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Abstract: Ground meteorological observation data (GMOD) are the core of research on earth-related
disciplines and an important reference for societal production and life. Unfortunately, due to opera-
tional issues or equipment failures, missing values may occur in GMOD. Hence, the imputation of
missing data is a prevalent issue during the pre-processing of GMOD. Although a large number of
machine-learning methods have been applied to the field of meteorological missing value imputation
and have achieved good results, they are usually aimed at specific meteorological elements, and few
studies discuss imputation when multiple elements are randomly missing in the dataset. This paper
designed a machine-learning-based multidimensional meteorological data imputation framework
(MMDIF), which can use the predictions of machine-learning methods to impute the GMOD with
random missing values in multiple attributes, and tested the effectiveness of 20 machine-learning
methods on imputing missing values within 124 meteorological stations across six different climatic
regions based on the MMDIF. The results show that MMDIF-RF was the most effective missing value
imputation method; it is better than other methods for imputing 11 types of hourly meteorological
elements. Although this paper applied MMDIF to the imputation of missing values in meteorological
data, the method can also provide guidance for dataset reconstruction in other industries.

Keywords: meteorological data; missing value imputation; machine learning; reconstruction

1. Introduction

Ground meteorological observation data (GMOD) include multiple elements such as
temperature, humidity, wind speed, wind direction, air pressure, precipitation, cloud cover,
visibility, etc. These elements reflect meteorological conditions and changes on the earth’s
surface and are the basis of research on earth-related disciplines. For example, GMOD are
inevitably used in the process of weather forecasting [1,2] or climate change analysis [3–5].
Additionally, they are an important reference for societal production and life and can be
used for disaster warning [6–8], agriculture [9,10], forestry [11–13], tourism [14,15], ma-
rine fisheries [16,17], water conservancy [18,19], transportation [20,21], and other fields.
Effective use of GMOD may help stakeholders, including the government, to avoid envi-
ronmental problems and damages, providing a wide range of social benefits.

To meet different service requirements and functions, weather stations can use various
sensors to monitor different environmental factors and transmit data within minutes or
even seconds. However, there are inevitable problems such as operational errors, sensor
failures, network transmission failures, and storage failures that can cause missing values
within the meteorological observation dataset. Consequently, adopting rational techniques
to handle missing data during the data preprocessing phase is essential for ensuring the
integrity and dependability of the data.

The most direct method for missing value processing is deletion [22], which means
deleting records with missing values or outliers. The advantage of this method is that it is
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simple to operate, but it may cause information loss, lead to data deviation [23], destroy
the continuity of time series, and cause bias or even errors in the analysis results [24].

Imputing missing values is an effective way to make data complete and to avoid
analysis errors or the inability to perform analysis due to missing values. Of course,
imputing missing values also has certain limitations and risks, such as introducing some
biases or errors, resulting in inaccurate or unreliable data analysis results. Therefore,
when choosing the method of imputing missing values, it is necessary to choose the
appropriate method according to the type, distribution, missing mechanism, and other
factors of the data. The simplest imputation methods include the mean imputation [25]
(replacing missing values with the average of non-missing values in the attribute), mode
imputation [26] (replacing missing values with the most frequent value in the attribute), and
median imputation [27] (replacing missing values with the middle value in the sorted data).
However, these methods tend to reduce the overall variance of the imputed dataset and
cause a large amount of data homogenization. Another common and simple imputation
method is hot-deck imputation, which replaces missing data with values from existing
data that meet a set of rules. The advantage of this method is that it uses the relationship
between data to estimate missing values, but the disadvantage is that the rule setting is
more subjective. The above two types of imputation methods are often used as benchmark
methods for comparison with other imputation methods [28,29].

Another frequently used technique for estimating missing values is multiple impu-
tation. It has a better imputation effect than traditional methods such as mean imputation
and median imputation [30,31], but the imputation process may fail. Cattram [32] summa-
rized the causes of imputation failure, including perfect prediction and collinearity.

The imputation method based on machine learning can adapt to any missing patterns
and has good robustness and small deviation. It also interpolates complex high-dimensional
data better than mean, hot-deck, and multiple imputation methods [33]. This method learns
the rules in the data through relevant algorithms and uses them to interpolate the data. In
the field of meteorological missing value imputation, this method has three basic forms
of application.

The first form is to use machine-learning algorithms directly. Some researchers have
confirmed the validity of some machine-learning imputation methods. For instance, ran-
dom forest (RF) [34] and multi-layer perceptron neural networks (MLP) [35] have the
ability to accurately reconstruct meteorological variables, particularly temperature. In
the research by Taewon [36], two statistical imputation methods (linear and spline) and
three machine-learning methods (multivariate linear regression (MLR), RF, and MLP) inter-
polated the missing values of seven meteorological variables, respectively. The findings
indicate that machine-learning imputation methods are more applicable than statistical
imputation methods for handling missing data in both the short and long term. Moreover,
MLP exhibited the highest level of accuracy across all experiments.

The second form is based on the improvement of the existing algorithm. Bo [37]
designed an auto-encoder architecture with a convolution layer to reconstruct missing
wind speed data. Compared with the six traditional data reconstruction methods, the
designed network had the lowest reconstruction error.

The third version combines various machine-learning techniques. For example, Jin-
hua [38] used long short-term memory networks (LSTM) and support vector regression
(SVR) to interpolate missing wind pressure data. Samal’s model [39] is composed of tempo-
ral convolutional networks (TCN) and convolutional neural networks (CNN), which are
used to estimate the missing value of PM2.5. The experimental results indicated that the
combined model has a higher imputation accuracy than the single model. Multi-model com-
bination can also be used to interpolate some meteorological parameters that are difficult
to recover, such as precipitation. Precipitation data are a special challenge for the recovery
of missing data, because these data are random and highly unbalanced in the duration
of rainfall and non-rainfall. Benedict [40] proposed an imputation model of rainfall that
was classified and then predicted. Gradient tree boosting, K-nearest neighbors (KNN), RF,
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support vector machines (SVM), and neural networks were tested via classification and
prediction algorithms, respectively. The test results showed that a combination of RF and
neural networks is superior to surface fitting technology in recovering missing precipitation
data at a 30 min resolution.

By reviewing the existing literature, it can be seen that the imputation method based
on machine learning has advantages in the field of reconstruction of ground weather station
missing values, but there are also some problems. First, much of the literature tends to
focus on the imputation of a certain meteorological element, but when multiple parameters
(such as temperature, humidity, wind speed, etc.) in the dataset have random missing
values at the same time, using the existing data in the dataset to fill these missing values
is a problem that is rarely discussed in the literature. Second, there are many machine-
learning methods, but their verification in the field of meteorological data imputation
is insufficient. Most machine-learning method types are verified in [39], but only eight
methods are verified overall. Third, in addition to Joseph’s extensive tests on imputation
algorithms of 134 weather stations [34], a limited number of studies have assessed the
performance of machine-learning meteorological imputation methods in multiple locations
or examined the effectiveness of different algorithms in various climatic regions. Finally,
some comparisons are unfair, such as comparing a combined model with a single model,
comparing a fine-tuned model with an untuned model, and running the algorithm with
carefully selected and processed datasets. Therefore, within the existing literature, it is hard
to find an answer to the question of: “Which machine learning model can most accurately
impute missing meteorological data?” or “Under what conditions is method x suitable?”

In this study, a multidimensional meteorological data imputation framework (MMDIF)
that uses machine-learning predictions to reconstruct missing meteorological data was
designed. Based on MMDIF, the imputation performance of 20 typical machine-learning
methods for the missing values of 124 pieces of ground meteorological observation data in
six climatic regions was verified. Each method was automatically individually tuned to
guarantee optimal performance.

2. Data

The data used in this paper were sourced from the National Water and Climate
Center (NRCS), which is affiliated with the U.S. Department of Agriculture. The agency
has 226 automatic monitoring stations set up across the United States to monitor hourly
changes in soil, atmosphere, precipitation, wind, and other elements in real time, and
it has built the largest database of soil, water resource, and climate data in the United
States. This study collected hourly meteorological data of 124 stations from 2010 to 2019,
including 11 meteorological elements, namely, air temperature (TOBS), maximum air
temperature (TMAX), minimum air temperature (TMIN), maximum wind speed (WSPDX),
average wind speed (WSPDV), solar radiation (SRADV), dew point temperature (DPTP),
air pressure (PVPV), relative humidity (RHUM), minimum humidity (RHUMN), and
maximum humidity (RHUMX). According to the Köppen climate classification index, we
divided the collected station data into six types of climate types, with each type represented
by three letters. The main climate condition is represented by the first letter, which can
be one of the following: (A) equatorial climate, (B) arid climate, (C) warm climate, (D)
snow climate, or (E) polar climate. The second and third letters indicate precipitation
and temperature conditions, respectively. For example, BWh indicates that the area is
located in a dry and rainless desert climate. To obtain further information on the climate
classification, please refer to [41]. Figure 1 illustrates the distribution of the 124 stations
studied in the experiment.

This paper performed outlier detection on the experimental data and deleted the data
items that contained outliers to avoid the influence of outliers on some machine-learning
methods that rely on certain assumptions and calculations, such as linear regression, logistic
regression, support vector machine, etc.
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When imputation is applied directly to the original data, the extent of discrepancy be-
tween the imputation result and the true value cannot be assessed due to the unavailability
of the true value for the missing data. This paper selected the non-missing records of all
stations, randomly deleted some units according to the proportion, recorded the deleted
part as the true value, and then imputed data according to the proposed framework, so
that the difference between the imputed value and the true value could be evaluated. The
missing value rate in this study was set at 10%, 20%, 40%, 60%, and 80%.

3. Methodology

This paper outlines the designed multidimensional meteorological data imputation
framework (MMDIF) based on machine learning, which uses the predicted values of
machine-learning models as the imputed values of missing data. The non-missing data in
the feature to be imputed are used as the label data for training the model, and the features
in the dataset that have a correlation with the feature to be imputed are used as the input
data for the model. It is assumed that the dataset contains N observation values (such as
temperature, humidity, wind speed, etc.), which we usually call the features of the data.
Each feature has a certain percentage of randomly missing values. The MMDIF designed
in this paper is as follows:

Step 1: Choose the feature with the least missing values in the dataset as the feature to be
filled in, mark it as data”, and mark the remaining features as data’.
Step 2: Divide data’ by day into layers, and replace the missing cells in each layer with the
mean of the recorded cells in that layer as temporary imputation values.
Step 3: Take the non-missing data in data” as the label of machine learning and record the
line number z where the missing value is located in data”.
Step 4: Calculate the correlation between each feature and label in data’ except for row z,
and keep the features with a correlation greater than 0.2 as the machine-learning trainset
(a correlation coefficient below 0.2 means that there is a very weak correlation between
the two variables [42]). The correlation analysis uses the spearman correlation coefficient,
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which can reflect the degree of correlation between the two variables, x and y, based on
Equation (1), where n represents the sample size, and x and y represent the sample mean:

r = ∑n
i (xi − x)(yi − y)√

∑n
i (xi − x)2∑n

i (yi − y)2
(1)

Step 5: Select the features consistent with trainset in data”, and select the z line as the testset.
Step 6: Train the machine learning model using the label and trainset created in Steps 3 and 4.
Step 7: Input the testset into the model trained in Step 6, and impute the output values of
the model to the corresponding positions in data.
Step 8: Check the data. If there are missing values, return to Step 1 and continue the
imputation program; otherwise, exit the program.

The MMDIF imputation process is illustrated in Figure 2. The machine-learning mod-
ule depicted in the figure employs a variety of prediction mechanisms, including 20 main-
stream machine-learning methods. These methods encompass linear, tree-based, instance-
based, kernel-based, probability-based, and neural network-based methods. Table 1 pro-
vides a brief overview of these methods. The neural network methods are implemented
using the Keras and Tensorflow modules, and the remaining methods are implemented us-
ing the scikit-learn modules. The implementation process requires setting hyperparameters
for each model, and the choice of model hyperparameters greatly affects the performance
of the model. In order for each model to achieve the best possible performance, in this
paper, the most advantageous hyperparameter combination for the model was sought
out via a grid search of the variable space [43]. Because the weight matrix initialization
greatly influences the performance of neural network-based methods, we repeated these
algorithms ten times on the same data and computed the mean of the results. This allowed
us to compare them fairly with other machine-learning methods.
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Table 1. Typical machine-learning regression method.

Method Short Description

Linear regression

Multivariate linear regression (MLR), ridge regression (Ridge), lasso regression (Lasso), and
ElasticNet regression (ENet). These methods are used to establish the relationship between
independent and dependent variables by fitting the data through minimizing the sum of squared
residuals. The difference between these four methods is that they improve the generalization ability
of the model by adding different types of regularization terms.

Probability-based

Bayesian ridge regression (BR) and automatic relevance determination regression (ARD) are based
on Bayesian linear regression. ARD is a linear regression model that is solved using Bayesian
inference in statistics, assuming that the prior distribution of the regression coefficients is an
elliptical Gaussian distribution parallel to the coordinate axis, whereas BR assumes that the prior
distribution of the regression coefficients is a spherical normal distribution.

Instance-based
K-nearest neighbor (KNN). For a given test sample, based on the distance metric, find the K-closest
training samples in the training set, and then make predictions based on the information of these
K “neighbors”.

Tree-based

Decision tree regression (DTR), random forest (RF), adaptive boosting algorithm (AdaBoost),
gradient boosting decision tree (GBDT), extremely randomized tree (ERT), bootstrap aggregating
(Bagging). DTR is a simple regression algorithm, whereas Bagging, RF, AdaBoost, GBDT, and ERT
are ensemble learning algorithms based on decision trees. They improve prediction performance by
using different methods to construct and combine decision trees.

Kernel-based Support vector regression (SVR) uses kernel functions to transform data into higher-dimensional
space to simulate nonlinearity.

Neural nework-based

Perceptron, multilayer perceptron neural networks (MLP), recurrent neural networks (RNN), long
short-term memory networks (LSTM), bidirectional LSTM networks (BiLSTM), and temporal
convolutional networks (TCN) are based on the perceptron, but with differing structures and
functions. For example, MLP is a feedforward neural network, and RNN, LSTM, and BiLSTM can
all handle sequence data. On the other hand, TCN uses convolution to handle sequence data.

4. Results

This section discusses the imputation performance of machine-learning models for
meteorological datasets with missing values from four aspects. First, the imputation
accuracy of each model was evaluated under different missing value rates. Second, the
imputation performance of each model was contrasted across various climate types. Third,
the best missing value imputation method for each observation value was discussed.
Fourth, since a long model training time affects real-time tasks, the training time of the
imputation models was also discussed. Finally, to validate the efficacy of the MMDIF
introduced in this research, we conducted a comparison with algorithms featured in other
research papers.

4.1. Model Performance at Different Observations

Since each meteorological station produces observation data containing multiple
meteorological elements, and the units of these meteorological elements are not consistent,
this section used two dimensionless indicators, the determination coefficient (R2) and the
symmetric mean absolute percentage error (SMAPE), to evaluate the imputation ability
of different machine-learning methods for meteorological datasets with missing values.
The closer the R2 is to 1, the more accurately the algorithm fits the data, and the closer the
SMAPE is to 0, the smaller and more precise the prediction error of the algorithm is. Their
definitions are shown in:

R2 = 1− ∑m
l=1(yl − ŷl)

2

∑m
l=1(yl − y)2 (2)

SMAPE =
100%

m ∑m
l=1

|ŷl − yl |
(|ŷl |+ |yl |)/2

(3)
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where m represents the sample size, yl represents the true value, ŷl represents the model
output value, and y represents the mean value of attribute y.

Table 2 displays the average results of 20 machine-learning methods used to impute
missing values in 124 meteorological observation datasets under different missing value
rates within the MMDIF. According to the results recorded in the table, the data missing
rate is the primary factor that impacts the accuracy of imputation. Regardless of whether it
is based on the R2 or SMAPE, all methods will achieve the best performance of the method
at a low missing rate (10%). The reason for this is that when the missing value rate is
small, the missing items have a limited influence on the overall distribution of the data
samples. As the missing rate increases gradually, the original distribution characteristics of
the data are altered by the growing number of missing values, which leads to a decline in
the imputation method’s performance with the higher missing rate. Among all methods,
the RF is the most reliable imputation method. Based on the SMAPE, the RF performs
better than other algorithms in all imputation experiments with all missing value rates
presented in this paper. Meanwhile, based on the R2, the RF performs better than other
methods when the missing rate is 10%, 20%, and 40%, and the RF’s R2 is slightly lower
than the TCN only when the missing rate is 60% and 80%.

Table 2. The imputation accuracy of various algorithms under different missing rates.

Method
Missing Rate (R2|SMAPE)

10% 20% 40% 60% 80%

AdaBoost 0.84|9.17 0.81|9.90 0.73|11.51 0.65|13.07 0.57|14.54
Perceptron 0.90|6.14 0.87|6.95 0.82|8.46 0.75|9.97 0.68|11.57

ARD 0.87|7.49 0.84|8.33 0.78|9.75 0.71|11.21 0.63|12.89
Bagging 0.91|5.05 0.89|5.57 0.84|6.60 0.79|7.90 0.72|9.48

BR 0.87|7.48 0.84|8.33 0.78|9.75 0.71|11.22 0.63|12.89
BiLSTM 0.91|5.42 0.89|6.17 0.84|7.52 0.77|9.10 0.70|10.80

MLP 0.90|6.16 0.87|6.97 0.81|8.46 0.75|9.98 0.68|11.59
DTR 0.85|7.80 0.81|8.62 0.74|9.99 0.65|11.48 0.53|13.02
ENet 0.87|7.62 0.84|8.46 0.78|9.82 0.71|11.26 0.63|12.83
ERT 0.84|5.98 0.80|6.70 0.73|8.11 0.64|9.75 0.51|11.56

GBDT 0.90|5.97 0.87|6.70 0.82|8.07 0.77|9.43 0.70|10.85
KNN 0.89|6.71 0.86|7.53 0.80|8.82 0.75|10.08 0.67|11.42
Lasso 0.87|7.62 0.84|8.46 0.78|9.82 0.71|11.26 0.63|12.83
MLR 0.88|7.46 0.84|8.32 0.78|9.74 0.71|11.21 0.63|12.89
LSTM 0.90|5.80 0.88|6.47 0.82|7.92 0.76|9.55 0.68|11.21

RF 0.92|4.90 0.90|5.39 0.86|6.36 0.81|7.59 0.74|9.13
Ridge 0.87|7.47 0.84|8.33 0.78|9.75 0.71|11.23 0.63|12.90
RNN 0.90|6.31 0.87|7.14 0.81|8.62 0.75|10.16 0.67|11.76
SVR 0.90|6.67 0.88|7.17 0.83|8.36 0.77|9.76 0.69|11.32
TCN 0.86|7.51 0.86|7.56 0.84|8.13 0.82|9.10 0.76|10.23

Figure 3 shows the imputation results of the MMDIF combined with RF on all sites.
Each scatter point in the figure represents the imputation result of MMDIF-RF on a dataset.
The distribution of scatter points in the figure reflects the robustness of the algorithm on
different datasets, and the more densely the data points are distributed in the vertical
direction, the more stable the algorithm is. RF performed very well at a low data missing
rate of 10%, with the R2 above 0.9 for 116 stations (93.5% of the total) and the SMAPE below
5% for 91 stations (73.4% of the total). As the data missing rate increases to 20%, the R2

remains above 0.9 for 85 stations (68.5% of the total), and the SMAPE stays below 5% for
65 stations (52.4% of the total). However, at a high data missing rate of 60%, RF’s R2 drops
significantly to around 0.8 for most stations (97 out of 124), and the SMAPE rises to an
average of 7.59%, with a large variation among stations. At an extremely high data missing
rate of 80%, both the R2 and SMAPE become sparse and unstable, indicating poor data
imputation results.
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Neural network-based techniques fall into the second category. Of these methods,
BiLSTM performs well. This may be related to its special structure, which can capture the
time series characteristics in the data, and this may enable it to cope with missing data [44].

The results of the six linear regression methods (MLR, Ridge, Lasso, Enet, BR, and
ARD) are very close on R2 and SMAPE, and there is no obvious difference in their perfor-
mance. They have a weak ability to impute missing data, because these algorithms are all
based on linear assumption models, whereas GMOD have nonlinear or complex patterns,
which causes the models to not fit or predict the data well. We noticed that ERT’s R2 was
the lowest at all missing rates, suggesting that ERT is not suitable for imputing missing
values in GMOD. This may lead to a decrease in the correlation and distribution between
the imputed data and the original data.

As the missing rate increases, the prediction accuracy of all algorithms decreases,
but the degree of decrease varies. This paper used Equations (4) and (5) to calculate the
decrease in the imputation accuracy of each algorithm when the missing rate rose from 10%
to 80%, where R2

10% and R2
80%, SMAPE10% and SMAPE80% represent the R2 and SMAPE

obtained using one of the methods when the missing rate is 10% and 80%, respectively. The
results are shown in Figure 4.

R2 decline range = (R 2
10% − R2

80%

)
/R2

10% (4)

SMAPE decline range = (SMAPE80% − SMAPE10%)/SMAPE10% (5)

In general, there was a certain positive correlation between the decrease in R2 and the
decrease in SMAPE, that is, the larger the decrease in R2, the larger the decrease in SMAPE.
However, Figure 4 shows that neural network-based algorithms (such as Perceptron,
BiLSTM, MLP, LSTM, RNN, etc.) have smaller R2 decreases and larger SMAPE decreases
than other types of algorithms, such as linear regression, probability-based algorithms, and
tree-based methods. Such a difference suggests that neural network algorithms perform
better on the R2 metric but worse on the SMAPE metric. A possible explanation for this
could be that neural network algorithms can capture the complex features and nonlinear
relationships in the data more effectively [45], which improves the R2 value, but they also
tend to overfit the noise or outliers in the data, which lowers the SMAPE value.
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As shown previously, RF is less accurate than TCN, except for at 60% and 80% missing
rates, but more accurate at 10%, 20% and 40%. However, Figure 4 reveals that the R2 drops
by 19.9%, and the SMAPE rises by 86.2% for RF, whereas TCN only sees a 11.1% R2 decline
and a 36.2% SMAPE increase as the missing rate grows from 10% to 80%. This means TCN
is more robust for missing rate changes, which is crucial in practice, as we cannot control
or predict a missing rate. A sensitive algorithm would require frequent parameter tuning
or replacement, increasing our work and cost. An insensitive algorithm can reliably handle
any missing data without affecting the imputation quality.

In addition to RF, five other tree-based methods (DTR, AdaBoost, GBDT, ERT, Bagging)
saw the R2 drop by 21.4%–39.2% and the SMAPE rise by 58.4%–93.2%, with ERT exhibiting
the worst performance for both metrics, showing its low stability and accuracy for missing
data imputation. The kernel-based (SVR) and instance-based (KNN) methods have similar
imputation accuracy declines as the missing rate increases. Their R2 falls by around 24%
and their SMAPE climbs by around 70% when the missing rate goes from 10% to 80%. They
interpolated well with increasingly low missing data but performed poorly on increasingly
high missing data.

4.2. Model Performance under Different Climate Zones

Figures 5 and 6 show the best imputation methods for each climate type and the
number of times they achieved the best imputation results based on R2 and SMAPE criteria,
respectively. The figures indicate that RF emerged as the most dependable imputation
method. It achieved higher R2 than others in most sites across all climate zones for 10–40%
missing rates. For instance, in the BSk zone with 37 sites, RF beat the other 19 methods
at 33 (89.1% of BSk), 35 (94.6% of BSk), and 35 (94.6% of BSk) sites for 10%, 20%, and
40% missing rates, respectively. However, TCN became more competitive with higher
missing rates. In the BSk zone, TCN outperformed others at 29 (78.4%) sites for an 80%
missing rate, whereas RF only achieved this at 7 (18.9%) sites. Using the SMAPE as the
criterion, RF dominated other methods across all climate types and missing rates. BiLSTM
also performed well with missing rates below 60% but struggled with higher ones. Other
algorithms such as Bagging, LSTM, GBDT, KNN, DTR, SVR, and ERT excelled in some
cases but lacked consistency overall.

The average performance of each algorithm in each climate zone was calculated, and
the results are given in Figure 7. In the Cfa, Dfa, and Dfb climate zones, the R2 of all
algorithms was generally higher than those in the BSk, BWh, and Csa climate zones, and
according to the SMAPE indicator, the algorithms performed better in the Dfb, Dfa, and Csa
climate zones. Considering both indicators, all algorithms performed poorly in the BWh
and BSk climate zones. When comparing various climate types, it can be observed that
the BSk (semi-arid steppe climate) and BWh (desert climate) experience greater levels of
evaporation than precipitation, with the precipitation being mainly concentrated in either
summer or winter. Therefore, the distribution of observation data related to precipitation,
such as the relative humidity (RHUM), minimum humidity (RHUMN), maximum humidity
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(RHUMX), and dew point temperature (DPTP), is not uniform across the dataset. As a
result, the data used to train the model and the data to be interpolated will exhibit a
significant difference in data distribution. This should be the main reason for the poor
performance of the imputation model under the BWh and BSk climate conditions.
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4.3. Model Performance for Each Observation Element

Table 3 displays the optimal and least effective imputation techniques for 11 meteoro-
logical observation elements. The first line of each cell in the table records the best method,
and the second line records the worst method. The RMSE, MAE, R2, and SMAPE were
the average values of the imputation results of the imputation algorithm at five missing
value rates. The definitions of the RMSE and MAE are shown in Equations (6) and (7),
respectively, and the definitions of the R2 and SMAPE are given in Section 4.1.

RMSE =

√
1
m

m

∑
l=1

(yl − ŷl)
2 (6)

MAE =
1
m

m

∑
l=1
|(yl − ŷl)| (7)

According to the records in Table 3, the RF is undoubtedly the most ideal method
for imputing missing values. For the 11 meteorological observations presented in this
paper, the imputation results of the RF could maintain the highest R2 and the lowest RMSE,
MAE, and SMAPE. AdaBoost, ERT, Enet, BR, ARD, SVR, and TCN had the worst records,
especially AdaBoost, which is not ideal for imputing missing values of the temperature
(TOBS, TMIN, and TMAX) and humidity (RHUM, RHUMN, and RHUMX) data. The
20 imputation methods used in this paper performed poorly on the WSPDX, WSPDV, and
SRADV, which can be observed very clearly with the R2 and SMAPE, two dimensionless
indicators. The R2 of RF and TCN, which they perform the best, only reached 0.48–0.66 for
these three observations. In the future, it is worth paying attention to the imputation of
missing values for wind speed and solar radiation.

Table 3. The best and worst imputation methods for each meteorological observation element.

Elements RMSE MAE R2 SMAPE

TOBS
RF 1.61 ◦C RF 0.93 ◦C RF 0.96 RF 5.51

AdaBoost 3.51 ◦C AdaBoost 2.64 ◦C Enet 0.78 AdaBoost 11.71

TMIN
RF 1.73 ◦C RF 1.04 ◦C RF 0.96 RF 6.62

AdaBoost 3.50 ◦C AdaBoost 2.62 ◦C AdaBoost 0.87 AdaBoost 12.38

TMAX
RF 1.64 ◦C RF 0.89 ◦C RF 0.96 RF 5.25

AdaBoost 3.10 ◦C AdaBoost 2.26 ◦C AdaBoost 0.89 AdaBoost 10.74

WSPDX
RF 2.95 Mph RF 2.09 Mph TCN 0.66 RF 6.47

ERT 4.10 Mph AdaBoost 3.01 Mph ERT 0.29 AdaBoost 11.5

WSPDV
RF 1.88 Mph RF 1.32 Mph TCN 0.64 RF 7.21

ERT 2.62 Mph ERT 1.83 Mph ERT 0.28 AdaBoost 12.86

SRADV
RF 194.76 W/m2 RF 155.79 W/m2 RF 0.48 RF 15.53

ERT 278.71 W/m2 ERT 213.15 W/m2 ERT 0.07 ERT 17.97

DPTP
RF 2.09 ◦C RF 0.75 ◦C RF 0.94 RF 12.47

SVR 7.13 ◦C SVR 5.75 ◦C AdaBoost 0.75 AdaBoost 19.14

PVPV
RF 0.25 KPa RF 0.09 KPa RF 0.93 RF 4.38

TCN 0.66 KPa SVR 0.46 KPa Enet 0.50 BR 6.43

RHUM
RF 5.03% RF 2.99% RF 0.93 RF 3.73

AdaBoost 8.61% AdaBoost 6.41% Enet 0.82 AdaBoost 8.46

RHUMN
RF 5.66% RF 2.89% RF 0.92 RF 2.68

AdaBoost 10.18% AdaBoost 7.21% Enet 0.75 AdaBoost 9.01

RHUMX
RF 5.34% RF 3.27% RF 0.92 RF 2.75

AdaBoost 9.45% AdaBoost 7.24% Enet 0.76 AdaBoost 8.72

Figure 8 shows the imputation results for each observation variable at the 2008 meteo-
rological observation site. Each subplot draws the best and worst imputation results for
one observation variable. As mentioned in Section 4.1, the data missing rate is the main
factor affecting the data imputation results. When the data missing rate reaches 80%, there
is a significant difference between the imputation results and the original data. When the



Algorithms 2023, 16, 422 12 of 16

missing rate is less than 60%, the RF imputation results for temperature (TBOS, TMIN,
TMAX, and DPTP), humidity (RHUM, RHUMN, and RHUMX), and air pressure (PVPV)
are highly consistent with the original data.
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4.4. Training Duration of the Model

Table 4 records the training duration of all methods. The hardware environment for
model training is Intel i7-8700 (CPU), 64 G (RAM), 1050 Ti (GPU). The six linear regression
methods outlined in this paper had similar imputation effects, but their training time varied
greatly, with MLR being the fastest (less than 1 s) and ARD being the slowest (more than
5 min on average).

In both the tree-based categories, the RF was the slowest, taking an average training
time of nearly 1 min. However, it had the best imputation effect among all algorithms. A
method that is faster than the RF and has a similar imputation effect was Bagging, taking
8 s as an average training time. Its R2 is 1% lower than that of RF, and its SMAPE is 3%
higher than that of the RF.

As seen from previous analysis, BiLSTM, LSTM, and TCN are three neural network
imputation methods with a better performance. However, due to their structure, LSTM and
BiLSTM can only read and parse one record at a time, and they have to process each record
sequentially. Hence, LSTM and BiLSTM take a long time to train. In our experiment, the
longest training time of LSTM was 4680.28 s, and that of BiLSTM was 6061.58 s, which is
too slow for data imputation tasks at the hourly level. TCN is a novel structure that applies
convolutional networks to time series learning tasks, solving the problem of LSTM and
BiLSTM being hard to parallelize and significantly reducing the training time.
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Table 4. The training time of each algorithm.

Method

Duration(s)

Missing Rate
10%

Missing Rate
20%

Missing Rate
40%

Missing Rate
60%

Missing Rate
80%

Average
Duration

MLR 0.395 0.396 0.421 0.405 0.331 0.389
Ridge 167.428 153.703 141.661 117.065 90.136 133.999
Lasso 153.925 146.388 143.651 127.361 106.294 135.524
Enet 153.351 147.633 144.169 127.264 107.077 135.899
BR 273.696 265.083 261.950 230.349 193.824 244.980

ARD 382.077 380.746 404.102 377.901 322.452 373.456
KNN 1.844 2.508 3.846 4.373 4.377 3.390
DTR 0.969 0.923 0.884 0.771 0.636 0.837
RF 70.141 67.158 64.987 55.351 45.508 60.629

AdaBoost 2.090 2.730 3.867 4.155 3.460 3.260
GBDT 21.040 19.391 18.618 16.150 12.622 17.564
ERT 0.576 0.574 0.614 0.556 0.471 0.558

Bagging 8.836 8.597 8.632 7.599 6.277 7.988
SVR 43.255 44.390 46.883 38.067 27.519 40.023

Perceptron 127.659 116.002 107.112 93.163 78.459 104.479
MLP 145.523 131.159 119.722 104.000 89.925 118.066
RNN 432.557 382.919 349.538 281.223 231.763 335.600
LSTM 1235.162 1195.449 1025.659 781.857 609.432 969.512

BiLSTM 1856.816 1683.721 1472.877 1139.001 909.946 1412.472
TCN 446.149 423.100 394.256 345.127 299.772 381.681

4.5. Comparison with Other Studies

Joseph [34] introduced an imputation method based on RF in his paper, which is used
to impute the missing 15 min and daily maximum/minimum temperature observations
of 134 sites in Washington State over 8.5 years, with a data missing rate of only 3.3%. We
compared the imputation results with Joseph’s best imputation results when the missing
rate was 10%, as shown in Table 5. In the case of a higher missing rate, the MMDIF-RF
method used in this paper was more accurate than Joseph’s method for imputing the TBOS,
TMAX, and TMIN.

Table 5. Comparison of the results of the two studies (◦C).

Observation Elements
Joseph’s Research MMDIF-RF

RMSE MAE RMSE MAE

TBOS 0.63 0.43 0.61 0.35
TMAX 0.72 0.53 0.68 0.34
TMIN 0.92 0.70 0.77 0.48

5. Conclusions

Complete and accurate GMOD are crucial for social and economic development and
people’s daily lives, but data can be lost due to various issues during collection, transmis-
sion, and storage. As a result, numerous techniques have been developed for recovering
lost data. Machine-learning methods are among the most widely used methods for in-
terpolating meteorological missing values, as they offer high accuracy, simple operation,
and other benefits. However, when utilizing machine-learning methods to interpolate
meteorological data, the intrinsic relationship among the observation variables has been
overlooked by many studies, and only a small number of studies have thoroughly assessed
the performance of different machine-learning methods across a wide range of sites.

In this paper, we propose a machine-learning-based multidimensional meteorological
data imputation framework (MMDIF), which can use machine-learning predictions to
reconstruct GMOD with random missing values across multiple attributes. We used this



Algorithms 2023, 16, 422 14 of 16

framework to compare the missing value imputation performance of 20 machine-learning
methods. The data we used were sourced from 10 years of observation data of 124 stations
in six climate zones of the continental U.S., including 11 variables. Based on four evaluation
indicators for assessing the predictive performance of models, R2, SMAPE, RMSE, and
MAE, we find that RF, BiLSTM, and TCN had the best imputation effects for missing data.
They were more accurate than the other regression methods for most stations, especially
the RF. The RF performed better than the other methods in interpolating 11 meteorological
variables under the six climate types in this paper, especially for TBOS, TMIN, TMAX,
DPTP, PVPV, RHUM, RHUMN, and RHUMX. For these eight variables, RF achieves a R2

above 0.9 and a SMAPE below 9% (R2 and SMAPE are the average values of the imputation
results at five missing rates). The literature [46] has shown that RF uses random sampling,
random splitting, and voting mechanisms in modeling and prediction, which can effectively
avoid overfitting or underfitting of the model, improve the accuracy and robustness of
the model, and have a better performance than deep learning in dealing with missing
data imputation. However, in this study, it was found that none of the 20 imputation
methods performed well for wind speed and solar radiation variables (WSPDX, WSPDV,
and SRADV). This indicates that the imputation framework proposed in this paper has
certain limitations when handling these specific variables. Some of the limitations include
modifying the framework structure, incorporating new data (such as the sampling time of
the data as an input variable), and handling data separately for different seasons. These
needed to be further explored in future research. Although we have tested the MMDIF-RF
with GMOD in this study, this method can also be a reference for missing data imputation
within other domains.

Author Contributions: Conceptualization, C.L.; methodology, C.L.; software, C.L.; original draft
preparation, C.L.; review and editing of manuscript, C.L. and G.Z.; visualization, C.L. and X.R.; data
curation, G.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (project No.
2022YFF0711700); the project of the School of Computer and Communication, Lanzhou Univer-
sity of Technology, on the research of fine temperature prediction models based on deep learning
(project No. H1814cc012); and Light of West China Program of Chinese Academy of Sciences (project
No. E2297801).

Data Availability Statement: The data that support the findings of this study are openly available in
National Water and Climate Center of the US Department of Agriculture (https://www.nrcs.usda.
gov/resources, accessed on 29 August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fathi, M.; Haghi Kashani, M.; Jameii, S.M.; Mahdipour, E. Big Data Analytics in Weather Forecasting: A Systematic Review. Arch.

Comput. Methods Eng. 2021, 5, 1247–1275. [CrossRef]
2. Zhou, C.; Li, H.; Yu, C.; Xia, J.; Zhang, P. A station-data-based model residual machine learning method for fine-grained

meteorological grid prediction. Appl. Math. Mech. 2022, 43, 155–166. [CrossRef]
3. Magistrali, I.C.; Delgado, R.C.; dos Santos, G.L.; Pereira, M.G.; de Oliveira, E.C.; Neves, L.D.O.; de Souza, L.P.; Teodoro, P.E.;

Junior, C.A.S. Performance of CCCma and GFDL climate models using remote sensing and surface data for the state of Rio de
Janeiro-Brazil. Remote Sens. Appl. Soc. Environ. 2021, 21, 100446. [CrossRef]

4. Sebestyén, V.; Czvetkó, T.; Abonyi, J. The Applicability of Big Data in Climate Change Research: The Importance of System of
Systems Thinking. Front. Environ. Sci. 2021, 9, 70. [CrossRef]

5. Ding, X.; Zhao, Y.; Fan, Y.; Li, Y.; Ge, J. Machine learning-assisted mapping of city-scale air temperature: Using sparse meteorolog-
ical data for urban climate modeling and adaptation. Build. Environ. 2023, 234, 110211. [CrossRef]

6. Khan, S.; Kirschbaum, D.; Stanley, T. Investigating the potential of a global precipitation forecast to inform landslide prediction.
Weather. Clim. Extrem. 2021, 33, 100364. [CrossRef]

7. Freitas, A.A.D.; Oda, P.S.S.; Teixeira, D.L.S.; Silva, P.D.N.; Mattos, E.V.; Bastos, I.R.P.; Nery, T.D.; Meetodiev, D.; Santos, A.P.P.d.;
Gonçalves, W.A. Meteorological conditions and social impacts associated with natural disaster landslides in the Baixada Santista
region from March 2nd–3rd, 2020. Urban Clim. 2022, 42, 101110. [CrossRef]

https://www.nrcs.usda.gov/resources
https://www.nrcs.usda.gov/resources
https://doi.org/10.1007/s11831-021-09616-4
https://doi.org/10.1007/s10483-022-2822-9
https://doi.org/10.1016/j.rsase.2020.100446
https://doi.org/10.3389/fenvs.2021.619092
https://doi.org/10.1016/j.buildenv.2023.110211
https://doi.org/10.1016/j.wace.2021.100364
https://doi.org/10.1016/j.uclim.2022.101110


Algorithms 2023, 16, 422 15 of 16

8. Zhang, Y.; Wu, Y.; Zhang, F.; Yao, X.; Liu, A.; Tang, L.; Mo, J. Application of power grid wind monitoring data in transmission line
accident warning and handling affected by typhoon. Energy Rep. 2022, 8, 315–323. [CrossRef]

9. Wang, F.; Lai, H.; Li, Y.; Feng, K.; Zhang, Z.; Tian, Q.; Zhu, X.; Yang, H. Dynamic variation of meteorological drought and its
relationships with agricultural drought across China. Agric. Water Manag. 2021, 261, 107301. [CrossRef]

10. Iniyan, S.; Varma, V.A.; Naidu, C.T. Crop yield prediction using machine learning techniques. Adv. Eng. Softw. 2023, 175, 103326.
[CrossRef]

11. Fraccaroli, C.; Govigli, V.M.; Briers, S.; Cerezo, N.P.; Jimenez, J.P.; Romero, M.; Lindner, M.; de Arano, I.M. Climate data for the
European forestry sector: From end-user needs to opportunities for climate resilience. Clim. Serv. 2021, 23, 100247. [CrossRef]

12. Ghafarian, F.; Wieland, R.; Lüttschwager, D.; Nendel, C. Application of extreme gradient boosting and Shapley Additive
explanations to predict temperature regimes inside forests from standard open-field meteorological data. Environ. Model. Softw.
2022, 156, 105466. [CrossRef]
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