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Abstract: Modeling of physical processes as partial differential equations (PDEs) is often carried out
with computationally expensive numerical solvers. A common, and important, process to model
is that of laser interaction with biological tissues. Physics-informed neural networks (PINNs) have
been used to model many physical processes, though none have demonstrated an approximation
involving a source term in a PDE, which modeling laser-tissue interactions requires. In this work, a
numerical solver for simulating tissue interactions with lasers was surrogated using PINNs while
testing various boundary conditions, one with a radiative source term involved. Models were tested
using differing activation function combinations in their architectures for comparison. The best
combinations of activation functions were different for cases with and without a source term, and
R2 scores and average relative errors for the predictions of the best PINN models indicate that it is
an accurate surrogate model for corresponding solvers. PINNs appear to be valid replacements for
numerical solvers for one-dimensional tissue interactions with electromagnetic radiation.

Keywords: physics; biology; surrogate model; PINN; laser optics; neural network; DNN; biological
modeling

1. Introduction

Computational models using numerical methods tend toward costly performance, in
both processing time and hardware resources, as problems become more complex. Typi-
cally, such problems take the form of partial differential equations (PDEs), which are used
as governing equations to model phenomena in fields such as physics and biology. It is
often most convenient to solve these PDEs with numerical solvers, but due to the strain on
time and computational resources that comes with numerical methods, surrogate models
are used to mitigate the costs.

Machine learning (ML) has long been a staple of surrogate modeling and advance-
ments in popular ML libraries for the Python programming language have made ML
models, especially deep neural networks (DNNs), easier than ever to implement. DNNs
are a type of ML model that, when trained properly, serve as a parameterized solution to
mathematical problems. Training a DNN usually requires a large sample pool of data and,
in the case of surrogate modeling, DNNs require simulation-driven data collection of the
model being surrogated. When a model becomes computationally expensive to exercise,
generating sufficient data is less practical. In these situations, DNN models needing less
data for convergence become more attractive and one such approach is through implemen-
tation of a physics-informed neural network (PINN).

PINNs are essentially DNNs, with differences in how the loss function is formulated.
Originally restricted to solutions with a trial solution [1], ML advancements have since
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allowed PINNs to use soft constraints in the loss function to become the unique solution to
the PDE, rather than relying on big data to determine relationships. PINNs are able to build
a network to solve PDEs in less time, while requiring less data than would be needed for
a standard DNN. These effects have been demonstrated on benchmark problems such as
Burger’s equation and Schrödinger’s equation [2,3], and on nonlinear diffusivity and Biot’s
equation [4], as well as on heat transfer problems [5]. Variations of PINNs, called biological
informed neural networks (BINNs), have also been used to model the reaction–diffusion
equation for sparse real-world data from scratch assay experiments [6]. PINNs, with their
smart use of data and recent application to benchmark problems, can potentially offer relief
to the computational demand in solving a PDE numerically.

The intentions of the following experiments are to use PINNs for solving instances
of the diffusion equation, which models how heat diffuses within materials. Its one-
dimensional PDE can be represented by the following:

∂U
∂t

= α
∂2U
∂x2 + Q, (1)

where α denotes the material’s thermal diffusivity and U represents the solution. This
version of the PDE includes a source term Q representing heat contributed by laser irradia-
tion. Boundary conditions used for solving Equation (1) include insulated and convective
boundary conditions. Solving this PDE will result in a function that gives the temperature
at a time and depth of the material(s).

The open questions addressed in this work are: Can PINNs model the behavior of
laser interactions with materials (i.e., can they account for source terms in the PDE)? Can
PINN models handle insulated and convective boundary conditions without a source term?
Can PINNs handle insulated boundary conditions with a source term? What is the best
combination of activation functions for predicting values outside the range of (0,1) for
PINNs? Answering these questions would be a critical step in the direction of surrogate
modeling with physics-informed ML models.

Rapid numerical solvers such as the Python Ablation Code (PAC1D) can approximate
a function satisfying Equation (1), so version 4.1.1 of this model will be used as a test bench
for prototyping the PINN approach. PAC1D approximates solutions to the one-dimensional
diffusion equation, based on a three-dimensional model [7], which can be used to predict
thermal injury to skin [8–10] and ocular media [11–13] from laser exposure. The short com-
putation time and ease of configuration make this numerical solver ideal to test surrogate
modeling approaches before proceeding to solvers with higher computational complexity.
One objective of this study is to leverage successful results from PAC1D experiments as a
starting point to surrogate models with higher computational complexity.

2. Methods
2.1. Deep Neural Networks

DNNs are made with three primary components that are interconnected: a loss
function, an optimizer, and a neural network architecture. Each of these components, when
provided with data, plays an important role in the training process [14].

Loss functions define the criteria used for training the parameters of a model. Usually
this is the mean squared error (MSE),

MSE =
1
N

N

∑
n=1

(Un − Ûn)
2, (2)

where Un represents the true values from the data set, Ûn the predicted values from the
DNN, and N the number of samples. The loss function informs the DNN’s optimizer
how far off its predictions are from the desired values and the optimizer will use that
information accordingly.
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Receiving values from the loss function, the optimizer computes a gradient and
adjusts the parameters of the model to slightly reduce the value of the loss. Optimizers use
backpropagation [15] to adjust the model parameters by calculating the gradient of the loss
function with respects to the parameters. This is done with automatic differentiation [16],
which allows the model to gauge the parameters’ sensitivity to change. The most sensitive
parameters are adjusted in the direction of the gradient, bringing the loss function lower,
which results in better predictions for the training data set. The size of the adjustments is
dependent on the optimizer algorithm and their hyperparameters.

Neural network architectures are composed of multiple layers with a number of nodes
in each layer. An example of a DNN’s setup and connectivity can be found in Figure 1. By
default, there is an input and output layer containing a number of hidden layers between
them, where layers contain a specific number of neurons, or nodes. This element of the
DNN contains the trainable parameters of the model.

Figure 1. Deep neural network example, with an input layer consisting of 2 nodes, 1 node in the
output layer, and 2 hidden layers containing 3 nodes each.

Connections between the nodes in adjacent layers exist and they communicate with
each other during the training process. Every node in one layer is fully connected to all the
nodes in the adjacent layer, and each of these connections has a weight and bias associated
with it. When information passes from one layer to the next, it is passed through a nonlinear
function, called an activation function [17], which changes the values sent to the next layer.
This acts as a filter, determining which connections are to be made depending on the inputs
provided. These connections are critical to the end product of the trained model.

Training a DNN requires interactivity between the major components of the model in
an iterative fashion. The number of iterations, called epochs, is usually defined at the outset.
Training data is presented to the model, where inputs pass through each layer and produce
an output. Each individual output is then compared to its respective true value, called a
target, using the loss function. Taking the values from the loss, the optimizer calculates the
gradient of the parameters of the model. Using the direction of the gradient, the optimizer
backpropagates through the model, adjusting the parameters. The next epoch then begins
and that process is repeated until a desired accuracy is obtained, the number of preset
epochs is reached, the model sticks in a local minimum, or some other exit criterion is met.

2.2. Physics-Informed Neural Networks

PINNs are functionally similar to DNNs, except for how they handle their loss function.
In DNNs, the loss is generally composed of only one term but with PINNs there are two
distinct terms,

Loss = a1 ·MSEU + a2 ·MSE f , (3)

where constants a1 and a2 are hyperparameters that can be adjusted as needed for optimal
training performance. The first term, MSEU , is reserved for specifically satisfying the initial
and boundary conditions of the PDE, and is represented by the following equation,

MSEU =
1

NU

NU

∑
n=1
|Un −U(xn

U , tn
U)|2. (4)
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Here, xn
U and tn

U are the depth and time values used as training data for the initial
and boundary conditions, NU is the number of training points, and Ui denotes the corre-
sponding true values to the training data. The training points xn

U and tn
U strictly consist of

boundary and initial condition data obtained from PAC1D, with no collocation points. The
second term, MSE f , contains an optimized form of the PDE and is represented by,

MSE f =
1

N f

N f

∑
n=1
| f (xn

f , tn
f )|

2. (5)

Here, xn
f and tn

f denote the depth and time collocation points, respectively. The function
f (x, t) refers to the optimizable form of the PDE, which can be obtained by moving all
terms to one side of Equation (1) as follows:

∂U
∂t
− α

∂2U
∂x2 −Q = 0 = f (x, t). (6)

Training PINNs uses a variation of the process used to train DNNs. Satisfying the
initial and boundary conditions utilizes the same training method for comparing the
true and predicted values of the model. The true values are taken from the PAC1D data
generation and are used to hone the models’ prediction accuracy. The second term of the
PINN’s loss function requires extra inputs of x and t, called collocation points.

Collocation points in the experiments that follow are randomly generated values in
the domains of their respective variables. These points can be selected using any sampling
method such as Latin hypercube sampling (LHS) [18]. Collocation points feed into the
automatic differentiation component of the PINN, as depicted in Figure 2, and the model
parameters’ derivatives are taken with respect to x and t from the collocation points,
following the formula in Equation (6). This process returns a value that is not equal to
zero at first and the optimizer will simultaneously adjust the model parameters to reduce
the overall loss. In doing so, both terms will tend toward zero, satisfying the initial and
boundary conditions, and the general form of the PDE, yielding an approximation to a
unique solution.

Figure 2. Automatic differentiation component of the PINN model, taking partial derivatives of the
parameters in the network with respect to x and t from collocation points.

2.3. PAC1D and Data Generation

PAC1D was designed for modeling laser-tissue interaction and numerically solves
the 1-D Advection–Diffusion–Reaction equation with a source term representing thermal
energy contributed by a laser source. An example of a three-layer skin model with a laser
directed at its surface can be seen in Figure 3. For the testing performed in this paper,
advection and reaction terms in the governing equation did not contribute to the solution
of the PDE simplifying to Equation (1). Features of the model used for these experiments
were: defining boundary conditions, defining material-specific optical and mechanical
properties, and numerically solving for the domain temperature U(x, t), where x ∈ [0, xL]
and t ∈ [0, Tτ ]. For the purposes of surrogate modeling, data obtained from PAC1D are
considered to be the true solution values.
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Figure 3. Example depicting a three-layer skin model with a beam directed at its surface, where each
shade represents a different layer. From left to right: epidermis, dermis, and fat.

Initial and boundary conditions are essential to finding a unique solution to a PDE.
There are several types of boundary conditions to consider, and two of particular interest
in this study are insulated and convection. Under insulated boundary conditions, thermal
gradients at the boundaries are set to zero,

∂U
∂x

(0, t) =
∂U
∂x

(xL, t) = 0 (7)

where t ∈ [0, Tτ ]. Convection in 1-D allows for a thermal flux to exist at the boundaries of
the system,

H = h(Ta − Ts), (8)

and its rate depends on a material’s convective coefficient, h, as well as the differences
between ambient and surface temperatures, Ta and Ts, respectively.

A three-layer model of skin was represented in the 1-D domain by defining layer-
specific thicknesses and material properties. The PDE solution relies not only on initial and
boundary conditions but also on the physical properties of the materials. Hence, in the
data that PAC1D generated, the necessary material properties were extracted for use in the
training process.

The source laser energy deposition is tracked as a dose irradiance and depends on
each layer’s optical properties in the domain. Dose tends to vary throughout the domain
of each material due to photon scattering and absorption by each material. These dose
distributions are relevant in the training process when the source term is incorporated into
the PDE and solved.

Generating PAC1D output data required defining the parameters of the laser exposure,
thermal boundary conditions, material properties, material geometry, total simulation time,
spatial resolution, and temporal resolution. The laser frequency was controlled by adjusting
the tissue-specific absorption and reduced scattering coefficients. Time and depth values
were chosen arbitrarily but lead to convergence of the PDE solution. Dose and temperature
values derived from PAC1D shared the same spatial and temporal resolution.

Collocation points were generated using the LHS method in non-source experiments,
and the random choice function from the Numpy library [19] in Python, version 1.19.5, for
source experiments. Because there are no dose values associated with the non-source exper-
iments the LHS method could be used, as these values did not have to be consistent with
any depth and dose values obtained from PAC1D simulation. This means that collocation
points were not restricted to being the exact points used in the PAC1D simulation. With the
source experiment, however, collocation points must have a corresponding dose value for
each. Because dose values for the source experiment are taken directly from PAC1D, and
because PAC1D only stores dose values for each of its spatial points from the simulation,
collocation points required a random sampling from the x and t data values retrieved from
PAC1D. This would result in a more concentrated sampling at the earlier layers of the
model. To accomplish this task, the random choice function from Numpy was used to
sample randomly from the array of possible values, allowing for replacement.

2.4. Measures of Performance

Two measures were used to check model performance: the R2 score and average
relative error. The R2 score measures the goodness of fit for a regression curve and the
average relative error shows accuracy of the model over the test data set. Both good fit and
accuracy were the desirable qualities in our models.
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R2 score helps determine whether the model is sensitive to the change in the dependent
variable when the independent variables change,

R2 Score = 1− ∑N
n=1(Un − Ûn)2

∑N
n=1(Un − Ū)2

. (9)

Here, Un and Ûn are the true and predicted values across the entire domain, respec-
tively, while Ū represents the average value of the true solution from PAC1D, U. Scoring 1
in this test will indicate that the model has a perfect fit and, thus, has approximated the
target solution well.

The average relative error was used to determine the accuracy of all test point predic-
tions as a percentage, and was calculated by

Average Relative Error =
1
N

N

∑
n=1

∣∣∣∣Un − Ûn

Un

∣∣∣∣ · 100. (10)

Here, as before, Un is the true value and Ûn is the predicted value, while N represents
the total number of samples. The closer the average relative error is to zero percent, the
better the accuracy.

Run failures were occasionally observed for specific test cases. A run failure is defined
as a training instance of a model that resulted in a R2 score of zero or less. These runs were
chosen to be ignored when calculating the overall performance due to their infrequent
nature and their profound effects on the average and standard deviation of the performance
values. Model performances were based on 26 realizations per case.

2.5. Surrogate Model Testing

Mechanical properties were varied to discover how PINNs can approximate PDEs
compared to numerical methods. Prior to these experiments, preliminary testing was
carried out using an analytic solution to the one-dimensional diffusion equation [20], and
both the PINN model and the PAC1D solver approximated well before moving on. The fol-
lowing tests were divided into two categories, those with a source term and those without,
and each experiment had its own data set generated using PAC1D. Table 1 contains some
of the simulation details. Activation functions were also compared in these experiments, as
a simultaneous test for the best performing combination.

Table 1. Experiments carried out and their differing data generation parameters.

Case Boundary Number of Depth Source Irradiance
Condition Materials Resolution Term W

m3

Exp. 1 Insulated 1 125 No N/A
Exp. 2 Convection 1 125 No N/A
Exp. 3 Insulated 3 250 Yes 5× 106

Each PINN requires a set architecture, and the number of hidden layers and nodes per
layer must be defined at the outset. For the non-source insulated and convective boundary
condition tests, the PINN architecture was defined to have 10 hidden layers, each of which
contained 32 nodes. For the source experiment, the number of hidden layers was 6, where
each of these contained 64 nodes. Model architectures were determined through trial and
error, and neither architecture was suitable to solve the other problem.
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The equation used for the optimizable PDE is the same for each test. Applying the
details of the data generated, and considering the properties of the materials, which can
vary by depth,

α(x) =
κ(x)

ρ(x) · cp(x)
,

Q(x) =
1

ρ(x) · cp(x)
I(x).

And if we allow U to be represented by T to denote temperature, then Equation (5)
transforms into,

∂T
∂t
− κ

ρcp

∂2T
∂x2 −

1
ρcp

I = 0 = f (x), (11)

where I denotes the dose values and, of the material properties, κ is the thermal conductivity,
ρ is the density, and cp is the specific heat capacity.

Testing was performed using Python due to its access to open-source libraries in the
language, particularly those with automatic differentiation and DNN construction features,
like PyTorch [21] and Tensorflow [22]. PyTorch version 1.10.0 was used to construct the
PINN model in experiments carried out in this paper. The optimizer used for the source and
non-source models was the L-BFGS optimization method [23], which is memory intensive,
and ideal for small data sets. Stop criteria for training the models were determined by
either a tolerance on first order optimality, being 1× 10−5, or a tolerance on the model
parameter changes, being 1× 10−9, whichever criterion was met first, as defined by the
PyTorch implementation of the L-BFGS optimizer [21]. Collocation points were kept to
25,000 in number and initial condition data points were restricted to 125 in all tests. The
number of boundary condition points sampled was 175 in all cases except the convection
boundary conditions test, which was 1075.

Materials used in each of the experiments vary in material properties, ranging from
a custom-made mystery material to more representative skin properties, all of which are
listed in Table 2. Mystery 1 was used for the non-source experiments, and epidermis,
dermis, and fat for the insulated boundary conditions with source test.

Table 2. Materials used and their most relevant properties: thermal conductivity, mass density,
specific heat capacity, and diffusivity.

Material Conductivity (κ) Density (ρ) Specific Heat (cp) Diffusivity (α)
W

m·K r kg
m3

J
kg·K

m2

s

Mystery 1 500 100 800 6.25× 10−3

Epidermis 0.235 1190 3600 5.49× 10−8

Dermis 0.445 1111 3300 1.21× 10−7

Fat 0.185 971 2700 7.06× 10−8

2.5.1. Without Source Term

Non-source experiments tested insulated and convection boundary conditions on a
single mystery material. Being custom-made, mystery 1 has material properties chosen
to produce an α constant that would be higher than the skin layers in the with-source
experiment. This allows thermal distributions to change more noticeably in the span of one
second, at such a low temperature, for visual depiction purposes. The exact solution to the
thermal distribution is given as

T(x) = e−απ2t sin πx, (12)

where α is the coefficient of diffusion, and x and t represent the depth and time, respectively.
This solution produces an initial distribution as seen in Figure 4, when t is zero. Spatial
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points in the PAC1D simulation without source were sampled uniformly throughout
the domain.

Figure 4. Temperature distributions of insulated boundary conditions (left) and convective boundary
conditions (right) without source term.

Insulated boundary conditions were tested by using the generated data at the bound-
aries of the domain for all time-steps in t. Randomly selected subsets of these data points,
as well as the initial condition data points, were fed to the first term in the loss function.
Collocation points were generated using the Latin hypercube sampling (LHS) method and
were sent to the model to provide values for the second term of the loss function. For the
term constants a1 and a2, arbitrary values were assigned that produced acceptable results,
being 21 and 1, respectively.

Convection boundary condition tests followed the same procedure as the insulated
boundary conditions and the temperature distribution plot can also be found in Figure 4.
The key difference is that the ambient temperature, set at 293.15 K, in the experiment had
a measurable effect on the data generated. The energy flow across the system, from the
ambient environment to the material, was captured in the boundary conditions and all
other aspects of the experiment remained the same: random subset selection of boundary
conditions, Latin hypercube sampling method for collocation points, and the a1, a2 hyper-
parameter constants set to 21 and 1.

During testing, it was recognized that the performance values were worse than those
of the other experiments and steps were taken to adjust the tests to achieve better results:
additional sampling of the boundary condition data to better approximate the function
defining the temperature at the boundaries. These adjustments yielded improved results.

2.5.2. With Source Term

Insulated boundary conditions were tested on a three-layer mesh, containing the
epidermis, dermis, and fat materials. The simulation ran a laser for 0.5 s and then allowed
a cooling period for 0.5 s. While the laser was running, the diffusion throughout the
materials was negligible. However, when the cooling period began, diffusion became
non-negligible. The corresponding temperature distribution can be found in Figure 5 and
material properties for each can be found in Table 2.

Boundary values for the loss function from the generated data were randomly selected
for all timesteps in t and were included with the initial conditions in the first term. Because
dose values were retrieved from the data generator, and those values are needed for the
PDE, collocation points had to be sampled from depth and time values derived from
the data. This means the Latin hypercube sampling method could not be used for this
experiment and resampling was a possibility in the random selection.

Experimental process for the insulated boundary condition test with source involved
sampling random subsets of the boundary condition data, used in conjunction with the
initial boundary conditions, and collocation points were necessarily derived from existing
depth points from the resolution. Scaling constant for the S&T method was set to 100 for
the all-Tanh case. The resolution of the experiment differed from the first experiments,
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where a higher concentration of depth samples was taken from the domain of the first two
materials in the mesh, as shown in Figure 5. This was carried out so that the minutiae of
the much smaller layers could be captured by the model.

Figure 5. Temperature distributions of insulated boundary conditions with source (left), where
dotted lines represent the points of transition between the layers of skin; its sample density (right)
shows how points were sampled for the resolution of the simulation, where count denotes the number
of points that were sampled in the interval shown. Combined, the total number of points was 250.

2.5.3. Activation Functions

In addition to the source and non-source experiments, a third experiment was carried
out simultaneously. The optimal activation function combination for these tasks is unknown
and some combinations will be applied to each of the experiments. Their results will be
compared to determine the best nonlinear functions to use. Activation functions primarily
considered were Tanh, ELU, and a combination of the two.

To work properly for the source experiment above, an all-Tanh model must be able
to predict outside of its natural range of (−1,1). The final output layer is able to do this,
but preliminary tests revealed that this limitation still caused under-performance and run
failure in the all-Tanh case. Thus, a simple scaling and translation (S&T) method was
applied to training and predictions. Prior to training, the output data is translated down, so
that the lowest target value is zero. Then, all values are scaled down by some constant, so
that the target data is in the range (0,1). An inverse transformation is subsequently applied
for the purpose of interpreting and comparing predictions after training.

Activation function combinations are the following: all-Tanh, all-ELU, and a hybrid
combination. The hybrid is specifically all Tanh, with the last activation function being ELU,
which does not have an upper bound for predictions and would allow for easier predictions
outside of the range of (−1,1). Predicting outside this range will be necessary for the final
source experiment and will be compared with the S&T method for the all-Tanh model.

3. Results
3.1. Without Source Term Results

Table 3 shows the results for the insulated boundary condition test, without a source term.
The hybrid combination is seen as the best performer in terms of score at 0.9393 ± 0.0795,
closely followed by the all-Tanh and the all-ELU models having scores of 0.8869 ± 0.1471
and 0.8689 ± 0.1361, respectively. Likewise, the hybrid model rated best in the average rela-
tive error category with 8.54% ± 6.07%, narrowly beating the hybrid with 11.93% ± 9.67%,
while the all-ELU had 15.87% ± 4.00%. Plots of the prediction comparisons show that the
all-ELU model, in Figure 6, predicted accurately at just 4 points, contrary to the all-Tanh
predictions also shown in Figure 6, that predicted well in the first half of the domain. The
hybrid model predictions in the same figure showed the most visible consistency in the
predictions. These figures were all representative of the models over the 26 realizations.
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Table 3. Results for insulated boundary condition test with no source term.

Case R2 Score Avg. Relative Error Iterations

Hybrid 0.9393 ± 0.0795 8.54% ± 6.07% 1860 ± 761
All-Tanh 0.8869 ± 0.1471 11.93% ± 9.67% 1877 ± 775
All-ELU 0.8689 ± 0.1361 15.88% ± 4.24% 178 ± 106

Figure 6. Representative non-source predictions for insulated boundary conditions using hybrid
activation function combination (top left), all-Tanh activation function combination (top right), and
all-ELU activation function combination (bottom).

Table 4 contains the results for the convective boundary conditions without a source
term. In this test, the hybrid model performed better in both R2 score and average relative
error. The all-Tanh model scored second-best, which scored noticeably better than the
all-ELU model. The prediction plots for the all-Tanh and hybrid models can be found in
Figure 7.

Convergence rates for these non-source experiments are depicted in Figure 8, and
are representative for both insulated and convection boundary condition tests. Training
behavior is observed to be largely similar in the all-Tanh and hybrid combination models,
while the all-ELU model showed a stunted training behavior due to triggering the stop
criteria much earlier. Failure rates were the same for both experiments, in all cases, and
were observed to be less than 5% of the time.

Table 4. Results for convective boundary condition test with no source term.

Case R2 Score Avg. Relative Error Iterations

Hybrid 0.9524 ± 0.0604 6.11% ± 4.69% 2325 ± 818
All-Tanh 0.9448 ± 0.0622 6.59% ± 4.31% 2428 ± 917
All-ELU 0.6998 ± 0.1476 21.89% ± 2.65% 233 ± 94
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Figure 7. Representative non-source predictions for convective boundary conditions using hybrid
activation function combination (left) and all-Tanh activation function combination (right).

Figure 8. Representative depictions of the convergence plots for the without-source experiments,
mapping iteration to loss reduction. Loss U represents the initial and boundary condition term, and
Loss F represents the PDE residual term, in the loss function. The all-Tanh model (top left), hybrid
model (top right), and all-ELU model (bottom) show their respective training behavior.

3.2. With Source Term Results

With-source test results can be found in Table 5 and show that the all-Tanh model
performed best, with a R2 score of 0.9905 ± 0.0086 and an average relative error of
0.49% ± 0.27%. Its prediction plot can be found in Figure 9 and can be compared with
the hybrid model, the second-best performer, whose representative plot is also found in
Figure 9. The hybrid model had a R2 score of 0.9600 ± 0.0317 and an average relative error
of 1.41% ± 0.071%, and, while competitive, its differences with the all-Tanh model can be
seen graphically when comparing the plots. The all-ELU model scored notably worse in
performance values.
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Figure 9. Representative predictions of insulated boundary conditions including source term with
all-Tanh combination (left) and hybrid combination (right).

Table 5. Results for insulated boundary condition test with source term.

Case R2 Score Avg. Relative Error Iterations

All-Tanh 0.9905 ± 0.0086 0.49% ± 0.27% 8580 ± 3330
Hybrid 0.9600 ± 0.0317 1.41% ± 0.71% 3933 ± 2223
All-ELU 0.7381 ± 0.2769 3.98% ± 2.53% 2642 ± 2454

Convergence rates for the three models are depicted in Figure 10. Average iterations
for the all-Tanh model were consistently higher than the hybrid model and the hybrid
model’s average iterations were consistently higher than the all-ELU model. Run failures
were observed to be 0% for both the all-ELU and all-Tanh models, while the hybrid model
had a failed run about 33% of the time.

Figure 10. Representative depictions of the convergence plots for the with-source experiment,
mapping iteration to loss reduction. Loss U represents the initial and boundary condition term, and
Loss F represents the PDE residual term, in the loss function. The all-Tanh model (top left), hybrid
model (top right), and all-ELU model (bottom) show their respective training behavior.



Algorithms 2023, 16, 428 13 of 16

In addition to the source experiment, a side test was conducted to determine the
effect of the magnitude of the scaling constant for the S&T method on the performance of
the model. For the experiment, the same all-Tanh model was tested in succession while
gradually increasing the scaling constant per test. It was observed that, as the scaling
constant grew in magnitude, the R2 score declined.

3.3. Activation Function Results

Results show that the Tanh activation function, using the S&T method, was the best
performing nonlinear function for our model in the case involving the source term and
uniform initial distribution. Conversely, the hybrid combination outperformed the all-
Tanh in the non-source, non-uniform initial distribution. The all-ELU models performed
generally well, though not nearly comparable to the others.

4. Discussion

In the case where the PDE was driven by initial and boundary conditions without
a source term, it can be seen that PINNs accurately account for both insulated and con-
vective boundary condition types. For the convective boundary condition case, both the
hybrid and all-Tanh functions performed near-equally well, with the slight advantage to
the hybrid. PINN models incorporating a convective boundary condition underperformed
in cases with low boundary sampling but became more accurate as the sampling in that
region was increased. This is seen as evidence that more complex functions require more
randomly sampled data to better represent the function at the boundaries to the PINN. An
alternative could be to sample the boundary values at varying time steps to better represent
the function as a whole, rather than randomly sampling values from a tabulated function.
While both the hybrid and all-Tanh combinations performed well, the hybrid approach
performed noticeably better in both insulated and convective boundary condition cases.

The three-layer skin experiment yielded the most accurate results from the models,
where the all-Tanh model, utilizing the S&T method, outperformed the others. This is
especially evident when comparing true vs. predicted thermal profiles. In Figure 9, the
all-Tanh model closely fit the shape and magnitude of the curves around the dermis layer
(layer 2) where other models had difficulty predicting such as the hybrid combination also
found in Figure 9.

While the problem of the three-layer skin experiment with a source term should be
more difficult, the models for this experiment performed exceptionally better than those
of the non-source. It is suspected that, because of the smarter sampling of the collocation
points, being more concentrated in the first two layers of the domain which had the most
drastic and varied changes in temperature, it was able to predict more accurately overall.
In the non-source experiments, there was no such smart sampling and the entire domain
was sampled more evenly across the domain for the collocation points. This is evidence
in support of smart sampling of collocation points, where areas of interest receive more
concentrated sampling to yield better results on a per-application basis.

Run failure was low for all experiments, being roughly 5% for the non-source exper-
iments, and 0% for all but one case in the source experiment. The hybrid model for the
source experiment saw about 33% failure rate and it is suspected that the dominant use
of Tanh in the architecture still affected it despite the use of the ELU activation function
before the output layer. The evidence for this lies in the 0% failure rate of both the all-Tanh
model using the S&T method and the all-ELU model. From this observation, it appears
that the S&T method was superior to the use of ELU as the last activation function.

Convergence rates for the non-source experiments were similar for the all-Tanh and
hybrid models, but substantially different for the all-ELU model. With the optimizer used
in these experiments, the all-ELU model did not converge efficiently enough to prevent
early stopping. Similarly, with the source experiments, the all-ELU model had earlier
training stoppage than the all-Tanh and hybrid models. The difference for the source exper-
iment, though, is that there was a slightly more exaggerated difference between the average
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number of iterations between the all-Tanh and the hybrid, showing that the all-Tanh trained
most efficiently, for more iterations, than the other two models.

Hyperparameter values a1 and a2 were not optimized for any of the experiments,
and were arbitrarily adjusted until coherent results were consistently observed. It is not
known whether more refined adjustments in these parameters will yield non-negligible
improvements in predictions, though current performances in the experiments are already
considered sufficient. Acknowledging that hyperparameter tuning may improve perfor-
mance, it is also possible that optimizer choice and method could be altered for greater
efficiency. In the future, it would be of interest to fine tune these parameters and methods
to explore the most optimal performance settings.

For PINNs to perform well using the methods described in this paper, there is a need
for prior knowledge of boundary conditions through time or a close approximation to
them. Additionally, material optical and mechanical properties must be known for PINNs
to be accurate. With these limitations in mind, it was demonstrated that, when the function
that defines the boundary conditions is sufficiently represented and material properties
are known, PINNs can approximate numerical models of diffusion simulations involving
multiple concatenated materials, each with varying material parameters, with and without
radiative source terms included.

5. Conclusions

In this work, we demonstrated that PINNs can account for the phenomenon of con-
vection via boundary conditions in its loss function. Evidence was also found that some
boundary conditions need better representation than others, when it comes to PINNs,
which was so in the convective case as contrasted with the insulated.

Different activation function combinations were shown to be better suited for different
types of problems, even when they are based around the same PDE, as was seen in the dif-
ference between the with-source and without-source experiments. One PINN architecture
was also not guaranteed to solve the entirety of problems presented by a single PDE with
comparable accuracy, as was discovered in this work.

Scaling and translating, as in the S&T method used in this paper, was shown to be
a good approach to helping all-Tanh based activation function models predict in ranges
far outside their natural output ranges but only when the scaling factor was not too large.
This method allowed the all-Tanh model to predict well in the three-layer skin with source
experiment, because it profoundly reduced run failure. When run failures are high, scaling
and translating methods can drastically enable successful runs.

Evidence from this work suggests that strictly all-Tanh activation function combina-
tions may be the best for models predicting PDE solutions involving a source term. For
problems of diffusion not involving a source term, a hybrid activation function combination
as described in this paper was shown to edge out the all-Tanh combination. There is also
evidence in this work that smart sampling collocation points yields better performance
results, when applicable, seemingly for any working activation function combination.

PINNs approximate laser-tissue interactions well in the 1-D case, with varying bound-
ary conditions as an option. There are several applications where PINNs can be applied in
a one-dimensional (axial-diffusion) case, neglecting radial diffusion, while still producing
a good approximation to three-dimensional cases (e.g., when the beam diameter is suffi-
ciently large). To capture radial diffusion effects that come with small beam diameter cases
in the 3-D space, augmentation of the PINN would be required.
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