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Abstract: Efforts across diverse domains like economics, energy, and agronomy have focused on
developing predictive models for time series data. A spectrum of techniques, spanning from el-
ementary linear models to intricate neural networks and machine learning algorithms, has been
explored to achieve accurate forecasts. The hybrid ARIMA-SVR model has garnered attention due
to its fusion of a foundational linear model with error correction capabilities. However, its use is
limited to stationary time series data, posing a significant challenge. To overcome these limitations
and drive progress, we propose the innovative NAR–SVR hybrid method. Unlike its predecessor,
this approach breaks free from stationarity and linearity constraints, leading to improved model
performance solely through historical data exploitation. This advancement significantly reduces
the time and computational resources needed for precise predictions, a critical factor in univariate
economic time series forecasting. We apply the NAR–SVR hybrid model in three scenarios: Spanish
berry daily yield data from 2018 to 2021, daily COVID-19 cases in three countries during 2020, and
the daily Bitcoin price time series from 2015 to 2020. Through extensive comparative analyses with
other time series prediction models, our results substantiate that our novel approach consistently
outperforms its counterparts. By transcending stationarity and linearity limitations, our hybrid
methodology establishes a new paradigm for univariate time series forecasting, revolutionizing the
field and enhancing predictive capabilities across various domains as highlighted in this study.

Keywords: neural network; time series prediction models; NAR; support vector regression; hybrid
forecasting methods

1. Introduction

Modeling and forecasting of time series data play a pivotal role in various industries
and organizations, spanning economic, social, and environmental domains. These practices
enable accurate predictions, facilitating effective prevention, control, and planning within a
given area. Consequently, the development of intelligent predictive systems for time series
data has garnered significant attention from the scientific community, resulting in a wealth
of research publications.

However, the challenge of achieving precise predictions and the necessity to enhance
existing algorithms have made predictive models an enduring subject of research. Addi-
tionally, since each time series possesses unique characteristics, no single optimal technique
exists for predicting future values. Instead, the nature of the observed variable dictates the
most suitable model for a specific case.

Thus, recent studies encompass a broad spectrum of models, ranging from simple
linear approaches like autoregressive integrated moving average (ARIMA) [1–6], seasonal
ARIMA (SARIMA) [7–10], and ARIMA exogenous variable models (ARIMAX) [11–13],
to more sophisticated nonlinear techniques based on machine learning (ML) [14–22]. These
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advancements have paved the way for novel hybrid models that combine ARIMA linear
models with a correction mechanism utilizing support vector regression (SVR), leading to
successful applications across various fields [23–27].

Nonetheless, both the ARIMA and ARIMA-SVR models inherit limitations from the
ARIMA framework, rendering them somewhat inflexible due to their reliance on linear rela-
tionships between observed variable values [28,29]. To overcome these limitations, the focus
of autoregressive modeling has shifted towards neural networks in recent years [30–33].
The advantage of neural networks over linear models lies in their ability to adapt and learn
from the time series’ specific circumstances, uncovering nonlinear relationships within the
data. Additionally, nonlinear autoregressive (NAR) neural networks solely rely on the ob-
served variable’s information, eliminating the need for exogenous variables. Recent studies
in areas such as agriculture [34,35], economy [36], sustainability [37–40], energy [41], traffic
flow [42], waste management [43], SARS-CoV-2 analysis [44,45], and other sectors [46–50]
have demonstrated the effectiveness of NAR networks.

Therefore, the primary aim of this study is to overcome these constraints by leveraging
NAR models, which are well known for their ability to detect intricate nonlinear connections
within time series data. These models adapt to a wide array of patterns through learning
rules. In addition, by extending upon the methodologies employed in ARIMA-SVR models,
we enhance the flexibility of this NAR model by introducing an error correction factor. This
augmentation further bolsters the model’s adaptability. The pivotal innovation of this study
resides in the conception of NAR–SVR neural networks. These networks advance predictive
capabilities by initially furnishing a forecast grounded in NAR networks, followed by
posteriori corrections utilizing SVR to rectify any discrepancies in the prediction of observed
variables. Although some preliminary research has explored similar concepts [51–53], no
publication to date has specifically employed this algorithm on time series forecasting.
To establish the generalizability of our findings, this work will compare the performance of
the new model with others.

Consequently, following the introduction, this paper describes the methodology em-
ployed and presents the datasets utilized. Subsequently, an analysis of results is conducted
based on the type of neural networks employed. The paper concludes with a section
comparing the obtained results with those of other published studies, proposing future
research directions, and presenting the overall conclusions.

2. Methodology and Data

The proposed hybrid NAR–SVR model employs two parallel processes to enhance
forecast accuracy. The method’s workflow, outlined in the subsequent sections, comprises
the following steps: Initially, an a priori estimate for the observed variable is generated
using a selected NAR network. Subsequently, SVRs are utilized to predict the error time
series stemming from the optimal NAR network’s predictions on the observed variable.
This correction process refines the network’s forecasts. Finally, the performance of the
hybrid NAR–SVR model is compared to that of NAR, SVR, and other classical methods
for univariate time series forecasting. Within the framework of the NAR network, the con-
figuration of key hyperparameters is established through a dual consideration. Firstly,
the NAR network architecture involves determining the number of nodes, thereby shaping
the network’s architecture. Secondly, the selection of activation functions plays a pivotal
role in capturing intricate nonlinear associations within the data. Similarly to its signifi-
cance in NAR networks, in the SVR model the number of inputs serves as a foundational
determinant of the ML framework. In both models, the optimal configuration of lags,
nodes, inputs, and activation functions is carefully selected to minimize both root mean
square error (RMSE) and mean absolute error (MAE) within the training dataset.
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2.1. Proposed Forecasting Framework
2.1.1. Multilayer Perceptron (MLP)

In this paper, we embark on developing a novel type of NAR neural network, which
can be categorized as a specific case of the widely studied multilayer perceptron (MLP)
neural networks. MLPs, belonging to the feedforward neural network family, exhibit a
distinct structure consisting of an input layer, an output layer, and one or more hidden
layers sandwiched in between (see Figure 1). Each layer comprises a set of nodes or neurons
that contribute to the network’s overall computational capabilities.

One notable feature of MLP networks is their supervised nature, wherein a training
set is utilized to iteratively adjust the network’s parameters until it achieves an optimal fit
to the provided data. This adaptation process is facilitated by a learning algorithm, and in
our study, we employ the widely adopted backpropagation algorithm, which excels in
regression tasks [54,55].

Figure 1. Example of MLP neural network structure.

2.1.2. Determining the Nonlinear Autoregressive (NAR) Neural Networks

In this context, the NAR neural network not only inherits the characteristics of an
MLP but also distinguishes itself by incorporating autoregressive elements. Specifically,
the inputs supplied to the network’s input layer are derived from previous values of the
observed variable, enabling the network to capture temporal dependencies. This leads to a
formulation of the NAR network in the form of the following Equation (1):

Xt = f
(
Xt−1, Xt−2, . . . , Xt−p

)
, (1)

where f represents an unknown generally nonlinear function, Xt denotes the time series
containing the historical values of the observed variable, and p ∈ N represents the number
of inputs introduced into the network, corresponding to the number of lagged variables
required to predict the future value, that, in our case, by the number of elements of the time
series data, have to be used to approximate the function f .

In terms of architecture, the presented NAR network adopts a single hidden layer in
line with previous studies demonstrating the capability of a single hidden layer MLP to
approximate any function [56–58]. Activation functions such as sigmoidal or hyperbolic
tangent are employed in the hidden layer, while the output layer utilizes the identity
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function, commonly used in regression tasks [59,60]. The network can be defined using
expression (2):

netj =
p

∑
i=1

wi,jXt−i + θj,

Xt =
L

∑
j=1

wj,oφ
(
netj

)
+ θo,

(2)

where wi,j ∈ R represents the weight connecting input i to neuron j in the hidden layer,
wj,o ∈ R represents the weight connecting neuron j of the hidden layer to the output,
θj, θo ∈ R represent the biases applied to each layer, φ denotes the activation function of the
NAR network, and p ∈ N and L ∈ N represent the number of inputs and neurons in the
hidden layer, respectively. Determining the optimal values of p and L is challenging, as this
heavily depends on the nature of the observed variable and the researcher’s experience.

To compare different models, we consider a range of values for (p, L) ∈ [1, 20]× [1, 20],
utilizing hyperbolic and sigmoidal tangent activation functions. The model selected as the
optimal one is the one that achieves the lowest values in both the root mean square error
(RMSE) and the mean absolute error (MAE) across the training set.

2.1.3. Determining the Support Vector Regression (SVR)

Furthermore, this paper incorporates SVR as a crucial component. SVR is a popular
ML algorithm widely employed in regression tasks. It transforms the nonlinear relationship
between input vectors and corresponding real responses into a linear relationship in a
higher-dimensional feature space through an unknown function. The objective is to find a
relation represented by Equation (3):

P = {(ui, vi) ∈ Rn ×R with i = 1, ..., N}, (3)

where ui denotes the input vectors and vi represents the corresponding real responses.
The main idea of this ML technique is to transform the nonlinear relationship between ui
and vi into a linear relationship in a higher-dimensional feature space using the unknown
function ψ : Rn −→ F ⊂ Rn+k, by looking for a relation such as (4)

v̂i = g(ui) = w′svrψ(ui) + b, (4)

where wsvr ∈ Rn+k is the vector of weights and b ∈ R is a constant. To optimize the weights,
the expresion (5) needs to be minimized

min
wsvr ,ξ,ξ∗

1
2
||wsvr||2 + C

N

∑
i=1

(ξi + ξ∗i ) subjet to
{

v̂i − vi ≤ ε + ξi,
vi − v̂i ≤ ε + ξ∗i ,

(5)

where ε, C > 0 are constants and ξi, ξ∗i ≥ 0 are slack variables, thus turning the problem
into a quadratic programming problem, applying the method of Lagrange multipliers and
simplifying the expression (5) to (6).

min
α,α∗

1
2

N

∑
i=1

N

∑
j=1

(αi − α∗i )
(

αj − α∗j

)
k(ui, uj) +

N

∑
i=1

(αi − α∗i )vi +
N

∑
i=1

(αi + α∗i )ε, (6)

subject to conditions {
∑N

i=1
(
αi − α∗i

)
= 0,

0 ≤ αi, α∗i ≤ C,
(7)

The function k that appears in (6) is called the kernel function and is used as an
approximation of the scalar product of the function ψ with itself, so we consider
k(ui, uj) = ψ(ui)

′ψ(uj). Meanwhile, the values αi, α∗i are known as Lagrange multipli-
ers, and their linear combination such that (αj − α∗j ) = 0 are called support vectors. Solving
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the resulting quadratic programming problem based on Lagrange multipliers (6)–(7) and
substituting in (4), the weights wsvr ∈ Rn+k and constant b ∈ R can be optimized. The pre-
diction expression derived from this process is provided in Equation (8):

v̂i = g(ui) =
N

∑
j=1

(αj − α∗j )k(uj, ui) + b. (8)

In our approach, SVRs are employed as predictors of the error time series generated by the
NAR network on the observed variable, allowing us to correct the network’s predictions.
Specifically, the Gaussian kernel function k(ui, uj) = eγ||ui−uj ||2 is utilized, with ε, C and γ
automatically determined using the SVM function of the R package e1071. Additionally,
the number of inputs utilized as input variables is determined through model comparisons
on the training set in which n ∈ [1, 20] ∩N.

2.1.4. The Novel Hybrid NAR–SVR Model

The hybrid NAR–SVR model proposed in this study is built upon a fundamental and
innovative concept: the concept of double prediction. This approach involves two parallel
processes aimed at improving forecasting accuracy. Firstly, an a priori estimate is generated
for the observed variable using an NAR network. Simultaneously, the relationships within
the time series of prediction errors, produced by the NAR network, are explored to apply
the SVR technique and predict the system error.

Mathematically, let Xt represent the time series of the observed variable and et denote
the prediction error. When the NAR network is applied to Xt, as indicated in expression
(2), an a priori prediction X̂t is obtained, as outlined in Equation (9):

X̂t =
L

∑
j=1

wjoφ

(
p

∑
i=1

wi,jXt−i + θj

)
+ θo (9)

Additionally, by employing the SVR model derived in Equation (8) to forecast the error
generated by the system, and considering −→e j ∈ Rn as vectors comprising n successive
elements of et, we can obtain the error prediction, as illustrated in Equation (10):

êt = g(−→e i) =
N

∑
j=1

(αj − α∗j )k(
−→e i,
−→e j) + b (10)

Therefore, considering that the system error is defined by (11)

Xt − X̂t = et, (11)

and substituting (9) and (10) into (11), the final expression of the hybridized NAR–SVR
forecasting model obtained is (12)

Xt =
L

∑
j=1

wjoφ

(
p

∑
i=1

wi,jXt−i + θj

)
+ θo +

N

∑
j=1

(αj − α∗j )k(
−→e i,
−→e j) + b. (12)

The training process of the NAR–SVR model involves a two-step approach. Initially,
a preliminary training phase is conducted using the NAR model to generate the error
series. Subsequently, the SVR model is trained using this error series, capitalizing on the
information extracted by the NAR network.

By combining the strengths of both the NAR and SVR models, the proposed NAR–
SVR hybrid model provides a novel and powerful framework for time series prediction.
This approach not only leverages the NAR network’s ability to capture complex nonlinear
relationships within the data but also utilizes SVR to effectively correct the prediction
errors, leading to enhanced forecasting performance.
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2.2. Dataset Description

In order to assess and compare the performance of the NAR–SVR model, this study
conducted experiments using seven diverse datasets obtained from three distinct fields:
three berry yield time series datasets (strawberries, raspberries, and blueberries) from
Huelva, Spain, document diagnosed cases of SARS-CoV-2 in three countries (Spain, Italy,
and Turkey), and Bitcoin prices. The purpose of this approach is twofold: to generalize the
model and to confirm its feasibility on various agricultural variables of economic interest.

Importantly, the datasets were utilized in their raw form, without any preprocessing
or elimination of non-normative values. This approach was chosen to ensure the accuracy
of the models, as it avoids any alteration of the data’s inherent nature.

2.2.1. Agricultural Yield Datasets

Spanish berry production represents a substantial commercial crop throughout Europe.
Spain, as the largest fruit producer in the European Union with a share of (40.1%) [61],
stands out, especially in the southwest region which is known for its noteworthy exports of
fresh berries. Thus, it served as an ideal case study for this research [62,63]. The dataset
used for this study consisted of production data from three berry cooperatives, covering the
period from 2018 to 2021. The final year was allocated to the test set, while the remaining
years were utilized for training purposes. This approach was adopted to facilitate weekly
yield forecasting, which has the potential to generate significant economic benefits for
the farmers.

2.2.2. COVID-19 Cases Datasets

In the early months of 2020, the world was plunged into a state of paralysis with
the emergence of a novel virus, SARS-CoV-2, triggering a devastating global pandemic
with far-reaching consequences for economies and societies. In response to this economic
and health crisis, predictive models became indispensable tools for assessing the number
of cases and aiding in health system planning. The urgency of this need has spurred
extensive research efforts, as evidenced by the plethora of recent publications focusing on
time series analysis [31,32,44,51,64–67]. In this study, datasets encompassing SARS-CoV-2
cases from various European countries, including Spain, Italy, and Turkey, were employed.
By utilizing identical indicators as other recent studies [68], the findings presented in
this work can be effectively compared and discussed. The datasets were sourced from
https://ourworldindata.org, and daily data were used due to the necessity for a real-time
monitoring system to enable strategic planning and prevent the collapse of healthcare
services. The training set comprised data from 1 March 2020 until 31 December 2020,
with the first quarter of 2021 reserved for testing the model’s performance.

2.2.3. Bitcoin Prices Dataset

The use of Bitcoin and other cryptocurrencies has witnessed continuous growth since
its inception in 2009. The advantages offered by these digital currencies over conventional
ones have sparked a surge in interest surrounding the comprehension of their market
value and the forecasting of future values. This heightened interest is reflected in the
multitude of recently published papers on this subject [19,30,33,69–72]. In this work,
market values of Bitcoin were obtained from the publicly available data stored at https:
//coinmarketcap.com/ (accessed on 19 June 2023). In instances where no records were
available, missing data points were estimated using simple linear regression. Both the
dataset and predictions were based on daily data. For training the model, the period from 1
January 2015 to 31 December 2020 was utilized, and predictions were made for the first
quarter of 2021.

3. Results

In this section, we present the results achieved using the intelligent hybrid NAR–SVR
time series model on the seven datasets introduced in Section 2.2. We compare these

https://ourworldindata.org
https://coinmarketcap.com/
https://coinmarketcap.com/
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results with those obtained from a conventional NAR network operating under identical
conditions, meaning the same inputs and the same number of neurons in the hidden layer.
This comparative analysis allows us to explore various scenarios and determine whether
the corrected model outperforms the simple network.

Furthermore, we assess the performance of our model against classical linear methods
commonly employed in time series regression, such as AR(1) and ARIMA(1,1,1) mod-
els. Additionally, we apply SVR to the previously observed and trained variable for
further comparison.

For the sake of brevity and ease of interpretation, we will focus on the graphical
representation of the results, solely comparing the ML NAR and NAR–SVR methods.

To evaluate and compare the models, we employ the following criteria: goodness-of-fit
measures including R2, RMSE, and MAE. These metrics serve as reliable indicators for
assessing the accuracy and predictive capability of the models.

By analyzing and interpreting the results using these comprehensive measures, we
can gain valuable insights into the effectiveness of the NAR–SVR model and its potential
for improving upon traditional approaches.

3.1. Berry Time Series Results

This section unveils the compelling results obtained from analyzing three weekly
berry production series during the 2020–2021 season.

To predict weekly strawberry yields, both the NAR network and NAR–SVR network
employed the sigmoidal activation function in the hidden layer. The NAR model utilized
13 inputs in the input layer and 6 nodes in the hidden layer. Backpropagation algorithm
with a learning coefficient of η = 0.1 facilitated the training process. Meanwhile, the NAR–
SVR model employed an SVR model with 4 inputs, utilizing the Gaussian function as the
kernel. Utilizing the e1071 package, the parameter values were computed, resulting in the
following outcomes: C = 1, γ = 1, and ε = 0.1.

In the case of weekly raspberry predictions, both networks utilized 2 inputs and
20 nodes in the hidden layer. The sigmoidal function served as the activation function.
To ensure smooth convergence, a lower learning rate of η = 0.01 was employed with the
backpropagation algorithm. Furthermore, the SVR model used 4 inputs, the Gaussian
function with γ = 0.25, and constant values of ε = 0.1 and C = 1 for error correction.

For the two blueberry neural networks, the hidden layer incorporated 10 inputs and
7 nodes. Both the NAR and NAR–SVR networks utilized the sigmoid activation function
with a learning constant of η = 0.1 for the backpropagation technique. In the NAR–SVR
model, the error-correcting ML component employed 8 inputs and a Gaussian activation
function with γ = 0.125, ε = 0.1, and C = 1.

Table 1 displays the results of both neural network types in comparison with AR(1),
ARIMA(1,1,1), and SVR models, utilizing input numbers of 3, 4, and 10, along with the
Gaussian activation function on the primary variable.

In terms of accuracy, the NAR–SVR network exhibited superior performance, par-
ticularly in the strawberry and raspberry datasets, while maintaining satisfactory results
for blueberries. Notably, the NAR–SVR method outperformed the ARIMA and SVR
models, underscoring its efficacy in capturing the underlying patterns and enhancing
predictive capabilities.

The comparative graphs of the models with respect to the observed variables of
strawberries, raspberries, and blueberries are depicted in Figure 2. Notably, the NAR–SVR
model exhibits a significantly better fit compared to the NAR model.
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Table 1. Results for berry time series, 2020–2021.

Strawberry Model R2 MAE RMSE

NAR 0.875 108,818.00 218,035.20
NAR–SVR 0.897 96,192.39 198,001.30

AR(1) 0.805 112,350.30 272,086.80
ARIMA(1,1,1) 0.886 101,767.80 208,013.20

SVR 0.795 149,745.00 279,310.80

Raspberry Model R2 MAE RMSE

NAR 0.898 3963.26 6820.32
NAR–SVR 0.933 3094.87 5521.29

AR(1) 0.776 5667.00 10,132.67
ARIMA(1,1,1) 0.796 4204.36 9656.68

SVR 0.835 4663.82 8706.49

Blueberry Model R2 MAE RMSE

NAR 0.906 18,736.12 28,500.04
NAR–SVR 0.916 17,985.56 26,919.89

AR(1) 0.609 30,773.63 58,217.35
ARIMA(1,1,1) 0.914 18,207.08 27,282.07

SVR 0.572 34,628.62 60,854.12

Figure 2. Prediction charts for berry time series, 2020–2021.
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3.2. SARS-CoV-2 Time Series Results

The research also focuses on analyzing the daily time series data of SARS-CoV-2 cases
in three different countries and making predictions specifically for the first quarter of 2021.

In the case of Spain, two neural networks, NAR and NAR–SVR, were utilized with
a structure consisting of nine inputs in the input layer and six nodes in the hidden layer.
The backpropagation algorithm was employed, using both sigmoidal and linear activation
functions with a learning coefficient η of 0.1. For the NAR–SVR model, an SVR with a
Gaussian activation function was employed, with the following parameters: γ = 0.143,
ε = 0.1, and C = 1.

For the dataset of daily SARS-CoV-2 cases in Italy, two neural networks were employed
with a structure of 8 inputs in the input layer and 10 nodes in the hidden layer. Similar
to the previous case, sigmoidal and linear activation functions were used with a learning
coefficient η of 0.1. The ML part of the NAR–SVR model utilized an SVR with a Gaussian
activation function, along with the parameters γ = 0.143, ε = 0.1, and C = 1.

Lastly, for the dataset of daily cases in Turkey, the neural networks had a structure of
13 inputs and 11 nodes in the hidden layer. Sigmoidal and linear activation functions were
employed, along with a learning coefficient η of 0.1 in both neural networks. The NAR–SVR
model utilized an SVR with a Gaussian activation function and the following parameters:
γ = 0.5, ε = 0.1, and C = 1.

The results obtained from the NAR and NAR–SVR networks were compared with
other prediction techniques, including AR (1), ARIMA (1,1,1), and SVR models with
Gaussian activation functions and varying numbers of inputs. The prediction results for all
the SARS-CoV-2 time series data are presented in Table 2. It is evident that the corrected
NAR–SVR network outperforms the NAR network and the other prediction techniques.
It demonstrates superior adaptation to the observed variable, resulting in a significant
decrease in RMSE and MAE values. Notably, the traditional models employed in the series
from Spain and Italy tend to yield unsatisfactory results due to their limited ability to adapt
to the real values of the time series.

Table 2. Results for COVID-19 cases time series, 1 January 2021/31 March 2021.

COVID-19 Cases in Spain R2 MAE RMSE

NAR 0.297 11,039.31 16,740.69
NAR–SVR 0.648 7852.59 11,840.78

AR(1) 0.000 12,444.86 20,378.32
ARIMA(1,1,1) 0.155 12,752.84 18,358.76

SVR 0.242 10,911.04 17,388.00

COVID-19 Cases in Italy R2 MAE RMSE

NAR 0.583 2614.85 3235.67
NAR–SVR 0.727 1787.28 2619.95

AR(1) 0.585 2618.05 3229.73
ARIMA(1,1,1) 0.583 2608.97 3235.73

SVR 0.688 2223.86 2800.11

COVID-19 Cases in Turkey R2 MAE RMSE

NAR 0.966 971.63 1380.42
NAR–SVR 0.970 939.97 1332.71

AR(1) 0.953 1079.75 1637.19
ARIMA(1,1,1) 0.953 1146.95 1631.25

SVR 0.944 1382.90 1775.86

The comparison between the NAR and NAR–SVR models is represented in Figure 3.
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Figure 3. Prediction charts for COVID-19 cases, 1 January 2021/31 March 2021.

3.3. Bitcoin Time Series Results

Finally, the research included the prediction of Bitcoin prices for the first quarter
of 2021.

For this task, the neural networks were configured with a structure consisting of
17 inputs in the input layer and 9 nodes in the hidden layer. The activation functions
used were the hyperbolic tangent for the hidden layer and the linear tangent for the
output layer. The learning coefficient was set to η = 0.1. In the case of the NAR–SVR
network, the correction part employed three inputs and the Gaussian activation function.
The parameters for the SVR model were determined through training, with γ = 0.5, ε = 0.1,
and C = 1.

To assess the performance of the neural networks, they were compared with an
ARIMA(1,2,1) model and an SVR model with a Gaussian activation function and one
input. The AR model was omitted due to the nonstationary nature of the series, requir-
ing a transformation. Additionally, two differentiations were necessary for the ARIMA
model to accommodate the series’ characteristics, making a comparison with the AR(1)
model illogical.

The obtained results are presented in Table 3, clearly showing the superior performance
of the NAR–SVR model compared to the other models. In this case, both MAE and RMSE
values exhibited significant decreases, indicating the enhanced accuracy of the NAR–
SVR model.
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Table 3. Results for Bitcoin price time series, 1 January 2021/31 March 2021.

Model R2 MAE RMSE

NAR 0.952 1599.15 2093.40
NAR–SVR 0.953 1576.55 2082.80

ARIMA(1,2,1) 0.952 1590.71 2094.93
SVR 0.000 30,533.27 32,457.01

In Figure 4, the graphical representation of the predictions for the Bitcoin series
is shown.

Figure 4. Prediction chart for Bitcoin price time series, 1 January 2021/31 March 2021.

4. Discussion

In this study, we developed a novel approach that combines NAR neural networks
with SVR to optimize time series forecasting. The results obtained demonstrate the effec-
tiveness of this approach in improving the accuracy of time series predictions compared to
traditional models such as ARIMA or machine learning such as SVR or NAR.

By applying the SVR-based correction to the error, we observed significant improve-
ments in the performance of the superficial neural networks and classical models. This
improvement was evident across all analyzed time series data, as indicated by a substantial
decrease in both RMSE and MAE. Furthermore, the goodness-of-fit of the NAR–SVR model
exhibited a remarkable enhancement.

The consistent success achieved across a variety of time series data suggests that our
proposed forecasting model holds great promise for predicting various types of time series.
However, it is important to note that the utilization of the time series error for improving
the NAR–SVR neural network restricts its effectiveness in smaller networks with fewer
than 100 observations. In such cases, the support vector machine may not have enough
data to detect patterns and effectively correct errors, leading to reduced performance.

It is not the purpose of this work to compare the result with other ML models, as
there are many. However, we compare our results with [68], which utilized polynomial
approximations on the same time series of SARS-CoV-2, and our correctly adjusted NAR–
SVR network exhibites higher accuracy (see Table 4).
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Table 4. RMSE value comparison, 14 May 2020/28 May 2020.

Model Our NAR–SVR [68]

COVID-19 in Spain 673.28 696.35
COVID-19 in Italy 325.11 566.88

COVID-19 in Turkey 204.57 1892.33

Similarly, when compared to [72], which employed ARIMA methods and different
long short-term memory (LSTM) neural networks (single and multilayer) on the Bitcoin
dataset, our NAR–SVR model achieved lower RMSE (see Table 5).

Table 5. RMSE value comparison, 1 May 2018/10 November 2018.

Model Our [72]

SARS-CoV-2 NAR–SVR ARIMA LSTM (single feature) LSTM (multifeature)
RMSE 195.03 209.26 198.45 197.52

5. Conclusions

The main objective of this study was to surmount the constraints imposed by station-
arity and linearity by employing nonlinear autoregressive (NAR) models in tandem with
error correction through support vector regression (SVR). The results presented herein
unequivocally demonstrate the enhanced performance of the proposed NAR–SVR hybrid
model in comparison to various other machine learning (ML) models, including NAR, SVR,
and LSTM, as well as established methodologies like ARIMA, which have proven efficient
in addressing univariate time series data.

Furthermore, the comparative analysis undertaken among different ML models when
applied to the same time series dataset substantiates the undeniable superiority of our in-
novative approach. By transcending these traditional limitations, our hybrid methodology
introduces an avant-garde paradigm for univariate time series forecasting, thus advancing
the state of the art in this field.

Notably, the inherent simplicity of our model’s implementation is a commendable
attribute. The requirement for a singular source of information, namely, the historical data
series of the variable, contributes to its ease of deployment. In addition, the computational
overhead associated with our approach remains significantly lower than that of other
intricate ML algorithms, further highlighting the practical feasibility and efficiency of our
proposed model.

In summation, the amalgamation of NAR models with SVR-based error correction cul-
minates in a powerful forecasting algorithm that not only overcomes established limitations
but also offers a streamlined implementation and computational advantage. As such, our
research contributes a valuable addition to the arsenal of techniques available for univariate
time series analysis and prediction.

In light of the multitude of available ML models, such as LSTM, it is important to
clarify that our current endeavor does not aim to undertake a direct comparison with these
alternatives. Rather, our focus centers on our proposed approach. Acknowledging this con-
textual limitation not only elevates the transparency and credibility of our research, but also
illuminates a promising avenue for subsequent investigations in this evolving domain.

In conclusion, our study showcases the utility of combining nonlinear autoregres-
sive neural networks with cutting-edge machine learning SVR for optimizing time series
forecasting. The promising results obtained across various univariate datasets support
the effectiveness of our proposed model, positioning it as a superior option for making
accurate predictions on different types of time series. Nonetheless, future research should
focus on incorporating exogenous variables and exploring alternative learning rules to
further enhance the capabilities of our approach.
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