥140 mmHg and ≥90 mmHg, respectively, on two separate days, the patient is said to be 
suffering from hypertension [148]. Numerous structural and functional alterations of the 
cardiac muscles are induced in individuals with hypertension due to more workload on 
the heart. These alterations might increase the cardiovascular risk of hypertensive persons 
over and above the danger caused by an increase in blood pressure on its own. In recent 
years, many researchers have studied the feasibility of an HRV analysis as a marker for 
hypertension detection [149]. In a study by Lan et al. (2018), it was shown that an HRV 
analysis can predict hypertension at an early stage [150]. The study used 3 months of PPG-
based HRV statistics from hypertensive and non-hypertensive participants to calculate 
HRV features. Six HRV features were utilized in data mining to predict hypertension. It 
was found that the SDNN feature had the best predictive potential with an accuracy of 
85.47%. In light of the findings, the researchers recommended that the PPG-based HRV 
statistics composed via the wearable devices can be a potential candidate for hypertension 
prediction with acceptable accuracy. An HRV analysis was tested as a prognostic tool for 
identifying high-risk patients suffering from hypertension by Deka et al. (2021) [151]. 
Their study used a hybrid method founded on the dual-tree complex wavelet packet 
transform (DTCWPT) and other time-domain and non-linear HRV analysis methods to 
extract features. These features were then fed to the cost-sensitive RUSBoost algorithm, 
which produced a G-mean and F1 score of 0.9352 and 0.9347, respectively. Table 3 shows 
selected recent articles on an HRV analysis for hypertension detection. 
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Table 3. List of published papers in recent years that have used HRV analysis methods for the de-
tection of hypertension. 

Author, Year Feature Extraction 
Methods Used 

Feature Selection/Re-
duction Methods Em-

ployed 
Classifiers Used Inference 

Khan et al. (2020) 
[152] 

Time-domain, fre-
quency-domain, 
and non-linear 

methods 

Mann–Whitney U test, 
Wilcoxon signed rank 

test 

Multivariable regres-
sion analysis 

The study revealed that HRV 
could be used as a marker of 
atrial fibrillation (AF). In con-
trast to paroxysmal AF, HRV 
was higher in persistent AF. It 

indicated a clear autonomic role 
in the pathophysiology of 

chronic AF. 

Ni et al. (2018) 
[153] 

Time-domain and 
frequency-domain 
methods, entropy 

features 

Pooling methods, 
namely average, maxi-
mum, minimum, and 

magnitude 

L1-regularized lo-
gistic regression and 

linear  
SVM 

The study proposed a method 
that can distinguish hyperten-
sive patients from healthy con-

trols with 93.33% accuracy when 
tested on 24 hypertensive pa-
tients and 24 healthy controls. 

Martinez et al. 
(2018) [154] 

Non-linear meth-
ods 

- - 

The study indicated that hyper-
tensive and diabetic subjects ex-
hibited reduced SD1 (calculated 
using Poincaré plot) and Shan-

non entropy than non-hyperten-
sive diabetic patients.  

Poddar et al. 
(2019) [155] 

Time-domain, fre-
quency-domain, 
and non-linear 

methods 

- 
SVM, PNN, and 

KNN 

The study proposed an SVM 
classifier that could achieve a 

classification accuracy of 96.67% 
for the healthy volunteers and 
hypertension and coronary ar-

tery disease classes. 

7.6. Detection of Renal Failure  
An HRV analysis is a valuable tool for assessing autonomic dysfunction, which is 

vital in predicting the cardiovascular morbidity and mortality associated with kidney fail-
ure patients [156]. HRV indices have been analyzed [157] by researchers on individuals 
diagnosed with renal failure. The association between HRV features and the concentra-
tions of electrolyte ions before and after dialysis was presented in a paper by Tsai et al. 
(2002) [158]. The HRV features from 5 min ECG signals of twenty patients with chronic 
kidney failure (CRF) were evaluated. After hemodialysis, the study showed calcium neg-
atively correlated with the average RR intervals and the normalized HF power. Chou et 
al. (2019) investigated the diagnostic importance of HRV on renal function in kidney fail-
ure patients [156]. The authors involved 326 non-dialysis chronic kidney disease (CKD) 
patients in experimental research of 2.02 years, and their HRV features were analyzed 
regularly. It was found that the values of HRV features became reduced with the increased 
severity of CKD. The computation of LF/HF divulged useful information on the progress 
of CKD apart from the other risk factors. Some more recent articles on the application of 
HRV features in renal failure are summarized in Table 4. 
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Table 4. List of published papers in recent years that have used novel HRV analysis methods for 
the detection of renal failure. 

Author, Year Feature Extraction 
Methods Used 

Feature Selection/Reduction 
Methods Employed Classifiers Used Inference 

Chen et al. (2021) 
[159] 

Time-domain and 
frequency-domain 

methods 

One-way ANOVA, or the 
Wilcoxon rank-sum test for 

continuous variables, and the 
chi-square test or exact prob-
ability test for the categorical 

variables 

- 

This study examined the link be-
tween plasma PTH fragments 
and HRV in CKD5 patients. It 
was found that neither (1–84) 
PTH nor (7–84) PTH affected 

HRV features. 

Min et al. (2021) 
[160] 

Time-domain and 
frequency-domain 

methods 

T-test or Mann–Whitney test, 
and chi-square or Fisher’s ex-

act test  
- 

The values of the HRV features 
were reduced in end-stage renal 
disease (ESRD) patients in com-
parison with healthy volunteers. 
It also showed that hemoglobin 
and serum albumin correlated 
positively with HRV features. 

Wang et al. (2021) 
[161] 

Time-domain and 
frequency-domain 

methods 

Pearson coefficient correla-
tion analysis and multiple 
linear regression analysis 

- 

The study discovered a correla-
tion between elevated plasma 

growth differentiation factor 15 
(GDF15) plasma levels and 

lower HRV.  

7.7. Psychiatric Disorder Detection  
The dynamic regulation of the heart can be significantly affected by psychological 

emotions and activities [162,163]. Hence, people with psychiatric problems are at risk of 
developing cardiovascular diseases [164]. Multiple symptoms of mental disorders are also 
associated with the disruption of ANS. For instance, depressed people frequently have 
dry mouth, constipation/diarrhea, and sleeplessness. In the last few decades, many re-
searchers have examined the feasibility of an HRV analysis to elucidate the physiology of 
psychiatric diseases and their relation to the cardiovascular system [165]. 

A study by Carney et al. (2001) found that patients with depression and cardiovas-
cular conditions have lower short- and long-term HRV feature values [166]. Other usual 
mental ailments, such as anxiety disorders, frequently coexist with ANS disorders because 
of their close relationship. An analysis of HRV data was used in a work by Miu et al. (2009) 
to understand the relationship between anxiety and malfunction in the ANS [167]. It has 
been shown that several antipsychotic medications can harm the functioning of the ANS. 
In particular, ANS dysfunction and abnormal cardiac repolarizations are detected in peo-
ple medicated with the antipsychotic drug clozapine [168]. These findings point to the 
possibility that both the schizophrenia disease and the medication prescribed for its ther-
apy could add to the increased likelihood of coronary sickness. Patients who are untreated 
for their schizophrenia exhibit a reduction in HRV feature values like RMSSD, pNN50, 
and high-frequency spectral power compared to healthy controls, suggesting a decreased 
vagal modulation [168]. Some more papers on the application of an HRV analysis in psy-
chiatric disorders are discussed in Table 5. 
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Table 5. Recent published papers on the application of HRV analysis in psychiatric disorders. 

Author, Year 
Feature Extrac-
tion Methods 

Used 

Feature Selection/Reduc-
tion Methods Employed 

Classifiers  
Used 

Inference 

Kobayashi et al. 
(2019) [169] 

Frequency-do-
main methods - SVM 

The study employed an HRV 
analysis and an SVM classifier 
for detecting psychiatric disor-
ders. The projected scheme at-

tained a categorization accuracy 
of 87.0% between depression pa-

tients and healthy persons. 

Na et al. (2021) 
[170] 

Time-domain, 
frequency-do-
main, and non-
linear methods 

- 

RF, gradient boosting 
machine (GBM), SVM, 
ANN, and regularized 
logistic regression (LR) 

The study presented ML ap-
proaches using HRV features as 
input to detect the panic disor-
der. L1-regularized logistic re-
gression showed the best accu-

racy of 78.4%. 

Schneider et al. 
(2020) [171] 

Time-domain 
and frequency-
domain meth-

ods 

- - 

The study found that individu-
als with post-traumatic stress 

disorder (PTSD) exhibited point-
edly advanced HR. Throughout 

stress, people with PTSD dis-
played increased HR and de-

creased HF values. 

Kontaxis et al. 
(2020) [172] 

Joint T-F analy-
sis method, i.e., 

SPWVD 

Student t-test or Wilcoxon 
test - 

The research showed that sym-
pathetic dominance decreased 
significantly (p < 0.05) in major 
depressive disorder (MDD) pa-
tients compared to control par-
ticipants under stress, implying 

that ANS responsiveness to 
stress stimuli is weaker in MDD 

patients. 

Byun et al. (2019) 
[173] 

Entropy com-
putation meth-

ods  
SVM-RFE algorithm 

SVM, linear discrimi-
nant analysis (LDA), K-

NN, and NB 

The values of HRV entropy at-
tributes were inferior in MDD 

patients. It also achieved 70% ac-
curacy in classifying MDD and 
healthy groups with three opti-

mal features. 

Hao et al. (2022) 
[174] 

Time-domain, 
frequency-do-
main, and non-
linear methods 

Pearson’s correlation coef-
ficient analysis and t-test - 

The study revealed that in a con-
dition of mental strain, the sub-
jective survey score amplified 

considerably (p < 0.01), the time 
perception fault value increased 
dramatically (p < 0.01), and the 
relative fault rate improved ex-
ponentially (p < 0.05), indicating 
that the individuals were experi-

encing a mental load. 
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Giannakakis et 
al. (2019) [175] 

Time-domain 
and frequency-
domain meth-

ods 

Minimum redundancy 
maximum relevance 

(mRMR) selection algo-
rithm 

KNN, GLM, NB, LDA, 
SVM, and RF classifi-

ers. 

The study projected a stress 
recognition system utilizing 

HRV features. The SVM classi-
fier achieved the highest catego-
rization accuracy of 84.4% in a 

10-fold cross-validation ap-
proach. 

7.8. Monitoring of Fetal Distress and Neonatal Critical Care  
Fetal inspection is vital and must precisely mirror embryonic well-being, identify the 

most plausible development process, and correctly envisage critical perinatal conse-
quences. Thus, the primary goal of fetal monitoring is to offer precise and efficient care 
units for an early diagnosis of the onset of potentially life-threatening diseases. The fetus’s 
ability to survive, thrive, and progress into the neonatal stage depends on proper blood 
pressure, volume, and fluid dynamics. Prenatal cardiovascular control disturbances can 
increase fetal and neonatal mortality and morbidity. 

Neonatal care is equally important to avoid unintentional complications. Patients in 
a Neonatal Intensive Treatment Unit (NICU) require specialized assistance, the efficiency 
of which is heavily reliant on the functioning of the medical equipment. The development 
of surveillance and imaging techniques improves predictive tactics and aids in preventing 
some complications. An HRV analysis has considerably aided neonatal care in neonatal 
sepsis detection, neonatal necrotizing enterocolitis monitoring, predicting preterm birth, 
avoiding possible complications, etc. For example, Kasai et al. (2019) examined the 
changes in HRV as a potential marker of the time and severity of acute hypoxia–ischemia 
(HI) [176]. The authors created umbilical cord occlusion of chronically instrumented fetal 
sheep to simulate HI and monitored the HR and HRV features for 72 h. It was found that 
the HI groups exhibited lower VLF power and increased sample entropy in the initial 3 h. 
Also, the spectral power change towards a higher frequency band was observed, suggest-
ing autonomic dysfunction after HI. According to the findings, the authors of the study 
proposed that the changes in HR patterns can have predictive usage in the initial hours of 
HI onset. In a study by Joshi et al. (2020), the prognostic capability of HRV features, res-
piratory factors, and ECG-derived estimates of infant motion to predict neonatal sepsis 
were examined [177]. A total of 22 features were extracted, and an NB classifier was em-
ployed to differentiate between the control and septic states. The efficiency of the pro-
posed system was analyzed utilizing the region underneath the receiver functioning fea-
ture (AUROC) curve and the true positive rate (TPR). When the time of sepsis came closer, 
HRV demonstrated massive decelerations. Moreover, it was observed that the HR could 
not be increased in response to pathological HR slowing down. On the basis of the out-
comes, the writers recommended that the projected technique can be utilized as an early 
indicator of sepsis.  

7.9. Grasping the Idea of the Impact of Alcohol on ANS Activity 
Consuming excessive alcohol is related to an augmented hazard of sickness and 

death [178]. It is a global health problem, which is required to be dealt with as soon as 
possible. A rise in blood pressure, arrhythmias (most notably atrial fibrillation), liver cir-
rhosis, a hemorrhagic blow, wounds, and malignancies of the liver, colorectum, breast, 
and upper digestive tract have been linked to alcohol consumption [179,180]. Alcohol use 
over a prolonged period has been shown to have adverse effects on numerous body parts 
and structures, most notably the neurological system. The strong connection that exists 
between the ANS and the cardiovascular system (CV) is one of the primary issues that 
donate to the elevated risk of a cardiovascular ailment (CVD) in alcoholics [181]. The study 
of an HRV analysis can provide a non-invasive estimate of the imbalance in ANS physi-
ology and determine the level of cardiovascular danger posed with various clinical 



Algorithms 2023, 16, 433 34 of 42 
 

conditions. Hence, many HRV analysis experiments have been executed to understand 
the consequence of alcohol consumption on the ANS. In a study by Pop et al. (2021), the 
authors examined the 5 min HRV features of volunteers in the supine position, and the 
time and frequency domain HRV attributes were extracted [182]. According to their find-
ings, binge drinkers and casual drinkers exhibited a minor alteration in the frequency do-
main HRV features. On the other hand, heavy drinkers had considerably lower values of 
time-domain HRV features (SDNN and RMSSD) and HF components. Further, the heavy 
drinkers had a higher LF/HF value, suggesting parasympathetic inhibition [182]. The GBT 
regression model revealed that age and alcohol intake had the highest impact on the HRV 
features. In the same year, Brunner et al. (2021) also analyzed the effect of alcohol intake 
on cardiac autonomic regulation [183]. Fifteen volunteers participated in the study, where 
an HRV signal analysis was executed before, during, and after alcohol consumption. It 
was found that the values of HRV features were decreased, and mean HR was increased 
upon alcohol consumption. On the basis of the outcomes, the authors suggested that al-
cohol consumption induced sympathetic dominance and a decrease in parasympathetic 
activity, causing autonomic imbalance.  

7.10. ANS Activity of Patients Undergoing Weaning from Mechanical Ventilation 
The analysis of HRV can be conducted using two separate domains: time and fre-

quency. Each domain offers distinct insights into the cardiac function, including the po-
tential of certain HRV features in the time and frequency domains to predict the readiness 
of mechanically ventilated patients for extubation. The determination of extubation read-
iness pertains to a patient’s capacity to respire autonomously without reliance on mechan-
ical support, and it represents a pivotal judgment within the context of the intensive care 
setting. Various HRV properties can be derived from ECG signals obtained from individ-
uals who have had a spontaneous breathing trial (SBT), which is a test conducted to eval-
uate their preparedness for extubation. The utilization of HRV properties can assist in the 
classification of patients into distinct groups, namely successful or failed extubation 
groups.  

A significant observation was made regarding a reduction in HRV features during 
the transition from PSV to the spontaneous breathing trial (SBT). This decrease was shown 
to be significant in the unsuccessful category but not in the winning category [184]. The 
utilization of mechanical ventilator assistance and the process of transitioning to sponta-
neous breathing, also known as weaning, results in notable changes in alveolar and in-
trathoracic pressure. These variations have a direct impact on thoracic blood volume and 
flow. Compensatory adjustments in the autonomic tone take place in order to maintain a 
sufficient delivery of oxygen to tissues. However, these autonomic reactions might lead 
to cardiovascular dysfunction, ultimately resulting in the failure of weaning. Approxi-
mately 66% of the patients in a study of Frazier et al. (2008) exhibited a typical autonomic 
function, with greater severity of dysfunction observed in individuals who were not able 
to maintain breathing on their own [185]. In their study, Krasteva et al. (2018) explored 
three fundamental strategies to ensure an appropriate autonomic cardiac control reaction 
during the weaning phase of cardio-respiratory stress in patients. The group model that 
achieved effectiveness had a decrease in overall activity accompanied by a rise in sympa-
thetic tone and a decrease in vagal tone. The latter correlated with both the respiration 
rate and tidal volume. Deviations from the established HRV model serve as indicators for 
the occurrence of weaning failure, with a precision of 92.6% for pressure support ventila-
tion, 81.5% for spontaneous breathing trials (SBT), and 96.3% for the combination of SBT 
and PSV [186]. Patients who experienced failure in the process of weaning revealed a no-
table drop in the RR sample entropy, LF, HF, and α1 exponent in comparison to partici-
pants who successfully underwent weaning. The alterations seen in the two phases exhib-
ited contrasting trends, with the exception of the Mean Squared Error (MSE), which 
showed an upsurge within as well as between the groups. Hence, Vassilios E. et al. (2011) 
proposed that the application of a non-linear analysis to cardio-respiratory dynamics has 



Algorithms 2023, 16, 433 35 of 42 
 

the potential to enhance the predictive value of weaning efficacy in patients undergoing 
surgery [187]. 

8. Conclusions 
An HRV analysis has emerged as a valuable diagnostic tool in the last few decades, 

having a wide variety of applications [188]. In this study, various methods of HRV feature 
generation were discussed. The extraction of relevant features performs a significant part 
in deciding the prediction capability of the HRV signal-based diagnostic approach. Hence, 
a description of popular HRV feature extraction methods was provided. The performance 
of ML-based classifiers strongly depends on selecting relevant features with distinguish-
ing capabilities. Therefore, several feature ranking methods on the basis of weights and 
feature dimensionality reduction approaches were discussed. The important classifiers 
utilized by scholars in the case of the categorization of HRV features were described. Fi-
nally, various clinical applications of an HRV analysis were summarized. The information 
gathered in this article will help future researchers to obtain comprehensive knowledge 
about the recent trends in HRV analyses and their prospective applications. 

Author Contributions: Conceptualization, S.K.N. and K.P.; methodology, S.K.N., B.P. and B.M.; 
software, S.K.N., J.S. and S.S.R.; validation, S.K.N., B.P. and K.P.; formal analysis, M.J.; investigation, 
S.K.N.; resources, K.P., S.S.R. and J.S.; data curation, S.K.N.; writing—original draft preparation, 
S.K.N., K.P., M.J. and J.W.; writing—review and editing, M.J. and J.W.; visualization, S.K.N.; super-
vision, K.P. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Sample Availability: Not applicable. 

References 
1. Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart Rate Variability: A review. Med. Biol. Eng. 

Comput. 2006, 44, 1031–1051. 
2. Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and heart rate variability: A meta-analysis and review of the 

literature. Psychiatry Investig. 2018, 15, 235. 
3. Saul, J.P. Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. Physiology 1990, 5, 32–37. 
4. Levy, M.N.; Schwartz, P.J. Vagal Control of the Heart: Experimental Basis and Clinical Implications; Futura Pub. Co.: Austin, TX, 

USA, 1994. 
5. Schwartz, P.J. Sympathetic nervous system and cardiac arrhythmias. Card. Electrophysiol. 1990, 330–343. 
6. Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E. 

Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European 
Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. 

7. Ge, D.; Srinivasan, N.; Krishnan, S.M. Cardiac arrhythmia classification using autoregressive modeling. Biomed. Eng. Online 
2002, 1, 5. 

8. Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. 
Phys. D Nonlinear Phenom. 1993, 65, 117–134. 

9. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Nat. Acad. Sci. USA 1991, 88, 2297–2301. 
10. Peng, C.-K.; Havlin, S.; Hausdorff, J.; Mietus, J.; Stanley, H.; Goldberger, A. Fractal mechanisms and heart rate dynamics: Long-

range correlations and their breakdown with disease. J. Electrocardiol. 1995, 28, 59–65. 
11. Burlacu, A.; Brinza, C.; Brezulianu, A.; Covic, A. Accurate and early detection of sleepiness, fatigue and stress levels in drivers 

through Heart Rate Variability parameters: A systematic review. Rev. Cardiovasc. Med. 2021, 22, 845–852. 
12. Ishaque, S.; Khan, N.; Krishnan, S. Trends in heart-rate variability signal analysis. Front. Digit. Health 2021, 3, 639444. 
13. Jaderberg, M.; Vedaldi, A.; Zisserman, A. Deep features for text spotting. In Proceedings of the Computer Vision–ECCV 2014: 

13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part IV 13; Springer International 
Publishing: Berlin/Heidelberg, Germany, 2014; pp. 512–528. 

14. Lascu, M.; Lascu, D. LabVIEW event detection using Pan-Tompkins algorithm. In Proceedings of the 7th WSEAS International 
Conference on Signal, Speech and Image Processing, Beijing, China, 15–17 September 2007. 



Algorithms 2023, 16, 433 36 of 42 
 

15. Sharma, A.; Patidar, S.; Upadhyay, A.; Acharya, U.R. Accurate tunable-Q wavelet transform based method for QRS complex 
detection. Comput. Electr. Eng. 2019, 75, 101–111. 

16. Wehler, D.; Jelinek, H.F.; Gronau, A.; Wessel, N.; Kraemer, J.F.; Krones, R.; Penzel, T. Reliability of heart-rate-variability features 
derived from ultra-short ECG recordings and their validity in the assessment of cardiac autonomic neuropathy. Biomed. Signal 
Process. Control 2021, 68, 102651. 

17. Liu, F.; Wei, S.; Lin, F.; Jiang, X.; Liu, C. An overview of signal quality indices on dynamic ECG signal quality assessment. In 
Feature Engineering and Computational Intelligence in ECG Monitoring; Liu, C., Li, J., Eds.; Springer: Singapore, 2020; pp. 33–54. 

18. Clifford, G.D.; Moody, G.B. Signal quality in cardiorespiratory monitoring. Physiol. Meas. 2012, 33, E01. 
19. Swai, J.; Hu, Z.; Zhao, X.; Rugambwa, T.; Ming, G. Heart rate and heart rate variability comparison between postural orthostatic 

tachycardia syndrome versus healthy participants; a systematic review and meta-analysis. BMC Cardiovasc. Disord. 2019, 19, 
320. 

20. Chou, E.-F.; Khine, M.; Lockhart, T.; Soangra, R. Effects of ecg data length on heart rate variability among young healthy adults. 
Sensors 2021, 21, 6286. 

21. Chen, Y.-S.; Lu, W.-A.; Pagaduan, J.C.; Kuo, C.-D. A novel smartphone app for the measurement of ultra–short-term and short-
term heart rate variability: Validity and reliability study. JMIR Mhealth Uhealth 2020, 8, e18761. 

22. Taoum, A.; Bisiaux, A.; Tilquin, F.; Le Guillou, Y.; Carrault, G. Validity of Ultra-Short-Term HRV Analysis Using PPG—A 
Preliminary Study. Sensors 2022, 22, 7995. 

23. Burma, J.S.; Graver, S.; Miutz, L.N.; Macaulay, A.; Copeland, P.V.; Smirl, J.D. The validity and reliability of ultra-short-term 
heart rate variability parameters and the influence of physiological covariates. J. Appl. Physiol. 2021, 130, 1848–1867. 

24. Shaffer, F.; Ginsberg, J. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. 
25. Nardelli, M.; Greco, A.; Bianchi, M.; Scilingo, E.P.; Valenza, G. Classifying affective haptic stimuli through gender-specific heart 

rate variability nonlinear analysis. IEEE Trans. Affect. Comput. 2018, 11, 459–469. 
26. Cepeda, F.X.; Lapointe, M.; Tan, C.O.; Taylor, J.A. Inconsistent relation of nonlinear heart rate variability indices to increasing 

vagal tone in healthy humans. Auton. Neurosci. 2018, 213, 1–7. 
27. Hoshi, R.A.; Andreão, R.V.; Santos, I.S.; Dantas, E.M.; Mill, J.G.; Lotufo, P.A.; Bensenor, I.M. Linear and nonlinear analyses of 

heart rate variability following sorthostatism in subclinical hypothyroidism. Medicine 2019, 98, e14140. 
28. Cartas-Rosado, R.; Becerra-Luna, B.; Martinez-Memije, R.; Infante-Vazquez, O.; Lerma, C.; Perez-Grovas, H.; Rodríguez-

Chagolla, J.M. Continuous wavelet transform based processing for estimating the power spectrum content of heart rate 
variability during hemodiafiltration. Biomed. Signal Process. Control 2020, 62, 102031. 

29. Kleiger, R.E.; Stein, P.K.; Bigger, J.T., Jr. Heart rate variability: Measurement and clinical utility. Ann. Noninvasive Electrocardiol. 
2005, 10, 88–101. 

30. Tarvainen, M.P.; Lipponen, J.A.; Kuoppa, P. Analysis and Preprocessing of HRV—Kubios HRV Software. In ECG Time Series 
Variability Analysis: Engineering and Medicine; CRC Press: Boca Raton, FL, USA, 2017; pp. 159–186. 

31. Nagendra, H.; Kumar, V.; Mukherjee, S. Cognitive Behavior Evaluation Based on Physiological Parameters among Young 
Healthy Subjects with Yoga as Intervention. Comput. Math. Methods Med. 2015, 2015, 821061. 

32. Marina Medina, C.; Blanca de la Cruz, T.; Alberto Garrido, E.; Marco Antonio Garrido, S.; José, N.O. Normal values of heart 
rate variability at rest in a young, healthy and active Mexican population. Health 2012, 4, 720–726. 

33. Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis 
software. Comput. Methods Programs Biomed. 2014, 113, 210–220. 

34. Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in 
nonstationary heartbeat time series. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 82–87. 

35. Wessel, N.; Marwan, N.; Meyerfeldt, U.; Schirdewan, A.; Kurths, J. Recurrence quantification analysis to characterise the heart 
rate variability before the onset of ventricular tachycardia. In Medical Data Analysis, Proceedings of the Second International 
Symposium, ISMDA 2001 Madrid, Spain, 8–9 October 2001; Proceedings 2; Springer: Berlin/Heidelberg, Germany, 2001; pp. 295–
301. 

36. Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–
329. 

37. Nayak, S.K.; Bit, A.; Dey, A.; Mohapatra, B.; Pal, K. A review on the nonlinear dynamical system analysis of electrocardiogram 
signal. J. Healthc. Eng. 2018, 2018, 6920420. 

38. Eckmann, J.-P.; Kamphorst, S.O.; Ruelle, D. Recurrence plots of dynamical systems. World Sci. Ser. Nonlinear Sci. Ser. A 1995, 16, 
441–446. 

39. Martín-González, S.; Navarro-Mesa, J.L.; Juliá-Serdá, G.; Ramírez-Ávila, G.M.; Ravelo-García, A.G. Improving the 
understanding of sleep apnea characterization using Recurrence Quantification Analysis by defining overall acceptable values 
for the dimensionality of the system, the delay, and the distance threshold. PLoS ONE 2018, 13, e0194462. 

40. Webber, C.L., Jr.; Marwan, N. Recurrence quantification analysis. Theory Best Pract. 2015, 426. 
41. Yang, H. Multiscale Recurrence Quantification Analysis of Spatial Cardiac Vectorcardiogram Signals. IEEE Trans. Biomed. Eng. 

2010, 58, 339–347. 
42. Sharma, V. Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New 

Frontier. Open Cardiovasc. Med. J. 2009, 3, 110–123. 



Algorithms 2023, 16, 433 37 of 42 
 

43. Karavaev, A.S.; Ishbulatov, Y.M.; Ponomarenko, V.I.; Bezruchko, B.P.; Kiselev, A.R.; Prokhorov, M.D. Autonomic control is a 
source of dynamical chaos in the cardiovascular system. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 121101. 

44. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode 
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. 
Phys. Eng. Sci. 1998, 454, 903–995. 

45. Bajaj, V.; Pachori, R.B. Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition. IEEE Trans. 
Inf. Technol. Biomed. 2011, 16, 1135–1142. 

46. Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Oh, S.L.; Muhammad, A.; Koh, J.E.; Tan, J.H.; Chua, C.K.; Chua, K.P.; San Tan, R. 
Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate 
signals. Neural Comput. Appl. 2017, 28, 3073–3094. 

47. Chen, M.; He, A.; Feng, K.; Liu, G.; Wang, Q.J.E. Empirical mode decomposition as a novel approach to study heart rate 
variability in congestive heart failure assessment. Entropy 2019, 21, 1169. 

48. Acharya, U.R.; Vidya, K.S.; Ghista, D.N.; Lim WJ, E.; Molinari, F.; Sankaranarayanan, M. Computer-aided diagnosis of diabetic 
subjects by heart rate variability signals using discrete wavelet transform method. Knowl.-Based Syst. 2015, 81, 56–64. 

49. Hei, Y.; Yuan, T.; Fan, Z.; Yang, B.; Hu, J. Sleep staging classification based on a new parallel fusion method of multiple sources 
signals. Physiol. Meas. 2022, 43, 045003. 

50. Hu, Q.; Qin, A.; Zhang, Q.; He, J.; Sun, G. Fault diagnosis based on weighted extreme learning machine with wavelet packet 
decomposition and KPCA. IEEE Sens. J. 2018, 18, 8472–8483. 

51. Addison, P.S. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and 
Finance; CRC Press: Boca Raton, FL, USA, 2002. 

52. Geng, D.Y.; Zhao, J.; Wang, C.X.; Ning, Q. A decision support system for automatic sleep staging from HRV using wavelet 
packet decomposition and energy features. Biomed. Signal Process. Control 2020, 56, 101722. 

53. Hossen, A.; Qasim, S. Identification of obstructive sleep apnea using artificial neural networks and wavelet packet 
decomposition of the HRV signal. J. Eng. Res. 2020, 17, 24–33. 

54. Akar, S.A.; Kara, S.; Bilgic, V. Investigation of heart rate variability in major depression patients using wavelet packet transform. 
Psychiatry Res. 2016, 238, 326–332. 

55. Wang, F.; Wang, P.; Zhang, X.; Li, H.; Himed, B. An overview of parametric modeling and methods for radar target detection 
with limited data. IEEE Access 2021, 9, 60459–60469. 

56. Faal, M.; Almasganj, F. ECG Signal Modeling Using Volatility Properties: Its Application in Sleep Apnea Syndrome. J. Healthc. 
Eng. 2021, 2021, 4894501. 

57. Pande, K.; Subhadarshini, S.; Gaur, D.; Nayak, S.K.; Pal, K. Analysis of ECG Signals to Investigate the Effect of a Humorous 
Audio-Visual Stimulus on Autonomic Nervous System and Heart of Females. In Design and Development of Affordable Healthcare 
Technologies; IGI Global: Hershey, PA, USA, 2018; pp. 239–256. 

58. Nayak, S.K.; Pradhan, B.K.; Banerjee, I.; Pal, K. Analysis of heart rate variability to understand the effect of cannabis 
consumption on Indian male paddy-field workers. Biomed. Signal Process. Control 2020, 62, 102072. 

59. Lei, S. A feature selection method based on information gain and genetic algorithm. In Proceedings of the 2012 International 
Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; IEEE: New York, NY, USA, 
2012; Volume 2, pp. 355–358. 

60. Dragomir, S.S.; Goh, C.J. A counterpart of Jensen’s discrete inequality for differentiable convex mappings and applications in 
information theory. Math. Comput. Model. 1996, 24, 1–11. 

61. Priyadarsini, R.P.; Valarmathi, M.L.; Sivakumari, S. Gain ratio based feature selection method for privacy preservation. ICTACT 
J. Soft Comput. 2011, 1, 201–205. 

62. Kendall, A.; Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 
2017, 30. 

63. Wu, L.; Wang, Y.; Zhang, S.; Zhang, Y. Fusing gini index and term frequency for text feature selection. In Proceedings of the 
2017 IEEE Third International Conference on Multimedia Big Data (BigMM), Laguna Hills, CA, USA, 19–21 April 2017; IEEE: 
New York, NY, USA, 2017; pp. 280–283. 

64. Perveen, N.; Gupta, S.; Verma, K. Facial expression recognition using facial characteristic points and Gini index. In Proceedings 
of the 2012 Students Conference on Engineering and Systems, Allahabad, India, 16–18 March 2012; IEEE: New York, NY, USA, 
2012; pp. 1–6. 

65. Wu, R. Improved K-Modes Clustering Method Based on Chi-square Statistics. In Proceedings of the 2010 IEEE International 
Conference on Granular Computing, San Jose, CA, USA, 14–16 August 2010; IEEE: New York, NY, USA, 2010; pp. 808–811. 

66. Wang, S.E.N.; Zhang, L.I. A supervised correlation coefficient method: Detection of different correlation. In Proceedings of the 
2020 12th International Conference on Advanced Computational Intelligence (ICACI), Dali, China, 14–16 March 2020; IEEE: 
New York, NY, USA, 2020; pp. 408–411. 

67. Altman, D.G.; Bland, J.M. Standard deviations and standard errors. BMJ 2005, 331, 903–903. 
68. Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J. 

Biomed. Inform. 2018, 85, 189–203. 



Algorithms 2023, 16, 433 38 of 42 
 

69. Zhang, Y. Support vector machine classification algorithm and its application. In Information Computing and Applications, 
Proceedings of the Third International Conference, ICICA 2012, Chengde, China, 14-16 September 2012; Proceedings, Part II 3; Springer 
Berlin Heidelberg: Berlin/Heidelberg, Germany, 2012; pp. 179–186. 

70. Mohammed, S.B.; Khalid, A.; Osman, S.E.F.; Helali, R.G.M. Usage of principal component analysis (PCA) in AI applications. 
Int. J. Eng. Res. Technol. 2016, 5, 372–375. 

71. Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100. 
72. Thomas, M.; De Brabanter, K.; De Moor, B. New bandwidth selection criterion for Kernel PCA: Approach to dimensionality 

reduction and classification problems. BMC Bioinform. 2014, 15, 137–137. 
73. Wang, Q. Kernel principal component analysis and its applications in face recognition and active shape models. arXiv 2012, 

arXiv:1207.3538. 
74. Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. 
75. Tharwat, A. Independent component analysis: An introduction. Appl. Comput. Inform. 2020, 17, 222–249. 
76. Sadek, R.A. SVD based image processing applications: State of the art, contributions and research challenges. arXiv 2012, 

arXiv:1211.7102. 
77. Wang, Y.; Zhu, L. Research and implementation of SVD in machine learning. In Proceedings of the 2017 IEEE/ACIS 16th 

International Conference on Computer and Information Science (ICIS), Wuhan, China, 24–26 May 2017; IEEE: New York, NY, 
USA, 2017; pp. 471–475. 

78. Qian, J.; Nguyen, N.P.; Oya, Y.; Kikugawa, G.; Okabe, T.; Huang, Y.; Ohuchi, F.S. Introducing self-organized maps (SOM) as a 
visualization tool for materials research and education. Results Mater. 2019, 4, 100020. 

79. Natita, W.; Wiboonsak, W.; Dusadee, S. Appropriate learning rate and neighborhood function of self-organizing map (SOM) 
for specific humidity pattern classification over Southern Thailand. Int. J. Model. Optim. 2016, 6, 61. 

80. Javeri, I.Y.; Toutiaee, M.; Arpinar, I.B.; Miller, J.A.; Miller, T.W. Improving Neural Networks for Time-Series Forecasting using 
Data Augmentation and AutoML. In Proceedings of the 2021 IEEE Seventh International Conference on Big Data Computing 
Service and Applications (BigDataService), Online, 23–26 August 2021; IEEE: New York, NY, USA, 2021; pp. 1–8. 

81. Blough, D.K.; Madden, C.W.; Hornbrook, M.C. Modeling risk using generalized linear models. J. Health Econ. 1999, 18, 153–171. 
82. Novaković, J. Toward optimal feature selection using ranking methods and classification algorithms. Yugosl. J. Oper. Res. 2016, 

21, 119–135. 
83. Wooff, D. Logistic regression: A self-learning text. J. R. Stat. Society. Ser. A 2004, 167, 192–194. 
84. Nick, T.G.; Campbell, K.M. Logistic regression. In Topics in Biostatistics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 273–

301. 
85. Kleinbaum, D.G. Logistic Regression; Springer: Berlin/Heidelberg, Germany, 2002. 
86. Mathews, S.M.; Kambhamettu, C.; Barner, K.E. A novel application of deep learning for single-lead ECG classification. Comput. 

Biol. Med. 2018, 99, 53–62. 
87. Ravì, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.-Z. Deep learning for health informatics. IEEE 

J. Biomed. Health Inform. 2016, 21, 4–21. 
88. Yang, T.; Yu, L.; Jin, Q.; Wu, L.; He, B. Localization of origins of premature ventricular contraction by means of convolutional 

neural network from 12-lead ECG. IEEE Trans. Biomed. Eng. 2017, 65, 1662–1671. 
89. Kamkar, I.; Gupta, S.K.; Phung, D.; Venkatesh, S. Stable feature selection for clinical prediction: Exploiting ICD tree structure 

using Tree-Lasso. J. Biomed. Inform. 2015, 53, 277–290. 
90. Zhou, Q.; Zhang, H.; Lari, Z.; Liu, Z.; El-Sheimy, N. Design and implementation of foot-mounted inertial sensor based wearable 

electronic device for game play application. Sensors 2016, 16, 1752. 
91. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 

Remote Sens. 2016, 114, 24–31. 
92. Luo, Y.; Ye, W.; Zhao, X.; Pan, X.; Cao, Y. Classification of data from electronic nose using gradient tree boosting algorithm. 

Sensors 2017, 17, 2376. 
93. Liu, Y.; Gu, Y.; Nguyen, J.C.; Li, H.; Zhang, J.; Gao, Y.; Huang, Y. Symptom severity classification with gradient tree boosting. 

J. Biomed. Inform. 2017, 75, S105–S111. 
94. Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; Lin, C.-J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. 

Res. 2008, 9, 1871–1874. 
95. Gadekallu, T.R.; Khare, N.; Bhattacharya, S.; Singh, S.; Maddikunta PK, R.; Srivastava, G. Deep neural networks to predict 

diabetic retinopathy. J. Ambient. Intell. Humaniz. Comput. 2020, 14, 5407–5420. 
96. Alkhodari, M.; Rashid, M.; Mukit, M.A.; Ahmed, K.I.; Mostafa, R.; Parveen, S.; Khandoker, A.H.J.I.A. Screening cardiovascular 

autonomic neuropathy in diabetic patients with microvascular complications using machine learning: A 24-hour heart rate 
variability study. IEEE Access 2021, 9, 119171–119187. 

97. Aggarwal, Y.; Das, J.; Mazumder, P.M.; Kumar, R.; Sinha, R.K.J.B.; Engineering, B. Heart rate variability features from nonlinear 
cardiac dynamics in identification of diabetes using artificial neural network and support vector machine. Biocybern. Biomed. 
Eng. 2020, 40, 1002–1009. 

98. Yildirim, O.; Talo, M.; Ay, B.; Baloglu, U.B.; Aydin, G.; Acharya, U.R. Automated detection of diabetic subject using pre-trained 
2D-CNN models with frequency spectrum images extracted from heart rate signals. Comput. Biol. Med. 2019, 113, 103387. 



Algorithms 2023, 16, 433 39 of 42 
 

99. Rathod, S.; Phadke, L.; Chaskar, U.; Patil, C. Heart Rate Variability measured during rest and after orthostatic challenge to 
detect autonomic dysfunction in Type 2 Diabetes Mellitus using the Classification and Regression Tree model. Technol. Heal. 
Care 2022, 30, 361–378. 

100. Swapna, G.; Kp, S.; Vinayakumar, R. Automated detection of diabetes using CNN and CNN-LSTM network and heart rate 
signals. Procedia Comput. Sci. 2018, 132, 1253–1262. 

101. Materko, W.; Fernandes, D.F.; da Pureza, D.Y.; Alberto, A.A.D.; Pena, F.P.S. Deceleration capacity index for type 2 diabetes 
mellitus classification using support vector machines in elderly women. Int. J. Dev. Res. 2021, 11, 45963–45966. 

102. Novikov, R.; Zhukova, L.; Novopashin, M. Possibility to detect glycemia with heart rate variability in patients with type 2 
diabetes mellitus in a non-invasive glycemic monitoring system. In Proceedings of the 2019 Actual Problems of Systems and 
Software Engineering (APSSE), Moscow, Russian, 12–14 November 2019; IEEE: New York, NY, USA, 2019; pp. 177–181. 

103. Venkataramanaiah, B.; Kamala, J. ECG signal processing and KNN classifier-based abnormality detection by VH-doctor for 
remote cardiac healthcare monitoring. Soft Comput. 2020, 24, 17457–17466. 

104. Shaqiri, E.; Gusev, M. Deep learning method to estimate glucose level from heart rate variability. In Proceedings of the 2020 
28th Telecommunications Forum (TELFOR), Belgrade, Serbia, 24–25 November 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. 

105. Olde Bekkink, M.; Koeneman, M.; de Galan, B.E.; Bredie, S.J. Early detection of hypoglycemia in type 1 diabetes using heart rate 
variability measured by a wearable device. Diabetes Care 2019, 42, 689–692. 

106. Maritsch, M.; Föll, S.; Lehmann, V.; Bérubé, C.; Kraus, M.; Feuerriegel, S.; Kowatsch, T.; Züger, T.; Stettler, C.; Fleisch, E.; et al. 
Towards wearable-based hypoglycemia detection and warning in diabetes. In Proceedings of the Extended Abstracts of the 
2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–8. 

107. Tuttolomondo, A.; Del Cuore, A.; La Malfa, A.; Casuccio, A.; Daidone, M.; Maida, C.D.; Di Raimondo, D.; Di Chiara, T.; Puleo, 
M.G.; Norrito, R.J.C.D.; et al. Assessment of heart rate variability (HRV) in subjects with type 2 diabetes mellitus with and 
without diabetic foot: Correlations with endothelial dysfunction indices and markers of adipo-inflammatory dysfunction. 
Cardiovasc. Diabetol. 2021, 20, 142. 

108. Cha, S.A.; Park, Y.M.; Yun, J.S.; Lee, S.H.; Ahn, Y.B.; Kim, S.R.; Ko, S.H. Time-and frequency-domain measures of heart rate 
variability predict cardiovascular outcome in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 143, 159–169. 

109. Sulistyo, B.; Surantha, N.; Isa, S.M. Sleep apnea identification using HRV features of ECG signals. Int. J. Electr. Comput. Eng. 
2018, 8, 3940–3948. 

110. Le Bon, O. Relationships between REM and NREM in the NREM-REM sleep cycle: A review on competing concepts. Sleep Med. 
2020, 70, 6–16. 

111. Koo, D.L.; Nam, H.; Thomas, R.J.; Yun, C.H. Sleep disturbances as a risk factor for stroke. J. Stroke 2018, 20, 12. 
112. Kondo, J.; Morelhão, P.K.; Tufik, S.; Andersen, M.L. The importance of assessing sleep disorders in multiple sclerosis. Sleep 

Breath. 2023, 27, 691–692. 
113. Iannella, G.; Vicini, C.; Colizza, A.; Meccariello, G.; Polimeni, A.; Greco, A.; de Vincentiis, M.; de Vito, A.; Cammaroto, G.; Gobbi, 

R.; et al. Aging effect on sleepiness and apneas severity in patients with obstructive sleep apnea syndrome: A meta-analysis 
study. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 3549–3556. 

114. Xia, F.; Sawan, M.J.S. Clinical and research solutions to manage obstructive sleep apnea: A review. Sensors 2021, 21, 1784. 
115. Jehan, S.; Myers, A.K.; Zizi, F.; Pandi-Perumal, S.R.; Jean-Louis, G.; McFarlane, S.I. Obesity, obstructive sleep apnea and type 2 

diabetes mellitus: Epidemiology and pathophysiologic insights. Sleep Med. Disord. Int. J. 2018, 2, 52. 
116. Tveit, R.L.; Lehmann, S.; Bjorvatn, B. Prevalence of several somatic diseases depends on the presence and severity of obstructive 

sleep apnea. PLoS ONE 2018, 13, e0192671. 
117. Weaver, T.E. Novel aspects of CPAP treatment and interventions to improve CPAP adherence. J. Clin. Med. 2019, 8, 2220. 
118. Qin, H.; Steenbergen, N.; Glos, M.; Wessel, N.; Kraemer, J.F.; Vaquerizo-Villar, F.; Penzel, T. The different facets of heart rate 

variability in obstructive sleep apnea. Front. Psychiatry 2021, 12, 642333. 
119. Ucak, S.; Dissanayake, H.U.; Sutherland, K.; de Chazal, P.; Cistulli, P.A. Heart rate variability and obstructive sleep apnea: 

Current perspectives and novel technologies. J. Sleep Res. 2021, 30, e13274. 
120. Qin, H.; Keenan, B.T.; Mazzotti, D.R.; Vaquerizo-Villar, F.; Kraemer, J.F.; Wessel, N.; Tufik, S.; Bittencourt, L.; Cistulli, P.A.; de 

Chazal, P.; et al. Heart rate variability during wakefulness as a marker of obstructive sleep apnea severity. Sleep 2021, 44, 
zsab018. 

121. Bozkurt, M.R.; Uçar, M.K.; Bozkurt, F.; Bilgin, C. In obstructive sleep apnea patients, automatic determination of respiratory 
arrests by photoplethysmography signal and heart rate variability. Australas. Phys. Eng. Sci. Med. 2019, 42, 959–979. 

122. Fedorin, I.; Slyusarenko, K.; Lee, W.; Sakhnenko, N. Sleep stages classification in a healthy people based on optical 
plethysmography and accelerometer signals via wearable devices. In 2019 IEEE 2nd Ukraine Conference on Electrical and 
Computer Engineering (UKRCON), Lviv, Ukraine, 2–6 July 2019; IEEE: New York, NY, USA, 2019; pp. 1201–1204. 

123. Nakayama, C.; Fujiwara, K.; Sumi, Y.; Matsuo, M.; Kano, M.; Kadotani, H. Obstructive sleep apnea screening by heart rate 
variability-based apnea/normal respiration discriminant model. Physiol. Meas. 2019, 40, 125001. 

124. Bozkurt, M.R.; Uçar, M.K.; Bozkurt, F.; Bilgin, C. Development of hybrid artificial intelligence based automatic sleep/awake 
detection. IET Sci. Meas. Technol. 2020, 14, 353–366. 

125. Hayano, J.; Yamamoto, H.; Nonaka, I.; Komazawa, M.; Itao, K.; Ueda, N.; Tanaka, H.; Yuda, E. Quantitative detection of sleep 
apnea with wearable watch device. PLoS ONE 2020, 15, e0237279. 



Algorithms 2023, 16, 433 40 of 42 
 

126. Huikuri, H.V.; Stein, P.K. Clinical application of heart rate variability after acute myocardial infarction. Front. Physiol. 2012, 3, 
41. 

127. Sharma, R.R.; Kumar, A.; Pachori, R.B.; Acharya, U.R. Accurate automated detection of congestive heart failure using 
eigenvalue decomposition based features extracted from HRV signals. Biocybern. Biomed. Eng. 2019, 39, 312–327. 

128. Shahnawaz, M.B.; Dawood, H. An effective deep learning model for automated detection of myocardial infarction based on 
ultrashort-term heart rate variability analysis. Math. Probl. Eng. 2021, 2021, 6455053. 

129. Rege, S.; Barkey, T.; Lowenstern, M. Heart arrhythmia detection. In Proceedings of the 2015 IEEE Virtual Conference on 
Applications of Commercial Sensors (VCACS), Raleigh, NC, USA, 5 March–15 October 2015; IEEE: New York, NY, USA, 2015; 
pp. 1–7. 

130. Mahgoub, A.; Tanveer, A.; Qidwai, U. Arrhythmia classification using DWT-coefficient energy ratios. In Proceedings of the 
2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 3–6 December 2018; IEEE: 
New York, NY, USA, 2018; pp. 259–264. 

131. Serdyuk, S.; Davtyan, K.; Burd, S.; Drapkina, O.; Boytsov, S.; Gusev, E.; Topchyan, A. Cardiac arrhythmias and sudden 
unexpected death in epilepsy: Results of long-term monitoring. Heart Rhythm. 2021, 18, 221–228. 

132. Sakamoto, J.T.; Liu, N.; Koh, Z.X.; Guo, D.; Heldeweg, M.L.A.; Ng, J.C.J.; Ong, M.E.H. Heart rate variability analysis in patients 
who have bradycardia presenting to the emergency department with chest pain. J. Emerg. Med. 2018, 54, 273–280. 

133. Yoshida, K.; Chugh, A.; Ulfarsson, M.; Good, E.; Kuhne, M.; Crawford, T.; Sarrazin, J.F.; Chalfoun, N.; Wells, D.; Boonyapisit, 
W.; et al. Relationship between the spectral characteristics of atrial fibrillation and atrial tachycardias that occur after catheter 
ablation of atrial fibrillation. Hear. Rhythm. 2009, 6, 11–17. 

134. Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. 
135. Chua, K.C.; Chandran, V.; Acharya, U.R.; Lim, C.M. Computer-based analysis of cardiac state using entropies, recurrence plots 

and Poincare geometry. J. Med. Eng. Technol. 2008, 32, 263–272. 
136. Sosnowski, M.; Clark, E.; Latif, S.; Macfarlane, P.W.; Tendera, M. Heart Rate Variability Fraction-A New Reportable Measure of 

24-Hour R-R Interval Variation. Ann. Noninvasive Electrocardiol. 2005, 10, 7–15. 
137. Louch, W.E. A TRP to the emergency room: Understanding arrhythmia in the ageing heart. Cardiovasc. Res. 2022, 118, 932–933. 
138. Lieve, K.V.; Verhagen, J.M.; Wei, J.; Bos, J.M.; van Der Werf, C.; i Noguer, F.R.; Mancini, G.M.; Guo, W.; Wang, R.; van den 

Heuvel, F.; et al. Linking the heart and the brain: Neurodevelopmental disorders in patients with catecholaminergic 
polymorphic ventricular tachycardia. Heart Rhythm. 2019, 16, 220–228. 

139. Christov, I.; Krasteva, V.; Simova, I.; Neycheva, T.; Schmid, R. Ranking of the most reliable beat morphology and heart rate 
variability features for the detection of atrial fibrillation in short single-lead ECG. Physiol. Meas. 2018, 39, 094005. 

140. Udawat, A.S.; Singh, P. An automated detection of atrial fibrillation from single-lead ECG using HRV features and machine 
learning. J. Electrocardiol. 2022, 75, 70–81. 

141. Mandal, S.; Sinha, N. Prediction of atrial fibrillation based on nonlinear modeling of heart rate variability signal and SVM 
classifier. Res. Biomed. Eng. 2021, 37, 725–736. 

142. Itzhak, S.B.; Ricon, S.S.; Biton, S.; Behar, J.A.; Sobel, J.A. Effect of temporal resolution on the detection of cardiac arrhythmias 
using HRV features and machine learning. Physiol. Meas. 2022, 43, 045002. 

143. Vani, R.K.; Sowmya, B.; Kumar, S.R.; Babu GN, K.; Reena, R. An adaptive fuzzy neuro inference system for classification of 
ECG CardiacArrthymias. In Proceedings of the AIP Conference Proceedings, Krishnagiri, India, 27–28 February 2021; AIP 
Publishing: Melville, NY, USA, 2022; Volume 2393. 

144. Singh, R.S.; Saini, B.S.; Sunkaria, R.K. Arrhythmia detection based on time–frequency features of heart rate variability and back-
propagation neural network. Iran J. Comput. Sci. 2019, 2, 245–257. 

145. Hadj Ahmed, I.; Djebbari, A.; Kachenoura, A.; Senhadji, L. Telemedical transport layer security based platform for cardiac 
arrhythmia classification using quadratic time–frequency analysis of HRV signal. J. Supercomput. 2022, 78, 13680–13709. 

146. Khan, S.A.; Khan, S.A.; Hafeez, A.; Zaka, A. A Randomized Controlled Trial Study on Hypertension Reduction Based on Disease 
Control Priorities to Manage High Blood Pressure. 2021. 

147. Messerli, F.H.; Williams, B.; Ritz, E. Essential hypertension. Lancet 2007, 370, 591–603. 
148. Kaplan, N.M. Kaplan's Clinical Hypertension; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. 
149. Schroeder, E.B.; Liao, D.; Chambless, L.E.; Prineas, R.J.; Evans, G.W.; Heiss, G. Hypertension, blood pressure, and heart rate 

variability: The Atherosclerosis Risk in Communities (ARIC) study. Hypertension 2003, 42, 1106–1111. 
150. Lan, K.C.; Raknim, P.; Kao, W.F.; Huang, J.H. Toward hypertension prediction based on PPG-derived HRV signals: A feasibility 

study. J. Med. Syst. 2018, 42, 103. 
151. Deka, D.; Deka, B. Stratification of high-risk hypertensive patients using hybrid heart rate variability features and boosting 

algorithms. IEEE Access 2021, 9, 62665–62675. 
152. Khan, A.A.; Junejo, R.T.; Thomas, G.N.; Fisher, J.P.; Lip, G.Y. Heart rate variability in patients with atrial fibrillation and 

hypertension. Eur. J. Clin. Investig. 2021, 51, e13361. 
153. Ni, H.; Cho, S.; Mankoff, J.; Yang, J.; Dey, A.K. Automated recognition of hypertension through overnight continuous HRV 

monitoring. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 2011–2023. 
154. Martinez, P.F.; Okoshi, M.P. Heart rate variability in coexisting diabetes and hypertension. Arq. Bras. Cardiol. 2018, 111, 73–74. 



Algorithms 2023, 16, 433 41 of 42 
 

155. Poddar, M.; Birajdar, A.C.; Virmani, J. Automated classification of hypertension and coronary artery disease patients by PNN, 
KNN, and SVM classifiers using HRV analysis. In Machine Learning in Bio-Signal Analysis and Diagnostic Imaging; Academic 
Press: Cambridge, MA, USA, 2019; pp. 99–125. 

156. Chou, Y.H.; Huang, W.L.; Chang, C.H.; Yang, C.C.; Kuo, T.B.; Lin, S.L.; Chiang, W.C.; Chu, T.S. Heart rate variability as a 
predictor of rapid renal function deterioration in chronic kidney disease patients. Nephrology 2019, 24, 806–813. 

157. Forsström, J.; Forsström, J.; Heinonen, E.; Välimäki, I.; Antila, K. Effects of haemodialysis on heart rate variability in chronic 
renal failure. Scand. J. Clin. Lab. Investig. 1986, 46, 665–670. 

158. Tsai, A.C.; Chiu, H.W. Relationship between heart rate variability and electrolyte concentration in chronic renal failure patients 
under hemodialysis. Int. J. Bioelectromagn. 2002, 4, 307–308. 

159. Chen, H.; Ren, W.; Gao, Z.; Zeng, M.; Tang, S.; Xu, F.; Huang, Y.; Zhang, L.; Cui, Y.; Yang, G.; et al. Effects of parathyroidectomy 
on plasma PTH fragments and heart rate variability in stage 5 chronic kidney disease patients. Ren. Fail. 2021, 43, 890–899. 

160. Min, J.W.; Chang, J.-Y.; Lee, H.; Park, Y.; Ko, E.J.; Cho, J.H.; Yang, C.W.; Chung, B.H. Clinical significance of heart rate variability 
for the monitoring of cardiac autonomic neuropathy in end-stage renal disease patients. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 
2089–2098. 

161. Wang, L.; Luo, J.; Liu, W.; Huang, X.; Xu, J.; Zhou, Y.; Jiang, L.; Yang, J. Elevated circulating growth differentiation factor 15 is 
related to decreased heart rate variability in chronic kidney disease patients. Ren. Fail. 2021, 43, 340–346. 

162. Berntson, G.G.; Cacioppo, J.T. Heart rate variability: Stress and psychiatric conditions. Dyn. Electrocardiogr. 2004, 41, 57–64. 
163. Ottaviani, C.; Shahabi, L.; Tarvainen, M.; Cook, I.; Abrams, M.; Shapiro, D. Cognitive, behavioral, and autonomic correlates of 

mind wandering and perseverative cognition in major depression. Front. Neurosci. 2015, 8, 433. 
164. Alvares, G.A.; Quintana, D.S.; Hickie, I.B.; Guastella, A.J. Autonomic nervous system dysfunction in psychiatric disorders and 

the impact of psychotropic medications: A systematic review and meta-analysis. J. Psychiatry Neurosci. 2016, 41, 89–104. 
165. Yang, A.C.; Hong, C.J.; Tsai, S.J. Heart rate variability in psychiatric disorders. Taiwan. J. Psychiatry 2010, 24, 99–109. 
166. Carney, R.M.; Blumenthal, J.A.; Stein, P.K.; Watkins, L.; Catellier, D.; Berkman, L.F.; Czajkowski, S.M.; O’Connor, C.; Stone, 

P.H.; Freedland, K.E. Depression, heart rate variability, and acute myocardial infarction. Circulation 2001, 104, 2024–2028. 
167. Miu, A.C.; Heilman, R.M.; Miclea, M. Reduced heart rate variability and vagal tone in anxiety: Trait versus state, and the effects 

of autogenic training. Auton. Neurosci. 2009, 145, 99–103. 
168. Cohen, H.; Loewenthal, U.; Matar, M.; Kotler, M. Association of autonomic dysfunction and clozapine: Heart rate variability 

and risk for sudden death in patients with schizophrenia on long-term psychotropic medication. Br. J. Psychiatry 2001, 179, 167–
171. 

169. Kobayashi, M.; Sun, G.; Shinba, T.; Matsui, T.; Kirimoto, T. Development of a mental disorder screening system using support 
vector machine for classification of heart rate variability measured from single-lead electrocardiography. In Proceedings of the 
2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11–13 March 2019; IEEE: New York, NY, USA, 
2019; pp. 1–6. 

170. Na, K.S.; Cho, S.E.; Cho, S.J. Machine learning-based discrimination of panic disorder from other anxiety disorders. J. Affect. 
Disord. 2021, 278, 1–4. 

171. Schneider, M.; Schwerdtfeger, A. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: A 
meta-analysis. Psychol. Med. 2020, 50, 1937–1948. 

172. Kontaxis, S.; Orini, M.; Gil, E.; Posadas-de Miguel, M.; Bernal, M.L.; Aguiló, J.; De La Camara, C.; Laguna, P.; Bailón, R. Heart 
rate variability analysis guided by respiration in major depressive disorder. In Proceedings of the 2018 Computing in 
Cardiology Conference (CinC), Maastricht, Netherlands, 23–26 September 2018; IEEE: New York, NY, USA, 2018; Volume. 45, 
pp. 1–4. 

173. Byun, S.; Kim, A.Y.; Jang, E.H.; Kim, S.; Choi, K.W.; Yu, H.Y.; Jeon, H.J. Entropy analysis of heart rate variability and its 
application to recognize major depressive disorder: A pilot study. Technol. Health Care 2019, 27, 407–424. 

174. Hao, T.; Zheng, X.; Wang, H.; Xu, K.; Chen, S. Linear and nonlinear analyses of heart rate variability signals under mental load. 
Biomed. Signal Process. Control 2022, 77, 103758. 

175. Giannakakis, G.; Marias, K.; Tsiknakis, M. A stress recognition system using HRV parameters and machine learning techniques. 
In Proceedings of the 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and 
Demos (ACIIW), Cambridge, UK, 3–6 September 2019; IEEE: New York, NY, USA, 2019; pp. 269–272. 

176. Kasai, M.; Lear, C.A.; Davidson, J.O.; Beacom, M.J.; Drury, P.P.; Maeda, Y.; Miyagi, E.; Ikeda, T.; Bennet, L.; Gunn, A.J. Early 
sinusoidal heart rate patterns and heart rate variability to assess hypoxia–ischaemia in near-term fetal sheep. J. Physiol. 2019, 
597, 5535–5548. 

177. Joshi, R.; Kommers, D.; Oosterwijk, L.; Feijs, L.; Van Pul, C.; Andriessen, P. Predicting neonatal sepsis using features of heart 
rate variability, respiratory characteristics, and ECG-derived estimates of infant motion. IEEE J. Biomed. Health Inform. 2019, 24, 
681–692. 

178. Kranzler, H.R. Is it time to rethink low-risk drinking guidelines? Alcohol. Clin. Exp. Res. 2022. 
179. Shin, J.; Paik, H.Y.; Joung, H.; Shin, S. Smoking and alcohol consumption influence the risk of cardiovascular diseases in Korean 

adults with elevated blood pressure. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2187–2194. 
180. Kwapong, F.L.; Eghan, C.; Norman, B.; Enimil, A. Determinants of alcohol use among the youth in the Bosomtwe District, 

Ashanti Region-Ghana. World J. Adv. Res. Rev. 2022, 14, 243–257. 



Algorithms 2023, 16, 433 42 of 42 
 

181. Tran DM, T.; Silvestri-Elmore, A.; Sojobi, A. Lifestyle choices and risk of developing cardiovascular disease in College students. 
Int. J. Exerc. Sci. 2022, 15, 808. 

182. Pop, G.N.; Christodorescu, R.; Velimirovici, D.E.; Sosdean, R.; Corbu, M.; Bodea, O.; Valcovici, M.; Dragan, S. Assessment of 
the impact of alcohol consumption patterns on heart rate variability by machine learning in healthy young adults. Medicina 
2021, 57, 956. 

183. Brunner, S.; Winter, R.; Werzer, C.; von Stülpnagel, L.; Clasen, I.; Hameder, A.; Stöver, A.; Graw, M.; Bauer, A.; Sinner, M.F. 
Impact of acute ethanol intake on cardiac autonomic regulation. Sci. Rep. 2021, 11, 13255. 

184. Shen, H.N.; Lin, L.Y.; Chen, K.Y.; Kuo, P.H.; Yu, C.J.; Wu, H.D.; Yang, P.C. Changes of heart rate variability during ventilator 
weaning. Chest 2003, 123, 1222–1228. 

185. Frazier, S.K.; Moser, D.K.; Schlanger, R.; Widener, J.; Pender, L.; Stone, K.S. Autonomic tone in medical intensive care patients 
receiving mechanical ventilation and during a CPAP weaning trial. Biol. Res. Nurs. 2008, 9, 301–310. 

186. Krasteva, V.; Matveev, M.; Jekova, I.; Georgiev, G. Heart rate variability analysis during weaning from mechanical ventilation: 
Models for prediction of the weaning trial outcome. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), 
Maastricht, Netherlands, 23–26 September 2018; IEEE: New York, NY, USA, 2018; Volume 45, pp. 1–4. 

187. Papaioannou, V.E.; Pneumatikos, I.; Chouvarda, I.; Dragoumanis, C.; Magklaveras, N. Changes of Heart and Respiratory Rate 
Dynamics during Weaning from Mechanical Ventilation; No. RefW-23-26172; Aristotle University of Thessaloniki: Thessaloniki, 
Greece, 2011. 

188. Pham, T.; Lau, Z.J.; Chen, S.A.; Makowski, D. Heart rate variability in psychology: A review of HRV indices and an analysis 
tutorial. Sensors 2021, 21, 3998. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


