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Abstract: Jurisdictions currently provide information on winter road conditions through qualitative
descriptors like bare and fully snow-covered. Ideally, these descriptors are meant to warn drivers
beforehand about hazardous roads. In practice, however, discerning between safe and unsafe roads
is sometimes unclear due to intermediate RSC classes covering too wide a range of conditions. This
study aims at solving this safety ambiguity issue by proposing a framework for predicting collision
likelihood within a road segment. The proposed framework converts road surface images into friction
coefficients, which are then converted into continuous measurements through an interpolator. To
find the best-performing interpolator, we evaluated geostatistical, machine learning, and hybrid
interpolators. It was found that ordinary kriging had the lowest estimation error and was the least
sensitive to changes in distance between measurements. After developing an interpolator, collision
likelihood models were developed for segment lengths ranging from 0.5 km to 20 km. We chose
the 6.5 km model based on its accuracy and intuitiveness. This model had 76.9% accuracy and
included friction and AADT as predictors. It was also estimated that if the proposed framework were
implemented in an environment with connected vehicles and intelligent transportation systems, it
would offer significant safety improvements.

Keywords: road friction; road weather interpolation; friction interpolation; collision modeling; road
safety; connected vehicle; road surface condition; RSC

1. Introduction

Jurisdictions in North America currently provide winter road surface conditions (RSCs)
on their 511 websites. Ideally, the information provided will allow road users to avoid
dangerous roads and take precautions on potentially hazardous segments that cannot be
avoided. In reality, the usability of this information is rather limited.

Most commonly, RSC information is provided in the form of qualitative descriptions.
For example, Alberta, CA, and Iowa, USA, use a three-category system of bare, partially
snow-covered, and fully snow-covered to describe the condition of the road surface [1,2].
The problem with this kind of system is that there are cases where a single category
simultaneously represents two conflicting safety levels. Such is the case with the partially
snow-covered class mentioned above, where the amount of grip provided varies over
a wide range [3]. When road users are confronted with this type of ambiguous condition, it
becomes unclear what the appropriate response should be. This problem can be solved
by changing the way the information is presented. Instead of providing RSC information,
collision likelihood is provided instead. The advantage of this change is that road users
no longer need to make their own safety interpretations, as potentially unsafe roads are
identified for them. However, for this transition to be possible, it is recommended that
friction values be used in place of qualitative descriptions due to the relationship between
friction and collisions [4].
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Changing the surrogate measure used to represent RSCs is only half the problem; the
spatial coverage of RSCs also needs to be extended. From our observation, the RSC of a road
is assumed to be constant over long distances. This assumption may be incorrect according
to the existing literature, where it has been found that conditions tend to vary even in
short stretches [5]. Therefore, the actual spatial coverage of the information provided is
somewhat limited. This lack of condition information makes collision occurrence modeling
incredibly difficult. The reason is that road length is a tuned parameter based on collision
data. The goal is to find an optimal length that contains a balanced number of segments
with and without collisions, which can only be achieved with dense friction measurements
so that aggregation can be performed at all lengths. The same can be said for model
implementation, where continuous friction values ensure that the friction value assigned
to each road segment is representative. One way to solve this spatial coverage problem is
through interpolators, which can fill in the gaps with missing data.

Researchers in the past have performed studies that examined one aspect of either
interpolar development or collision modeling, but never both. In the area of developing
interpolators, the majority of the studies that involve road weather-related variables im-
plemented geostatistical methods. An example of this kind of study was performed by
Wu et al. [3], where they attempted to interpolate road surface temperature (RST) and road
surface index—a surrogate friction measure—using regression kriging (RK). The results
showed that the interpolated RST values could have RMSE values as low as 0.237, and in-
terpolating RSI resulted in an RMSE of 0.15. Other than providing accurate estimations, the
authors also found RK to be able to mimic the measured spatial structure closely. Another
similar study was conducted by Gu et al. [5], who also identified RK as a high-performing
interpolator for RST and RSI.

Outside of road weather-related research, there has been a growing interest in using
machine learning (ML) for interpolations. Intending to evaluate ML models as an interpola-
tor, Jin et al. [6] compared the performance of RandomForest (RF), support vector machines
(SVMs), regression trees, ordinary kriging (OK), inverse distance weighting (IDW), and
hybrid models that combined two algorithms. These models were evaluated using mud
sea content as the target variable, among which RF + OK, RF, and RF + IDW produced
the lowest errors. Leivik et Al. [7] also evaluated the performance of RF against RK and
OK in the interpolation of solar flare radiation. The results generated also showed RF
as the best interpolator, producing lower errors than the two geostatistical interpolators.
Recognizing the strength of RF, Sekulic et al. [8] created a modified RF model called the
RandomForest spatial interpolator (RFSI). The difference between this and traditional RF
is that two additional covariates were added: “values at nearby locations” and “distance
to these measurements”. The reasoning is that these two features allow RF to learn the
similarity between neighboring values. Using precipitation and temperature as the target
variables, the author compared the performance of RFSI with RF, RK, and IDW. Overall, it
was found that the RFSI was the superior interpolator by a small margin.

In the field of collision modeling with friction as a parameter, studies generally do
not focus on winter conditions. Abohassan et al. [4] performed one of the few studies that
used friction coefficients as a predictor of winter collision frequency. In their study, weather
and maintenance variables, road surface friction, and road and traffic characteristics were
assumed to be predictors of collision frequency. Using structural equation modeling (SEM),
the authors found that friction has a direct causal relationship with collision frequency;
collisions decrease when friction increases. On the other hand, maintenance operations
and weather data affect collision frequency through friction as a medium, i.e., mainte-
nance operations and weather are a predictor of friction, which is a predictor of collisions.
Zhao et al. [9] also used friction for collision modeling based on year-round data; however,
the target variable was collision severity instead of collision frequency. Other variables
like roadway, traffic, and driver characteristics were included as predictors. A total of
four models were evaluated: the logit model, an SVM, an artificial neural network (ANN),
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and XGBoost, among which logit, the ANN, and XGBoost had near-identical accuracy of
around 70%.

Studies have also attempted to formulate the relationship between collisions and
friction through proportional analysis and safety performance functions (SPFs), which all
appear to center around wet versus dry conditions. It has been found that sites linked to
collisions had a lower mean friction value than the randomly selected ones [10]. Regarding
SPFs, the coefficient of friction is always negative, signifying an inverse proportional
relationship between friction and collision frequency [11,12].

Overall, it is evident that there are research gaps in both interpolator development and
collision modeling. Previous studies on road weather interpolation have focused on geo-
statistical methods. Although ML and hybrid methods have shown superior performance
as interpolators in environmental studies, their performance on road weather variables
has yet to be evaluated. For collision modeling, although there appears to be a strong
relationship between friction and collision occurrence, only one study has explored this
relationship concerning winter conditions. Therefore, further research is needed to confirm
the validity of the findings and to determine the predictive accuracy of a friction-based
collision model.

In addition to the gaps mentioned above, there is another shortcoming that affects
both research areas. Previous studies on friction-based collision modeling have ignored the
importance of choosing the right segment length, which affects the balance of collision and
non-collision segments in the training data. To find the optimal length, interpolators are
needed to generate continuous friction values to ensure that the friction values assigned
to each segment are representative. Thus, developing an interpolator is a precursor to
collision modeling when using predictors like friction that vary over short distances.

To bridge the identified research gaps, this study focuses on answering several key
questions: Is friction a reliable predictor for winter collision occurrence? Can road friction
be accurately interpreted by ML algorithms? How does one determine the optimal road
segment length for data aggregation? And what are the expected savings for a collision
likelihood model? These questions lay the groundwork for the primary objective of this
study, which is to develop a framework that generates spatially comprehensive collision
likelihood readings. In particular, we aim to create a winter collision likelihood model and
use it to quantify its potential benefits in a connected vehicle (CV) environment. In terms
of the research contributions made by this study, they are as follows:

• This study provides a novel collision likelihood modeling framework that uses inter-
polators to determine the optimal aggregation length.

• This study quantifies the expected savings of the proposed framework in a connected
vehicle and intelligent transportation system environment.

• This study evaluates the performance of machine learning (ML) models in the interpo-
lation of friction coefficients.

• This study compares interpolation performance between ML models, geostatistical
methods, and hybrid models that combine ML with geostatistical methods.

• This study validates the relationship between friction coefficients and winter collision
occurrences through modeling.

• This study evaluates the prediction accuracy of a friction-based binary collision likeli-
hood model.

Upon completion, this study will have assessed various interpolation methods, vali-
dated the friction–collision connection, and presented a collision likelihood model. These
concerted efforts are aimed at enhancing winter collision management through improved
model accuracy while offering high interpretability for maintenance personnel to under-
stand the logic behind the predictions made.

This paper is structured as follows: Methodology, Results and Discussions, and
Conclusions. In the Section 2, the techniques used in the proposed framework are explained
and an overview of the dataset used is provided. The Section 3 analyzes the performance
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of the friction interpolator and collision model. Lastly, in the Section 4, the main findings,
limitations of the study, and suggestions for future research are summarized.

2. Methodology

The proposed framework involves converting winter road surface condition (RSC)
images into point friction values via an image-based friction model. Continuous friction
values are then generated from these point measurements through an interpolator with
the help of auxiliary information. Next, the continuous friction measurements are fed into
a binary collision likelihood model developed through segment length calibration to output
whether a collision is likely or unlikely. Figure 1 illustrates the proposed framework.
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Figure 1. Proposed framework.

2.1. Friction Testing and Model Development

The study area for this project is the City of Edmonton, known for its cold and lengthy
winter season with frequent snowfall events. These weather characteristics make it an ideal
location for this study as it allows us to collect images of road surfaces with varying degrees
of contaminant presence and their corresponding friction values. Furthermore, it also
provides us with the collision record needed to make a binary collision model. In the past
three years (2019, 2020, and 2021), the City of Edmonton has experienced an average of
18,370 total crashes, 1922 minor injuries, 253 serious injuries, and 14 fatalities [13]. These
events have been shown to be more frequent during the winter months, with 59.1% of
crashes occurring between October and March [14].

In total, 128 friction tests were performed over the course of four days (18, 19, and
25 January and 4 February 2022) alongside 10 h of dash camera road footage. An example
of the road surface imagery recorded is shown in Figure 2a. Note that the actual input
of the model is a cropped, transformed version of this image (shown in Figure 2b). This
transformation converts the cropped image into a top-down view of the road surface.
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Figure 2. Example of the road surface images collected and the processed image used as model input.

These tests were performed after maintenance activities as a response to snowfall
events that occurred on 17 January (7.3 mm), 24 January (2.4 mm), and 3 February (2.6 mm).
Figure 3 depicts the locations visited during friction testing. Regarding the test procedure
itself, it involved reaching a speed of 30 km/h, followed by the driver fully initiating the
brakes until the vehicle came to a complete stop. During this braking process, a device called
the Vericom VC4000 measured the friction coefficient through changes in the longitudinal
G-force. Note that Feb 04 did not produce any additional friction measurements due to
a device malfunctioning.
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Figure 3. Generated continuous friction values and the selected section for interpolator evaluation
(red box). The map shown is powered by ESRI. Sources: City of Edmonton, Esri Canada, Esri,
HERE, Garmin, SafeGraph, Geotechnologies, Inc., METI/NASA, USGS, EPA, USDA, NRCan, Parks
Canada [15].

Using the collected friction data and winter road surface footage, a friction model
was developed using the decision tree algorithm in combination with four feature ex-
traction techniques: road condition classification (bare, two-track, one-track, and fully
snow-covered), image thresholding, local binary patterns, and a gray level co-occurrence
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matrix. The generated predictors were a mixture of texture features that describe the gen-
eral state of the image (e.g., contrast) and task-specific features that describe the degree of
contaminant presence on the road surface. Through these predictors, the decision tree algo-
rithm formulated a relationship between these extracted features and their corresponding
friction value with an RMSE of 0.0759 and a root mean squared percentage error (RMSPE)
of 19.6% [16]. This model was used to create the dataset needed for interpolator evaluation
and collision likelihood model development.

2.2. Data Generation and Interpolation Analysis

Evaluating interpolator performance requires sufficient data density to allow the
chosen interpolator to learn the observed spatial variations. This condition prevented us
from using the collected friction values because they were extremely sparse. To overcome
this problem, road surface images were extracted from 18 January 2022, with footage taken
at a rate of one image every five seconds. These images were fed into the friction model
mentioned above to generate spatially dense friction values.

Within the friction dataset generated, the Whitemud Drive section was selected as the
focus of this study due to the high friction variation present. After extracting data from this
section, each friction measurement was averaged with neighboring values (50 m radius) to
make the spatial patterns more distinct [17]. The generated friction values and the road
section selected for this study are shown in Figure 3.

The generated data were then separated into training and validation data. This
process involved keeping only measurements spaced by a certain distance, i.e., a measure
is kept every “x meters”. The measurements kept were used for training, whereas the
measurements removed were reserved for validation. A total of 10 datasets were created
in this manner with increasing distance—from 100 m to 1000 m per observation (step
size of 100 m)—to evaluate the impact separation distance has on interpolation accuracy.
An example of the training data is depicted in Figure 4.
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The function of an interpolator is to estimate unmeasured values using known values.
From the perspective of this study, the interpolator is used to estimate the removed friction
values using the retained values. In this research, we examine three different friction
interpolation methods: kriging, ML, and hybrid models. We have selected two represen-
tatives for each category based on their outstanding performance in previous research.
Specifically, we have chosen RK and OK for kriging, RF and the RFSI for ML, and RFOK
and RFSIOK for hybrid models. Our aim is to identify the optimal interpolator for friction
and to determine how effectively ML can interpolate road-related variables in comparison
to geostatistical methods.

2.3. Ordinary Kriging (OK)

Kriging has been shown to be the most accurate interpolation method for road weather
variables [5,18]. The unique property of this method is that it considers the spatial covari-
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ance structure of the measurements and uses it to estimate unmeasured values. Equation (1)
below depicts the general kriging formula.

Ẑ(x) = m(x) +
m

∑
i=1

λi[Z(xi)− m(xi)] (1)

where Ẑ(x) is the interpolated value at an unknown x location, m is the number of observa-
tion points, m(x) is the expected value at unknown location x, λi is the kriging weight for
observation i, Z(xi) is the observed value at location i, and m(xi) is the expected value at
location i.

OK [19] is derived from Equation (1) above by forcing the weights to sum to one,
i.e., ∑m

i=1 λi = 1. This change allows us to rewrite the kriging formula as follows:

Ẑ(x) =
m

∑
i=1

λi(x)Z(xi) (2)


λ1
...
λ2
u

 =


C(x1, x1) · · · C(x1, xm) 1

...
. . .

...
...

C(xm, x1) · · · C(xm, xm) 1
1 . . . 1 0


−1

C(x1, x)
...

C(xm, x)
1

 (3)

m

∑
i=1

λi(x) = 1 (4)

where C(xn, xm) is the covariance between the observation at location n and m.
In order to determine the covariance structure, a semivariogram [20] must first be

constructed to model the degree of dissimilarity between two measurements based on
their separation distance. The dataset used for this purpose must be trend free to meet the
modeling assumption of mean stationarity [21]. Upon removing the trend, an empirical
semivariogram can be assembled using the following formula:

γ̂(h) =
1

2n

n

∑
i=1

[Z(xi + h)− Z(xi)]
2 (5)

where γ̂(h) is the semivariance at lag distance h, n is the number of samples, and Z(xi + h)
is the observed value at h lag distance away from observation at xi.

Based on the developed empirical semivariogram structure, a theoretical variogram
with a similar structure must be fitted, from which the covariance values used in kriging
are obtained. This is necessary as using the empirical model may result in a non-invertible
covariance matrix that makes kriging impossible [22]. The spherical model was selected for
this study (Equation (6)) as it had the best fit.

C

(
3h
3a

− 1
2

(
h
a

)3
)

(6)

where C is the sill, h is the distance, and a is the range.
Regardless of the model chosen, all semivariogram models contain three parameters:

the nugget, sill, and range. The nugget is the amount of semivariance at a lag distance
of 0, typically due to measurement error. In comparison, the sill is the point at which
semivariance plateaus, beyond which observations are no longer considered spatially
correlated. Lastly, the range is the lag distance where the sill is reached. In other words,
it is the maximum distance at which spatial autocorrelation is present. A stereotypical
semivariogram is illustrated in Figure 5.
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2.4. RandomForest (RF) and the RandomForest Spatial Interpolator (RFSI)

Among the many machine learning (ML) methods, RF has shown the most promising
results as an interpolator [6–8]. When used in this manner, it functions in the same way
as the traditional RF. The dataset is randomly sampled with replacement to create a new
dataset, which is then used to create a decision tree model. This process of sampling
the dataset and constructing a decision tree model repeats until the maximum number
of trees has been reached, at which point, training concludes. The main difference is
that position data (x and y coordinates) must be included to allow the model to capture
spatial covariance.

However, using coordinate information as the sole form of spatial data may not
be enough to capture the target variable’s spatial structure. Hence, the RandomForest
spatial interpolator (RFSI) model was conceptualized to compensate for this deficiency.
The RFSI attempts to mimic how spatial structure is modeled in traditional statistical
interpolators, where it is assumed that variables decrease in similarity as the distance
between them increases. By adding information regarding observation values from nearby
observations and the distance to these neighbors, the RF algorithm can better capture
the spatial relationship, leading to better performance [8]. Equation (7) shows the basic
formulation of the RFSI model.

Ẑ(x) = f (Z(x1), . . . , Z(xm), d(x, x1), . . . , d(x, xm), a1, . . . , an) (7)

where Ẑ(x) is the RFSI interpolator, Z(xm) is the observed value at the mth-nearest-
neighbor, d(x, xm) is the distance between estimation location x and the observed value at
the mth-nearest neighbor, and an is the nth auxiliary variable.

This study considers only the five closest neighbors because, when the observation dis-
tance is set to 1 km, there are not enough measurements to use a larger neighborhood size.

2.5. Hybrid Models

Besides kriging and ML, a third type of interpolator combines kriging with another
algorithm. Compared to pure models, hybrid models have shown higher accuracy in
existing research [6]. The principle behind this is that instead of assuming the mean to be
constant within a local region, the mean is a function that depends on position coordinates
and other auxiliary variables. To predict this mean, a separate model is developed using
any algorithm capable of regression. This model would be used to predict the mean or trend
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in the observations. The mean would then be subtracted from the observation to determine
the residual. This process of removing the mean from the observations is called detrending.
With the detrended data, OK is used to model the spatial relationship between the residuals.
At the end of this process, there are two models: a regression model that predicts the mean
and an OK model that predicts the residual. By summing the two predictions, the final
output is obtained via Equation (8).

Regression Model + OK Model = Target Variable Prediction (8)

2.6. Modeling Collision Likelihood via Decision Trees

Similar to the dataset used for interpolator evaluation, the dataset used to develop the
collision likelihood model was also based on the aforementioned friction model. However,
in this case, all the road footage available (18, 19, and 25 January and 4 February 2022) was
converted into friction coefficients to maximize the training data available. Following the
conversion process, the road sections with friction values were divided into equal-length
segments, where the friction value of a segment is the average of all overlapping friction
values. In addition to friction, other road segment characteristics were also assigned,
including elevation, AADT, slope, and x and y coordinates. Next, a binary classification
was given to each segment identifying whether a collision had occurred based on traffic
safety records provided by the City of Edmonton. Note that this process was performed
independently for each day.

The decision tree model [23] was chosen to model the relationship between collision
occurrence and the selected independent variables. Compared to other ML models, decision
trees are highly interpretable. Post training, the user can examine the internal logic of the
model to see how the predictions are made, which is impossible with more complex
algorithms. Moreover, the model algorithm itself is nonparametric, giving it an edge over
traditional SPF models that make a distribution assumption. The algorithm iterates through
each input variable and evaluates its ability to reduce error. This evaluation process consists
of classifying samples using a true or false condition based on a particular input variable
and then calculating the Gini impurity (Equation (9)) to evaluate how well that condition
separated the data. Of the available input variables, the one with the lowest Gini impurity
is selected as the first node in the tree. Next, additional conditions are placed based on the
previous decision to determine which input variable should be used as the next node to
reduce impurity. This splitting process is repeated until the impurity is zero or a stopping
condition is met. In this study, the stopping condition is based on the number of nodes.
Training and validation accuracies are evaluated simultaneously as the number of tree
nodes increases. The optimal number of nodes is the point where the validation accuracy
peaks. In cases where multiple configurations produce the same accuracy, the structure
with the least number of nodes was selected.

Gini Impurity = 1 −
k

∑
i=1

p2
i (9)

where k is the number of classes and pi is the proportion of the i label.
A dataset split of 80% training and 20% validation was used during model development.

3. Results and Discussions
3.1. Friction Interpolators

The interpolator evaluation process has two components: first, the RMSE of each
interpolator was calculated to quantify the difference between the measured and the
predicted, and the ability of each interpolator to capture the spatial pattern was then
examined to verify the credibility of the obtained RMSE.

A total of six interpolators were examined: OK, RK, RF, RFSI, RFOK, and RFSIOK. In
addition to the required positional data, elevation and slope information were included to
assist in the interpolation task. Each interpolator was evaluated using the ten generated
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datasets with increasing separation distance. Their performances quantified by RMSE are
depicted in Figure 6.
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Figure 6. Interpolator performance comparison.

According to Figure 6, interpolator accuracy decreases as the separation distance
increases, which is expected due to the decrease in information available to the model to
capture the true spatial variation. However, the amount by which interpolator accuracy
decreased with increasing distance varied. OK and RK had the slowest rate of performance
degradation, with interpolation error increasing linearly between 100 and 900 m. Similarly,
RF and RFOK had a relatively gradual rate of change but had a steeper slope and more
instances of sharp increases in error. The two remaining interpolators, the RFSI and RFSIOK,
were the least stable. After the separation distance increased to above 200 m, significant
drops in performance were observed. Between 200 and 600 m, the error increased tenfold,
which was significantly larger than what was observed in the four other interpolators.
Overall, RK and OK showed the least sensitivity to changes in separation distance, followed
by RF and RKOK and then the RFSI and RFSIOK.

In terms of interpolation accuracy, OK was observed to be the most accurate interpola-
tor; it had the lowest error at all separation distances except 600 m. The next best performers
were the RF models followed by the RFSI models, with the hybrid versions of these models
having lower errors. These findings are somewhat contrary to what was found in previous
studies, where RF, RFOK, and the RFSI produced higher accuracy than OK and RK, with
RK performing better than OK [6]. The RF-based models’ relatively poor performance
could be attributed to differences in the validation approach and interpolation task. While
previous studies used random sampling to divide the data into training and validation sets,
we manually removed data to create equally spaced gaps. This may have increased the
difficulty of the interpolation task because the validation points were further away from
the locations with measurements. Another factor is the difference in the interpolation task.
For variables such as solar flare and mud sea content, the interpolator uses measurements
from all directions, whereas for friction, interpolation was limited to only two directions.
Regarding the observation that OK outperformed RK, one possible explanation is that the
implementation of a regression model was unnecessary; the dataset was already trend free,
i.e., the additional step of trend removal did not improve performance since all it did was
reposition the data.

In addition to evaluating interpolator performance through RMSE, it is also vital to
examine the shape of the interpolator predictions to ensure that the models are capturing
the pattern found in the input dataset, rather than simply predicting a constant value at all
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locations. From 100 to 300 m, there was virtually no difference between the six interpolators,
as all could mimic the spatial pattern. Only after 300 m did the performance begin to diverge.
The main difference was that RF and the RFSI began to lose their ability to capture the local
minimums and maximums found in the spatial pattern, which worsened as the separation
distance increased (Figure 7). In other words, the amount of variation in the interpolations
decreased as the separation distance increased. This issue was much less prominent in OK
and RK. These two interpolators maintained their ability to mimic the spatial pattern even
at 900 m. Comparatively, RF and the RFSI at 900 m predict what was essentially a straight
line, as shown in Figure 8.
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When RF and the RFSI were combined with OK, both interpolators saw an improve-
ment in their ability to mimic the spatial pattern. Previously, these two interpolators began
to perform poorly at 300 m. After the inclusion of OK, RFOK could mimic the spatial pat-
tern until 900 m and RFSIOK could mimic for up to 400 m; it can be said that adding OK to
ML models can boost performance. Figure 9 below depicts the interpolation improvements
made through the inclusion of OK.
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Figure 9. ML hybrid model performance at a separation distance of 300 m.

Ultimately, identical results were obtained from the interpolated values’ error compar-
ison and visual inspection. OK was the best of the six interpolators, requiring the fewest
input variables while having the lowest error and the ability to mimic the spatial pattern
closely. However, it is important to point out that methods involving kriging have much
higher data demands than ML-based methods due to the need for spatially dense data to
determine the spatial covariance structure. In comparison, the ML models only require
the observation data and nothing else. Hence, if both accuracy and data demand were
considered, RF is perhaps the better choice.

3.2. Collision Likelihood Modeling

With the friction interpolator developed, the next step is to construct a binary collision
model using continuous friction values. A binary collision model is preferred over a fre-
quency model because it reduces the need for safety interpretation. This means there is
no need to assess the risk level based on the number of predicted collisions, which could
result in road users believing that lower expected collisions indicate lower risk.

To construct this model, the continuous friction values were averaged to represent
how slippery a road segment is, for which the specific length must be calibrated due to
the class imbalance problem [24], where one category dominates most of the input data.
Therefore, a calibration process is needed to determine the optimal length. In addition,
model implementation also requires continuous measurements to ensure that the friction
value assigned to each road segment is representative. Hence, because of the importance
of spatially dense measurements, we developed a friction interpolator beforehand to
demonstrate how continuous friction values can be obtained. Nevertheless, since we
already had extremely dense friction values, interpolated values were not used for model
development to prevent interpolation errors from carrying over.

In this study, all models were developed using the decision tree algorithm, and
segment lengths between 500 m and 20 km (500 m increment) were evaluated to identify
the optimal value. Figure 10 shows the obtained results.

When evaluating each model, its training and validation dataset, model structure,
and validation accuracy were examined. This process ensures that the model performance
obtained is genuine and not due to class imbalance.
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Figure 10. Model validation accuracy at various road segment lengths.

Between 500 m and 6 km, validation accuracy fluctuated between 70 and 90%. The
models developed at these segment lengths only had one node, meaning regardless of
the input, the model always outputted “collision unlikely”. Consequently, the change in
accuracy was not due to model structure but validation dataset differences. The observed
accuracy only reflected the percentage of road segments in the validation dataset that did
not have an associated collision event.

From 6.5 to 8.5 km, due to the increase in the number of segments with collisions, the
models utilized friction values as a key explanatory variable to identify “collision likely”
segments. Other features like AADT, elevation, etc., were also used, though not to the
extent of friction (which was used in every model).

Between 9 and 11.5 km, a difference in the training dataset caused the accuracy
difference observed in this region. The 9 and 9.5 km training dataset contained mostly
segments with collisions, resulting in the model only outputting “collision likely”. In con-
trast, 10–11.5 km had a much more balanced dataset where the model utilized friction and
other supporting variables. Since the validation dataset in this region contained a mix of
segments with and without collisions, the 9 and 9.5 km models performed much worse
than the 10–11.5 km models.

Starting at 12.5 km, friction was no longer used as a feature due to low feature variation
resulting from averaging friction over long distances. Now that the main feature was too
homogeneous to be useful as a predictor, a drop in accuracy of about 30% was observed.
From this point on, most of the models could only predict “collision likely”, meaning that
validation accuracy became a measure of the proportion of road segments in the validation
dataset associated with a collision event.

Based on the extent to which friction was used in the models developed, it is evident
that friction is a crucial predictor of collision events. Excluding the cases where significant
class imbalances and friction values became too homogenized, every model had friction as a
decision node, which cannot be said about any other variable used in this study. In addition,
when friction became a poor input variable because of low variation, a major accuracy
decrease was observed, signifying the importance of the variable.

Overall, the optimal segment length was between 6.5 and 8.5 km because the friction
values in this region were the least homogenized and had a balanced dataset. When we
evaluated the internal logic of these models, we found that 7.0, 7.5, and 8.5 km produced
highly complex models. Although they showed excellent performance, it was difficult to
assess whether the generalizations made were reasonable. In contrast, the 6.5 km models
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were simple and intuitive (as shown in Figure 11) but had slightly lower accuracy of 76.9%.
Ultimately, the choice of model depends on user preference, as there is a trade-off between
model performance and intuitiveness. Herein, intuitiveness was prioritized.
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The model shown in Figure 11 assumes that collisions are influenced by friction and
AADT. Collisions are unlikely when the coefficient of friction is above 0.408. For road
segments with friction less than 0.408, a traffic flow rate below 19,000 vehicles per day is
considered safer. This model aligns with the Federal Highway Administration (FHWA)
mandate of including AADT as a variable [25]. Furthermore, these findings are in line
with the existing literature that associates higher AADT and lower friction with more
collisions [9].

3.3. Quantifying Safety Benefits via Connected Vehicles

As we venture into a future where connected vehicles (CVs) and intelligent transporta-
tion system (ITS) infrastructure are increasingly ubiquitous, the ability to estimate and
quantify the safety benefits of such technologies becomes paramount.

This study proposes a framework that utilizes advanced technologies to enhance safety
management during winter months. The framework relies on the widespread use of CVs
and ITS infrastructure to capture snapshots of RSCs, which are then transmitted to a nearby
server. The server converts these images into point friction values using a developed
friction model, which are then transformed into continuous friction values based on location
information. These values are aggregated and converted into collision likelihood ratings,
which are relayed to CVs to trigger safety interventions. These interventions include
rerouting vehicles if a road segment is identified as dangerous or warning drivers of
potential hazards on the road ahead. The process is repeated every few seconds to ensure
the most current information. Figure 12 provides a visual representation of this process.

This sophisticated system lends to the quantification of safety benefits through crash
avoidance estimations. For each 6.5 km road segment, the number of collisions leading to
property damage only (PDO), injuries, and fatalities was calculated for the four days where
friction values were available. These segments were then evaluated through the binary
collision likelihood model to ascertain the probability of a collision. It was assumed that
all sections marked as “collision likely” had the potential to be avoided in the proposed
framework, as the driver would have been prompted to reroute or warned to take necessary
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precautions. The resulting model demonstrated labeling accuracy of 80%, identifying
11 road segments as potentially dangerous. These segments were linked with 22 PDO
collisions and one injury.
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Figure 12. Proposed framework for implementation in CVs and ITS environments.

In this study, two collision reduction scenarios were examined. The first scenario
represented an ideal condition where all vehicles were effectively rerouted before reaching
a hazardous road section, leading to a 100% Crash Reduction Factor (CRF). The second
scenario applied a more conservative CRF of 18%, drawn from a similar study by the state
of California on dynamic real-time road condition warning systems [26]. It is worthwhile
highlighting that this 18% CRF was employed for broad estimations of safety benefits when
rerouting was unattainable. Table 1 lists the number of collisions reduced and the safety
benefits of each scenario.

Table 1. Potential number of collisions reduced over four days within the study area.

Collision
Severity

Cost (Direct
Plus
Indirect)

Number
of
Collisions

Collision
Reduction
(100% CRF)

Safety
Benefits
(100% CRF)

Collision
Reduction
(18% CRF)

Safety
Benefits
(18% CRF)

PDO CAD 14,065 22 22 CAD
309,430 4 CAD

56,260

Injury CAD 137,749 1 1 CAD
137,749 0 CAD 0

Fatality CAD
2,450,139 0 0 CAD 0 0 CAD 0

Total CAD
447,179 Total CAD

56,260

According to Table 1, scenarios one and two would have saved CAD 447,179 and CAD
56,260 over four days, respectively, if the proposed framework had been implemented.
It is important to note that these monetary benefits only apply to a small portion of
Edmonton’s road network; the actual savings should be greater. The above procedure
simply demonstrates how the proposed framework can be implemented and how the
potential benefits can be quantified.

In order to gain a sense of the potential savings on a city-wide scale, traffic collision
records for the same four days were obtained. Because these records did not have friction
values, they could not be inputted into the developed model to determine whether a warn-
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ing or rerouting would have been triggered. The solution is to use random sampling. Since
our model operates at 76.9% accuracy, we can assume that there is a 76.9% probability of
our model detecting a dangerous road section. However, this assumption only applies
to collisions that occurred on surface conditions our model was trained on—snowy and
icy conditions. After filtering the data and removing duplicate reports, a total of 336 col-
lisions remained. Among these collisions, random sampling without replacement was
implemented to select 76.9% of the dataset (294 collisions); these represent the hypothetical
collision events that could have been avoided due to our model.

In the case of scenario one, the process stopped here as all 294 collisions were con-
sidered avoidable as a result of rerouting. In comparison, for scenario two, an additional
sampling procedure was performed to select 18% of the 229 collisions to account for the
18% CRF. Table 2 identifies the potential number of collisions mitigated in each scenario
using the proposed framework.

Table 2. Potential collision reduction over four days city-wide.

Collision
Severity

Cost (Direct
Plus
Indirect)

Number
of
Collisions

Collision
Reduction
(100% CRF)

Safety
Benefits
(100% CRF)

Collision
Reduction
(18% CRF)

Safety
Benefits
(18% CRF)

PDO CAD 14,065 243 243 CAD
3,417,795 42 CAD

590,730

Injury CAD 137,749 14 14 CAD
1,928,486 4 CAD

550,996

Fatality CAD
2,450,139 1 1 CAD

2,450,139 0 CAD 0

Total CAD
7,796,420 Total CAD

1,141,726

The total savings for the four days was estimated to be CAD 7,796,420 (CAD
1,949,105 per day) and CAD 1,141,726 (CAD 285,431 per day) for scenarios one and
two, respectively. These benefits were larger than those calculated in Table 1, which
was expected since this was a city-wide evaluation.

While the findings presented herein offer valuable insights into the potential safety
benefits of utilizing connected vehicles (CVs) for real-time hazardous road surface condi-
tions monitoring, it is important to acknowledge that several assumptions have been made
in generating these results. These assumptions include the availability of city-wide friction
information, the model’s ability to maintain its performance when data variation increases,
the rerouting process successfully resolving the incident without causing issues elsewhere,
and the driver responding to the safety message by slowing down. As a result of these
assumptions, it may introduce certain limitations to the generalizability of our conclusions.
Nonetheless, the proposed framework serves as a pioneering effort toward quantifying the
safety benefits of this advanced technology. It provides a structured pathway for future
research and practical applications, thereby underscoring the transformative potential of
CVs in enhancing road safety, especially during challenging weather conditions.

3.4. Policy Recommendation

With the ability to generate continuous winter road friction and binary collision
likelihood readings at a city-wide scale, it is recommended that policy changes be made to
leverage this valuable information to improve overall winter driving conditions:

• The municipality can utilize these road condition maps to identify hot spots where
collisions are more likely to occur and implement the necessary countermeasures, such
as reducing the speed limit and deploying enforcement officers to ensure compliance.
These countermeasures can be used to support the previously mentioned dynamic
warning message system, which may result in further collision reductions.
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• Winter maintenance personnel can improve driving conditions by incorporating a con-
tinuous friction map into their maintenance strategy. This change would enable
targeted treatments on high-risk road sections through additional plowing, sanding,
and salting. Instead of basing snow-clearing strategies on road type (e.g., highway,
collector, arterial), friction level can be added as a factor to consider. This would allow
for more dynamic treatment strategies, where the real-time friction map determines
the treatment approach for each snow event. As a result, resources would be allocated
more efficiently and winter maintenance activities would be optimized.

• To make the 511 traveler information websites more helpful for road users, the munici-
pality should look into incorporating the collision likelihood map, which allows road
users to clearly identify areas to avoid, resulting in improved road safety.

4. Conclusions

The provision of real-time winter road surface condition (RSC) information has the
potential to improve road safety by allowing road users to take the necessary precautions
needed on hazardous roads or avoid them altogether. However, because RSCs are generally
provided in the form of qualitative descriptors such as bare, partially snow-covered, and
fully snow-covered, road users are forced to make the safety interpretations themselves.
This is especially problematic for intermediary classes like partially snow-covered that
cover a wide range of conditions. A more straightforward way to present RSC information
is to provide collision likelihood directly, thus removing the need for user interpretation.

To achieve this, we established a framework for carrying out this conversion process,
which involved a friction interpolator and a binary collision likelihood model. The novelty
of this approach lies in the fact that most existing friction-based collision model studies
focus solely on dry and wet conditions and do not consider segment length as a tunable
parameter. This research stands apart as one of the few studies that have examined
friction’s effect on winter collisions, provided a framework for calibrating segment length,
and quantifies safety benefits in a connected vehicle (CV) environment. Key research
findings are summarized below:

- Firstly, we developed an interpolator to convert point friction values into continuous
values. In order to identify the most accurate interpolators, six interpolators were
evaluated using datasets with increasing distance between measurements (from 0.1 to
1 km): ordinary kriging (OK), regression kriging (OK), RandomForest (RF), the Ran-
domForest spatial interpolator (RFSI), and hybrid models (RFOK and RFSIOK). The
results show that OK had the lowest error and was the least affected by increased
separation distance.

- Next, after demonstrating that continuous friction values could be accurately gen-
erated, we developed binary collision models using segment lengths from 500 m to
20 km. Based on model accuracy and intuitiveness, the most optimal model was found
at 6.5 km, which used the parameters friction and AADT and exhibited classification
accuracy of 76.9%.

- Finally, we used the proposed framework to generate advance warnings for road users,
which, if implemented in an environment with an ITS and CVs, offers significant
safety benefits through collision avoidance. In a scenario where all vehicles were
effectively rerouted before reaching a hazardous road section, a 100% Crash Reduction
Factor (CRF) was achieved, leading to estimated savings of CAD 7,796,420 over
four days. Even in a more conservative scenario with an 18% CRF, the estimated
savings were CAD 1,141,726 over the same period, showcasing the tangible impact of
this framework.

In terms of study limitations, the most prominent was the shortage of data. The number
of data points available for interpolator development may have resulted in the machine
learning models being underfitted, which is especially true when the separation distance
between measurements increased to distances like 1 km, where only seven observations
were available. Therefore, the performance of RF and the RFSI could be constrained by
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dataset size. In addition, dataset size was also an issue for the collision model, as it was
developed with only four days of data because these were the only four days where friction
data were available.

Further research should concentrate on expanding the size of the dataset used. As
mentioned, the performance gap between RF and OK could be attributed to the underfitting
of the RF model; therefore, it would be beneficial to conduct the comparison on a more
extended road segment where more data points are available. Additionally, more collision
data are required to create a more accurate collision model since only four days of data
are currently utilized. Beyond expanding the dataset and enhancing the model’s accuracy,
future studies could explore the integration of other environmental and traffic-related
variables to capture a more holistic view of road safety dynamics. In addition, it is also im-
portant to explore microscopic traffic simulation to evaluate the safety benefits of improved
distance management between vehicles as a result of having real-time friction information.
Lastly, evaluating the framework’s adaptability and effectiveness across diverse geographic
regions and varying weather conditions could also contribute to its robustness.
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