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Abstract: Confidence regions for the Weibull parameters with minimum areas among all those based
on the Conditionality Principle are constructed using an equivalent diffuse Bayesian approach. The
process is valid for scenarios involving standard failure and progressive censorship, and complete
data. Optimal conditional confidence sets for two Weibull quantiles are also derived. Simulation-
based algorithms are provided for computing the smallest-area regions with fixed confidence levels.
Importantly, the proposed confidence sets satisfy the Sufficiency, Likelihood and Conditionality
Principles in contrast to the unconditional regions based on maximum likelihood estimators and
other insufficient statistics. The suggested perspective can be applied to parametric estimation
and hypothesis testing, as well as to the determination of minimum-size confidence sets for other
invariantly estimable functions of the Weibull parameters. A dataset concerning failure times of an
insulating fluid is studied for illustrative and comparative purposes.

Keywords: confidence and credibility regions; Conditionality, Likelihood and Sufficiency Principles;
Weibull distribution; progressively censored data; reliability and life-testing

1. Introduction

Life-testing and reliability experiments are typically terminated before all sample
items fail. Under standard failure censoring, the test concludes when a specified number
of units have failed; see, e.g., Bhattacharyya [1], LaRiccia [2], Schneider and Weissfeld [3],
Fernández [4] and Jaheen and Okasha [5] and references therein. Progressive censorship is
an extension of failure censoring in which a certain number of live units can be excluded
from the study (i.e., censored) at each failure time. This pattern of censorship offers
substantial versatility to the researcher, and also permits the collection of degradation or
deterioration data with the objective of analyzing the aging mechanism. The progressive
censoring scheme has been widely analyzed in recent decades. Papers by Kemaloglu and
Gebizlioglu [6], Wang et al. [7], Lee et al. [8], Almongy et al. [9], Chen and Gui [10] and
Abu-Moussa et al. [11] are just a sample. Comprehensive analyses of the state of the art on
progressive censorship are provided in the works of Balakrishnan and Aggarwala [12] and
Balakrishnan and Cramer [13].

The Weibull distribution with scale parameter θ and shape parameter α is a flexible
log-location–scale model for the analysis of time-to-event data that is valuable in many
disciplines, including economics, biometry, management, engineering and the actuarial,
social and environmental sciences. The Weibull W(θ, α) distribution plays a relevant role
in many survival and reliability analyses, and has been successfully applied to describe
the reliability of both components and equipment in industrial engineering, as well as
human and animal disease mortality. Various studies and applications of the Weibull model
can be found in Thoman et al. [14], Meeker and Escobar [15], Nordman and Meeker [16],
Chen et al. [17], Tsai et al. [18], Fernández [19], Roy [20], Algarni [21], Boult et al. [22],
Li et al. [23] and Yu et al. [24]. This model reduces to the exponential distribution when
α = 1; see, e.g., Fernández et al. [25], Lee et al. [26], Fernández [27], Yousef et al. [28] and
Tanackov et al. [29].
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The development of confidence sets for Weibull parameters and quantiles from test
samples is of great interest and practical relevance in many experimental analyses. In par-
ticular, these regions are useful for model selection, parametric estimation and hypothesis
testing. In practice, joint confidence sets for the Weibull scale and shape parameters, θ
and α, are often based on the unconditional distribution of pivotal quantities related to
the maximum likelihood estimator (MLE) of (θ, α), denoted as (θ̂, α̂). However, (θ̂, α̂) does
not contain all the sample information. In the Weibull case, the whole sample is mini-
mally sufficient. Confidence regions for (θ, α) can also be derived by using the conditional
distribution of (θ̂, α̂), given the observed values of the ancillary statistics. From a strictly
logical point of view, the conditional approach seems more appropriate because it obeys
the Sufficient Principle. Uniformly most accurate confidence sets do not exist in the Weibull
case. Region size minimization is an alternative optimality criterion that is commonly used
to select the best confidence set; see, for example, Casella and Berger [30], Lehmann and
Romano [31] and Fernández [32]. At first glance, as smaller confidence sets contain fewer
points, they are less likely to cover false values. Interval estimation from progressively
censored data has been considered by many authors, including Viveros and Balakrishnan
[33], Wu [34], Lawless [35] and Fernández [36].

This paper deals with the construction of minimum-area confidence regions for Weibull
parameters and quantiles based on progressively censored data when the principle of
conditioning on ancillary statistics is adopted. Our approach is based on the general results
of Hora and Buehler [37] for location–scale parameter problems, which are also valid
for log-location–scale models, such as the Weibull distribution, because the logarithmic
transformation is strictly monotonic. According to Hora and Buehler [37], conditional
frequentist confidence sets and Bayesian credibility sets for invariantly estimable functions
are numerically equivalent when the analyst assumes independent Lebesgue measure
priors on the location parameter and the logarithm of the scale parameter. In our setting,
the Weibull parameters and quantiles correspond to invariantly estimable functions, and the
proposed optimal confidence regions would include the points with the highest posterior
density (HPD) assuming independent flat priors for log(θ) and log(α). The above diffuse
Bayesian approach satisfies the Conditionality, Likelihood and Sufficiency Principles, and
often allows us to substantially reduce the areas of confidence regions.

The remainder of this paper is structured as follows. Given a progressively censored
sample from the Weibull model, the next section presents the likelihood function, as well
as a diffuse improper prior density for the Weibull parameters and the corresponding
posterior density function. Minimum-area confidence regions for the Weibull parameters
based on the Conditionality Principle, which coincide with the Bayesian HPD credibility
sets in the diffuse case, are derived in Section 3, whereas Section 4 is concerned with the
determination of the smallest-size joint confidence set for two arbitrary Weibull quantiles.
Algorithms to find the optimal confidence regions via simulation, as well as applications to
hypotheses testing, are also suggested. A numerical example regarding failure times for
an insulating fluid between two electrodes is considered in Section 5 for illustrative and
comparative purposes. Finally, Section 6 offers some concluding remarks.

2. Weibull Models and Progressive Censoring

Suppose that the lifetime X of a certain device follows the Weibull distribution with
scale parameter θ > 0 and shape parameter α > 0, which is denoted as X ∼W(θ, α). The
probability density function (pdf) and cumulative distribution function (cdf) of X are then
given by

f (x | θ, α) =
αxα−1/θα

exp
{
(x/θ)α} and F(x | θ, α) = 1− exp

{
−
( x

θ

)α}
, x > 0, (1)

respectively. Moreover, the reliability or survival function of X is defined as S(x | θ, α) =
exp

{
−(x/θ)α} and the failure rate is given by h(x | θ, α) = (α/θα)xα−1 for x > 0.
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The k-th moment of X ∼ W(θ, α) is obtained to be E[Xk | θ, α] = θkΓ(1 + k/α),
k = 1, 2, . . . , where Γ(·) is the well-known gamma function. The parameter θ determines
the scaling of the density, whereas the parameter α controls its shape. In many practical
cases, the survival of populations with increasing (α > 1), decreasing (α < 1), or constant
(α = 1) hazard risks can be modeled by Weibull distributions.

Assume now that n randomly selected units from a W(θ, α) population with unknown
parameters θ and α are put on life test under a progressive censoring scheme r = (r1, . . . , rs),
and also that x = (x1, . . . , xs) is the the observed realization of the random sample of failure
times X = (X1, . . . , Xs). That is, n0 = n units are simultaneously placed on test at time
zero in the life-testing experiment; for i = 1, . . . , s− 1, ri randomly selected living units
are retired from the study at the i-th observed failure time, xi; so, prior to the (i + 1)-th
failure, there are ni = n− i − ∑i

j=1 rj units on inspection; finally, at the time of the s-th
observed failure, xs, the test is concluded, i.e., the remaining rs units are removed from the
analysis. The constants s and ri, i = 1, . . . , s, are prefixed integers which must satisfy the
assumptions: 1 ≤ s ≤ n, 0 ≤ ri ≤ ni−1 − 1 for i = 1, . . . , s− 1, and rs = ns−1 − 1.

The likelihood function for (θ, α) given (x, r), is then defined by

L(θ, α | x, r) =
s

∏
i=1

ni−1 f (xi | θ, α){1− F(xi | θ, α)}ri , θ, α > 0. (2)

In accordance with (1) and (2), the likelihood becomes

L(θ, α | x, r) =
Nwα−1αsθ−sα

exp(vα/θα)
, θ, α > 0,

where w = W(x) and vα = Vα(x, r) are the observed values of the random quantities

W ≡W(X) =
s

∏
i=1

Xi and Vα ≡ Vα(X, r) =
s

∑
i=1

(ri + 1)Xα
i ,

respectively, and N = ∏s
i=1 ni−1. Given the censoring scheme r, it is clear that the observed

sample X is minimal sufficient for (θ, α).
Hereafter, it will be assumed that s > 2 and x1 < xs. Note that the probability that

X1 ≥ Xs is zero when s ≥ 2. In such a case, the unique MLE of (θ, α), denoted by (θ̂, α̂), can
be derived by solving the equations ∂ log L(θ, α | x, r)/∂θ = 0 and ∂ log L(θ, α | x, r)/∂α = 0
via iterative procedures. In our situation, the MLE of (θ, α) is an insufficient statistic. Hence,
the confidence regions for (θ, α) based on (θ̂, α̂) do not satisfy the Sufficiency Principle.

As mentioned earlier, the Weibull distribution is a log-location-scale parameter model.
Specifically, the random variable Y = − log(X) has a Gumbel G(µ, σ) distribution with
location and scale parameters µ = − log(θ) and σ = 1/α, respectively. From Hora and
Buehler [37], it follows for any level ε ∈ (0, 1) that the conditional ε-confidence sets for
Gumbel parameters and quantiles are numerically equivalent to the corresponding ε-
credibility sets obtained with the improper prior density π0(µ, σ) ∝ 1/σ; see also Lawless
([35], p. 565, Property 2). Since the logarithmic transformation is strictly monotonic, the
above results are also valid for Weibull parameters and quantiles when the prior pdf is
defined by π(θ, α) ∝ 1/(θα) for θ, α > 0. Assuming this diffuse prior model, the posterior
pdf of (θ, α) given (x, r) can be expressed as

π∗(θ, α | x, r) =
wα−1θ−sα−1αs−1

K exp(vα/θα)
, θ, α > 0, (3)

where

K ≡ K(x, r) =
∫ ∞

0

(∏s
i=1 xi)

α−1αs−2{
∑s

i=1(ri + 1)xα
i
}s dα =

∫ ∞

0

wα−1αs−2

vs
α

dα.
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The posterior pdf of (θ, α) given (x, r) is unimodal, which implies that the HPD
estimate (or posterior mode) of (θ, α), denoted by (θ̃, α̃), is unique. The posterior pdf of α
given (x, r) is given by

π∗(α | x, r) =
wα−1αs−2

Kvs
α

, α > 0,

whereas the posterior pdf of t = 1/θα conditional on α given (x, r) is defined as

π∗(t | α; x, r) =
vs

αts−1 exp(−vαt)
(s− 1)!

, t > 0.

Therefore, the posterior distribution of 2vα/θα given α and (x, r) is chi-square with 2s
degrees of freedom, i.e., 2vα/θα | α, (x, r) ∼ χ2

2s. The posterior cdf of α conditional to (x, r)
is then given by

G(z) =
∫ z

0

wα−1αs−2

Kvs
α

dα, z > 0.

As graphical illustrations, Figure 1 shows the posterior pdf for (θ, α) conditional to
(x, r) associated with the case to be analyzed in Section 5. The corresponding posterior pdfs
for θ and α are displayed in Figures 2 and 3.

Figure 1. Posterior pdf of (θ, α) in Section 5.

Figure 2. Posterior pdf of θ in Section 5.
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Figure 3. Posterior pdf of α in Section 5.

3. Optimal Regions for the Weibull Parameters

Assume that ε ∈ (0, 1) denotes the confidence or credibility level and also that cε

represents the (1− ε)-quantile of the random posterior density of (θ, α) given (x, r). The
Bayesian HPD ε-credibility region for (θ, α) is then defined as

Rε ≡ Rε(x, r) = {(θ, α) : π∗(θ, α | x, r) ≥ cε},

where
Pr{(θ, α) ∈ Rε | x, r} =

∫∫
Rε

π∗(θ, α | x, r)dθdα = ε.

The region Rε is also the conditional (frequentist) ε-confidence region for (θ, α) with mini-
mum area. The Bayesian credibility degree ε coincides with the frequency-based confidence
level of the random region Rε(X, r). Therefore, the smallest-size 100ε% confidence set for
(θ, α) based on the Conditionality Principle given (x, r) may be defined as

Rε ≡ Rε(x, r) =
{
(θ, α) : wα−1θ−sα−1αs−1 exp(−vα/θα) ≥ Kcε

}
.

Since the joint posterior pdf of θ and α derived in (3) is unimodal, it is clear that Rε is a
simply connected region. Hence, the set Rε is bounded by a single curve Cε, which does not
intersect itself, i.e., the region limited by the contour Cε results in the required ε-confidence
set.

An approximate value of cε can be obtained through simulation. A simple algorithm
for determining a random sample of size m from the posterior distribution of (θ, α) condi-
tional to (x, r) can be sketched as follows: Given a large integer number m, for i = 1, . . . , m,
simulate an observation ui from the uniform distribution U(0, 1) and another value di from
the χ2

2s distribution, and then determine αi = G−1(ui) and θi = (2vαi /di)
1/αi . In such a case,

(θ1, α1), . . . , (θm, αm) constitute a random sample of size m from the posterior distribution of
(θ, α). Since cε is the (1− ε)-quantile of the random variable π∗(θ, α | x, r), an approximation
of cε is given by the (1− ε)-quantile of the simulated sample {π∗(θi, αi | x, r)}m

i=1.
For interested readers, Thomopoulos [38] focuses on the fundamentals of Monte Carlo

methods using basic computer simulation techniques.
The smallest confidence regions presented in this paper can also be applied in hypothe-

ses testing. For instance, if x is the observed value of X and r is the progressive censoring
scheme, the p-value associated to the test of the null hypothesis H0 : (θ, α) = (θ0, α0) versus
the alternative hypothesis H1 : (θ, α) 6= (θ0, α0) based on the smallest confidence sets for
(θ, α) would be defined by p = 1− ε0, where

ε0 = min{ε : (θ0, α0) ∈ Rε}.
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It is easy to show that

Rε0 = {(θ, α) : π∗(θ, α | x, r) ≥ π∗(θ0, α0 | x, r)},

i.e., the constant cε0 equals π∗(θ0, α0 | x, r). An approximation of ε0 is given by the pro-
portion of the simulated sample data {π∗(θi, αi | x, r)}m

i=1 that are at least π∗(θ0, α0 | x, r).
That is, the p-value is approximately given by the proportion of simulated sample data
{π∗(θi, αi | x, r)}m

i=1 that are less than π∗(θ0, α0 | x, r). More formally,

p ≈ 1
m

m

∑
i=1

I[π∗(θi, αi | x, r) < π∗(θ0, α0 | x, r)],

where I[·] denotes the indicator function.

4. Optimal Regions for Two Weibull Quantiles

Given 0 < u < 1, the Weibull u-quantile is defined as qu = θ{− log(1− u)}1/α. Our
goal in this section is to construct the smallest-size confidence region for the pair of Weibull
quantiles (qa, qb), where 0 < a < b < 1.

The posterior pdf of (qa, qb) given (x, r) can be expressed as

π∗a,b(qa, qb | x, r) = π∗(θ, α | x, r)
∣∣∣∣ ∂(θ, α)

∂(qa, qb)

∣∣∣∣, 0 < qa < qb,

where ∂(θ, α)/∂(qa, qb) denotes the Jacobian (determinant) for the change of variables from
(θ, α) to (qa, qb).

The Jacobian is defined by

∂(θ, α)

∂(qa, qb)
=

∣∣∣∣∣
∂θ
∂qa

∂θ
∂qb

∂α
∂qa

∂α
∂qb

∣∣∣∣∣ = ∂θ

∂qa

∂α

∂qb
− ∂θ

∂qb

∂α

∂qa
,

where qa = θ{− log(1− a)}1/α and qb = θ{− log(1− b)}1/α. After some calculations, it is
derived that

∂(θ, α)

∂(qa, qb)
=

(ka − kb)q
kb/(ka−kb)
b

qka/(ka−kb)
a {log(qa/qb)}2

,

where k j = log{− log(1− j)} for j = a, b, because

∂θ

∂qa
=
−kb

ka − kb

(
qb
qa

)ka/(ka−kb)

,
∂θ

∂qb
=

ka

ka − kb

(
qb
qa

)kb/(ka−kb)

and
∂α

∂qa
=

kb − ka

qa{log(qa/qb)}2 ,
∂α

∂qb
=

ka − kb

qb{log(qa/qb)}2 .

As a consequence of the above results, the posterior pdf of (qa, qb) given (x, r) is
defined as

π∗a,b(qa, qb | x, r) = π∗
(

qka/(ka−kb)
b

qkb/(ka−kb)
a

,
ka − kb

log(qa/qb)
| x, r

)
(kb − ka)q

kb/(ka−kb)
b

qka/(ka−kb)
a {log(qa/qb)}2

for 0 < qa < qb. Obviously,
{
(qa;i, qb;i)

}m
i=1, where

qa;i = θi{− log(1− a)}1/αi and qb;i = θi{− log(1− b)}1/αi

for i = 1, . . . , m, constitute a random sample of size m from the posterior distribution of
(qa, qb) conditional to (x, r).
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In this case, the minimum-area ε-confidence region for (qa, qb), denoted by Ra,b;ε ≡
Ra,b;ε(x, r), is defined as

Ra,b;ε =
{
(qa, qb) : π∗a,b(qa, qb | x, r) ≥ dε

}
,

where
Pr
{
(qa, qb) ∈ Ra,b;ε | x, r

}
=
∫∫

Ra,b;ε

π∗a,b(qa, qb | x, r)dqadqb = ε.

As discussed, the smallest-size confidence regions are relevant to practitioners because they
are less likely to contain spurious parameter values.

An approximation of the constant dε is given by the (1− ε)-quantile of the simulated
sample {

π∗a,b(qa;i, qb;i | x, r)
}m

i=1

because dε is precisely the (1− ε)-quantile of the random variable π∗a,b(qa, qb | x, r).
In our situation, the p-value associated to the test H0:(qa, qb) = (q0

a, q0
b) against

H1:(qa, qb) 6= (q0
a, q0

b) based on the smallest confidence sets for (qa, qb) would be defined by
p = 1− ε0, where

ε0 = min
{

ε : (q0
a, q0

b) ∈ Ra,b;ε

}
.

Hence,
Ra,b;ε0 =

{
(qa, qb) : π∗a,b(qa, qb | x, r) ≥ dε0

}
,

where dε0 = π∗a,b(q
0
a, q0

b | x, r). Furthermore, if an analyst uses the above random sample, it
is clear that the p-value for testing H0 versus H1 is approximately given by

p ≈ 1
m

m

∑
i=1

I
[
π∗a,b(qa;i, qb;i | x, r) < π∗a,b(q

0
a, q0

b | x, r)
]
.

Note that testing H0 : qa = q0
a and qb = q0

b is equivalent to checking H′0 : S(q0
a) = 1− a

and S(q0
b) = 1− b, which implies that the corresponding reliabilities of the device in study

at times q0
a and q0

b are 1− a and 1− b. For example, H0 : q0.01 = 1 and q0.05 = 2 is identical
to the null hypothesis H′0 : S(1) = 0.99 and S(2) = 0.95.

5. Illustrative Applications

A progressively censored sample studied by Balakrishnan and Cramer ([13], p. 9) is
considered in this section to illustrate the results developed above. This sample is based
on the data reported by Nelson ([39], p. 105) concerning times to breakdown (in minutes)
of an insulating fluid between two electrodes subject to a voltage of 34 kV. According to
engineering considerations, for a fixed voltage level, the time to breakdown, X, follows a
Weibull distribution.

In our case, the progressive censoring scheme is r = (0, 0, 3, 0, 3, 0, 0, 5) and the sample
of observed failure times is given by:

x = (0.19, 0.78, 0.96, 1.31, 2.78, 4.85, 6.50, 7.35).

Therefore, s = 8, n = 19 and w = W(x) = ∏s
i=1 xi = 120.054. It can be shown that the

maximum likelihood estimates of θ and α are θ̂ = 9.22542 and α̂ = 0.974323, respectively.
Moreover, the value of K ≡ K(x, r) is obtained to be K = exp(−34.4158).

The posterior pdfs for (θ, α), θ and α given (x, r) are plotted in Figures 1–3, respectively.
The HPD estimate (or posterior mode) of (θ, α) is given by (θ̃, α̃) = (8.28923, 0.930714).
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Balakrishnan and Cramer ([13], p. 387) derived that the joint 95% confidence region
for θ and α suggested by Wu [34], which is denoted by W0.95 ≡W0.95(x, r), is defined by

W0.95 =

{
(θ, α) : 0.2807 ≤ α ≤ 1.9648,

(
2vα

31.2070

)1/α

≤ θ ≤
(

2vα

6.0684

)1/α
}

.

Assuming that the confidence level is ε = 0.95, the optimal (minimum area) 95%
confidence region for (θ, α), R0.95 ≡ R0.95(x, r), proposed in this paper is given by

R0.95 = {(θ, α) : π∗(θ, α | x, r) ≥ c0.95},

where the 0.05-quantile of the random posterior density of (θ, α) given (x, r) is c0.95 =
0.00268513. This set is also the Bayesian HPD 0.95-credibility region for (θ, α) in the non-
informative case. For illustrative and comparative purposes, the 95% confidence regions
W0.95 and R0.95 are depicted in Figure 4.

Figure 4. Minimum-area 0.95-confidence region (solid) for (θ, α) and the corresponding region
(dashed) proposed by Wu (2002) in the example considered in Section 5.

The area of the optimal region is Area[R0.95] = 33.1901, whereas Area[W0.95] = 148.137.
Note also that, if α is small, the values of θ such that (θ, α) ∈ W0.95 could be very large.
For instance, the point (0.2807, 2014.25) is contained in W0.95, which is clearly unrealistic
because θ̂ = 9.22542 is too small compared to 2014.25. In general, our approach can greatly
reduce the areas of the confidence regions for the Weibull parameters. In the above situation,
Area[W0.95]/Area[R0.95] = 4.46412.

Consider that a reliability engineer aims to check whether (θ, α) = (10, 1) is reasonable
or not. Since the p-value for testing H0 : (θ, α) = (10, 1) versus H1 : (θ, α) 6= (10, 1) is
calculated to be p = 0.840618, the values θ = 10 and α = 1 are quite admissible. In contrast,
θ = 10 and α = 2 are not reasonable because the p-value for testing H0 : (θ, α) = (10, 2)
against H1 : (θ, α) 6= (10, 2) is only p = 0.0134487.

Suppose now that an analyst seeks to determine the smallest-size 90% confidence
region for the pair of Weibull quantiles (qa, qb), where a = 0.05 and b = 0.50. In this
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case, the minimum-area 90% confidence region for (q0.05, q0.50), Ra,b;0.90 ≡ Ra,b;0.90(x, r), is
defined as

Ra,b;0.90 =
{
(qa, qb) : π∗a,b(qa, qb | x, r) ≥ d0.90

}
,

where d0.90 = 0.115945. This set, which is also the diffuse Bayesian HPD 0.90-credibility
region for (q0.05, q0.50), is depicted in Figure 5.

Figure 5. Smallest-size 0.90-confidence/credibility region for (q0.05, q0.50) in the example considered
in Section 5.

Evidently, the proposed confidence region can be used to perform hypothesis tests
about (q0.05, q0.50). In particular, the null hypothesis H0:(q0.05, q0.50) = (0.5, 7) cannot be
rejected when ε = 0.90 is the level of confidence. Specifically, the p-value is obtained to be
0.159557. In contrast, H0:(q0.05, q0.50) = (0.5, 8) is not acceptable because the p-value is now
only 0.0416269.

6. Concluding Remarks

Optimal joint confidence regions for the scale and shape parameters of the Weibull
distribution and two Weibull quantiles are presented in this paper when available data are
progressively censored. The proposed confidence sets have minimum area among all those
which are based on the Conditionality Principle, and they numerically coincide with the
Bayesian highest posterior density credibility sets in the noninformative case.

Smallest-area confidence regions are found by using simulation methods and numeri-
cal integration. The suggested approach is valid for both standard failure and progressive
censoring, as well as for uncensored samples, and is also applicable to hypothesis testing.

Our methodology obeys the Conditionality, Sufficiency and Likelihood Principles. In
contrast, the unconditional methods based on the MLEs and other insufficient statistics
violate these principles. In our view, reducing available sample information to insufficient
statistics is not appropriate. Moreover, in terms of area, the optimal confidence regions
offer appreciable gains over the existing confidence sets. Furthermore, the reduction in
area is overwhelming in some cases. In addition, our perspective allows us to construct
minimum-size confidence sets for other invariantly estimable functions of the Weibull
parameters.
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