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Abstract: Scene understanding is one of the most challenging areas of research in the fields of
robotics and computer vision. Recognising indoor scenes is one of the research applications in the
category of scene understanding that has gained attention in recent years. Recent developments
in deep learning and transfer learning approaches have attracted huge attention in addressing this
challenging area. In our work, we have proposed a fine-tuned deep transfer learning approach using
DenseNet201 for feature extraction and a deep Liquid State Machine model as the classifier in order
to develop a model for recognising and understanding indoor scenes. We have included fuzzy colour
stacking techniques, colour-based segmentation, and an adaptive World Cup optimisation algorithm
to improve the performance of our deep model. Our proposed model would dedicatedly assist the
visually impaired and blind to navigate in the indoor environment and completely integrate into
their day-to-day activities. Our proposed work was implemented on the NYU depth dataset and
attained an accuracy of 96% for classifying the indoor scenes.

Keywords: deep learning; DenseNet; fuzzy colour stacking; liquid state machine; transfer learning;
world cup optimization

1. Introduction

Understanding a scene’s environment is an effective task for humans. We recognise a
scene with the knowledge we gain through our short-term or long-term observations and
experiences in similar situations. Making a machine recognise a scene as a human does has
tremendous applications in the field of robotics. When it comes to machines, recognising a
scene by understanding the semantic-level details is a challenging task. Recognising the
different scene categories, which include outdoor scenes, indoor scenes, human activity
scenes, aerial scenes, etc., and identifying the different objects in the scene while preserving
their semantic relations is still a great challenge in many state-of-the-art approaches. The
advances in artificial intelligence, with the great success of deep learning, have elevated
its performance in many computer-vision applications such as object detection, scene
classification [1], face recognition, human-action recognition [2], etc. Scene classification or
recognition is one of the most significant and challenging tasks in the area of robotics [3]
and computer vision. Unlike the object recognition task, which consists of images having
single or multiple occurrences of the same object, scene recognition is difficult since a
scene involves the occurrence of multiple dissimilar objects. Indoor scene recognition has
attracted great attention in recent years due to its widespread application in numerous
areas, including smart navigation systems, elderly monitoring systems, domestic robotics,
intelligent surveillance, etc.
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A scene could be either dynamic or static. Dynamic scenes include the video scene [4],
and static scenes include the still image scenes. Recognising static scenes is more compli-
cated than recognising dynamic scenes. This is because, in order to recognise an object
in a video, we need a number of frames, compared to the partial information obtained
from still images. Static scene recognition can be classified into two categories: outdoor
scene recognition and indoor scene recognition. Outdoor scene recognition involves recog-
nising scenes like a street, forest, beach, etc. that consist of more or less similar objects
in a scene. But indoor scene recognition involves scenes like the living room, classroom,
bedroom, etc., which consist of different objects with varying dimensions, positions, and
occlusions. Indoor environments provide rich decorations, complex occlusions, different
textures and scales, and a cluttered background, making it a challenging task in the area of
scene recognition.

In our society, we have a large population of people suffering from visual ailments,
ranging from mild to severe visual impairments. Indoor scene recognition and understand-
ing can effectively assist the visually impaired, sighted, and elderly in navigating through
their indoor environment by analysing their surrounding environment. In our paper, we
have proposed a hybrid model using the concept of transfer learning-based deep approaches
for understanding indoor scenes that can provide assistance for indoor navigation.

1.1. Challenges and Motivation

Much research has been carried out in dynamic scene recognition, as the semantic
information among the different objects in a scene is preserved by the different frames
of the video, and the orientation information is not lost. Classification of the still image
scene is a challenging task due to the lack of spatial information about multiple objects
in the still image. Also, the lack of a sufficient still image dataset is another challenge in
this field. Many of the state-of-the-art approaches use techniques like data augmentation
and image annotation to improve their performance, which results in a reduced diversity
of data and is time-consuming. Although the majority of research works focus on the
recognition of outdoor scenes, recent research has focused on indoor scene recognition.
Many state-of-the-art approaches that have high performance in outdoor scenes do not
have the same performance in indoor scenes. Unlike the outdoor scene, the indoor scene
suffers from many challenges, including variation in illumination, size, spatial layout,
several occlusions, varying spatial locations, etc.

Indoor scene images consist of several discrete objects with diverse appearances, sizes,
shapes, poses, and scales that can be placed at various spatial locations in a multitude
of possible layouts. The major challenges in indoor scene recognition are the large-scale
variations in spatial scaling and spatial layout of the different objects in the scene. For the
above-mentioned challenges, firstly, in different scenes of the same class, the constituent
objects have different spatial scales. Secondly, these constituent objects may be located in
varying spatial locations and in numerous possible layouts. For example, a fridge can be
available in a kitchen at different spatial locations with significant differences in appearance
and scale. Some indoor scenes can be characterised by global appearance information,
whereas others require local spatial information. For example, a corridor scene can be
characterised by a single object (e.g., a large wall), but a kitchen scene can include multiple
objects (e.g., a fridge, an oven, a cooking range). Therefore, in order to accommodate all the
diverse scene types, both local and global spatial information needs to be considered. This
is also a critical condition for indoor scene recognition. Indoor scene environments consist
of rich and decorative features in disordered patterns that vary in size, orientation, and
layout. The above-mentioned challenges inspired us to work on indoor scene recognition
in order to achieve invariance in the scaling and spatial layout of the objects in the indoor
scene images.



Algorithms 2023, 16, 430 3 of 21

1.2. Contributions

In this paper, we have proposed a fine-tuned pretrained deep framework model to
increase the performance of existing indoor scene recognition tasks. In this work, we
have worked on an NYU depth dataset consisting of different classes of indoor scenes.
The images are preprocessed using fuzzy colour stacking techniques. These preprocessed
images are segmented and then fed to the pretrained DenseNet201 model for feature
extraction. A feature selection process using adaptive World Cup optimisation selects
the most superior features and feeds them to a deep classifier known as an LSM (liquid
state machine).

Some of the major contributions of our work can be summarised as follows:

• Implementation of fuzzy colour stacking for preprocessing improves the foreground
quality of the images by filtering the background noise;

• Unlike outdoor scene recognition that utilises global spatial information, indoor scene
recognition is possible using the objects in the scene. Therefore, for both local and
global features, semantic information is needed. Hence, the segmentation provides an
ROI (region of interest) to detect the objects;

• Pretrained DenseNet201 improves feature extraction due to a lack of vanishing gradi-
ent problems;

• An attention module to select the best features using the World Cup optimisation
algorithm improves the robust nature of the model towards indoor scene recognition;

• Classification using the deep LSM model utilising the winner-take-all layer improves
the overall accuracy of the indoor scene classification.

We have structured the paper as follows: In Section 2, some of the existing works and a
literature survey of indoor scene recognition are discussed. In Section 3, we have explained
the block diagram and workflow of our proposed approach. In Section 4, we have given
details on the dataset and some sample indoor scenes. Section 5 shows the experimental
results and discusses the performance matrices of our classifier model, and, in Section 6,
we compare the performance of our model with existing indoor scene recognition works.
Section 7 includes our concluding remarks with the future scope.

2. Related Works

Indoor scene recognition has gained great attention in recent years, and many research
projects have been developed in this field. Most methods of scene recognition consist of
a three-step approach, which consists of learning the features in different positions and
scales of the objects in the scene, pooling or cumulating these learned features in order to
obtain the feature description, and, based on the feature representation, learning a suitable
classifier. Traditional indoor scene recognition techniques mainly focus on global features
of the scene. In these approaches, low-level features like edges, colours, and textures [5] are
used for scene classification. For the initial step, the traditional state-of-the-art methods
used handcrafted methods like SIFT [6] (scale invariant feature transformation), SURF [7]
(speeded up robust features), GIST [8], and HOG [9] (histogram of oriented gradients).
Later, mid-level feature extraction using BoVW [10] (Bag of Visual Words) was employed
to improve the extracted features. In the next phase, these extracted local descriptors with
different scales and locations are aggregated using encoding pooling methods such as
FV [11] (Fisher Vector) and VLAD [12] (Vector of Locally Aggregated Descriptors). In the
last phase, based on the feature representation, some widely used classifiers such as SVM
(Support Vector Machine), KNN (K-nearest neighbour), neural networks, etc. are employed
for the scene recognition task. These traditional methods employ the use of handcrafted
image features for classification.

Deep learning [13] has become a better solution to improve the performance of many
machines in understanding specific computer vision tasks. Unlike conventional machine-
learning approaches, where the features for a specific vision task are manually extracted by
domain experts, deep learning methods are capable of extracting the feature representations
automatically from the raw images or data. Deep learning methods extract high-level
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information required for recognition tasks. Deep learning architecture consists of deep
neural networks (DNN), which are organised into multi-layered hierarchical trainable
layers. As the raw data, given as input to the DNN, flow through each intermediate layer,
multiple feature representations are obtained. Each layer learns specific features, with
the first several layers learning the low-level features and the deeper layers learning the
high-level features. In this manner, the raw data are eventually learned by the multiple
layers and are represented by a multi-dimensional feature vector. Thus, deep learning is
capable of discriminating different patterns and plays a vital role in scene recognition tasks.

A convolutional neural network [14] (CNN) is one of the commonly used architecture
models of deep learning. CNN is a multilayered neural network architecture that mimics
the human brain. It consists of convolutional layers, a pooling layer, a non-linear rectified
linear unit (ReLU) layer, and a fully connected layer. Convolutional layers are responsible
for extracting characteristic features, depending on the number of hidden layers. The
pooling layer does the downsampling and reduces the size of feature vectors. The ReLU
layer replaces all the negative values with 0 and preserves network stability. The final
fully connected layer collects all the high-level features and classifies them as labels. Deep
learning gained attention in different areas of computer vision tasks with the success of
Alexnet [15], trained on the ImageNet [16] dataset. There are many different popular deep
CNN models available for scene recognition tasks, including SqueezeNet [17], VGG16 [18],
GoogleNet [19], ResNet [20], DenseNet [21], etc. Some of the commonly used indoor and
outdoor datasets are NYU [22], Scene [23], Places [24], SUN [25], MIT 67 [26], etc. The
availability of powerful processors and large-scale datasets has improved the efficiency of
many deep learning models.

A recent development in deep learning, known as transfer learning, has enhanced
the use of deep CNN models in many research applications. Deep models can show their
performance when trained with large datasets using powerful GPUs (Graphical Processing
Units). But, for some applications, the available dataset is limited. In such situations, we
can use the concept of transfer learning to train our deep models. Here, the previously
trained deep models transfer their learned parameters to the new learning task, even using
a small dataset. The weights of these pretrained models already trained with the large
dataset automatically update with the new task of a different dataset. Therefore, recent
research has used the concept of transfer learning-based deep models for indoor scene
recognition tasks.

In recent years, much research has been conducted in the field of indoor scene recog-
nition. Traditional methods of indoor scene recognition include handcrafted features for
classification like texture, colour, etc. In [27], focus is given to these features to classify
the images of landscapes and cities. The method worked well for outdoor images, but it
faced difficulties in recognising indoor scenes. The authors of [26] solved this problem by
combining the global and local features using GIST descriptors and a spatial pyramid of
visual words on the MIT-67 dataset. In [28], classification was carried out on the LabelMe
dataset by using objects as the feature attribute and SVM as the classifier. In [29], the
authors used a probabilistic model using objects as feature representations. They used
Adaboost classifiers operated on HOG, grey-level features, and Gabor. Recently, deep
learning approaches have been used more than traditional methods. In [30], a deep CNN
architecture with a linear SVM classifier was employed on the Scene 15 and MIT-67 datasets
and attained accuracies of 90% and 68.24%, respectively. The authors of [31] utilised the
methodology of mid-level convolutional features and an SVM classifier on the MIT-67,
Scene 15, and NYU datasets and attained accuracies of 74.4%, 93.1%, and 81.2%, respec-
tively. The authors in [32] have employed a novel methodology using scale-invariant and
spatial layout convolution activations and an SVM classifier, and they obtained an accuracy
of 81.2% on the NYU dataset.

The authors of [33] have proposed a model based on the fusion of transcribed speech
with visual and text features using videos of indoor scenes. They achieved accuracies of 70%
and 74% on InstaIndoor dataset and YouTubeIndoor dataset, respectively. The researchers
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in [34] proposed a novel method using GAN and deep CNN for indoor object detection.
They employed the Honey Adam African Vultures Optimisation (HAAVO) algorithm to
estimate the optimum distance and attained an accuracy of 94% on my nursing home
dataset. The authors of [35] proposed a semantic region relationship model using ResNet50
that employs only semantic segmentation results for indoor scene recognition. They
evaluated their performance on the MIT-67, Places365-7, Places365-14, and SUN RGBD
datasets with 81.64%, 93.143%, 86.714%, and 76.119% accuracy, respectively. In [36], the
authors employed the MRNet using Resnet50 for scene recognition by considering triple
information, such as local object information, local scene information, and global scene
information. They employed class activation mapping (CAM) to obtain salient features and
used LSTM. They achieved accuracies of 96.14%, 88.08%, and 73.98% on Scene 15, MIT 67,
and SUN 397, respectively.

The concept of local feature matching was employed by the researchers to overcome
some of the challenges of indoor and outdoor scene recognition. The authors of [37] devel-
oped a deep-transformer-based network to achieve efficient local feature matching. They
also employed a slimming transformer and feature transition module, and they achieved
better results by generating robust and accurate matches for both indoor datasets (ScanNet)
and outdoor datasets (MegaDepth). The authors of [38] used a detector-free transformer-
based CNN model that extracts both global and local features simultaneously. They used
the overlapping area prediction module to ensure a clean and effective aggregation of
information. Inaccurate match labels were eliminated using the match label weight strat-
egy. The authors of [39] have developed a novel semantic segmentation approach using
a matric learning perspective that utilises only a few annotated examples, eliminating
the requirement of numerous, densely annotated images. Ref. [40] effectively aggregated
the local and global features using an attention-based fusion module. They also used a
lightweight feature affine module and mapped the local feature to the normal distribution.
They achieved superior performance on the SUN RGB-D and ScanNet V2 datasets. Some
of the recent works on scene recognition are compared in Table 1.

Table 1. Some recent existing works on scene recognition.

S. No. Author Methodology Used and Results Merits Demerits

1 Sitaula et al.
[41]

Enhanced VHR attention module
(EAM) + atrous spatial pyramid
pooling+ global average pooling.
Accuracy of 95.39% on AID and

93.04% on NwPU dataset.

Rich discriminative
salient features
are achieved.

Performance could be
improved by using various

pretrained models to classify
new data.

2 Rafique et al.
[42]

Segmentation + feature extraction
(Using SegNet, VGG, DCT, DWT) + feature

selection using genetic algorithm + neuro fuzzy classifier. Accuracy of
96.13% on Cityscapes, 63.1% for

SUN RGB D, and 72.8% on NYU datasets.

Multi-object recognition
against any varying

environment.

Approach performs well for
outdoor scenes when

compared to indoor scenes.

3 Yee et al.
[43]

CNN + spatial pyramid
pooling. Accuracies of 71%, 95.6%,

and 98.1% on Event-8, Scene-15, and
MIT-67 datasets.

Ensemble learning
improves the overall

performance.

Data
augmentation is

employed.

4 Du et al.
[44]

TrecgNet and feature
selection. Accuracy of 71.8% on

NYU depth datasets.

Model performs well
with aligned

colour and depth
information.

Only single modality scene
recognition is possible.

5 Ahmed et al.
[45]

Fuzzy c-mean, mean shift algorithm +
logistic regression classifier. Accuracies

of 88.75%, 85.75%, and 80.02% on MSRC,
COREL 10K, and CVPR 67 datasets.

Classification of a
complex scene

is possible,

Performance could be
increased by using deep CNN

models.

6 Shaopeng et al.
[46]

Pretrained ResNet CNN with feature-matching algorithm.
Accuracies of

96.49% and 81.69%
on scene-15 and MIT 67 datasets.

Eliminates the
problem

of over fitting.

Performance reduces for
images having varying
illumination, scale, etc.

7 Romero et al.
[47]

Dense SIFT + BoW model + spatial
pyramid pooling + binary classifier.

Accuracy of 92.64% on
ImageCLEF 2012

robot vision dataset.

Could classify scenes of
different illumination

and scaling.

Slow in
execution.
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Many of the state-of-the-art methods focus on video-based scene recognition because
of the availability of spatial-temporal information from different video frames. Therefore,
we have concentrated our work on still image scene recognition. Indoor navigation is a
challenging task due to the complexity of the location and position of various objects of
the same class. Many research studies on indoor scenes were carried out using image
annotation and data augmentation to improve the model’s performance. Limited research
has been carried out using the NYU depth dataset due to its complexity, clutter, and oc-
cluded background. As in many research works, we have not used the deep pretrained
model as a black box but have developed a hybrid model incorporating the merits of fuzzy
stacking-based preprocessing and K-means clustering-based segmentation to improve our
model’s performance. The selection of relevant features using World Cup optimisation
and the use of deep liquid state machines as classifiers have improved the performance
of our model. Considering the aforementioned limitations found in the existing work on
scene recognition, we have proposed a fine-tuned pretrained deep CNN hybrid model
fused with segmentation and attention modules on the NYU depth dataset that can elimi-
nate the various issues previously mentioned in the related works for the task of indoor
scene recognition.

3. Proposed Approach

Our proposed framework for classifying different indoor scenes is shown in Figure 1.
We have designed our model using the transfer learning approach to efficiently recognise
the different classes of indoor scenes with high accuracy. We have carried this out by
implementing fine tuning to the pretrained DenseNet [21] model. We have used the NYU
depth dataset [22] in our proposed work. These image samples are first preprocessed using
fuzzy colour stacking [48] to remove the noise from the images. These filtered images are
then fed to the segmentation module. We then created training and testing samples by
dividing the segmented samples (1920) into training images (1536) and testing images (384).
The pretrained DenseNet [21] model was trained to extract the image features. Superior
features are selected using an adaptive World Cup optimisation algorithm. These relevant
features are then fed to a deep LSM (liquid state machine) classifier. The performance of
the model is evaluated for accuracy, precision, sensitivity, F1-score, etc. In our previous
work [2], we evaluated the performance of Alexnet [15], SqueezeNet [17], ResNet [20], and
DenseNet [21] pretrained models for the recognition of human actions. The DenseNet
pretrained model showed better performance in terms of accuracy, sensitivity, specificity,
and F1-score compared to other models. Therefore, we have preferred the DenseNet [21]
pretrained model in this work. Although pretrained CNN attains higher performance on
recognition of images that are object-centric, it performs less well when applied directly to
complex scenes. This happens due to variation in semantic cues in complex scenes, like
indoor scenes. In order to address the problem of spatial variation and obtain regions of
interest, we have proposed a segmentation approach before extracting the features by the
CNN. Concatenating all the semantic cues for classification may lead the deep model to
be less dynamic towards the noisy and redundant details in the indoor scenes. Therefore,
we have introduced a feature selection mechanism to ignore irrelevant semantic cues and
select the most superior features for classification, and, to a great extent, we can overcome
the variation in spatial information in indoor scene recognition. These refined superior
features are then fed to a deep LSM (liquid state machine) [49] classifier to classify the
indoor scenes.

In this section, we have discussed the workflow of our work, including the feature
extraction and classification that we have introduced for the detection of indoor scenes.
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Figure 1. Block diagram of proposed framework.

3.1. Preprocessing: Reconstructing Images Using Fuzzy Colour Technique

The fuzzy technique is accepted because of its high degree of accuracy. The fuzzy
colour approach is widely used in image analysis applications. The colour separation is
carried out using similarity and difference functions, which are evaluated using member-
ship and non-membership functions. In order to improve the quality of the indoor scenes
and eliminate the noisy information, we have preprocessed our dataset using fuzzy colour
stacking [48] techniques. They help reduce the noise in the background, thus improving
the foreground quality. Here, the input data are separated into a blurred window. The
steps involved in the fuzzy technique can be summarised as follows:

• In each window, there is a membership degree associated with each image pixel;
• Based on the distance between the pixel and the window, we calculate the member-

ship degrees;
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• We sum up the weights of all the blurred windows, and we create the output image
from the average value;

• Two images from a row are combined, and then they are divided into two parts,
background and overlay, in order to eliminate the noise from the input image;

• The stacking technique eliminates the noise from the image by considering parameters
such as contrast, brightness, opacity, and combining ratio;

• Here, we have stacked our original dataset on the reconstructed dataset using the
fuzzy colour technique.

In our work, we have used a contrast value of 1.5, an opacity of 0.6, a brightness value
of 80, and a 50% combination ratio. We evaluated our dataset with different values for the
above parameters and found that these were more efficient for our dataset. A normalised
histogram is evaluated for the input image and the preprocessed image to measure the
performance of the preprocessing method.

Pr (rk) = nk/n (1)

where k = 0 to 255, rk is the kth intensity level, nk is the count of pixels with intensity nk,
and n is the total number of pixels in the image.

3.2. Segmentation—Colour Based Approach Using K-Means Clustering

In order to address the problem of spatial variation in indoor scenes, we have proposed
a segmentation approach before the CNN extracts the features. Here we aim at segmenting
the colour image [50] in the RGB colour model using K-means clustering. The steps
involved are described as follows:

• Read the input image;
• Extract the red, green, and blue feature vectors;
• The image space is divided into four group centroids (k = 4);
• Classify the colour pixels using K-means clustering;
• Using the index from K-means clustering, every pixel in the image is labelled;
• Separation of objects in the image by using pixel labels;
• Separate the image by segmenting the cluster centroid.

Thus, all the pixels in each class are identified by the K-means clustering method,
and different colours are assigned to each class. The accuracy of the segmentation method
is quantitatively evaluated by using the most common matrices, the dice co-efficient (F1-
score), and the Jaccard co-efficient (intersection of unity). Both of these matrices are widely
used similarity matrices, and they deal with class imbalance.

Dice =
2 ∗ TP

2 ∗ TP + FP + FN
(2)

Jaccard =
TP

TP + FP + FN
(3)

TP—True positive, FP—False Positive, FN—False Negative.

3.3. Feature Extraction Using Pretrained DenseNet Model

The deep pretrained model, DenseNet (a dense convolutional network) [21], is used
in our proposed work to extract the features from the segmented image. Compared to all
other CNN models, DenseNet [21] solves the vanishing gradient problem and improves the
model’s performance. This is achieved by the special architecture of the DenseNet, where
each preceding layer concatenates its feature vectors to the future layers, eliminating the
effect of reduction in the gradient value propagating through the entire path between the
input layer and output layer. DenseNet [21] consists of a special block in its architecture
known as a dense block. Each block consists of convolutional layers of sizes 1 × 1 and
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3 × 3. Each dense block is followed by a separate block, known as a transition block, that
helps to down sample the feature from the preceding layer.

The architecture of the pretrained DenseNet201 used in our work is shown in Figure 2.
In our proposed work, we have removed the fully connected classifier layer from Den-
sNet201, and the features are extracted from the average pool layer. Thus, the architecture
of DenseNet201 used in our proposed work consists of a convolutional layer, a maximum
pooling layer, a few dense block layers, transition layers, and an average pooling layer. The
features are extracted from the average pooling layer of the pretrained DenseNet201. These
layers learn the different features from our dataset with better performance, avoiding the
vanishing gradient problem.
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3.4. World Cup Optimization-Based Feature Selection

One of the important features of the human visual system is its attention capability.
Rather than absorbing all the information regarding a context, our attention mechanism
selectively chooses the most noticeable features and discards irrelevant information for
certain applications. These days, more research has incorporated the attention mechanism
in many computer vision tasks to obtain better utilization of the semantic information. In
our proposed work, we have embedded the World Cup Optimisation [51] (WCO) method
for performing feature selection. Pretrained CNNs extract high-dimensional features from
the different images. Considering all this information will increase computational time and
consumption. Also, this may reduce the robust nature of the model in noisy and cluttered
environments. Thus, discarding irrelevant features will increase the accuracy of the model.

Here, we have the extracted features and the labels, which are fed as input for the
feature selection. The weight parameter for each feature attribute is calculated by a fitness
function. By using this fitness function, fitness calculations are carried out and the position
is updated. The objective of the algorithm is to have a high fitness value. The highest-
valued fitness features are selected, and the others are discarded. Finally, selected attribute
indices or ranks form the output of the algorithm. These fitness functions and indices,
or ranks, are calculated based on the mean and standard deviation. Where ‘n’ indicates
the total number of features of ‘X’, ‘β’ lying in the range [0, 1] is the increase or decrease
coefficient of ‘σ’.

Mean, µ =
1
n∑n

i=1 Xi (4)

Standard Deviation, σ =

√
1

n − 1∑n
i=1 (Xi − µ)2 (5)

Rank =
(β ∗ σ + µ)

2
(6)

3.5. Deep Liquid State Machine Classifier

The superior features of the attention module are given to the classifier module. This
is achieved by using a deep LSM (liquid state machine) [49] with an attention module. The
deep LSM classifier model, with the architecture shown in Figure 3, is used in our work. It
consists of a recurrent and spiking neural network along with multiple read-out neurons.
Liquid state machine is a type of deep learning approach that consists of two special layers
known as the hidden layer and the winner take all (WTA) layer. LSM consists of three
special components: an input layer, a reservoir or liquid layer, and a memoryless readout
circuit. The reservoir, or liquid layer, is considered the generic preprocessor that consists of
numerous LIF (leaky integrate and fire) neurons. Readout neurons are also known as task
processors, and they produce the final output from the LSM.

The probability of synaptic connections between neurons is related to the Euclidean
distance between the neurons. The synaptic connection probability P (p, q), from neuron p
to q, depends on the Euclidian distance, D (p, q), between them:

P (p, q) = C ∗ e(−D(p,q)/τ)2
(7)

where the parameters C and τ regulate the synaptic functions. The scalar parameter C
sets the upper limit of the probability, and the parameter τ controls the Euclidean distance
between neurons.
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4. Dataset

Our proposed work is carried out on the NYU depth dataset [22], https://cs.nyu.
edu/~silberman/datasets/nyu_depth_v2.html (accessed on 10 August 2022). It consists of
26 different indoor scene types, consisting of 464 different indoor scenes with 1000+ classes.
For our work, we have downloaded 1920 indoor scenes with a total size of 79.5 MB. We have
sorted these images, which have varying spatial layouts, orientations, etc., and arranged
them into 20 different classes. In our work, we have focused on recognising some specific
indoor scene images, such as basement, bathroom, bedroom, bookstore, café, classroom,
computer lab, conference room, dinette, dining room, exercise room, furniture store, home
office, home storage, kitchen, living room, playroom, reception room, student lounge, and
study room. We have collected and sorted the different images in each class based on the
diverse nature they exhibit, and the count of images in each class varies accordingly. This
could be summarised as having a count of ‘75’, ‘63’, ‘56’, ‘125’, ‘54’, ‘29’, ‘32’, ‘68’, ‘52’, ‘122’,
‘74’, ‘155’, ‘33’, ‘46’, ‘101’, ‘380’, ‘94’, ‘95’, ‘153’, and ‘110’ images in each above-mentioned
class, respectively. We have selected these classes with the belief that these indoor scene
classes are vital for visually impaired and blind people to navigate safely in their indoor
environment. Sample indoor scenes, one from each class, are shown in Figure 4.

https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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Figure 4. Sample scenes from each class of (a) basement, (b) bathroom, (c) bedroom, (d) bookstore,
(e) cafe, (f) classroom, (g) computer lab, (h) conference room, (i) dinette, (j) dining room, (k) exercise
room, (l) furniture store, (m) home office, (n) home storage, (o) kitchen, (p) living room, (q) playroom,
(r) reception room, (s) student lounge, and (t) study room.

5. Experimental Results and Discussions

We have conducted our overall experimentation by using the software MATLAB
R2021a, a powerful image processing tool. We have used an Intel Core i7 processor with an
NVIDIA RTX GPU, a speed of 2.30 GHz, and 16 GB of system RAM.
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5.1. Results Analysis

We have evaluated the performance of our proposed model with the NYU depth
dataset [22], which consists of numerous categories of different indoor scenes that include
scenes of bedrooms, dining rooms, classrooms, conference rooms, etc. These images were
preprocessed using fuzzy colour stacking to remove the background noise. These pre-
processed images are then segmented using colour-based segmentation techniques and
K-means clustering to solve the issues of spatial variance and layout. These segmented im-
ages are then fed to a pretrained DenseNet for feature extraction. These extracted features
are then given to an attention module utilising World Cup optimisation for feature selection.
These selected superior features are classified using a deep LSM (liquid state machine)
classifier [49]. Figure 5 shows the input scene of a bedroom image and the corresponding
preprocessed image. The foreground picture quality is improved by reducing the back-
ground noise using the fuzzy colour stacking technique [48]. Figure 6 shows the normalised
histogram plot for the sample input image and its corresponding stacked image.
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Figure 7 shows the segmented results of some sample images, preserving the semantic
cues and spatial information of our sample indoor scene.
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We have also evaluated the accuracy of our segmentation module by performing a
pixel-wise comparison between our segmented image and its corresponding ground truth.
We have estimated the similarity measure by calculating the dice coefficient (F1 score) and
Jaccard’s index (intersection over union). Figure 8 shows the plot of the dice coefficient,
and Figure 9 shows the Jaccard’s coefficient. Both plots show a maximum co-efficient value
of 1, which indicates good accuracy for our segmentation module.
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The dataset used in the proposed model consists of a total of 1920 images that belong
to 20 different indoor classes. We have divided 80% of the dataset into training sets and
20% into testing phases. Therefore, we have used 1536 images for the training phase and
384 images for the testing phase. Out of the 1536 images in the training set, we used 20%
for validation, and the remaining images were used for training. We have trained our
model using the Adam optimizer with the gradient threshold set to ‘1’. The model was
trained with a learning rate of ‘0.01’ that drops by a factor of ‘0.2’. We have trained and
evaluated the performance of our model using a mini batch size of ‘128’ for 500 iterations.
Figure 10 shows the plots of accuracy and loss for the training and validation processes of
our proposed model.
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5.2. Classification Report–Performance Evaluation

The performance evaluation of our proposed indoor scene recognition model is repre-
sented by using matrices such as accuracy, sensitivity, specificity, precision, and F1-score,
as shown in Table 2, and the ROC plot for our model is shown in Figure 11.

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
(10)

Precision =
TP

TP + FP
(11)

F1 − score =
2 ∗ recall ∗ precision

recall + precision
(12)

TP—True positive, TN—True Negative, FP—False Positive, FN—False Negative

Table 2. Performance matrices of our proposed model for indoor scene classification.

Proposed Model Specificity Sensitivity Precision F1-Score

DenseNet201
(Feature extraction) +

LSM classifier
0.96 1 0.94 0.95

Accuracy 0.96%
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5.3. Discussions

As a part of indoor scene recognition, we have proposed a hybrid model that combines
the features of deep learning and fuzzy logic, segmentation, and feature selection to predict
and recognise indoor scenes in the NYU depth dataset with high accuracy. Here, we
have experimented on 20 different classes of the NYU depth dataset that are considered
vital in assisting visually handicapped and elderly people in their indoor navigation. The
image dataset is preprocessed using fuzzy colour stacking to remove the noise from the
background and enhance the foreground details. These preprocessed images are then
segmented to preserve the semantic cues and localization. Then, we used a pretrained
DenseNet201 deep model for feature extraction. The extracted features were filtered, and
only the predominant features were selected using the World Cup optimisation algorithm.
The removal of irrelevant features improves the robust nature of the model. A deep liquid
state machine trained on these selected features predicts our indoor scene classes with good
accuracy. Our model showcases a specificity of 96%, a sensitivity of 100%, a precision of
94%, and an F1-score of 95%. By evaluating the performance matrices, we can conclude
that, for the given indoor dataset, our DenseNet-LSM model obtained an accuracy of 96%.

6. Comparison of Our Proposed Work to Existing Indoor Scene Recognition Research

Many recent research studies have employed different advanced deep learning and
machine learning models to perform scene recognition. We have compared our result with
some works related to indoor scene recognition. In this section, we have compared the
research works on the NYU depth dataset. Although our comparison findings may not
be truly equitable, since many research works use different datasets, they offer an insight
into the various classification methods and their outcomes. Table 3 shows the comparison
of the accuracy of our proposed model with other existing research studies for indoor
scene recognition.
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Table 3. Accuracy comparison of existing works with our proposed model on indoor scene recognition.

S. No. Author Methodology Used Accuracy

1 Proposed Model Segmentation + DenseNet201 + World
Cup Optimization + LSM Classifier 96%

2 Pereira et al.
[52]

Semantic Segmentation + VGG16,
ResNet18-50-101, DenseNet and

MobileNetV2+ Feature fusion
75.8%

3 Heikel et al.
[53] YOLO + TF + IDF 83.63%

4 Mosella et al.
[54]

2D–3D geometric feature fusion +
Graph convolutional neural network 75%

5 Afif et al.
[55] EfficientNet CNN model + Scaling 95.6%

6 Li et al.
[56] MAPNet + Attentive pooling 67.7%

7 Guo et al.
[57] GoogleNet + Inception V3 + Feature fusion 96%

8 Tang et al.
[58] GoogleNet + Multi feature fusion 92.92%

7. Conclusions and Future Scope

In this paper, we have proposed a segmentation-based attention model for indoor
scene recognition that can assist visually impaired and elderly people with indoor nav-
igation. Here, we have used the transfer learning concept of deep learning to develop
our framework. We have implemented our work using a deep-pretrained DenseNet201
CNN architecture and a deep LSM (liquid state machine) model. We have evaluated our
model on the NYU depth dataset of 20 classes of indoor scenes. We have tried to improve
the robustness and performance of our model in varying indoor scenes by combining the
advantages of a few techniques like fuzzy colour stacking, segmentation, and World Cup
optimization. Preprocessing by the fuzzy colour stacking technique has helped improve
the foreground quality of the image dataset. By adding the segmentation module, our
model was able to handle the spatial details and semantic cues, providing a better region
of interest in the indoor scenes. The pretrained DenseNet201 extracted the features from
these segmented images. These features were filtered, and the most predominant features
were selected using the World Cup optimisation algorithm. We have used a deep LSM
(liquid state machine) model as our classifier, which efficiently classified the 20 classes of
our indoor dataset. Our proposed model could achieve an accuracy of 96% on the NYU
dataset. Thus, we could improve the robustness of our proposed model to recognise the
different indoor scenes. In our future work, we will emphasise working with different
datasets, including outdoor scenes, and combining various modalities in order to expand
the relevance and applicability of our proposed work.
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