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Abstract: This research addresses the efficient integration and sizing of flexible alternating current
transmission systems (FACTS) in electrical distribution networks via a convex optimization approach.
The exact mixed-integer nonlinear programming (MINLP) model associated with FACTS siting and
sizing aims for the minimization of the expected annual operating costs of the network (i.e., energy
losses and FACTS purchasing costs). The constraints of this problem include power equilibrium
equalities, voltage regulation bounds, and device capacities, among others. Due to the power
equilibrium constraints per node and period, the MINLP model is a non-convex optimization
problem. To transform the exact MINLP model into a mixed-integer convex one, the approximation
of the product between two variables in the complex domain is relaxed through its hyperbolic
equivalent, which generates a set of convex cones. The main advantage of the proposed mixed-
integer convex model is that it ensures the global optimum of the problem, even when considering
objective multiplexes. Numerical simulations in the IEEE 33-, 69-, and 85-bus grids demonstrate the
effectiveness and robustness of FACTS integration via the proposed convex approach in comparison
with the exact solution of the MINLP model in the GAMS software as well as with combinatorial
optimization algorithms (i.e., the black widow optimizer and the vortex search algorithm). All
simulations were carried out in MATLAB with Yalmip optimization and the Gurobi and Mosek
solvers. The simulation results show that, for a fixed operation of the FACTS devices (i.e., a VAR
compensator) during the day, the annual operating costs are reduced by 12.63%, 13.97%, and 26.53%
for the IEEE 33-, 69-, and 85-bus test systems, respectively, while for the operation variable, the
reductions are by 14.24%, 15.79%, and 30.31%, respectively.

Keywords: mixed-integer convex model; optimal integration; global optimum; flexible alternating
current transmission system

1. Introduction
1.1. General Context

Electrical distribution networks in medium- and low-voltage applications provide
electricity to all end-users while observing quality, security, reliability, and efficiency
criteria [1,2]. These grids are typically operated at voltage levels lower or equal to 25 kV,
mostly using alternating current (AC) technologies. Most of them are built with a tree
structure (i.e., radial configuration) that helps to reduce investment costs and the complexity
of coordinating protective devices [3,4]. However, these radial configurations typically
increase energy losses when compared to meshed topologies [5], and they deteriorate the
voltage profiles (low voltage regulation) for end-users located far from the central substation
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nodes [6]. Distribution companies typically use shunt compensation methodologies or
grid topology modifications to address these technical challenges. In the case of shunt
compensation, active and reactive power injection devices are commonly used (dispersed
generation [7], batteries [8], capacitors [9], or flexible AC transmission systems [10,11],
i.e., FACTS). In contrast, in the case of topology modifications, phase balancing or grid
reconfiguration are common strategies for distribution companies. In the case of power
loss reduction or voltage profile improvement, shunt reactive power compensation has
demonstrated an adequate balance between saving operating costs regarding energy losses
compared to the investment costs associated with compensation systems [9].

On the other hand, given the transition of electrical distribution networks from passive
to active operation schemes [12], the use of fixed compensation strategies [13], such as
capacitor banks or grid topology variations, results in low economic savings in comparison
with dynamic compensation strategies using FACTS [10].

The use of FACTS compensation devices in electrical distribution networks has shown
positive effects on the technical characteristics of electrical grids, especially in the case
of energy losses minimization, with improvements of about 12.63% and 13.97% in the
conventional IEEE 33- and 69-bus systems [10]. In addition, for distribution networks in the
Colombian context, energy losses can oscillate between 14.5% and 21.8% of the total energy
input [10]. This implies that the development of compensation technologies for reducing
these losses is essential for distribution companies. In this regard, one of the advantages of
reactive power compensation systems is that they are reliable [14] and economical [15], in
addition to the fact that they have long useful lives [16].

1.2. Motivation

The efficient integration (nodal location and nominal size) and operation (on an
hourly basis) of FACTS in electrical distribution networks pose fundamental challenges
regarding the nature of this optimization problem as it belongs to the family of mixed-
integer nonlinear programming (MINLP) [17]. Given the complexity of the exact model,
this research aims to propose an efficient solution methodology to locate and size FACTS
in medium-voltage distribution networks by reformulating the MINLP model as a mixed-
integer convex approximation [18]. The main advantage of convex optimization is that it
allows representing optimization problems in engineering and science while ensuring a
global optimal solution [19]. This research aims to provide the literature and the industry
with an efficient and reliable solution methodology to address the studied problem, with
superior performance compared to MINLP solvers in commercial software or metaheuristic
algorithms [18].

It is important to mention that studying the problem regarding the optimal location
and sizing of FACTS in electrical distribution networks is necessary since:

i. Dynamic reactive power compensation is an area of continuous development due to
the quality impositions of regulatory offices on distribution companies, which aim to
make their medium-voltage distribution grids efficient, reliable, and secure [20]. To
this effect, effective optimization algorithms must be proposed;

ii. Most existing solution methodologies focus on metaheuristic optimization algorithms
to deal with the exact MINLP formulation via decoupling-based approaches that
work under a master–slave optimization strategy [21]. However, even though these
master–slave approaches are efficient and easily implemented in multiple program-
ming languages, they do not allow ensuring a global optimum, given the random
nature of heuristic-based optimizers [22]. Therefore, this research takes advantage
of mixed-integer convex programming to propose an efficient solution methodol-
ogy to locate and size FACTS in electrical networks while allowing us to find the
global optimum [23].



Algorithms 2023, 16, 420 3 of 19

1.3. Literature Review

The problem regarding the optimal placement and sizing of FACTS in medium- and
low-voltage distribution networks has been widely explored in the specialized literature.
This section summarizes the most recent approaches in this research area.

The authors of [11] applied the hunter–prey algorithm to determine the optimal
location and sizing of photovoltaic-SVC systems in electrical distribution networks, with
the aim to minimize grid power losses and improve system voltage profiles. The main
characteristic of a photovoltaic-SVC system is that it can use the converter interfacing
with the photovoltaic (PV) system to add reactive power injection capabilities via control
design [24]. The numerical results presented in [11] for the IEEE 33- and 69-bus grids
demonstrated the effectiveness of the proposed hunter–prey optimizer when compared
to different combinatorial methods, such as the differential evolution algorithm, particle
swarm optimization, the artificial rabbits algorithm, and the golden search optimizer.

The work by [25] presented a complete comparative analysis of multiple combinatorial
optimizers in locating and sizing TCSCs and SVCs in power systems while aiming to mini-
mize the total grid operating costs associated with energy losses. The voltage profiles were
kept within an acceptable range. Numerical validations in the IEEE 30- and 57-bus systems
were used to test the effectiveness of the whale optimization algorithm in comparison with
multiple combinatorial optimizers.

In [10], the black widow optimization algorithm was proposed as a solution method to
locate and size FACTS in medium-voltage distribution networks. The exact MINLP model
was solved using a leader–follower optimization strategy, combining a discrete-continuous
codification in the leader stage with a black widow optimizer using the successive ap-
proximations of power flow in the follower stage. Numerical results in the IEEE 33-, 69-,
and 85-bus grids demonstrated the effectiveness of the leader-follower solution compared
to that of the vortex search algorithm reported in [26]. All this, while considering the
minimization of investment and operating costs as objective functions.

The authors of [27] presented a complete review of the optimal location and sizing
of SVCs in electrical distribution networks while considering the technical and economic
aspects of the objective function. Five approaches regarding solution technologies were
reviewed, which include artificial neural network techniques, analytical methods, combi-
natorial methods, and sensitivity approaches. This review demonstrated that SVCs are
suitable FACTS for improving grid voltage profiles, enhancing stability indices, and reduc-
ing grid power losses with reasonable investments by utility companies. Thus, SVCs are a
feasible economic solution for compensating reactive power in these networks.

The study by [28] presented a solution methodology to locate and size SVCs in distribu-
tion networks while considering load variations via a nodal sensitivity approach. Efficient
numerical validation in practical distribution networks composed of 38 nodes demonstrated
important improvements with regard to different objective functions, including energy
losses cost reduction, voltage profile improvements, and stability margin enhancement.

Other solution methods for locating and sizing FACTS in distribution networks are the
tabu search algorithm [29,30], the fractional levy flight bat algorithm [31], the particle swarm
optimizer [32], the krill herd algorithm [33], and the barnacles mating optimization [34],
among others.

All of the works reviewed above yielded good solutions. However, none of them can
guarantee the optimal solution to the problem, and some require tuning parameters, which
indicates that, if the test systems are changed, they may not reach reasonable solutions and
thus require adjustments.

1.4. Contribution and Scope

In light of the above, it is worth noting that, in order to analyze it, the problem
under study is standardized via the application of leader-follower optimization techniques
(combinatorial methods to decide on the location of the FACTS and optimal power flows
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to determine their sizes). This provides a research opportunity in the area of convex
optimization. In this sense, the main contributions of this research are presented below:

i. A reformulation of the exact MINLP model regarding the efficient location and siz-
ing of FACTS in distribution networks via a mixed-integer second-order cone pro-
gramming equivalent. This reformulation can guarantee the global optimum of the
problem. Thus, it finds the best solution to the optimization problem according to its
fitness function.

ii. The evaluation of multiple operation scenarios where the FACTS can be operated as
fixed or variable compensators. These scenarios demonstrated that variable compen-
sation is the best option to reduce the annual grid operating costs.

Note that, within the scope of this research, the FACTS devices analyzed correspond
to the shunt reactive power compensation elements studied by [10]. These devices are the
unified power flow controller (UPFC), the thyristor-controlled shunt compensator (TCSC),
and the static var compensator (SVC). The investment costs of installing these devices are
modeled as a cubic function based on the recommendations of [35]. In addition, the active
and reactive power curves are inputs provided by the distribution company at the terminals
of the substation bus, representing the electrical network’s daily behavior. Here, these
curves are assumed as constants without noise (uncertainties). However, future research
will be required to include the stochastic behavior of these curves in distribution systems
analysis, operation, and control.

1.5. Document Structure

The remainder of this document is structured as follows. Section 2 presents the general
MINLP model regarding the optimal location and sizing of FACTS in electrical distribution
networks, with the aim to minimize the annual grid operating costs while including the
investment costs of FACTS. Section 3 shows the second-order cone approximation based on
the hyperbolic relation of the product between two variables, which generates a linear objec-
tive function with a set of linear and conic constraints that belongs to the family of convex
optimization problems. Section 4 outlines the main characteristics of the IEEE test feeders
under analysis. These systems are composed of 33, 69, and 85 nodes with medium-voltage
profiles and typical radial structures. Section 5 describes the main numerical simulations
carried out, a comparative study with literature reports and exact MINLP solvers, and a
comparative analysis between all the studied FACTS devices, considering fixed and vari-
able reactive power injections. Section 6 describes this article’s main concluding remarks
and possible future improvements.

2. Optimization Model

The problem regarding the optimal integration of FACTS devices in electrical distribu-
tion grids aims to minimize the annual costs related to energy losses and the investments
made in FACTS installation. This problem generates an optimization model with the
structure of a mixed-integer nonlinear programming (MINLP) model. This is because the
optimization model contains binary/integer variables related to the location of the FACTS
devices. At the same time, the model includes the continuous variables associated with
power flows, nodal voltages, and the size of the FACTS devices. Figure 1 illustrates an
example of a branch in an electrical network with FACTS devices installed.

In this paper, the following notation is used. The setsH, B, and N encompass all the
analysis periods, network branches, and network nodes, respectively. R and C denote the
sets of real and complex numbers, respectively. The subscripts k or m denote the nodes of
the test system, the subscript l represents any branch connected between nodes k and m,
and the subscript h represents a specific period under analysis. The superscripts s and r
denote the sending and receiving power flows of the distribution line connected between
nodes k and m, while the superscripts g and d represent variables related to generation
and demand, respectively. The variable v denotes the nodal voltage, and s corresponds to
apparent power in a node or distribution line. The operator ‖·‖ denotes the Euclidean norm,
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while the operators real(·) and imag(·) correspond to the real and imaginary part of the
complex number, respectively. Finally, (·)∗ represents the conjugate of the complex number.

vkh
rl xl

vmh

ss
lh sr

lh

sd
mhFACTs

sd
khFACTs

yl =
1

rl+jxl

Figure 1. Generic branch connection with FACTs devices in an electrical network.

2.1. Objective Function

The main aim of this study is to incorporate FACTS devices into electrical distribution
networks while aiming to minimize the annual equivalent operating costs represented by f .
These costs consider the reduction of energy losses and the installation expenses associated
with FACTS. To this effect, the following objective function is used:

min f = f1 + f2,

f1 = CT ∑
h∈H

∑
l∈B

(ps
lh + pr

lh)∆h,

f2 = T
(

k1

k2

)
∑

k∈N
qFACT

k

(
ω1

(
qFACT

k

)2
+ ω2qFACT

k + ω3

)
,

(1)

where f1 is related to the annual energy loss costs; f2 is associated with the FACTS invest-
ment costs; C and T are the average costs of energy losses and the number of days in a
year, respectively; ps

lh and pr
lh represent the sending and receiving active power flows of

a distribution line, respectively; ∆h represents the time interval analyzed on a daily basis
(0.5 h); qFACT

k is the nominal size of the FACTS; ω1, ω2, and ω3 represent the polynomial
coefficients of the objective function f2; and k1 > 0 and k2 > 0 are constants denoting the
annual investment costs for a planning horizon of ten years [18].

2.2. Set of Constraints

The constraints related to the optimal integration of FACTS in electrical distribution
grids comprise several aspects, such as node power balance constraints for both active and
reactive power, the limits regarding the maximum and minimum power flowing through
the distribution lines, voltage regulation bounds, requirements regarding the number of
FACTS devices to be installed, and their capacity for injecting or observing reactive power,
among others.

2.2.1. Power Balance Equation

The nodal power balance equations for node k with regard to active and reactive
power require calculating the sums of power generated or demanded, i.e., for active and
reactive power. These sums are then equalized to the flow of injection power, be it active or
reactive. The equations can be expressed as follows:

pg
kh − pd

kh = ∑
l∈L

(
A+

kl ps
lh + A−kl pr

lh
)
, ∀ k ∈ N , ∀ h ∈ H, (2)

qg
kh − qd

kh + qFACT
kh = ∑

l∈L

(
A+

kl q
s
lh + A−kl q

r
lh
)
, ∀ k ∈ N , ∀ h ∈ H (3)

where pg
kh and pd

kh are the active power generated and demanded; qg
kh and qd

kh are the
reactive power generated and demanded; ps

lh and qs
lh are the sending active and reactive

power flows of the distribution line l; pr
lh and qr

lh are the receiving active and reactive power
flows of the distribution line l; qFACT

kh is the reactive power injected by the FACTS at node
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k and time h; and A+ and A− are the positive and negative values of the node-to-branch
incidence matrix A, i.e., A = A+ + A−.

2.2.2. Power Flow Equation

The active and reactive power flows transmitted through a specific distribution line,
along with their corresponding maximum capacities, can be represented as follows:

ps
lh = real

(
vkhy∗l (vkh − vmh)

∗), ∀ l ∈ B, ∀ h ∈ H, (4)

pr
lh = real

(
vmhy∗l (vmh − vkh)

∗), ∀ l ∈ B, ∀ h ∈ H, (5)

qs
lh = imag

(
vkhy∗l (vkh − vmh)

∗), ∀ l ∈ B, ∀ h ∈ H, (6)

qr
lh = imag

(
vmhy∗l (vmh − vkh)

∗), ∀ l ∈ B, ∀ h ∈ H, (7)

‖ps
lh + jqs

lh‖ ≤ smax
l , ∀ l ∈ B, ∀ h ∈ H (8)

‖pr
lh + jqr

lh‖ ≤ smax
l , ∀ l ∈ B, ∀ h ∈ H (9)

where vkh and vmh are the complex voltages, yl is the admittance of branch l, and smax
l is

the maximum apparent power flowing through the line.

2.2.3. Operating Regulations

All node voltage values in an electrical network must meet the limits set by regulatory
policies, which are intended for an adequate network operation. These limits are

v0h = vnomej0, ∀ h ∈ H, (10)

‖vht‖ ≥ vmin, ∀ k ∈ N , ∀ h ∈ H, (11)

‖vht‖ ≤ vmax, ∀ k ∈ N , ∀ h ∈ H, (12)

where v0h represents the nominal voltage at the slack node (substation) at time h; vnom is its
nominal value, which usually has a per-unit value equal to 1.0; and vmin and vmax denote
the minimum and maximum voltage values allowed in the electrical network.

2.2.4. Integration of FACTS

The optimal integration of the FACTS is divided into two parts, which include their
proper location in the electrical grid as well as their size. The following constraints are
defined to address these challenges:

0 ≤ qFACT
k ≤ zkqFACT

max , ∀ k ∈ N , (13)

−qFACT
k ≤ qFACT

kh ≤ qFACT
k , ∀ k ∈ N , ∀ h ∈ H (14)

∑
k∈N

zk ≤ η, (15)

zk ∈ {0, 1}, ∀ k ∈ N , (16)

where qFACT
k is the variable used to define the size of the FACTS to be installed, and qFACT

max is
its maximum capacity. This study’s capacity goes from 0 Mvar to 2 Mvar at the distribution
level, a value usually employed for electrical networks [18]. z is a vector of the binary
variable that denotes a FACTS location at node k, i.e., if z = 1 in position k, this indicates
that a device will be located there (otherwise, z = 0). Finally, η is the maximum number of
FACTS to be installed.
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2.3. Interpretation of the Mathematical Model

The mixed-integer nonlinear optimization model described in (1)–(16) aims to optimize
FACTS integration in electrical distribution grids. This model incorporates both binary and
continuous variables. The placement of these devices is determined by the former. The
latter is associated with several variables, including the active and reactive power of the
generators, power demands, the power flowing through the transmission lines, complex
nodal voltages, and the size of the FACTS.

The following can be noted regarding this mixed-integer nonlinear optimization model.
The objective function is defined by two terms. The first term, which implies an annual
cost of f1, represents the energy losses of the electrical distribution system. In contrast,
the second term calculates the investment costs of FACTS ( f2). Expressions (2) and (3)
represent the active and reactive power balance, respectively, for each node and time
period under analysis. Equations (4) and (5) represent the active power flow that is
transmitted through each branch of the transmission lines at each studied time interval.
Equations (6) and (7) represent the reactive power flowing through the same transmission
lines. Inequalities (8) and (9) limit the maximum apparent power that can flow through
each branch of the transmission lines in any given period. Equation (10) sets the voltage
at the substation, while inequalities (11) and (12) constrain the nodal voltages to their
respective minimum and maximum values at each time step. Inequality (13) restricts the
maximum value that the FACTS may reach. Inequality (14) sets the limit for the maximum
reactive power that the FACTS may deliver or absorb at each node. Finally, inequality (15)
determines the maximum number of FACTS that can be installed.

3. Convex Reformulation

The optimization model described in Equations (1)–(16) is a mixed-integer nonlinear
one, which is challenging to solve and falls into the category of problems with high
computational complexity. Therefore, this type of problem is typically solved using a
metaheuristic algorithm [18,36]. However, metaheuristic algorithms cannot ensure the
global optimum of the problem. Additionally, many of these algorithms require parameter
tuning, which indicates that their performance is not always consistent. Another potential
solution to this problem is introducing some relaxations that can transform the mixed-
integer nonlinear model into a mixed-convex one, thus being able to guarantee the global
optimum of the problem. Nevertheless, this also requires parameter tuning.

3.1. Approximation of the Objective Function z2 to Linear Function

The objective function f2 presented in (1) has a cubic form, which makes it a non-
convex function. Therefore, it is impossible to guarantee the global optimum of the problem.
However, this objective function can only work with a linear coefficient ω3 for a range
of FACTS with values lower than or equal to 2 Mvar [18]. The objective function z2 is
expressed as follows:

z2 = T
(

k1

k2

)
ω3 ∑

k∈N
qFACT

k . (17)

3.2. Convex Representation of the Active and Reactive Power Flow Equations

The products of the voltages presented in the active and reactive power flow equations,
as described in (4)–(7), are equality constraints. Hence, they are non-convex constraints.
However, it is possible to convert these constraints into convex ones by defining two
auxiliary variables [37], as follows:

ukh = vkhv∗kh = ‖vkh‖2, (18)

wlh = vkhv∗mh (19)

where ukh ∈ R corresponds to the squared voltage at node k and time h, and wlh ∈ C
denotes the product of the voltages in branch l at time h.
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Now, the auxiliary variables ukh and wlh can be substituted into the active and reactive
power flow Equations (4)–(7) in order to obtain:

ps
lh = real((ukh − wlh)y∗l ), (20)

pr
lh = real((umh − w∗lh)y

∗
l ), (21)

qs
lh = imag((ukh − wlh)y∗l ), (22)

qr
lh = imag((umh − w∗lh)y

∗
l ). (23)

The equations for the active and reactive power flows, as presented in (20)–(23),
depend on the auxiliary variables in (18) and (19). These equations are non-convex, so it is
necessary to relax them via a hyperbolic shape, as shown below:

wlh = vkhv∗mh

wlhw∗kmt = vkhv∗mhvmhv∗kh

‖wlh‖2 = ‖vkh‖2‖vmh‖2

‖wlh‖2 = ukhumh =
1
4
(ukh + umh)

2 − 1
4
(ukh − umh)

2

(ukh − umh)
2 + ‖2wlh‖2 = (ukh + umh)

2∥∥∥∥ 2wlh
ukh − umh

∥∥∥∥ = ukh + umh∥∥∥∥ 2wlh
ukh − umh

∥∥∥∥ ≤ ukh + umh.

(24)

3.3. Proposed Mixed-Integer Convex Model

The optimization model described in (1)–(16) can be transformed into a mixed-integer
convex model by applying the abovementioned relaxation. The process is as follows:

min f = z1 + z2, (25)

f1 = CT ∑
h∈H

∑
l∈B

(ps
lh + pr

lh)∆h, (26)

f2 = T
(

k1

k2

)
ω3 ∑

k∈N
qFACT

k , (27)

pg
kh − pd

kh = ∑
l∈L

(
A+

kl ps
lh + A−kl pr

lh
)
, ∀ k ∈ N , ∀ h ∈ H, (28)

qg
kh − qd

kh + qFACT
kh = ∑

l∈L

(
A+

kl q
s
lh + A−kl q

r
lh
)
, ∀ k ∈ N , ∀ h ∈ H, (29)

ps
lh = real((ukh − wlh)y∗l ), ∀ l ∈ B, ∀ h ∈ H, (30)

pr
lh = real((umh − w∗lh)y

∗
l ), ∀ l ∈ B, ∀ h ∈ H, (31)

qs
lh = imag((ukh − wlh)y∗l ), ∀ l ∈ B, ∀ h ∈ H, (32)

qr
lh = imag((umh − w∗lh)y

∗
l ), ∀ l ∈ B, ∀ h ∈ H, (33)

‖ps
lh + jqs

lh‖ ≤ smax
l , ∀ l ∈ B, ∀ h ∈ H (34)

‖pr
lh + jqr

lh‖ ≤ smax
l , ∀ l ∈ B, ∀ h ∈ H (35)

u0t = (vnom)2, ∀ h ∈ H, (36)∥∥∥∥ 2wlh
ukh − umh

∥∥∥∥ ≤ ukh + umh, ∀ k ∈ N , ∀ h ∈ H, (37)
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(vmin)2 ≤ ukh ≤ (vmax)2, ∀ k ∈ N , ∀ h ∈ H, (38)

0 ≤ qFACT
k ≤ zkqFACT

max , ∀ k ∈ N , (39)

− qFACT
k ≤ qFACT

kh ≤ qFACT
k , ∀ k ∈ N , ∀ h ∈ H (40)

∑
k∈N

zk ≤ η, (41)

z ∈ {0, 1}, ∀ k ∈ N . (42)

This mixed-integer convex model can reach the global optimum of the exact opti-
mization model described in Equations (1)–(16). This is possible only if the hyperbolic
constraints are well-defined conditions, as demonstrated in [38].

4. Test System

This section presents the test systems employed to validate the proposed optimization
model for the optimal integration of FACTS in the IEEE 33-, 69-, and 85-bus systems.
Figure 2 depicts the topologies of three test systems, whose main features are as follows:

i. The IEEE 33-bus test system has 33 buses and 32 transmission lines in its radial
configuration, as shown in Figure 2a. It has a substation at node 1 that works with
12.66 kV, as well as peak active and reactive demands of 3715+ j2300 kVA, respectively.
These operating conditions generate active and reactive power losses of 210.9876 kW
and 143.1283 kvar. The test system’s peak demand, resistance, and reactance values
are listed in Table 1. These values were taken from [39].

ii. The IEEE 69-bus test system is fitted with 69 buses and 68 transmission lines, as
depicted in Figure 2b. Its substation is located at node 1, which works at 12.66 kV,
and its peak active and reactive demand is 3890.7 + j2693.6 kVA. Under these op-
erating conditions, the active and reactive power losses generated are 210.9876 kW
and 143.1283 kvar, respectively. Table 2 lists this system’s demand, resistance, and
reactance values. These values were taken from [39].

iii. The IEEE 85-bus test system has 85 buses and 84 transmission lines, as illustrated
in Figure 2c. It has a substation at node 1 that works with 11 kV, as well as a peak
active and reactive demand of 2570.28 + j2622.20 kVA. The test system’s peak de-
mand, resistance, and reactance values are listed in Table 3. These values were taken
from [39].
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Figure 2. Test system topologies: (a) IEEE 33-bus test system; (b) IEEE 69-bus test system; and
(c) IEEE 85-bus test system.

Table 1. Electrical parameters of the IEEE 33-test system.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW) k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

1 2 0.0922 0.0477 100 60 19 20 15.042 13.554 90 40
2 3 0.4930 0.2511 90 40 20 21 0.4095 0.4784 90 40
3 4 0.3660 0.1864 120 80 21 22 0.7089 0.9373 90 40
4 5 0.3811 0.1941 60 30 3 23 0.4512 0.3083 90 50
5 6 0.8190 0.7070 60 20 23 24 0.8980 0.7091 420 200
6 7 0.1872 0.6188 200 100 24 25 0.8960 0.7011 420 200
7 8 17.114 12.351 200 100 6 26 0.2030 0.1034 60 25
8 9 10.300 0.7400 60 20 26 27 0.2842 0.1447 60 25
9 10 10.400 0.7400 60 20 27 28 10.590 0.9337 60 20

10 11 0.1966 0.0650 45 30 28 29 0.8042 0.7006 120 70
11 12 0.3744 0.1238 60 35 29 30 0.5075 0.2585 200 600
12 13 14.680 11.550 60 35 30 31 0.9744 0.9630 150 70
13 14 0.5416 0.7129 120 80 31 32 0.3105 0.3619 210 100
14 15 0.5910 0.5260 60 10 32 33 0.3410 0.5302 60 40
15 16 0.7463 0.5450 60 20 29 30 0.5075 0.2585 200 600
16 17 12.890 17.210 60 20 30 31 0.9744 0.9630 150 70
17 18 0.7320 0.5740 90 40 31 32 0.3105 0.3619 210 100
2 19 0.1640 0.1565 90 40 32 33 0.3410 0.5302 60 40

Table 2. Electrical parameters of the IEEE 69-test system.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW) k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

1 2 0.0005 000012 0.00 0.00 3 36 0.0044 0.0108 26.00 18.55
2 3 0.0005 0.0012 0.00 0.00 36 37 0.0640 0.1565 26.00 18.55
3 4 0.0015 0.0036 0.00 0.00 37 38 0.1053 0.1230 0.00 0.00
4 5 0.0251 0.0294 0.00 0.00 38 39 0.0304 0.0355 24.00 17.00
5 6 0.3660 0.1864 2.60 2.20 39 40 0.0018 0.0021 24.00 17.00
6 7 0.3810 0.1941 40.40 30.00 40 41 0.7283 0.8509 1.20 1.00
7 8 0.0922 0.0470 75.00 54.00 41 42 0.3100 0.3623 0.00 0.00
8 9 0.0493 0.0251 30.00 22.00 42 43 0.0410 0.0478 6.00 4.30
9 10 0.8190 0.2707 28.00 19.00 43 44 0.0092 0.0116 0.00 0.00

10 11 0.1872 0.0619 145.00 104.00 44 45 0.1089 0.1373 39.22 26.30
11 12 0.7114 0.2351 145.00 104.00 45 46 0.0009 0.0012 29.22 26.30
12 13 1.0300 0.3400 8.00 5.00 4 47 0.0034 0.0084 0.00 0.00
13 14 1.0440 0.3450 8.00 5.50 47 48 0.0851 0.2083 79.00 56.40
14 15 1.0580 0.3496 0.00 0.00 48 49 0.2898 0.7091 384.70 274.50
15 16 0.1966 0.0650 45.50 30.00 49 50 0.0822 0.2011 384.70 274.50
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Table 2. Cont.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW) k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

16 17 0.3744 0.1238 60.00 35.00 8 51 0.0928 0.0473 40.50 28.30
17 18 0.0047 0.0016 60.00 35.00 51 52 0.3319 0.1114 3.60 2.70
18 19 0.3276 0.1083 0.00 0.00 9 53 0.1740 0.0886 4.35 3.50
19 20 0.2106 0.0690 1.00 0.60 53 54 0.2030 0.1034 26.40 19.00
20 21 0.3416 0.1129 114.00 81.00 54 55 0.2842 0.1447 24.00 17.20
21 22 0.0140 0.0046 5.00 3.50 55 56 0.2813 0.1433 0.00 0.00
22 23 0.1591 0.0526 0.00 0.00 56 57 1.5900 0.5337 0.00 0.00
23 24 0.3463 0.1145 28.00 20.00 57 58 0.7837 0.2630 0.00 0.00
24 25 0.7488 0.2475 0.00 0.00 58 59 0.3042 0.1006 100.00 72.00
25 26 0.3089 0.1021 14.00 10.00 59 60 0.3861 0.1172 0.00 0.00
26 27 0.1732 0.0572 14.00 10.00 60 61 0.5075 0.2585 1244.00 888.00
3 28 0.0044 0.0108 26.00 18.60 61 62 0.0974 0.0496 32.00 23.00

28 29 0.0640 0.1565 26.00 18.60 62 63 0.1450 0.0738 0.00 0.00
29 30 0.3978 0.1315 0.00 0.00 63 64 0.7105 0.3619 227.00 162.00
30 31 0.0702 0.0232 0.00 0.00 64 65 1.0410 0.5302 59.00 42.00
31 32 0.3510 0.1160 0.00 0.00 11 66 0.2012 0.0611 18.00 13.00
32 33 0.8390 0.2816 14.00 10.00 66 67 0.0470 0.0140 18.00 13.00
33 34 1.7080 0.5646 19.50 14.00 12 68 0.7394 0.2444 28.00 20.00
34 35 1.4740 0.4873 6.00 4.00 68 69 0.0047 0.0016 28.00 20.00

Table 3. Electrical parameters of the IEEE 85-bus network.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW) k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

1 2 0.108 0.075 0 0 34 44 1.002 0.416 35.28 35.99
2 3 0.163 0.112 0 0 44 45 0.911 0.378 35.28 35.99
3 4 0.217 0.149 56 57.13 45 46 0.911 0.378 35.28 35.99
4 5 0.108 0.074 0 0 46 47 0.546 0.226 14 14.28
5 6 0.435 0.298 35.28 35.99 35 48 0.637 0.264 0 0
6 7 0.272 0.186 0 0 48 49 0.182 0.075 0 0
7 8 1.197 0.820 35.28 35.99 49 50 0.364 0.151 36.28 37.01
8 9 0.108 0.074 0 0 50 51 0.455 0.189 56 57.13
9 10 0.598 0.410 0 0 48 52 1.366 0.567 0 0

10 11 0.544 0.373 56 57.13 52 53 0.455 0.189 35.28 35.99
11 12 0.544 0.373 0 0 53 54 0.546 0.226 56 57.13
12 13 0.598 0.410 0 0 52 55 0.546 0.226 56 57.13
13 14 0.272 0.186 35.28 35.99 49 56 0.546 0.226 14 14.28
14 15 0.326 0.223 35.28 35.99 9 57 0.273 0.113 56 57.13
2 16 0.728 0.302 35.28 35.99 57 58 0.819 0.340 0 0
3 17 0.455 0.189 112 114.26 58 59 0.182 0.075 56 57.13
5 18 0.820 0.340 56 57.13 58 60 0.546 0.226 56 57.13

18 19 0.637 0.264 56 57.13 60 61 0.728 0.302 56 57.13
19 20 0.455 0.189 35.28 35.99 61 62 1.002 0.415 56 57.13
20 21 0.819 0.340 35.28 35.99 60 63 0.182 0.075 14 14.28
21 22 1.548 0.642 35.28 35.99 63 64 0.728 0.302 0 0
19 23 0.182 0.075 56 57.13 64 65 0.182 0.075 0 0
7 24 0.910 0.378 35.28 35.99 65 66 0.182 0.075 56 57.13
8 25 0.455 0.189 35.28 35.99 64 67 0.455 0.189 0 0

25 26 0.364 0.151 56 57.13 67 68 0.910 0.378 0 0
26 27 0.546 0.226 0 0 68 69 1.092 0.453 56 57.13
27 28 0.273 0.113 56 57.13 69 70 0.455 0.189 0 0
28 29 0.546 0.226 0 0 70 71 0.546 0.226 35.28 35.99
29 30 0.546 0.226 35.28 35.99 67 72 0.182 0.075 56 57.13
30 31 0.273 0.113 35.28 35.99 68 73 1.184 0.491 0 0
31 32 0.182 0.075 0 0 73 74 0.273 0.113 56 57.13
32 33 0.182 0.075 14 14.28 73 75 1.002 0.416 35.28 35.99
33 34 0.819 0.340 0 0 70 76 0.546 0.226 56 57.13
34 35 0.637 0.264 0 0 65 77 0.091 0.037 14 14.28
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Table 3. Cont.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW) k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

35 36 0.182 0.075 35.28 35.99 10 78 0.637 0.264 56 57.13
26 37 0.364 0.151 56 57.13 67 79 0.546 0.226 35.28 35.99
27 38 1.002 0.416 56 57.13 12 80 0.728 0.302 56 57.13
29 39 0.546 0.226 56 57.13 80 81 0.364 0.151 0 0
32 40 0.455 0.189 35.28 35.99 81 82 0.091 0.037 56 57.13
40 41 1.002 0.416 0 0 81 83 1.092 0.453 35.28 35.99
41 42 0.273 0.113 35.28 35.99 83 84 1.002 0.416 14 14.28
41 43 0.455 0.189 35.28 35.99 13 85 0.819 0.340 35.28 35.99

Typically, electrical distribution systems exhibit a daily load variation. The demand
curves for the active and reactive power are considered as illustrated in Figure 3. These
curves represent the typical behavior of an electrical distribution system in Colombia [40].
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Figure 3. Variation in the considered active and reactive power curves.

The parameter values of the objective function z (1) are shown in Table 4. The costs
associated with the FACTS were taken from [39].

Table 4. Parameter values for the objective functions.

Par. Value Unit Par. Value Unit

C 0.1390 USD/kWh T 365 Days
∆h 0.50 hour k1 6/2190 1/Days
k2 10 years – – –

Coefficients of the FACTS devices

Device ω1 Unit ω2 Unit ω3 Unit

SVC 0.30 USD/Mvar3 −305.10 USD/Mvar2 127.380 USD/Mvar
TCSC 1.50 USD/Mvar3 −713.00 USD/Mvar2 153.750 USD/Mvar
UPFC 0.30 USD/Mvar3 −269.10 USD/Mvar2 188.220 USD/Mvar

5. Numerical Implementation

The proposed optimization model was implemented in the Yalmip toolbox (R20230622
version) [41], using the Gurobi 9.5.1 solver [42] in the MATLAB 2021a software. A Dell
Inspiron 15 7000 Series (Intel Quad-Core i7-7700HQ @2.80 GHz) PC (Dell Inc., Round
Rock, TX, USA; Intel Corporation, Santa Clara, CA, USA) with 16 GB RAM and 64-bit
Windows 10 Home Single Language (Microsoft Corporation, Redmond, WA, USA) was
used to carry out the simulations. Furthermore, the exact optimization model (1)–(16) was
also implemented in the GAMS software (23.5.1 version).
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The four scenarios shown below were proposed to evaluate the performance of the
proposed mixed-integer convex model (25)–(42). All scenarios consider a maximum of
three FACTS.

S1: The proposed model was compared against GAMS, the black widow optimization
(BWO) algorithm proposed in [10], and the vortex search algorithm (VSA) presented
by [26] for the IEEE 33-bus test system.

S2: The proposed convex model was evaluated in the IEEE 69-bus test system and
compacted to the BWO and VSA, with the aim of installing the SVC devices with a
fixed and variable operation.

S3: The model was evaluated in a large test system, namely the IEEE 85-bus test system.
Furthermore, it was compared to the BWO algorithm regarding the installation of
SVCs with a fixed and variable operation.

S4: A comparison regarding the installation of different FACTS technologies was analyzed
(i.e., SVC, TCSC, and UPFC devices).

5.1. Analysis of Scenario 1 (S1)

This scenario evaluated and compared the proposed optimization model against the
BWO and VSA, and the GAMS software with three different solvers. For this comparison,
the installation of only SVC devices was considered. Table 5 presents the results obtained
for the objective function in the radial IEEE 33-bus test system. This scenario was analyzed
by considering whether the FACTS-delivered/injected power was fixed or variable during
daily operations.

Table 5. Numerical results of scenario 1.

Method Location Size (Mvar) z (USD/Year) Reduction [%]

Fixed Operation

Benchmark case – – 112,740.90 –
COUENNE [6, 7, 12] [0.2693, 0.1646, 0.1932] 104,752.10 7.08

DICOPT [14, 30, 31] [0.1598, 0.3496, 0.1165] 98,511.64 12.62
BONMIN [14, 30, 32] [0.1599, 0.3591, 0.1072] 98,497.90 12.63

VSA [14, 30, 32] [0.1599, 0.3591, 0.1072] 98,497.90 12.63
BWO [14, 30, 32] [0.1599, 0.3591, 0.1072] 98,497.90 12.63

Convex model [14, 30, 32] [0.1599, 0.3591, 0.1072] 98,497.90 12.63

Variable operation

COUENNE [6, 7, 12] [0.2964, 0.1656, 0.2484] 103.945.50 7.80
DICOPT [14, 30, 32] [0.1962, 0.4150, 0.3990] 96,676.76 14.24

BONMIN [14, 30, 32] [0.1962, 0.4150, 0.3990] 96,676.76 14.24

Convex model [14, 30, 32] [0.1962, 0.4150, 0.3990] 96,676.76 14.24

From the results shown in Table 5, it can be stated that:

i. The proposed convex model, as well as the BWO and VSA, and the BONMIM solver,
reached the best configuration for the SVC devices. This configuration is the global
optimum of the problem, as the convex model ensures it. According to the results,
node 30 is the most sensitive point of the test system, given that the largest SVC is
located in it. This occurs for both the fixed and the variable operation of SVC devices.

ii. The variable operation of SCV devices reduces the value of the objective function by
14.24%. In contrast, the fixed operation reports a value of 12.63%. This indicates that
it is better for the test system to implement a variable operation, as SVCs can inject
or absorb reactive power according to the system requirements at each hour of the
day. Furthermore, even though the size of the SVCs increases for a variable operation,
the objective function value is lower than that of the fixed operation. The total size
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of the SVC devices for the fixed and variable operation is 0.6262 and 1.0102 Mvar,
respectively, increasing the investment costs by 61.17%.

5.2. Analysis of Scenario 2 (S2)

This scenario studied the performance of the proposed optimization model and com-
pares it against that of the BWO and VSA. These algorithms were only used for a fixed
operation of the FACTS. In this scenario, no solver of the GAMS reaches convergence. As in
the previous scenario, the installation of only SVC devices was considered, given that [10]
only analyzes SVCs for the IEEE 69-bus system. The results of the objective function for the
IEEE 69-bus test system are shown in Table 6, considering the fixed or variable operation of
SVC devices during the day.

Table 6. Numerical results for scenario 2.

Method Location Size [Mvar] z (USD/Year) Reduction [%]

Fixed Operation

Benchmark case – – 119,715.63 –
VSA [21, 61, 64] [0.0839, 0.4601, 0.1139] 102,990.79 13.97
BWO [21, 61, 64] [0.0839, 0.4601, 0.1139] 102,990.79 13.97

Convex model [21, 61, 64] [0.0839, 0.4601, 0.1139] 102,990.79 13.97

Variable operation

Convex model [21, 61, 64] [0.0929, 0.5774, 0.1481] 100,806.50 15.79

From the results obtained in Table 6, note that:

i. The solutions found by the BWO and VSA in [10,26] are the global optimum of
the problem as the proposed convex model achieves the same configuration. Still,
it is essential to note that the proposed convex model will always find the same
values, while the BOW and VSA cannot guarantee these results. Furthermore, these
algorithms require tuning many parameters, which can affect their performance.

ii. According to the results obtained for the IEEE 69-bus test system, the node with the
highest sensitivity is node 61, as it was selected to install the SVC device with the
highest capacity. This behavior is the same for the fixed and variable SVC operations.

iii. The optimal integration of SVC devices reduces the annual energy losses costs. This
reduction is greater for the variable operation. These devices report reductions of
13.97% and 15.79% in the objective functions for the fixed and variable operation. The
latter saves USD 3778.4/year more than the former. Despite this, the total size of the
SVCs increases by 24.35% for the variable operation.

5.3. Analysis of Scenario 3 (S3)

This scenario evaluated the performance of the proposed optimization model in a
large electrical distribution network, such as the IEEE 85-bus test system. Furthermore, the
model was compared to the BWO algorithm, which was designed exclusively for the fixed
operation of FACTS. Only SVC devices were considered for installation (see the literature
reference [10]). The results regarding their location and size, as well as the objective function
values and their reduction, are listed in Table 7 for this test system.

Table 7. Numerical results for scenario 3.

Method Location Size [Mvar] z (USD/Year) Reduction [%]

Fixed Operation

Benchmark case – – 154,651.95 –
BWO [12, 34, 67] [0.2490, 0.3930, 0.3289] 113,619.97 26.53



Algorithms 2023, 16, 420 15 of 19

Table 7. Cont.

Method Location Size [Mvar] z (USD/Year) Reduction [%]

Fixed Operation

Convex model [12, 34, 67] [0.2490, 0.3930, 0.3289] 113,619.97 26.53

Variable operation

Convex model [12, 34, 67] [0.3094, 0.5085, 0.4221] 107,777.80 30.31

From Table 7, it can be stated that:

i. The proposed convex model and the BWO algorithm reach the best configuration
with regard to the SVC devices, which constitutes the global solution to the problem.
All SVC devices in the IEEE 85-bus test system are located in nodes with bifurcations.
This behavior is different in the other two test systems. However, these locations
are expected given the characteristics of the IEEE 85-bus grid, i.e., its many circuit
branches, distribution of loads, and large size.

ii. The SVC device with the highest capacity was installed at node 61. However, unlike
the other two test systems, this one did not report a node with heightened sensitivity,
since there was no significant difference between the two largest SVCs installed.

iii. The annual energy losses costs are reduced with the installation of SVCs. This reduc-
tion is significant for the variable operation. The reductions in the objective functions
for the fixed and variable operation of the devices are 26.53% and 30.31%, respectively.
This implies that the variable operation saves USD 9251.81/year more than the other.

5.4. Analysis of Scenario 4 (S4)

This scenario analyzes the impact of installing different FACTS technologies on the
test systems, namely the SVC, TCSC, and UPFC devices. This analysis and comparison
only consider a variable operation. Table 8 presents the results obtained for the objective
function as well as the location and size of the FACTS for all test systems. These results only
pertain to the proposed convex model, as it guarantees the global optimum of the problem.

Table 8. Numerical results for scenario 4.

FACTS Devices Location Size [Mvar] z (USD/Year) Reduction [%]

IEEE 33-Bus Test System

Benchmark case – – 112,740.90 –
UPFC [14, 30, 32] [0.1569, 0.3486, 0.1364] 101,078.70 10.34
TCSC [14, 30, 32] [0.1786, 0.4022, 0.1365] 98,729.21 12.42
SVC [14, 30, 32] [0.1962, 0.4150, 0.3990] 96,676.76 14.24

IEEE 69-bus test system

Benchmark case – – 119,715.63 –
UPFC [21, 61, 64] [0.0403, 0.4811, 0.1456] 105,316.40 12.03
TCSC [21, 61, 64] [0.0683, 0.5380, 0.1450] 102,861.80 14.07
SVC [21, 61, 64] [0.0929, 0.5774, 0.1481] 100,806.50 15.79

IEEE 85-bus test system

Benchmark case – – 154,651.95 –
UPFC [12, 34, 67] [0.2483, 0.4770, 0.3836] 114,920.20 25.69
TCSC [12, 34, 67] [0.2820, 0.4951, 0.4055] 110,951.00 28.25
SVC [12, 34, 67] [0.3094, 0.5085, 0.4221] 107,777.80 30.31

From Table 8, the following remarks can be made:

i. The nodes found for locating the different types of FACTS are the same in all test
systems. This means that these nodes are more sensitive to reducing the costs of
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energy losses by injecting or absorbing reactive power. SVC devices maintain the
same behavior in all test systems, reducing the costs of energy losses to a greater extent.

ii. For the IEEE 33-bus test system, the annual operating costs were minimized to values
ranging from USD 101,078.70 (for installed UPFC devices) to USD 96,676.76 (for
installed SVCs). The reductions in the objective function were 10.34%, 12.42%, and
14.24% for the UPFC, TCSC, and SVC devices, respectively.

iii. For the IEEE 69-bus test system, the annual equivalent operating costs were reduced
to values ranging from USD 105,316.40 (for installed UPFC devices) to USD 100,806.50
(for installed SVCs). The objective function was reduced by 12.03%, 14.07%, and
15.79% with respect to the benchmark case (i.e., the case without FACTS integration)
for the UPFC, TCSC, and SVC devices, respectively.

iv. For the IEEE 85-bus test system, the annual energy loss costs decreased to values
ranging from USD 114,920.20 (for installed UPFC devices) to USD 107,777.80 (for
installed SVCs). The annual equivalent operating costs were reduced by 25.69%,
28.25%, and 30.31% with respect to the benchmark case for the UPFC, TCSC, and SVC
devices, respectively.

6. Conclusions and Future Works

This paper addressed the optimal integration of FACTS in electrical distribution
grids, considering the minimization of the annual costs related to energy losses and the
investments made in installing these devices. This integration was solved using a mixed-
integer convex model, which was obtained by transforming the hyperbolic constraints of
the MINLP model into second-order conic constraints. The effectiveness of our proposal
was evaluated in three IEEE test systems, and it was compared to the BWO and VSA and
some GAMS software solvers. The results showed that the proposed convex model found
the global optimum of the studied problem. Fixed and variable operations were considered
for the FACTS. For the fixed operation, the annual operating costs were reduced by 12.63%,
13.97%, and 26.53% for the IEEE 33-, 69-, and 85-bus test systems, respectively. These results
were achieved by the proposed convex model and the BWO algorithm; the other solvers
sometimes failed to converge or reached a worse solution. For the variable operation of
SVC devices, the annual equivalent operating costs were reduced by 14.24%, 15.79%, and
30.31% for the IEEE 33-, 69-, and 85-bus test systems, respectively. These results were also
achieved by the proposed convex model and the BWO algorithm.

The variable operation of SVC devices allowed for a more significant reduction in the
annual energy losses costs, although the total size of the SVCs increased by 61.17%, 24.35%,
and 27.71% for the IEEE 33-, 69-, and 85-bus test systems, respectively. However, this saved
USD 6693.3, 3778.4, and 3778.4/year more than the fixed operation.

The installation of SVC devices was the best option to reduce the final objective
function value in all test systems. The second best option was TCSC devices. The total size
of the SVCs was greater in all test systems than the other FACTS, thus enabling a greater
reserve of reactive power as demand grows.
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Nomenclature
The following abbreviations are used in this manuscript:

d Demand index (d ∈ N ).
Parameters
∆h Duration of a single time period.
η Maximum number of FACTS device available.
(·)∗ Conjugate of the complex number.
ω1, ω2, ω3 FACTS cost function coefficients.
imag(·) Imaginary part of the complex number.
real(·) Real part of the complex number.
A+ Positive values of the node-to-branch incidence matrix A.
A− Negative values of the node-to-branch incidence matrix A.
C Average costs of energy losses.
k1 Annual investment costs.
k2 Annual investment costs.
pd

kh Active power demanded at node k and time t.
qFACT

max Maximum reactive power of the FACTS device.
qd

kh Reactive power demanded at node k and time t.
smax

l Maximum power flow in branch l.
T Number of days in a year.
vmax, vmin Maximum and minimum voltage allowed in the grid.
vnom Voltage at the slack node.
yl Admittance of the branch (or line) l.
Sets and indices
B Set of branches (or lines).
H Set of time periods under analysis.
N Set of nodes.
g Generation index (g ∈ N ).
h Time index (h ∈ H).
k, m Node indices (k, m ∈ N ).
l Branch index km (km ∈ B).
Variables
qFACT

kh Reactive power of a FACTS device at node k and time t.
pg

kh Active power generated at node k and time t.
pr

lh Receiving active power flow at branch l and time t.
ps

lh Sending active power flow at branch l and time t.
qg

kh Reactive power generated at node k and time t.
qFACT

k Optimal size for a FACTS device at node k.
qFACT

k Size of a FACTS device at node k.
qr

lh Receiving reactive power flow at branch l and time t.
qs

lh Sending reactive power flow at branch l and time t.
vkh, vmh Voltage at the node k (or m) at time t.
zk Binary variable for the location of the FACTS device at node k.
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