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Abstract: This paper establishes a novel fractional-order version of a recently expanded form of
the Susceptible-Exposed-Infectious-Recovery (SEIR) Mpox model. This model is investigated by
means of demonstrating some significant findings connected with the stability analysis and the
vaccination impact, as well. In particular, we analyze the fractional-order Mpox model in terms of its
invariant region, boundedness of solution, equilibria, basic reproductive number, and its elasticity. In
accordance with an effective vaccine, we study the progression and dynamics of the Mpox disease
in compliance with various scenarios of the vaccination ratio through the proposed fractional-order
Mpox model. Accordingly, several numerical findings of the proposed model are depicted with the
use of two numerical methods; the Fractional Euler Method (FEM) and Modified Fractional Euler
Method (MFEM). Such findings demonstrate the influence of the fractional-order values coupled
with the vaccination rate on the dynamics of the established disease model.

Keywords: Mpox model; Caputo fractional-order operator; SEIR model; stability; basic reproductive
number; elasticity indices

1. Introduction

Mathematical modeling has turned into an invaluable tool in revealing the behaviors of
infectious diseases and formulating effective control strategies. Mpox, a viral disease with
similarities to smallpox, has attracted considerable attention in the field of epidemiological
models due to its potential impact on human health. As the Mpox disease is a viral zoonotic
infection, it might transmit from animals to people. In addition, it might transmit from
the environment to a person, as it can transmit from one person to another [1]. In 2022,
the Mpox disease began to spread like a pandemic in numerous countries all over the
world. It is spreading now in some African countries [2,3].

To gain deeper insights into the transmission dynamics and develop accurate pre-
dictive models for Mpox, many researchers have increasingly explored the utilization of
fractional calculus. Fractional calculus offers a promising tool for highlighting the intricate
characteristics of infectious disease dynamics, as it allows for the incorporation of memory-
dependent and non-local effects. Traditional models often suppose an instantaneous mixing
by assuming that past interactions have no influence on future outcomes. So, from this
point, the notion of fractional calculus might be utilized as an alternative to these models,
as it can enable one to formulate a model of long-range dependence with extra freedom
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of fractional-order values. This would enable a more realistic representation of the spread
and evolution of the disease; see [4].

In the context of Mpox, fractional calculus can potentially enhance our understanding
of various epidemiological factors such as transmission rates, recovery rates, and the
impact of interventions. By incorporating fractional derivatives and integrals into the
modeling framework, researchers can address the non-local nature of interactions and the
presence of memory effects in disease transmission. These effects can reflect the persistence
of immunity, delayed responses to interventions, or even other temporal dependencies;
see [5]. Developing a fractional calculus-based model for Mpox involves considering
fractional differential equations that can describe the growth of the diseased population
over time. The fractional-order derivatives correspond to the memory or long-range
dependence, which might be observed in the transmission of disease. Accurate estimation
of the fractional-order value requires a combination of empirical evidence, fitting the
model to available data, and a deep understanding of the underlying epidemiological
processes [6]. The utilization of fractional calculus in modeling Mpox has the potential to
yield valuable insights into the disease’s dynamics and control strategies. Incorporating
memory effects and non-local interactions in modeling the disease can provide a more
accurate representation of its spread and evolution over time. Furthermore, such modeling
can assist public health officials in evaluating and optimizing intervention strategies,
estimating the impact of vaccination programs, and assessing the effectiveness of different
control measures [7].

In this study, we aim to explore the application of fractional calculus in modeling
Mpox transmission dynamics. By introducing fractional-order derivatives and considering
memory-dependent effects, we attempt to enhance our understanding of the disease’s
behavior and provide valuable tools for policymakers and health care professionals in their
efforts to mitigate and control Mpox outbreaks. For this purpose, a novel fractional-order
version of the SEIR model is established in light of operating the Caputo operator. This
model is analyzed with the help of proposing certain novel stability results, including the
investigation of its invariant region, equilibria, Basic Reproductive Number (BRN), elasticity,
and boundedness of solution, which is observed by using the Adomian decomposition
method. Additionally, we also solved this model numerically using the Fractional Euler
Method (FEM) and Modified Fractional Euler Method (MFEM) [8] for the aim of revealing
the influence of the fractional-order values and the vaccination rate on the dynamics of
the model at hand. In summary, this paper is arranged in the following manner. In the
next part, some key definitions and basic concepts associated with fractional calculus are
recalled briefly, whereas the formulation of the Mpox illness model is proposed in Section 3.
In Section 4, we study the stability analysis of the Mpox model. In Section 5, we solve
the proposed fractional-order Mpox model using the FEM and MFEM, followed by the
conclusion of this work.

2. Preliminary Concepts

In this part, we recall fundamental descriptions and theorems related to fractional
calculus, including the Riemann–Liouville integral and derivative, the Caputo derivative,
and other relevant concepts [9].

Definition 1. The Riemann–Liouville integral operator of the function h(x) of fractional-order
0 < ρ ≤ 1 can be expressed by

Iρh(x) =
1

Γ(ρ)

∫ x

0
h(s)(x− s)ρ−1 ds, x > 0. (1)

In the following content, we list below some properties of the Riemann–Liouville
integral operator:
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Iρh(x)→ h(x) as ρ→ 0, (2)

Iρ(x− a)ν =
Γ(ν + 1)

Γ(ρ + ν + 1)
(x− a)ρ+ν, ν ≥ −1, a ∈ R, (3)

Iρ Iλh(x) = Iλ Iρh(x), ρ, λ ≥ 0, (4)

Iρ Iλh(x) = Iρ+λh(x), ρ, λ ≥ 0. (5)

Definition 2. The Caputo fractional derivative operator of the function h(x) of fractional-order
0 < ρ ≤ 1 can be expressed by

CDρ
∗h(x) =

1
Γ(1− ρ)

∫ x

0

h′(s)
(x− s)ρ ds, x > 0. (6)

Herein, we also list in what follows, some further properties of the Caputo derivative
operator:

• For a constant c, we have CDρ
∗c = 0.

• For a ∈ R, we have

CDρ
∗(x− a)λ =

{
Γ(λ+1)

Γ(λ−ρ+1) (x− a)λ−ρ, λ > ρ− 1,
0, otherwise.

• For constants a and b, CDρ
∗ is a linear operator, i.e.,

CDρ
∗(ah(x) + bg(x)) = a CDρ

∗h(x) + b CDρ
∗g(x).

In the same regard, it is important to remember the following basic property:

Iρ CDρ
∗h(x) = h(x)−

n

∑
k=1

hk(0+)
xk

k!
, x > 0, (7)

where n− 1 < ρ ≤ n such that n ∈ N.

Definition 3. The Caputo operator CDρ
∗ might be outlined in terms of the Riemann–Liouville

integral operator along the following lines:

CDρ
∗ f = In−ρDn f , (8)

where ρ ∈ R+ and n = dρe.

Definition 4 ([9]). The two parameters of the Mittag-Leffler function can be expressed as

Eγ,δ(x) =
∞

∑
j=0

xk

Γ(γk + δ)
,

where γ, δ > 0 and x ∈ C.

Theorem 1 ([9]). Assume CDjρ
∗ h(x) ∈ C(0, T], for j = 0, 1, 2, · · · , n + 1 and 0 < ρ ≤ 1. Then,

the function h(x) might be expanded about x0 in the following manner:

h(x) =
n

∑
j=0

(x− x0)
jρ

Γ(jρ + 1)
(CDjρ

∗ h)(x0) +
(x− x0)

(n+1)ρ

Γ((n + 1)ρ + 1)
(CD(n+1)ρ

∗ h)(ξ), (9)

∀x ∈ (0, T], where 0 < ξ < x.
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3. Mpox Model

Mathematical models are extensively engaged in simulating the dynamics and the
transmission of infectious diseases. In accordance with an effective vaccine, we study the
progression and dynamics of the Mpox disease in compliance with various scenarios of
the vaccination rate through a compartmental model of the type SEIR. In this paper, we
consider the intervention of vaccination playing a significant role as a parameter, impacting
on the model’s dynamics. The equilibrium of the disease-free state will be determined, and
then its stability with computing the BRN R∗0 will be examined in Section 4.

The diagram of the compartment model, including the vaccination rate for the aimed
Mpox model, is shown in Figure 1, in which the total of the susceptible population is
denoted by S, the total of the exposed population is denoted by E, the total of the infected
population is denoted by I, and, finally, the total of the recovery population by R.

Figure 1. The compartment model, including vaccination rate.

In the same context, Figure 1 exhibits the parameters (Λ, σ, ν, µ, α, γ, β) that are re-
sponsible for the dynamics of the considered model. These parameters are outlined in
Table 1.

Table 1. Model parameters.

Parameter Denotation Value

Λ Rate of birth Depending on country
γ Rate of transmission (E to I)

[
1

17 , 1
7

]
β Rate of transmission (S to E) [0.045, 0.18]
α Rate of transmission (I to R)

[
1
32 , 1

15

]
σ Rate of fatality [0.03, 0.06]
ν Rate of vaccination Variable [0, 1]
µ Rate of natural death Dependent on country

It is noteworthy that the rate of transmission β indicates the transmission’s contact
from S to E as a result of interacting with I cases. Additionally, γ−1 indicates the period of
incubation, whereas α−1 indicates the period of recovery. In light of the aforementioned con-
siderations, the conventional Mpox model might be described in the following manner [10]:

dS
dt

= Λ− βS(t)I(t)− (ν + µ)S(t)

dE
dt

= −(µ + γ)E(t) + βS(t)I(t)

dI
dt

= γE(t)− (µ + σ + α)I(t)

dR
dt

= νS(t) + αI(t)− µR(t).

(10)

with initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0. (11)
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For more clarification, model (10) is established in accordance with particular condi-
tions, which might be stated as follows:

• The contact transmission parameter β does not take into account some factors, like
climate, age, marital status, or gender.

• All of the model’s parameters have no negative values.
• Inter-individual relations within society are distinguished by uniformity and homo-

geneity. This is because of the inherited suppositions for all of the model’s states
in which all persons have the same parameter value of the contact transmission
regardless of their situations, such as their health circumstances or age.

• The size of population N is considered constant at any time, and it meets the following
equality:

S(t) + E(t) + I(t) + R(t) = N(t). (12)

• In the proposed model, the demography is taken into account, in which the natural
death µ and natural birth Λ are incorporated.

• System (10) satisfies the following property:

dN
dt
≤ h(N), (13)

where h is a function depending only on N [11]. To see this, one can observe

dN
dt

=
d
dt
(S(t) + E(t) + I(t) + R(t)) = Λ− µN − σI.

Now, due to σI ≥ 0, we obtain

dN
dt
≤ Λ− µN. (14)

With the use of separation of variables, we can have

−(Λ− µN) ≤ cet, (15)

or
N ≤ Λ

µ
+ cet. (16)

By using N(0) = N0, we obtain

N(t) ≤ Λ
µ
−
(

Λ
µ
− N0

)
e−µt. (17)

Now, as t→ ∞, we obtain

N(t) ≤ Λ
µ

, (18)

and, hence, property (13) is held for system (10).

In order to propose the aimed fractional-order Mpox model, the Caputo operator CDρ
∗

is operated on the modified model (10) to obtain

CDρ
∗S(t) = Λ− βS(t)I(t)− (ν + µ)S(t)

CDρ
∗E(t) = βS(t)I(t)− (µ + γ)E(t)

CDρ
∗ I(t) = γE(t)− (µ + σ + α)I(t)

CDρ
∗R(t) = νS(t) + αI(t)− µR(t),

(19)

with initial conditions (11).
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4. Stability Analysis

Herein, we aim to examine the primary properties of model (19) in view of various
aspects including the invariant region, boundedness of solution, equilibrium point, BRN,
and its elasticity.

4.1. The Invariant Region

This subsection intends to study the non-negativity of the solution of model (19).
For instance, the solution of model (19) will be validated in accordance with the positive
values of the initial conditions. For this purpose, we suppose for all non-negative values of
t that the domain of the desired solution ψ has the following form:

ψ =

{
(S(t), E(t), I(t), R(t)) ∈ R4

+ : S(t) + E(t) + I(t) + R(t) ≤ Λ
µ

}
, (20)

where S(t), E(t), I(t), R(t) ≥ 0. One could observe that all model parameters have non-
negative values (i.e., σ, ν, µ, α, γ, β, Λ,≥ 0). Now, in order to show the non-negativity of the
solution of model (19), we recall the following two results, which would pave the way to
achieve our first target.

Lemma 1 ([12,13]). (Generalized Mean Value Theorem). Suppose that Θ(t) ∈ C[a1, a2] and
CDρ
∗Θ(t) ∈ C(a1, a2], where 0 < ρ ≤ 1, then we have:

Θ(t) = Θ(a1) +
1

Γ(ρ)
CDρ
∗Θ(ζ)(t− a1)

ρ, (21)

where 0 ≤ ζ ≤ t, ∀t ∈ (a1, a2].

Remark 1 ([12,13]). Suppose that Θ(t) ∈ C[0, a2] and CDρ
∗Θ(t) ∈ C(0, a2], where 0 < ρ ≤ 1.

In view of the above Lemma, one can conclude that, if CDρ
∗Θ(t) ≥ 0, ∀t ∈ (0, a2], then Θ(t) will be

a non-decreasing vector-valued function, while if CDρ
∗Θ(t) ≤ 0, ∀t ∈ (0, a2], then such a function

will be a non-increasing one.

Theorem 2. There exists a unique solution Θ(t) = [S(t), E(t), I(t), R(t)]T of system (19), subject
to the initial condition Θ(0) = [S(0), E(0), I(0), R(0)]T ∈ R4

+, and this solution will remain
in R4

+.

Proof. Tracking the necessary results deduced by the author in [13] leads us to identify, for
definite, a unique solution Θ(t) on (0, ∞) for system (19), subject to the initial condition
Θ(0). On the other hand, in order to show that the domain R4

+ is indeed the positively
invariant region, we have to observe the following assertions:

CDρ
∗S(t)|S=0 = (Λ− βS(t)I(t)− (ν + µ)S(t))|S=0 = Λ ≥ 0,

CDρ
∗E(t)|E=0 = (βS(t)I(t)− (µ + γ)E(t))|E=0 = βS(t)I(t) ≥ 0,

CDρ
∗ I(t)|I=0 = (γE(t)− (µ + σ + α)I(t))|I=0 = γE(t) ≥ 0,

CDρ
∗R(t)|R=0 = (νS(t) + αI(t)− µR(t))|R=0 = νS(t) + αI(t) ≥ 0.

(22)

This validates that the solution of system (19) is non-negative over the domain given
in (20).

4.2. Boundedness of Solution

It was reported in [14] that the boundedness of the solution is regarded as a very
important trait of this type of population model, with infectious diseases. In the epidemic
population models, the solutions must be bounded, as unbounded solutions are physically
meaningless. In what follows, we propose to show that the solution given at any specific
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time for system (19) is bounded by Λ
µ , as assumed previously in (20). For this purpose, we

should note that

CDρ
∗N =C Dρ

∗S +C Dρ
∗E +C Dρ

∗ I +C Dρ
∗R = Λ− µ(S + E + I + R)− σI,

where N is given in (12). Accordingly, we can have

CDρ
∗N = Λ− µN − σI.

Under the assumed conditions in the domain ψ reported in (20), one could observe that
σI ≥ 0, which yields the following inequality:

CDρ
∗N(t) ≤ Λ− µN(t). (23)

In order to solve the above inequality analytically with the initial conditions

N(0) = N0, (24)

we use the so-called Adomian decomposition method (or simply ADM), as it is very
suitable in this case. To see this, we first operate Iρ on both sides of the inequality (23) to
obtain

N(t) ≤ N0 + IρΛ− µIρN(t),

or
N(t) ≤ N0 +

Λ
Γ(ρ + 1)

tρ − µIρN(t), (25)

Now, in view of the ADM, the general solution of inequality (25) might be supposed as
N(t)=∑∞

k=0 Nk(t). This would immediately yield

∞

∑
k=0

Nk(t) ≤ N0 +
Λ

Γ(ρ + 1)
tρ − µIρ

(
∞

∑
k=0

Nk(t)

)
,

which consequently implies

N0(t) = N0 +
Λ

Γ(ρ + 1)
tρ,

Nk(t) ≤ −µIρ

(
∞

∑
k=0

Nk(t)

)
, k ≥ 1.

(26)

Thus, based on (26), we can obtain, for instance, N1(t) as follows:

N1(t) ≤ −µ

(
N0

Γ(ρ + 1)
tρ +

Λ
Γ(2ρ + 1)

t2ρ

)
.

In the same way, we can obtain

N2(t) ≤ µ2
(

N0

Γ(2ρ + 1)
t2ρ +

Λ
Γ(3ρ + 1)

t3ρ

)
.

If we continue in this manner, we obtain

N3(t) ≤ −µ3
(

N0

Γ(3ρ + 1)
t3ρ +

Λ
Γ(4ρ + 1)

t4ρ

)
.
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Now, due to the solution having the form N(t) = ∑∞
k=0 Nk(t), then, with the help of using

the Mittag-Leffler function, we can gain

N(t) ≤
(

Λ
µ
− N0

)
Eρ,1(−µtρ). (27)

Consequently, with the use of our assumptions in (20), we can deduce

N(t) ≤ Λ
µ
−
(

Λ
µ
− N0

)
Eρ,1(−µtρ). (28)

Therefore, the solution of system (19) is bounded by the term Λ
µ as t→ ∞, and hence this

system is well-posed over its domain ψ.

4.3. The Disease-Free Equilibrium (DFE)

The DFE is the case in which society is clear of the Mpox illness. Such a point is
P0 = (S0, E0, I0, R0), where S0 = S(0) is the initial susceptible state, E0 = E(0) is the initial
exposed state, I0 = I(0) is the initial infected state, and R0 = R(0) is the initial recovered
state. Thus, finding a solution for model (19), while considering E0 = 0 and I0 = 0, leads
us to the following DFE:

P0 = (S0, E0, I0, R0) =

(
Λ

µ + ν
, 0, 0,

νΛ
µ(µ + ν)

)
, (29)

where S0 = Λ
(µ+ν)

and R0 = νΛ
µ(µ+ν)

.

4.4. The BRN R∗0
The BRN is regarded a very significant index used to indicate the harshness of the

infectious illness. It can be employed to describe the occurrence of the pandemic and the
potential of outbreak. This index is regarded as an epidemiological measure to determine
the hazard of the infectious transmission. With the aim of computing the BRN, we use
the next-generation matrix method (NGMM), which was suggested in [15] and afterward
developed in [16]. Such a method has been broadly employed for evaluating the BRN in a
number of epidemiological models. Additionally, for the purpose of finding the BRN, we
employ the NGMM by taking into account the exposed and infected classes. Afterward,
we break down dY

dt = Q− G, in which Q = dE
dt and G = dI

dt . This, consequently, gives

dY
dt

=

[ dE
dt
dI
dt

]
, Q =

[
βS(t)I(t)

0

]
, G =

[
(µ + γ)E

−γE + (µ + σ + α)I

]
. (30)

Now, by computing the Jacobian matrices of Q and G at P0 declared in (29), we obtain

G =

[
γ + µ 0
−γ α + µ + σ

]
, Q =

[
0 βΛ

µ+ν

0 0

]
. (31)

Thus, we can evaluate R∗0 by finding the spectral radius Φ(·) of the (NGMM) F = QG−1.
In other words, we have

R∗0 = Φ(F) = Φ(QG−1) =
βγΛ

(γ + µ)(µ + ν)(α + µ + σ)
. (32)

4.5. Local Sensitivity and Elasticity Analysis of R∗0
In the field of epidemiological models, the parameters’ values have a vital role in

computing R∗0 . Under the assumption that all parameters are retained at specific values
(estimated) including the parameter $, we call this measure “local sensitivity” [17]. In such
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a measure, the formula used to evaluate the effect of changing one parameter $ on R∗0 is
written as

SR∗0
$ =

∂R∗0
∂$

. (33)

However, although this method does not consider a simultaneous changing of all
parameters, it is influenced highly by the values of $ and R∗0 . Hence, a better indicator
will be the elasticity which is defined by the change in the quantity of R∗0 , as a percentage,
due to the value change of the parameter $, as a percentage. The formula of elasticity is
written as

ΥR∗0
$ =

(
∂R∗0
∂$

)(
$

R∗0

)
≈ ∓

%∆R∗0
%∆$

, (34)

where a positive elasticity indicates an increment in R∗0 in terms of the parameter $, while a
negative elasticity indicates a decrement in R∗0 , in terms of the parameter $.

From Equation (32) of R∗0 and using the elasticity Equation (34), we investigate the
elasticity for all parameters of the model. From this point of view, we can calculate the local
elasticity of R∗0 in relation to the vaccination rate (ν) as

ΥR∗0
ν =

(
∂R∗0
∂ν

)(
ν

R∗0

)
=

βγΛ
(γ + µ)(µ + ν)2(α + µ + σ)

(
ν

R∗0

)
= − ν

µ + ν
< 0. (35)

Since the value of ν indicates the vaccination rate, then the increment of this rate leads
to the decrement of R∗0 and, thus, negatively affects the spreading of the disease. To see
this, we plot Figure 2 based on the data reported in Table 2. This figure clearly shows the
influence of the vaccination rate v on R∗0 and, hence, confirms our aforesaid claim.

Table 2. The parameters of the fractional-order Mpox model.

Parameter Value

Λ 163/10,000
β 0.5
γ 0.05
α 1/17
µ 91/10,000
ν Changes within [0, 1]
σ 0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Effects of ν on R
0

*

ν

R
e

p
ro

d
u

c
ti

v
e

 R
a

ti
o

 R
0*

Figure 2. Influence of the vaccination rate v on R∗0 .

On the other hand, the local elasticity of R∗0 , in relation to the contact transmission rate
(β), can be computed as
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ΥR∗0
β =

(
∂R∗0
∂β

)(
β

R∗0

)
=

γΛ
(γ + µ)(µ + ν)(α + µ + σ)

(
β

R∗0

)
= 1 > 0. (36)

Thus,the increment of the transmission rate β by 1% leads to a rise in R∗0 . This is the case of
spreading infectious diseases due to the increment in personal contact and communications
between individuals and due to the pathogen specifications. However, we plot Figure 3 on
the basis of the same values reported in Table 2, but here we take ν = 0.15 and allow β to
be varied from 0.045 to 0.18. Such a figure also shows the influence of the transmission rate
β on R∗0 , which completely coincides with our algebraic calculations mentioned previously.
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Figure 3. Influence of the transmission rate β on R∗0 .

In the same manner, the local elasticity of R∗0 , in relation to the transmission rate (α)
from the I state to the R state, can be computed as

ΥR∗0
α =

(
∂R∗0
∂α

)(
α

R∗0

)
=

βγΛ
(γ + µ)(µ + ν)(α + µ + σ)2

(
α

R∗0

)
= − α

α + µ + σ
< 0. (37)

The inversevalue of α, which is α−1, is the recovery period. So, the increment in α (decre-
ment in recovery period) leads to a decrement in R∗0 . This reflects the movement rate rise
from the I state to the R state, and, consequently, the individuals become immunized. This
would negatively affect the spreading of disease. Now, by taking ν = 0.15 and β = 0.05,
and by keeping the remaining parameters as they are in Table 2, except for changing α

within the interval
[

1
32 , 1

15

]
, we plot Figure 4, which shows the influence of the transmission

rate α on R∗0 as well. This also confirms our assertion discussed previously.

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
0.04

0.045

0.05

0.055

0.06

0.065

Effects of α on R
0

*

α

R
e

p
ro

d
u

c
ti

v
e

 R
a

ti
o

 R
0*

Figure 4. Influence of the transmission rate α on R∗0 .
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It should be mentioned here, that based on the data reported in Table 2, we can easily
compute the BRN as R∗0 = 0.000611, and due to this value being less than 1, then one can
deduce that the Mpox illness will not promptly spread.

5. Numerical Findings

In the following content, we intend to employ two numerical methods (the FEM and
MFEM) to obtain approximate solutions of the fractional-order Mpox system (19). In fact,
these methods represent two fractional versions of the conventional Euler method. One
can refer to [8] for the purpose of obtaining a comprehensive view about such methods.
In this context, Theorem 1 can lay the foundation to recall the FEM and MFEM, which are
considered for the following fractional problem:

CDρ
∗z(x) = g(t, z(t)), z(0) = z0, t > 0, 0 < ρ ≤ 1. (38)

To address problem (38), we assume [0, a] as the interval over which we wish to
obtain the desired numerical solution. In general, we are not capable to find z(t), which
represents the analytical solution to the problem at hand. As an alternative, we can establish
a set of points (ti, z(ti)), and then employ them in finding the approximate solution [8,18].
For simplification purposes, we divide [0, a] into k sub-intervals [ti, ti+1] with h = a/k
through ti = ih, for i = 0, 1, 2, . . . , k. Now, we assume that z(t), CDρ

∗z(t), and CD2ρ
∗ z(t) are

continuous on (0, a]. Therefore, by means of Theorem 1, one might expand z(t) about t = ti
as

z(t) = z(ti) +
(t− ti)

ρ

Γ(ρ + 1)
CDρ
∗z(ti) +

(t− ti)
2ρ

Γ(2ρ + 1)
CD2ρ
∗ z(ξ), (39)

for some ξ ∈ (ti, ti+1). Thus, if we substitute ti+1 instead of t in (39), we obtain

z(ti+1) = z(ti) +
hρ

Γ(ρ + 1)
CDρ
∗z(ti) +

(ti+1 − ti)
2ρ

Γ(2ρ + 1)
CD2ρ
∗ z(ξ), (40)

for some ξ ∈ (ti, ti+1). Now, if one chooses h = ti+1 − ti too small, then the last term of (40)
can be eliminated to obtain

z(ti+1) = z(ti) +
hρ

Γ(ρ + 1)
CDρ
∗z(ti). (41)

Actually, Equation (41) represents the primary formula of the FEM. In the same regard,
if one substitutes

CDρ
∗z(ti+1) = g

(
ti +

hρ

Γ(ρ + 1)
, z(ti) +

hρ

Γ(ρ + 1)
g(ti, z(ti))

)
instead of (41), the result of z(ti+1) will be consequently yielded. In other words, we obtain

z(ti+1) = z(ti) +
hρ

Γ(ρ + 1)
× g
(

ti +
hρ

Γ(ρ + 1)
, z(ti) +

hρ

Γ(ρ + 1)
g(ti, z(ti))

)
, (42)

for i = 0, 1, 2, . . . , k− 1. Equation (42) represents the main formula of the MFEM that would
be compared next with the FEM’s formula. In what follows, we attempt to implement only
the MFEM on the fractional-order Mpox system (19), as the FEM is similar to the MFEM.
To do so, we reconsider such a system again as

CDρ
∗S(t) = g1(t, S(t), E(t), I(t), R(t))

CDρ
∗E(t) = g2(t, S(t), E(t), I(t), R(t))

CDρ
∗ I(t) = g3(t, S(t), E(t), I(t), R(t))

CDρ
∗R(t) = g4(t, S(t), E(t), I(t), R(t)),

(43)
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where
g1(t, S(t), E(t), I(t), R(t)) = Λ− βS(t)I(t)− (ν + µ)S(t)

g2(t, S(t), E(t), I(t), R(t)) = βS(t)I(t)− (µ + γ)E(t)

g3(t, S(t), E(t), I(t), R(t)) = γE(t)− (µ + σ + α)I(t)

g4(t, S(t), E(t), I(t), R(t)) = νS(t) + αI(t)− µR(t).

(44)

More precisely, with the aim of generating (tk, S(tk)) in relation to the compartment S,
one should suppose that S(t), CDρ

∗S(t), and CD2ρ
∗ S(t) are all continuous on (0, T]. From this

perspective, if we assume that

g1(t, S(t), E(t), I(t), R(t)) = Λ− βS(t)I(t)− (ν + µ)S(t),

so that
CDρ
∗S(t) = g1(t, S(t), E(t), I(t), R(t)),

then, with the use of (42), one might obtain

S(ti+1) = S(ti) +
hρ

Γ(ρ + 1)
× g1

(
ti +

hρ

Γ(ρ + 1)
, S(ti) +

hρ

Γ(ρ + 1)
g1(ti, S(ti))

)
, (45)

for i = 0, 1, 2, . . . , k− 1.
In a similar manner, the aforesaid approach might be applied for the remaining

classes to obtain their approximate solutions. In the long run, we can infer the following
approximations of model (19):

S(ti+1) = S(ti) +
hρ

Γ(ρ + 1)
× g1

(
ti +

hρ

Γ(ρ + 1)
, S(ti) +

hρ

Γ(ρ + 1)
g1(ti, S(ti))

)
,

E(ti+1) = E(ti) +
hρ

Γ(ρ + 1)
× g2

(
ti +

hρ

Γ(ρ + 1)
, E(ti) +

hρ

Γ(ρ + 1)
g2(ti, E(ti))

)
,

I(ti+1) = I(ti) +
hρ

Γ(ρ + 1)
× g3

(
ti +

hρ

Γ(ρ + 1)
, I(ti) +

hρ

Γ(ρ + 1)
g3(ti, I(ti))

)
,

R(ti+1) = R(ti) +
hρ

Γ(ρ + 1)
× g4

(
ti +

hρ

Γ(ρ + 1)
, R(ti) +

hρ

Γ(ρ + 1)
g4(ti, R(ti))

)
,

(46)

where g1, g2, g3, g4 are already outlined in (44), i = 0, 1, 2, . . . , k− 1.
In the following content, we propose to depict certain numerical findings that demon-

strate the dynamics of the fractional-order Mpox system (19). In this connection, we
consider Table 3, which takes very close data to certain available data captured out of the
Indian community, on the basis of reference [19,20].

Table 3. Parameters of system (19) [19].

Parameter Value

S(0) 23
E(0) 6
I(0) 4
R(0) 0

Λ 0.01630
β 0.05000
γ 0.05882
α 0.03125
µ 0.00910
ν [0, 1]
σ 0.0300
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On the basis of the previous discussion, we compare, in Figures 5–8, between several
MFEMs’ solutions for the I and E of system (19), in accordance with several fractional-order
values of ρ. The primary goal of these simulations is to notice the impact of the vaccination
rate on the exposed and infected states.
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Figure 5. Exposed sizes E× 102 of system (19) for ρ = 1, 0.9, 0.8, 0.7, 0.6 through MFEM with ν = 0.
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Figure 6. Exposed sizes E× 102 of system (19) for ρ = 1, 0.9, 0.8, 0.7, 0.6 through MFEM with ν = 0.5.
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Figure 7. Infected sizes I × 102 of system (19) for ρ = 1, 0.9, 0.8, 0.7, 0.6 through MFEM with ν = 0.
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Figure 8. Infected sizes I × 102 of system (19) for ρ = 1, 0.9, 0.8, 0.7, 0.6 through MFEM with ν = 0.5.

For further description and in accordance with ρ = 0.75, we simulate, once again,
the infected and exposed sizes of system (19), as shown in Figures 9 and 10, by using the
MFEM with and without consideration of the vaccination rate ν. Accordingly, one might
obviously notice that, if the vaccination rate is raised, then the amounts of the exposed and
infected states are reduced, validating the impact of such a rate on the model at hand.
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Figure 9. Exposed sizes E× 102 of system (19) for ρ = 0.75 with and without considering ν.
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Figure 10. Infected sizes I × 102 of system (19) for ρ = 0.75 with and without considering ν.

For the same connection, it was demonstrated in [8] that the MFEM is a modified
numerical scheme for the FEM. Thus, with the aim of validating the numerical results
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generated by using the MFEM, we make some comparisons between its numerical results
and the FEM’s numerical results (see Figures 11–14).
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Figure 11. Susceptible sizes S× 102 of system (19) for ρ = 0.6, 0.7, 0.8, 0.9, 1 using FEM and MFEM.
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Figure 12. Exposed sizes E× 102 of system (19) for ρ = 0.6, 0.7, 0.8, 0.9, 1 using FEM and MFEM.
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Figure 13. Infected sizes I × 102 of system (19) for ρ = 0.6, 0.7, 0.8, 0.9, 1 using FEM and MFEM.
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Figure 14. Recovered sizes R× 102 of system (19) for ρ = 0.6, 0.7, 0.8, 0.9, 1 using FEM and MFEM.

In the same regard, for the purpose of showing the validity of the domain ψ reported
in Section 4.1 and the validity of the boundedness of solution of system (19) discussed in
Section 4.2, one can easily check, based on the data reported in Table 3, that the sum of all
classes satisfies the inequality declared in (20). In other words, one can check

S(t) + E(t) + I(t) + R(t) ≤ 1.79121. (47)

This bound is further confirmed numerically by plotting the sum of S(t)+ E(t)+ I(t)+R(t)
according to different fractional-order values, as shown in Figure 15.
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Figure 15. The sizes of S(t) + E(t) + I(t) + R(t) for ρ = 0.6, 0.8, 1 using MFEM.

6. Conclusions

In this study, a novel fractional-order version of Mpox disease has been established
in light of the Caputo operator. Accordingly, several innovative findings connecting to
the stability analysis have been addressed. In the same connection, the proposed Mpox
model has been numerically solved with the use of the FEM and MFEM. As a consequence
of concentrating on the numerical findings, we can obviously notice that the behavior of
the proposed fractional-order Mpox model is affected by performing any variation in the
value of the fractional-order. This enables us to gain more extra degrees of freedom for the
established model. In addition, we observe that the behavior of the MFEM’s solutions is
completely coincided with the FEM’s ones, confirming the validity of the computational
methods used in this work. Based on these solutions, it can be clearly concluded that, if the
rate of vaccination is raised, then the exposed and infectious sizes are reduced gradually,
confirming the influence of this rate. More precisely, if the vaccination aspect is regarded,
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then the infectious and exposed cases will vanish in the long run. This will consequently
cause Mpox illness to be under control eventually.
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