
Citation: Nishimura, N.;

Sukegawa, N.; Takano, Y.; Iwanaga, J.

Predicting Online Item-Choice

Behavior: A Shape-Restricted

Regression Approach. Algorithms

2023, 16, 415. https://doi.org/

10.3390/a16090415

Academic Editor: Frank Werner

Received: 13 July 2023

Revised: 10 August 2023

Accepted: 22 August 2023

Published: 29 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Predicting Online Item-Choice Behavior: A Shape-Restricted
Regression Approach
Naoki Nishimura 1,* , Noriyoshi Sukegawa 2 , Yuichi Takano 3 and Jiro Iwanaga 4

1 Product Development Management Office, Recruit Co., Ltd., Tokyo 100-6640, Japan
2 Faculty of Science and Engineering, Hosei University, Tokyo 184-8584, Japan; sukegawa@hosei.ac.jp
3 Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba 305-8573, Japan;

ytakano@sk.tsukuba.ac.jp
4 Erdos Inc., Yokohama 222-0033, Japan; iwanaga@erdos-the-book.com
* Correspondence: nishimura@r.recruit.co.jp

Abstract: This paper examines the relationship between user pageview (PV) histories and their item-
choice behavior on an e-commerce website. We focus on PV sequences, which represent time series
of the number of PVs for each user–item pair. We propose a shape-restricted optimization model
that accurately estimates item-choice probabilities for all possible PV sequences. This model imposes
monotonicity constraints on item-choice probabilities by exploiting partial orders for PV sequences,
according to the recency and frequency of a user’s previous PVs. To improve the computational
efficiency of our optimization model, we devise efficient algorithms for eliminating all redundant
constraints according to the transitivity of the partial orders. Experimental results using real-world
clickstream data demonstrate that our method achieves higher prediction performance than that of a
state-of-the-art optimization model and common machine learning methods.

Keywords: e-commerce; item choice; partially ordered set; optimization

1. Introduction

A growing number of companies are now operating e-commerce websites that allow
users to browse and purchase a variety of items [1]. Within this context, there is great
potential value in analyzing users’ item-choice behavior from clickstream data, which is
a record of user pageview (PV) histories on an e-commerce website. By grasping users’
purchase intention as revealed by PV histories, we can lead users to target pages or design
special sales promotions, providing companies with opportunities to build profitable
relationships with users [2,3]. Companies can also use clickstream data to improve the
quality of operational forecasting and inventory management [4]. Meanwhile, users often
find it difficult to select an appropriate item from among the plethora of choices presented
by e-commerce websites [5]. Analyzing item-choice behavior can improve the performance
of recommendation systems that help users discover items of interest [6]. For these reasons,
a number of prior studies have investigated clickstream data from various perspectives [7].
In this study, we focused on closely examining the relationship between PV histories and
item-choice behavior on an e-commerce website.

It has been demonstrated that the recency and frequency of a user’s past purchases are
critical indicators for purchase prediction [8,9] and sequential pattern mining [10]. Accord-
ingly, Iwanaga et al. [11] developed a shape-restricted optimization model for estimating
item-choice probabilities from the recency and frequency of a user’s previous PVs. Their
method creates a two-dimensional probability table consisting of item-choice probabilities
for all recency–frequency combinations in a user’s previous PVs. Nishimura et al. [12]
employed latent-class modeling to integrate item heterogeneity into a two-dimensional
probability table. These prior studies demonstrated experimentally that higher prediction
performance was achieved with the two-dimensional probability table than with common
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machine learning methods, namely, logistic regression, kernel-based support vector ma-
chines, artificial neural networks, and random forests. Notably, however, reducing PV
histories to two dimensions (recency and frequency) can markedly decrease the amount of
information contained in PV histories reflecting item-choice behavior.

This study focused on PV sequences, which represent time series of the number of
PVs for each user–item pair. In contrast to the two-dimensional probability table, PV
sequences allow us to retain detailed information contained in the PV history. However,
the huge number of possible PV sequences makes it extremely difficult to accurately
estimate item-choice probabilities for all of them. To overcome this difficulty, we propose
a shape-restricted optimization model that imposes monotonicity constraints on item-
choice probabilities based on a partially ordered set (poset) for PV sequences. While this
optimization model contains a huge number of constraints, redundant constraints can be
eliminated according to the transitivity of the partial order. To accomplish this, we compute
a transitive reduction [13] of a directed graph representing the poset. We demonstrate the
effectiveness of our method through experiments using real-world clickstream data.

The main contributions of this paper are as follows:

• We propose a shape-restricted optimization model for estimating item-choice prob-
abilities from a user’s previous PV sequence. This PV sequence model exploits the
monotonicity constraints to precisely estimate item-choice probabilities.

• We derive two types of PV sequence posets according to the recency and frequency
of a user’s previous PVs. Experimental results show that the monotonicity con-
straints based on these posets greatly enhances the prediction performance of our PV
sequence model.

• We devise constructive algorithms for transitive reduction specific to these posets.
The time complexity of our algorithms is much smaller than that of general-purpose
algorithms. Experimental results reveal that transitive reduction improves efficiency
in terms of both the computation time and memory usage of our PV sequence model.

• We verify experimentally that higher prediction performance is achieved with our
method than with the two-dimensional probability table and common machine
learning methods, namely, logistic regression, artificial neural networks, and ran-
dom forests.

The remainder of this paper is organized as follows. Section 2 provides a brief review
of related work. Section 3 describes the two-dimensional probability table [11], and Sec-
tion 4 presents our PV sequence model. Section 5 describes our constructive algorithms for
transitive reduction. Section 6 evaluates the effectiveness of our method based on experi-
mental results. Section 7 concludes with a brief summary of this work and a discussion of
future research directions.

2. Related Work

This section briefly surveys methods for predicting online user behavior and discusses
some related work on shape-restricted regression.

2.1. Prediction of Online User Behavior

A number of prior studies have aimed at predicting users’ purchase behavior on
e-commerce websites [14]. Mainstream research has applied stochastic or statistical models
for predicting purchase sessions [9,15–20], but these approaches do not consider which
items users choose.

Various machine learning methods have been used to predict online item-choice
behavior, including logistic regression [21,22], association rule mining [23], support vector
machines [22,24], ensemble learning methods [25–29], and artificial neural networks [30–32].
Tailored statistical models have also been proposed. For instance, Moe [33] devised a two-
stage multinomial logit model that separates the decision-making process into item views
and purchase decisions. Yao et al. [34] proposed a joint framework consisting of user-level
factor estimation and item-level factor aggregation based on the buyer decision process.
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Borges and Levener [35] used Markov chain models to estimate the probability of the next
link choice of a user.

These prior studies effectively utilized clickstream data in various prediction methods
and showed that the consideration of time-evolving user behavior is crucial for the precise
prediction of online item-choice behavior. We therefore focused on user PV sequences to
estimate item-choice probabilities on e-commerce websites.

On the other hand, various predictive features have been used for analyzing online
user behavior; these include user demographics, item characteristics, transaction times-
tamps, accessing devices, touchpoints, and user locations [14]. Indeed, Nishimura et al. [12]
demonstrated that the prediction performance can be improved by combining PV his-
tories with item categories. To further upgrade the prediction performance, we aim at
exploiting the detailed information contained in the PV history rather than developing
a comprehensive model that integrates various predictive features. If successful, we can
improve the prediction performance of comprehensive models through ensemble learning.
Additionally, user PV histories are often easily accessible in practical situations, whereas
detailed personal information can be unavailable due to a privacy issue.

Recently, deep learning methods have been actively studied to predict online user
behavior especially in recommender systems; these include the multilayer perceptron, the
autoencorder, convolutional/recurrent neural networks, and neural attention models [36].
In particular, graph neural networks [37,38] that operate on graph data have been used
effectively because most of the information about users’ item-choice behavior has a graph
structure. Sophisticated methods based on graph neural networks have been proposed for
purchase prediction [39–42], and these can be considered as a top line on the prediction
performance. In contrast, our method has a different advantage from such deep learning
methods; it is a simple interpretable nonparametric model specialized in handling PV
sequences based on properties indicated by the recency and frequency. Moreover, we
evaluated the validity of our method by comparison with machine learning methods that
have commonly been used in prior studies.

2.2. Shape-Restricted Regression

In many practical situations, prior information is known about the relationship be-
tween explanatory and response variables. For instance, utility functions can be assumed to
be increasing and concave according to economic theory [43], and option pricing functions
to be monotone and convex according to finance theory [44]. Shape-restricted regression
fits a nonparametric function to a set of given observations under shape restrictions such as
monotonicity, convexity, concavity, or unimodality [45–48].

Isotonic regression is the most common method for shape-restricted regression. In
general, isotonic regression is the problem of estimating a real-valued monotone (non-
decreasing or non-increasing) function with respect to a given partial order of observa-
tions [49]. Some regularization techniques [50,51] and estimation algorithms [49,52,53]
have been proposed for isotonic regression.

One of the greatest advantages of shape-restricted regression is that it mitigates over-
fitting, thereby improving the prediction performance of regression models [54]. To utilize
this advantage, Iwanaga et al. [11] devised a shape-restricted optimization model for esti-
mating item-choice probabilities on e-commerce websites. Along similar lines, we propose
a shape-restricted optimization model based on order relations of PV sequences to improve
prediction performance.

3. Two-Dimensional Probability Table

This section briefly reviews the two-dimensional probability table proposed by
Iwanaga et al. [11].
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3.1. Empirical Probability Table

Table 1 gives an example of a PV history for six user–item pairs. For instance, user u1
viewed the page for item i2 once on 1 and 3 April, respectively. We focus on user choices
(e.g., revisit and purchase) on 4 April, which we call the base date. For instance, user u1
chose item i4 rather than item i2 on the base date. We suppose for each user–item pair
that recency and frequency are characterized by the last PV day and the total number
of PVs, respectively. As shown in the table, the PV history can be summarized by the
recency–frequency combination (r, f ) ∈ R× F, where R and F are index sets representing
recency and frequency, respectively.

Table 1. Pageview history of six user–item pairs.

#PVs Choice

User Item 1 April 2 April 3 April 4 April (r, f ) (v1, v2, v3)

u1 i2 1 0 1 0 (3, 2) (1, 0, 1)
u1 i4 0 1 0 1 (2, 1) (0, 1, 0)
u2 i1 3 0 0 0 (1, 3) (0, 0, 3)
u2 i3 0 0 3 1 (3, 3) (3, 0, 0)
u2 i4 1 1 1 0 (3, 3) (1, 1, 1)
u3 i2 2 0 1 0 (3, 3) (1, 0, 2)

Let nr f be the number of user–item pairs having (r, f ) ∈ R× F, and set qr f be the
number of choices occurring by user–item pairs that have (r, f ) ∈ R× F on the base date.
In the case of Table 1, the empirical probability table is calculated as(

x̂r f :=
qr f

nr f

)
(r, f )∈R×F

=

 0/0 0/0 0/1
1/1 0/0 0/0
0/0 0/1 1/3

 ≈
 0.00 0.00 0.00

1.00 0.00 0.00
0.00 0.00 0.33

, (1)

where, for reasons of expediency, x̂r f := 0 for (r, f ) ∈ R× F with nr f = 0.

3.2. Two-Dimensional Monotonicity Model

It is reasonable to assume that the recency and frequency of user–item pairs are
positively associated with user item-choice probabilities. To estimate user item-choice
probabilities xr f for all recency–frequency combinations (r, f ) ∈ R× F, the two-dimensional
monotonicity model [11] minimizes the weighted sum of squared errors under monotonicity
constraints with respect to recency and frequency.

minimize
(xr f )(r, f )∈R×F

∑
(r, f )∈R×F

nr f (xr f − x̂r f )
2 (2)

subject to xr f ≤ xr+1, f ((r, f ) ∈ R× F), (3)

xr f ≤ xr, f+1 ((r, f ) ∈ R× F), (4)

0 ≤ xr f ≤ 1 ((r, f ) ∈ R× F). (5)

Note, however, that PV histories are often indistinguishable according to recency
and frequency. A typical example is the set of user–item pairs (u2, i3), (u2, i4), and (u3, i2)
in Table 1; although their PV histories are actually different, they have the same value
(r, f ) = (3, 3) for recency–frequency combinations. As described in the next section, we
exploit the PV sequence to distinguish between such PV histories.

4. PV Sequence Model

This section presents our shape-restricted optimization model for estimating item-
choice probabilities from a user’s previous PV sequence.
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4.1. PV Sequence

The PV sequence for each user–item pair represents a time series of the number of PVs,
and is written as

v := (v1, v2, . . . , vn),

where vj is the number of PVs j periods earlier for j = 1, 2, . . . , n (see Table 1). Note that
sequence terms are arranged in reverse chronological order; thus, vj moves into the past as
the index j increases.

Throughout the paper, we express sets of consecutive integers as

[m1, m2] := {m1, m1 + 1, . . . , m2} ⊆ Z,

where [m1, m2] = ∅ when m1 > m2. The set of possible PV sequences is defined as

Γ := [0, m]n = {0, 1, . . . , m}n,

where m is the maximum number of PVs in each period, and n is the number of
periods considered.

Our objective is to estimate item-choice probabilities xv for all PV sequences v ∈ Γ.
However, the huge number of PV sequences makes it extremely difficult to accurately
estimate such probabilities. In the case of (n, m) = (|R|, |F|) = (5, 6), for instance, the
number of different PV sequences is (m + 1)n = 16,807, whereas the number of recency–
frequency combinations is only |R| · |F| = 30. To avoid this difficulty, we effectively utilize
monotonicity constraints on item-choice probabilities as in the optimization model (2)–(5).
In the next section, we introduce three operations underlying the development of the
monotonicity constraints.

4.2. Operations Based on Recency and Frequency

From the perspective of frequency, it is reasonable to assume that item-choice proba-
bility increases as the number of PVs in a particular period increases. To formulate this, we
define the following operation:

Definition 1 (Up). On the domain

DU := {(v, s) ∈ Γ× [1, n] | vs ≤ m− 1},

the function Up : DU → Γ is defined as

((. . . , vs, . . .), s) 7→ (. . . , vs + 1, . . .).

For instance, we have Up((0, 1, 1), 1) = (1, 1, 1), and Up((1, 1, 1), 2) = (1, 2, 1). Since
this operation increases PV frequencies, the monotonicity constraint
x(0,1,1) ≤ x(1,1,1) ≤ x(1,2,1) should be satisfied by item-choice probabilities.

From the perspective of recency, we assume that more-recent PVs have a larger
effect on increasing item-choice probability. To formulate this, we consider the following
operation for moving one PV from an old period to a new period:

Definition 2 (Move). On the domain

DM := {(v, s, t) ∈ Γ× [1, n]× [1, n] | vs ≤ m− 1, vt ≥ 1, s < t},

the function Move : DM → Γ is defined as

((. . . , vs, . . . , vt, . . .), s, t) 7→ (. . . , vs + 1, . . . , vt − 1, . . .).
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For instance, we have Move((1, 1, 1), 2, 3) = (1, 2, 0), and Move((1, 2, 0), 1, 2) = (2, 1, 0).
Because this operation increases the number of recent PVs, item-choice probabilities should
satisfy the monotonicity constraint x(1,1,1) ≤ x(1,2,0) ≤ x(2,1,0).

The PV sequence v = (1, 1, 1) represents a user’s continued interest in a certain item
over three periods. In contrast, the PV sequence v = (1, 2, 0) implies that a user’s interest
decreased over the two most-recent periods. In this sense, the monotonicity constraint
x(1,1,1) ≤ x(1,2,0) may not be validated. Accordingly, we define the following alternative
operation, which exchanges numbers of PVs to increase the number of recent PVs:

Definition 3 (Swap). On the domain

DS := {(v, s, t) ∈ Γ× [1, n]× [1, n] | vs < vt, s < t},

the function Swap : DS → Γ is defined as

((. . . , vs, . . . , vt, . . .), s, t) 7→ (. . . , vt, . . . , vs, . . .).

We thus have Swap((1, 0, 2), 2, 3) = (1, 2, 0) because v2 < v3, and
Swap((1, 2, 0), 1, 2) = (2, 1, 0) because v1 < v2. Since this operation increases the num-
ber of recent PVs, item-choice probabilities should satisfy the monotonicity constraint
x(1,0,2) ≤ x(1,2,0) ≤ x(2,1,0). Note that the monotonicity constraint x(1,1,1) ≤ x(1,2,0) is not
implied by this operation.

4.3. Partially Ordered Sets

Let U ⊆ Γ be a subset of PV sequences. The image of each operation is then defined as

Up(U) = {Up(u, s) | u ∈ U, (u, s) ∈ DU},
Move(U) = {Move(u, s, t) | u ∈ U, (u, s, t) ∈ DM},
Swap(U) = {Swap(u, s, t) | u ∈ U, (u, s, t) ∈ DS}.

We define UM(U) := Up(U) ∪ Move(U) for U ⊆ Γ. The following definition states
that the binary relation u ≺UM v holds when u can be transformed into v by the repeated
application of Up and Move:

Definition 4 (�UM). Suppose u, v ∈ Γ. We write u ≺UM v if and only if there exists k ≥ 1
such that

v ∈ UMk({u}) = UM ◦ · · · ◦ UM ◦ UM︸ ︷︷ ︸
k compositions

({u}).

We also write u �UM v if u ≺UM v or u = v.

Similarly, we define US(U) := Up(U) ∪ Swap(U) for U ⊆ Γ. Then, the binary relation
u ≺US v holds when u can be transformed into v by the repeated application of Up and
Swap.

Definition 5 (�US). Suppose u, v ∈ Γ. We write u ≺US v if and only if there exists k ≥ 1,
such that

v ∈ USk({u}) = US ◦ · · · ◦ US ◦ US︸ ︷︷ ︸
k compositions

({u}).

We also write u �US v if u ≺US v or u = v.

To prove properties of these binary relations, we can use the lexicographic order, which
is a well-known linear order [55]:
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Definition 6 (�lex). Suppose u, v ∈ Γ. We write u ≺lex v if and only if there exists s ∈ [1, n],
such that us < vs and uj = vj for j ∈ [1, s− 1]. We also write u �lex v if u ≺lex v or u = v.

Each application of Up, Move, and Swap makes a PV sequence greater in the lexico-
graphic order. Therefore, we can obtain the following lemma:

Lemma 1. Suppose u, v ∈ Γ. If u �UM v or u �US v, then u �lex v.

The following theorem states that a partial order of PV sequences is derived by
operations Up and Move.

Theorem 1. The pair (Γ,�UM) is a poset.

Proof. From Definition 4, the relation �UM is reflexive and transitive. Suppose u �UM v and
v �UM u. It follows from Lemma 1 that u �lex v and v �lex u. Since the relation �lex is
antisymmetric, we have u = v, thus proving that the relation�UM is also antisymmetric.

We can similarly prove the following theorem for operations Up and Swap:

Theorem 2. The pair (Γ,�US) is a poset.

4.4. Shape-Restricted Optimization Model

Let nv be the number of user–item pairs that have the PV sequence v ∈ Γ. Moreover,
qv is the number of choices arising from user–item pairs having v ∈ Γ on the base date.
Similarly to Equation (1), we can calculate empirical item-choice probabilities as

x̂v :=
qv

nv
(v ∈ Γ). (6)

Our shape-restricted optimization model minimizes the weighted sum of squared
errors subject to the monotonicity constraint:

minimize
(xv)v∈Γ

∑
v∈Γ

nv(xv − x̂v)
2 (7)

subject to xu ≤ xv (u, v ∈ Γ with u ≺ v), (8)

0 ≤ xv ≤ 1 (v ∈ Γ), (9)

where u ≺ v in Equation (8) is defined by one of the partial orders ≺UM or ≺US.
The monotonicity constraint (8) enhances the estimation accuracy of item-choice

probabilities. In addition, our shape-restricted optimization model can be used in a post-
processing step to improve the prediction performance of other machine learning meth-
ods. Specifically, we first compute item-choice probabilities using a machine learning
method and then substitute the computed values into (x̂v)v∈Γ to solve the optimization
model (7)–(9). Consequently, we can obtain item-choice probabilities corrected by the
monotonicity constraint (8). Section 6.4 illustrates the usefulness of this approach.

However, since |Γ| = (m+ 1)n, it follows that the number of constraints in Equation (8)
is O((m + 1)2n), which can be extremely large. When (n, m) = (5, 6), for instance, we have
(m + 1)2n = 282,475,249. The next section describes how we mitigate this difficulty by
removing redundant constraints in Equation (8).

5. Algorithms for Transitive Reduction

This section describes our constructive algorithms for transitive reduction to decrease
the problem size in our shape-restricted optimization model.
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5.1. Transitive Reduction

A poset (Γ,�) can be represented by a directed graph (Γ, E), where Γ and E ⊆ Γ× Γ
are sets of nodes and directed edges, respectively. Each directed edge (u, v) ∈ E in this
graph corresponds to the order relation u ≺ v, so the number of directed edges coincides
with the number of constraints in Equation (8).

Figures 1 and 2 show directed graph representations of posets (Γ,�UM) and (Γ,�US),
respectively. Each edge in Figures 1a and 2a corresponds to one of the operations Up, Move,
or Swap. Edge (u, v) is red if v ∈ Up({u}) and black if v ∈ Move({u}) or v ∈ Swap({u}).
The directed graphs in Figures 1a and 2a can be easily created.

Suppose there are three edges (u, w), (w, v), (u, v) ∈ E. In this case, edge (u, v) is
implied by the other edges due to the transitivity of partial order

〈u ≺ w, w ≺ v〉 =⇒ u ≺ v,

or, equivalently,
〈xu ≤ xw, xw ≤ xv〉 =⇒ xu ≤ xv.

As a result, edge (u, v) is redundant and can be removed from the directed graph.
A transitive reduction, also known as a Hasse diagram, of a directed graph (Γ, E) is its

subgraph (Γ, E∗) such that all redundant edges are removed using the transitivity of partial
order [13]. Figures 1b and 2b show transitive reductions of the directed graphs shown in
Figures 1a and 2a, respectively. By computing transitive reductions, the number of edges is
reduced from 90 to 42 in Figure 1, and from 81 to 46 in Figure 2. This transitive reduction is
known to be unique [13].

(0,0,0)

(0,0,1)

(0,1,0)

(1,0,0)

(0,0,2)

(0,1,1) (1,0,1)

(0,1,2)

(1,0,2)

(0,2,0)

(1,1,0)

(0,2,1)

(1,1,1)

(0,2,2)

(1,1,2)

(1,2,0)

(1,2,1)

(1,2,2)

(2,0,0)

(2,0,1)

(2,0,2)

(2,1,0)

(2,1,1)

(2,1,2)

(2,2,0)

(2,2,1)

(2,2,2)

(a) Operation-based graph

(0,0,0) (0,0,1)

(0,0,2)

(0,1,0)

(0,1,1)

(1,0,0)

(0,1,2)

(0,2,0)

(1,0,1)

(0,2,1)

(1,0,2)

(1,1,0)

(0,2,2)

(1,1,1)

(1,1,2)

(2,0,0)

(1,2,0)

(2,0,1)

(1,2,1)

(2,0,2)

(2,1,0)

(1,2,2)

(2,1,1)

(2,1,2)

(2,2,0)

(2,2,1) (2,2,2)

(b) Transitive reduction

Figure 1. Directed graph representations of the poset (Γ,�UM) with (n, m) = (3, 2).
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(0,1,2)

(0,2,0)

(1,0,2)

(2,0,0)

(1,1,0)
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(1,1,1)

(0,2,2)

(1,1,2)

(2,1,0)

(1,2,0)

(1,2,1)

(2,0,1)

(1,2,2)

(2,0,2)

(2,2,0)

(2,1,1)

(2,1,2)

(2,2,1)

(2,2,2)

(a) Operation-based graph

(0,0,0) (0,0,1)

(0,0,2)

(0,1,0)

(0,1,2)(0,2,0)

(0,1,1)

(1,0,0) (1,0,1)

(0,2,1)

(1,0,2)
(2,0,0)

(0,2,2)

(1,2,0)

(2,0,1)

(1,2,2)

(2,0,2)

(1,1,0) (1,1,2)

(1,1,1)

(1,2,1)

(2,1,0) (2,1,1)

(2,1,2)(2,2,0)

(2,2,1) (2,2,2)

(b) Transitive reduction

Figure 2. Directed graph representations of the poset (Γ,�US) with (n, m) = (3, 2).

5.2. General-Purpose Algorithms

The transitive reduction (Γ, E∗) is characterized by the following lemma [55]:

Lemma 2. Suppose (u, v) ∈ Γ× Γ. Then, (u, v) ∈ E∗ holds if and only if both of the following
conditions are fulfilled:

(C1) u ≺ v, and
(C2) if w ∈ Γ satisfies u � w � v, then w ∈ {u, v}.

The basic strategy in general-purpose algorithms for transitive reduction involves the
following steps:

Step 1: An exhaustive directed graph (Γ, E) is generated from a given poset (Γ,�).
Step 2: The transitive reduction (Γ, E∗) is computed from the directed graph (Γ, E) using

Lemma 2.

Various algorithms for speeding up the computation in Step 2 have been proposed.
Recall that |Γ| = (m + 1)n in our situation. Warshall’s algorithm [56] has time complexity
O((m + 1)3n) for completing Step 2 [55]. By using a sophisticated algorithm for fast matrix
multiplication, this time complexity can be reduced to O((m + 1)2.3729n) [57].

However, such general-purpose algorithms are clearly inefficient, especially when n is
very large, and Step 1 requires a huge number of computations. To resolve this difficulty,
we devised specialized algorithms for directly constructing a transitive reduction.

5.3. Constructive Algorithms

Let (Γ, E∗UM) be a transitive reduction of a directed graph (Γ, EUM) representing the poset
(Γ,�UM). Then, the transitive reduction can be characterized by the following theorem:
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Theorem 3. Suppose (u, v) ∈ Γ × Γ. Then, (u, v) ∈ E∗UM holds if and only if any one of the
following conditions is fulfilled:

(UM1) v = Up(u, n), or
(UM2) there exists s ∈ [1, n] such that v = Move(u, s, s + 1).

Proof. See Appendix A.1.

Theorem 3 provides a constructive algorithm that directly computes the transitive
reduction (Γ, E∗UM) without generating an exhaustive directed graph (Γ, E). Our algo-
rithm is based on the breadth-first search [58]. Specifically, we start with a node list
L = {(0, 0, . . . , 0)} ⊆ Γ. At each iteration of the algorithm, we choose u ∈ L, enumerate
v ∈ Γ such that (u, v) ∈ E∗UM, and add these nodes to L.

Table 2 shows this enumeration process for u = (0, 2, 1) with (n, m) = (3, 2). The
operations Up and Move generate v ∈ {(1, 2, 1), (0, 2, 2), (1, 1, 1), (1, 2, 0)}, which amounts
to searching edges (u, v) in Figure 1a. We next check whether each v satisfies conditions
(UM1) or (UM2) in Theorem 3. As shown in Table 2, we choose v ∈ {(0, 2, 2), (1, 1, 1)} and
add them to list L; this amounts to enumerating edges (u, v) in Figure 1b.

Table 2. Process of enumerating v ∈ Γ such that (u, v) ∈ E∗UM.

u Operation v (UM1) (UM2)

(0, 2, 1)

Up(u, 1) (1, 2, 1) unsatisfied —
Up(u, 3) (0, 2, 2) satisfied —

Move(u, 1, 2) (1, 1, 1) — satisfied
Move(u, 1, 3) (1, 2, 0) — unsatisfied

Appendix B.1 presents a pseudocode for our constructive algorithm (Algorithm A1).
Recalling the time complexity analysis of the breadth-first search [58], one readily sees
that the time complexity of Algorithm A1 is O(n(m + 1)n), which is much smaller than
O((m + 1)2.3729n), as achieved by the general-purpose algorithm [57], especially when n is
very large.

Next, we focus on the transitive reduction (Γ, E∗US) of a directed graph (Γ, EUS) rep-
resenting the poset (Γ,�US). The transitive reduction can then be characterized by the
following theorem:

Theorem 4. Suppose (u, v) ∈ Γ × Γ. Then, (u, v) ∈ E∗US holds if and only if any one of the
following conditions is fulfilled:

(US1) there exists s ∈ [1, n] such that v = Up(u, s) and uj 6∈ {us, us + 1} for all j ∈
[s + 1, n], or
(US2) there exists (s, t) ∈ [1, n]× [1, n] such that v = Swap(u, s, t) and uj 6∈ [us, ut] for all
j ∈ [s + 1, t− 1].

Proof. See Appendix A.2.

Theorem 4 also gives a constructive algorithm for computing the transitive reduction
(Γ, E∗US). Let us again consider u = (0, 2, 1) as an example with (n, m) = (3, 2). As shown
in Table 3, operations Up and Swap generate v ∈ {(1, 2, 1), (0, 2, 2), (2, 0, 1), (1, 2, 0)}, and
we choose v ∈ {(0, 2, 2), (2, 0, 1), (1, 2, 0)} (see also Figure 2a,b).

Appendix B.2 presents the pseudocode for our constructive algorithm (Algorithm A2).
Its time complexity is estimated to be O(n2(m + 1)n), which is larger than that of Algo-
rithm A1 but much smaller than that of the general-purpose algorithm [57], especially
when n is very large.
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Table 3. Process of enumerating v ∈ Γ such that (u, v) ∈ E∗US.

u Operation v (US1) (US2)

(0, 2, 1)

Up(u, 1) (1, 2, 1) unsatisfied —
Up(u, 3) (0, 2, 2) satisfied —

Swap(u, 1, 2) (2, 0, 1) — satisfied
Swap(u, 1, 3) (1, 2, 0) — satisfied

6. Experiments

The experimental results reported in this section evaluate the effectiveness of our
method for estimating item-choice probabilities. We consider the task of predicting the
items that a particular user will view again from those which the user has viewed in the
past. The performance evaluation methodology is explained in detail in Section 6.2.

We used real-world clickstream data collected from a Chinese e-commerce website,
Tmall (https://tianchi.aliyun.com/dataset/, accessed on 21 August 2023). We used a
dataset (https://www.dropbox.com/sh/dbzmtq4zhzbj5o9/AACldzQWbw-igKjcPTBI6
ZPAa?dl=0, accessed on 21 August 2023) preprocessed by Ludewig and Jannach [59]. Each
record corresponds to one PV and contains information such as user ID, item ID, and
a timestamp. The dataset includes 28,316,459 unique user–item pairs composed from
422,282 users and 624,221 items.

6.1. Methods for Comparison

We compared the performance of the methods listed in Table 4. All computations were
performed on an Apple MacBook Pro computer (Apple Inc., Cupertino, CA, USA) with an
Intel Core i7-5557U CPU (3.10 GHz) (Intel Corporation, Santa Clara, CA, USA) and 16 GB
of memory.

Table 4. Methods for comparison.

Abbreviation Method

2dimEmp Empirical probability table (1) [11]
2dimMono Two-dimensional monotonicity model (2)–(5) [11]

SeqEmp Empirical probabilities (6) for PV sequences
SeqUM Our PV sequence model (7)–(9) using (Γ,�UM)
SeqUS Our PV sequence model (7)–(9) using (Γ,�US)

LR L2-regularized logistic regression

ANN Artificial neural networks for regression using
one fully-connected hidden layer of 100 units

RF Random forest of regression trees

The optimization models (2)–(5) and (7)–(9) were solved using OSQP (https://osqp.
org/docs/index.html, accessed on 21 August 2023) [60], a numerical optimization package
for solving convex quadratic optimization problems. As in Table 1, daily-PV sequences
were calculated for each user–item pair, where m is the maximum number of daily PVs and
n is the number of terms (past days) in the PV sequence. In this process, all PVs from more
than n days earlier were added to the number of PVs n days earlier, and numbers of daily
PVs exceeding m were rounded down to m. Similarly, the recency–frequency combinations
(r, f ) ∈ R× F were calculated using daily PVs as in Table 1, where (|R|, |F|) = (n, m).

Other machine learning methods (LR, ANN, and RF) were respectively implemented
using the LogisticRegressionCV, MLPRegressor, and RandomForestRegressor functions
in scikit-learn, a Python library of machine learning tools. We tuned the following hyper-
parameters through three-fold cross-validation according to the parameter settings in a
benchmark study [61]: Activation functions, solvers, and learning rate schedules for ANN;
and the number of trees, the minimum weighted fraction at a leaf node, and the number of
features considered at each split for RF. We used default values for the other hyperparame-
ters. These machine learning methods employed the PV sequence (v1, v2, . . . , vn) as n input

https://tianchi.aliyun.com/dataset/
https://www.dropbox.com/sh/dbzmtq4zhzbj5o9/AACldzQWbw-igKjcPTBI6ZPAa?dl=0
https://www.dropbox.com/sh/dbzmtq4zhzbj5o9/AACldzQWbw-igKjcPTBI6ZPAa?dl=0
https://osqp.org/docs/index.html
https://osqp.org/docs/index.html
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variables for computing item-choice probabilities. We standardized each input variable
and performed undersampling to improve prediction performance.

6.2. Performance Evaluation Methodology

There are five pairs of training and validation sets of clickstream data in the prepro-
cessed dataset [59]. As shown in Table 5, each training period is 90 days, and the next day is
the validation period. The first four pairs of training and validation sets, which we call the
training set, were used for model estimation, and the fifth pair was used for performance
evaluation. To examine how sample size affects prediction performance, we prepared
small-sample training sets by randomly choosing user–item pairs from the original training
set. Here, the sampling rates are 0.1%, 1%, and 10%, and the original training set is referred
to as the full sample. Note that the results were averaged over 10 trials for the sampled
training sets.

Table 5. Training and validation periods.

Training

Pair ID Start End Validation

1 21 May 2015 18 August 2015 19 August 2015
2 31 May 2015 28 August 2015 29 August 2015
3 10 June 2015 7 September 2015 8 September 2015
4 20 June 2015 17 September 2015 18 September 2015
5 30 June 2015 27 September 2015 28 September 2015

We considered the top-N selection task to evaluate prediction performance. Specifically,
we focused on items that were viewed by a particular user during a training period. From
among these items, we selected Isel, a set of top-N items for the user according to estimated
item-choice probabilities. The most-recently viewed items were selected when two or
more items had the same choice probability. Let Iview be the set of items viewed by the
user in the validation period. Then, the F1 score is defined by the harmonic average of
Recall := |Isel ∩ Iview|/|Iview| and Precision := |Isel ∩ Iview|/|Isel| as

F1 score :=
2 · Recall · Precision
Recall + Precision

.

In the following sections, we examine F1 scores averaged over all users. The percentage
of user–item pairs leading to item choices is only 0.16%.

6.3. Effects of the Transitive Reduction

We generated constraints in Equation (8) based on the following three directed graphs:

Case 1 (Enumeration): All edges (u, v) satisfying u ≺ v were enumerated.

Case 2 (Operation): Edges corresponding to operations Up, Move, and Swap were gener-
ated as in Figures 1a and 2a.

Case 3 (Reduction): Transitive reduction was computed using our algorithms as in
Figures 1b and 2b.

Table 6 shows the problem size of our PV sequence model (7)–(9) for some (n, m)
settings of the PV sequence. Here, the “#Vars” column shows the number of decision
variables (i.e., (m + 1)n), and the subsequent columns show the number of constraints in
Equation (8) for the three cases mentioned above.

The number of constraints grew rapidly as n and m increased in the enumeration case.
In contrast, the number of constraints was always kept smallest by the transitive reduction
among the three cases. When (n, m) = (5, 6), for instance, transitive reductions reduced
the number of constraints in the operation case to 63,798/195,510 ≈ 32.6% for SeqUM and
85,272/144,060 ≈ 59.2% for SeqUS.
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Table 6. Problem size of our PV sequence model (7)–(9).

#Cons in Equation (8)

Enumeration Operation Reduction

n m #Vars SeqUM SeqUS SeqUM SeqUS SeqUM SeqUS

5 1 32 430 430 160 160 48 48
5 2 243 21,383 17,945 1890 1620 594 634
5 3 1024 346,374 255,260 9600 7680 3072 3546
5 4 3125 3,045,422 2,038,236 32,500 25,000 10,500 12,898
5 5 7776 18,136,645 11,282,058 86,400 64,800 28,080 36,174
5 6 16,807 82,390,140 48,407,475 195,510 144,060 63,798 85,272

1 6 7 21 21 6 6 6 6
2 6 49 1001 861 120 105 78 93
3 6 343 42,903 32,067 1638 1323 798 1018
4 6 2401 1,860,622 1,224,030 18,816 14,406 7350 9675
5 6 16,807 82,390,140 48,407,475 195,510 144,060 63,798 85,272

The number of constraints was larger for SeqUM than for SeqUS in the enumeration
and operation cases. In contrast, the number of constraints was often smaller for SeqUM
than for SeqUS in the reduction case. Thus, the transitive reduction had a greater impact
on SeqUM than on SeqUS in terms of the number of constraints.

Table 7 lists the computation times required for solving the optimization
problem (7)–(9) for some (n, m) settings of the PV sequence. Here, “OM” indicates that
computation was aborted due to a lack of memory. The enumeration case often caused
out-of-memory errors because of the huge number of constraints (see Table 6), but the
operation and reduction cases completed the computations for all (n, m) settings for the
PV sequence. Moreover, the transitive reduction made computations faster. A notable
example is SeqUM with (n, m) = (5, 6), for which the computation time in the reduction
case (86.02 s) was only one-tenth of that in the operation case (906.76 s). These results
demonstrate that transitive reduction improves efficiency in terms of both computation
time and memory usage.

Table 7. Computation times for our PV sequence model (7)–(9).

Time [s]

Enumeration Operation Reduction

n m #Vars SeqUM SeqUS SeqUM SeqUS SeqUM SeqUS

5 1 32 0.00 0.01 0.00 0.00 0.00 0.00
5 2 243 2.32 1.66 0.09 0.07 0.03 0.02
5 3 1024 558.22 64.35 3.41 0.71 0.13 0.26
5 4 3125 OM OM 24.07 13.86 1.72 5.80
5 5 7776 OM OM 180.53 67.34 9.71 36.94
5 6 16,807 OM OM 906.76 522.84 86.02 286.30

1 6 7 0.00 0.00 0.00 0.00 0.00 0.00
2 6 49 0.03 0.01 0.01 0.00 0.00 0.00
3 6 343 12.80 1.68 0.20 0.03 0.05 0.02
4 6 2401 OM OM 8.07 4.09 2.12 2.87
5 6 16,807 OM OM 906.76 522.84 86.02 286.30

Table 8 shows the computational performance of our optimization model (7)–(9)
for some (n, m) settings of PV sequences. Here, for each n ∈ {3, 4 . . . , 9}, the largest m
was chosen such that the computation finished within 30 min. Both SeqUM and SeqUS
always delivered higher F1 scores than SeqEmp did. This indicates that our monotonicity
constraint (8) works well for improving prediction performance. The F1 scores provided by
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SeqUM and SeqUS were very similar and were the largest with (n, m) = (7, 3). In light of
these results, we use the setting (n, m) ∈ {(7, 3), (5, 6)} in the following sections.

Table 8. Computational performance of our PV sequence model (7)–(9).

#Cons in Equation (8) Time [s] F1 Score [%], N = 3

n m #Vars SeqUM SeqUS SeqUM SeqUS SeqEmp SeqUM SeqUS

3 30 29,791 84,630 118,850 86.72 241.46 12.25 12.40 12.40
4 12 28,561 99,372 142,800 198.82 539.76 12.68 12.93 12.95
5 6 16,807 63,798 85,272 86.02 286.30 12.90 13.18 13.18
6 4 15,625 62,500 76,506 62.92 209.67 13.14 13.49 13.48
7 3 16,384 67,584 76,818 96.08 254.31 13.23 13.52 13.53
8 2 6561 24,786 25,879 19.35 17.22 13.11 13.37 13.35
9 2 19,683 83,106 86,386 244.15 256.42 13.07 13.40 13.37

6.4. Prediction Performance of Our PV Sequence Model

Figure 3 shows F1 scores of the two-dimensional probability table and our PV sequence
model using the sampled training sets, where the number of selected items is N ∈ {3, 5, 10},
and the setting of the PV sequence is (n, m) ∈ {(7, 3), (5, 6)}.
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Figure 3. Comparison of prediction performance with the two-dimensional probability table.

When the full-sample training set was used, SeqUM and SeqUS always delivered a
better prediction performance than the other methods did. When the 1%- and 10%-sampled
training sets were used, the prediction performance of SeqUS decreased slightly, whereas
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SeqUM still performed best among all the methods. When the 0.1%-sampled training set
was used, 2dimMono always performed better than SeqUS did, and 2dimMono also had
the best prediction performance in the case of (n, m) = (5, 6). These results suggest that our
PV sequence model performs very well, especially when the sample size is sufficiently large.
The prediction performance of SeqEmp deteriorated rapidly as the sampling rate decreased,
and this performance was always much worse than that of 2dimEmp. Meanwhile, SeqUM
and SeqUS maintained high prediction performance even when the 0.1%-sampled training
set was used. This suggests that the monotonicity constraint (8) in our PV sequence model
is more effective than the monotonicity constraints (3) and (4) in the two-dimensional
monotonicity model.

Figure 4 shows F1 scores for the machine learning methods (LR, ANN, and RF) and
our PV sequence model (SeqUM) using the full-sample training set, where the number
of selected items is N ∈ {3, 5, 10}, and the PV sequence setting is (n, m) ∈ {(7, 3), (5, 6)}.
Note that in this figure, SeqUM( ∗ ) represents the optimization model (7)–(9), where the
item-choice probabilities computed by each machine learning method were substituted
into (x̂v)v∈Γ (see Section 4.4).
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Figure 4. Comparison of prediction performance with machine learning methods.

Prediction performance was better for SeqUM than for all the machine learning meth-
ods, except in the case of Figure 4f, where LR showed better prediction performance.
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Moreover, SeqUM( ∗ ) improved the prediction performance of the machine leaning meth-
ods, particularly for ANN and RF. This suggests that our monotonicity constraint (8) is also
very helpful in correcting prediction values from other machine learning methods.

6.5. Analysis of Estimated Item-Choice Probabilities

Figure 5 shows item-choice probabilities estimated by our PV sequence model using
the full-sample training set, where the PV sequence setting is (n, m) = (5, 6). Here, we focus
on PV sequences in the form v = (v1, v2, v3, 0, 0) ∈ Γ and depict estimates of item-choice
probabilities on (v1, v2) ∈ [0, m]× [0, m] for each v3 ∈ {0, 1, 2}. Note also that the number
of associated user–item pairs decreased as the value of v3 increased.
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Figure 5. Item-choice probabilities estimated from the full-sample training set with (n, m) = (5, 6).

Because SeqEmp does not consider the monotonicity constraint (8), item-choice proba-
bilities estimated by SeqEmp have irregular shapes for v3 ∈ {1, 2}. In contrast, item-choice
probabilities estimated with the monotonicity constraint (8) are relatively smooth. Because
of the Up operation, item-choice probabilities estimated by SeqUM and SeqUS increase as
(v1, v2) moves from (0, 0) to (6, 6). Because of the Move operation, item-choice probabilities
estimated by SeqUM also increase as (v1, v2) moves from (0, 6) to (6, 0). item-choice proba-
bilities estimated by SeqUS are relatively high, at around (v1, v2) = (3, 3). This highlights
the difference in the monotonicity constraint (8) between posets (Γ,�UM) and (Γ,�US).

Figure 6 shows item-choice probabilities estimated by our PV sequence model using
the 10%-sampled training set, where the PV sequence setting is (n, m) = (5, 6). Since
the sample size was reduced in this case, item-choice probabilities estimated by SeqEmp
are highly unstable. In particular, item-choice probabilities were estimated to be zero
for all (v1, v2) with v1 ≥ 3 in Figure 6c, but this is unreasonable from the perspective of
frequency. In contrast, SeqUM and SeqUS estimated item-choice probabilities that increase
monotonically with respect to (v1, v2).
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Figure 6. Item-choice probabilities estimated from the 10%-sampled training set with (n, m) = (5, 6).

7. Conclusions

We presented a shape-restricted optimization model for estimating item-choice proba-
bilities on an e-commerce website. Our monotonicity constraints based on tailored order
relations could better estimate item-choice probabilities for all possible PV sequences. To
improve the computational efficiency of our optimization model, we devised construc-
tive algorithms for transitive reduction that remove all redundant constraints from the
optimization model.

We assessed the effectiveness of our method through experiments using real-world
clickstream data. Experimental results demonstrated that transitive reduction enhanced
the efficiency of our optimization model in terms of both computation time and memory
usage. In addition, our method delivered a better prediction performance than did the
two-dimensional monotonicity model [11] and common machine learning methods. Our
method was also helpful in correcting prediction values computed by other machine
learning methods.

This study made three main contributions. First, we derived two types of posets by
exploiting the properties of recency and frequency of a user’s previous PVs. These posets
allow us to place appropriate monotonicity constraints on item-choice probabilities. Next,
we developed algorithms for the transitive reduction of our posets. These algorithms are
more efficient than general-purpose algorithms in terms of time complexity for transitive
reduction. Finally, our method further expanded the potential of shape-restricted regression
for predicting user behavior on e-commerce websites.

Once the optimization model for estimating item-choice probabilities has been solved,
the obtained results can easily be put into practical use on e-commerce websites. Accurate
estimates of item-choice probabilities will be useful for customizing sales promotions
according to the needs of a particular user. In addition, our method can estimate user
preferences from clickstream data, therefore aiding in the creation of high-quality user–item
rating matrices for recommendation algorithms [6].
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In future studies, we will develop new posets that further improve the prediction
performance of our PV sequence model. Another direction of future research will be
to incorporate user–item heterogeneity into our optimization model, as in the case of
latent-class modeling with a two-dimensional probability table [12]. It is also important
to compare the prediction performance of our method with that of topline graph neural
networks [37,38].
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 3

Appendix A.1.1. The “Only if” Part

Suppose (u, v) ∈ E∗UM. We then have v ∈ UM({u}) from Definition 4 and Lemma 2. We
therefore consider the following two cases:

Case 1: v = Up(u, s) for Some s ∈ [1, n]

For the sake of contradiction, assume that s 6= n (i.e., s ≤ n− 1). Then, there exists
an index j such that s < j ≤ n. If uj > 0, we set w = Move(u, s, j) and then have
v = Up(w, j). If uj = 0, we set w = Up(u, j) and then have v = Move(w, s, j). This implies
that u ≺UM w ≺UM v, which contradicts (u, v) ∈ E∗UM due to condition (C2) of Lemma 2.

Case 2: v = Move(u, s, t) for Some (s, t) ∈ [1, n]× [1, n]

For the sake of contradiction, assume that t 6= s + 1 (i.e., t ≥ s + 2). Then, there
exists an index j such that s < j < t. If uj > 0, we set w = Move(u, s, j) and then have
v = Move(w, j, t). If uj = 0, we set w = Move(u, j, t) and then have v = Move(w, s, j).
This implies that u ≺UM w ≺UM v, which contradicts (u, v) ∈ E∗UM due to condition (C2) of
Lemma 2.

Appendix A.1.2. The “if” Part

We show that (u, v) ∈ E∗UM in the following two cases:

Case 1: Condition (UM1) Is Fulfilled

Condition (C1) of Lemma 2 is clearly satisfied. To satisfy condition (C2), we consider
w ∈ Γ such that u �UM w �UM v. From Lemma 1, we have u �lex w �lex v. Since u is
next to v in the lexicographic order, we have w ∈ {u, v}.

Case 2: Condition (UM2) Is Fulfilled

Condition (C1) of Lemma 2 is clearly satisfied. To satisfy condition (C2), we consider
w ∈ Γ such that u �UM w �UM v. From Lemma 1, we have u �lex w �lex v, which implies
that wj = uj for all j ∈ [1, s − 1]. Therefore, we cannot apply any operations to wj for
j ∈ [1, s− 1] in the process of transforming w from u into v. To keep the value of ∑n

j=1 wj

https://www.dropbox.com/sh/dbzmtq4zhzbj5o9/AACldzQWbw-igKjcPTBI6ZPAa?dl=0
https://www.dropbox.com/sh/dbzmtq4zhzbj5o9/AACldzQWbw-igKjcPTBI6ZPAa?dl=0
https://tianchi.aliyun.com/dataset/
https://tianchi.aliyun.com/dataset/
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constant, we can apply only the Move operation. However, once the Move operation is
applied to wj for j ∈ [s+ 2, n], the resultant sequence cannot be converted into v. As a result,
only Move( · , s, s + 1) can be performed, and therefore w = u or w = Move(u, s, s + 1) = v.

Appendix A.2. Proof of Theorem 4

Appendix A.2.1. The “Only if” Part

Suppose that (u, v) ∈ E∗US. We then have v ∈ US({u}) from Definition 5 and Lemma 2.
Thus, we consider the following two cases:

Case 1: v = Up(u, s) for Some s ∈ [1, n]

For the sake of contradiction, assume uj ∈ {us, us + 1} for some j ∈ [s + 1, n]. If
uj = us, we set w = Up(u, j) and then have v = Swap(w, s, j). If uj = us + 1, we set
w = Swap(u, s, j) and then have v = Up(w, j). This implies that u ≺US w ≺US v, which
contradicts (u, v) ∈ E∗US due to condition (C2) of Lemma 2.

Case 2: v = Swap(u, s, t) for Some (s, t) ∈ [1, n]× [1, n]

For the sake of contradiction, assume uj ∈ [us, ut] for some j ∈ [s + 1, t − 1]. If
us < uj < ut, we set w1 = Swap(u, j, t) and w2 = Swap(w1, s, j) and then have
v = Swap(w2, j, t). If uj = us, we set w = Swap(u, j, t) and then have v = Swap(w, s, j). If
uj = ut, we set w = Swap(u, s, j) and then have v = Swap(w, j, t). Each of these results
contradicts (u, v) ∈ E∗US due to condition (C2) of Lemma 2.

Appendix A.2.2. The “if” Part

We show that (u, v) ∈ E∗US in the following two cases:

Case 1: Condition (US1) Is Fulfilled

Condition (C1) of Lemma 2 is clearly satisfied. To satisfy condition (C2), we consider
w ∈ Γ such that u �US w �US v. From Lemma 1, we have u �lex w �lex v, implying that
wj = uj for all j ∈ [1, s− 1]. Therefore, we cannot apply any operations to wj for j ∈ [1, s− 1]
in the process of transforming w from u into v. We must apply the Up operation only once,
because the value of ∑n

j=1 wj remains the same after the Swap operation. Condition (US1)
guarantees that for all j ∈ [s + 1, n], wj does not coincide with us + 1 even if Up( · , j) is
applied. Therefore, Swap( · , s, j) for j ∈ [s + 1, n] never leads to ws = us + 1. As a result,
Up( · , s) must be performed. Other applicable Swap operations produce a sequence that
cannot be converted into v. This means that w = u or w = Up(u, s) = v.

Case 2: Condition (US2) Is Fulfilled

Condition (C1) of Lemma 2 is clearly satisfied. To satisfy condition (C2), we consider
w ∈ Γ such that u �US w �US v. From Lemma 1, we have u �lex w �lex v. This implies
that wj = uj for all j ∈ [1, s− 1], and that ws ∈ [us, ut]. Therefore, we cannot apply any
operations to wj for j ∈ [1, s− 1] in the process of transforming w from u into v. To keep the
value of ∑n

j=1 wj constant, we can apply only the Swap operation. However, once the Swap
operation is applied to wj for j ∈ [t+ 1, n], the resultant sequence cannot be converted into v.
We cannot adopt w = Swap(u, s, j) for j ∈ [s + 1, t− 1] due to condition (US2). If we adopt
w = Swap(u, j, t) for j ∈ [s + 1, t− 1], we have wt ≤ us − 1 due to condition (US2); thus,
the application of Swap( · , t, j) is unavoidable for j ∈ [t + 1, n]. As a result, Swap( · , s, t)
must be performed. Other applicable Swap operations produce a sequence that cannot be
converted into v. This means that w = u or w = Swap(u, s, t) = v.
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Appendix B. Pseudocodes of Our Algorithms

Appendix B.1. Constructive Algorithm for (Γ, E∗UM)

The nodes and directed edges of graph (Γ, E∗UM) are enumerated in a breadth-first
search and are stored in two lists L and E, respectively. We use APPEND(L, v), which
appends a vertex v to the end of L. We similarly use APPEND(E, (u, v)).

A queue Q is used to store nodes of L whose successors are under investigation (the
“frontier” of L). The nodes in Q are listed in ascending order of depth, where the depth of v
is the shortest-path length from (0, 0, . . . , 0) to v. We use DEQUEUE(Q), which returns and
deletes the first element in Q, and ENQUEUE(Q, v), which appends v to the end of Q.

Algorithm A1 summarizes our constructive algorithm for computing the transitive
reduction (Γ, E∗UM). For a given node u in line 6, we find all nodes v satisfying condition
(UM1) in lines 7–10 and those satisfying condition (UM2) in lines 11–15.

Algorithm A1 Constructive algorithm for (Γ, E∗UM)
Input a pair (n, m) of positive integers
Output transitive reduction (Γ, E∗UM)

1: procedure
2: L← list consisting of (0, 0, . . . , 0) . returns Γ
3: E← empty list . returns E∗UM
4: Q← queue consisting of (0, 0, . . . , 0)
5: while Q is not empty do
6: u← DEQUEUE(Q)
7: if (u, n) ∈ DU then . for (UM1)
8: v← Up(u, n)
9: APPEND(L, v), APPEND(E, (u, v))

10: ENQUEUE(Q, v)
11: for s ∈ [1, n− 1] do . for (UM2)
12: if (u, s, s + 1) ∈ DM then
13: v← Move(u, s, s + 1)
14: APPEND(L, v), APPEND(E, (u, v))
15: ENQUEUE(Q, v)

By definition, the membership test for DU and DM can be performed in O(1) time.
Recall that DEQUEUE, ENQUEUE, and APPEND can be performed in O(1) time. The FOR
loop in lines 11–15 executes in O(n) time. Therefore, recalling that |Γ| = (m + 1)n, we see
that Algorithm A1 runs in O(n(m + 1)n) time.

Appendix B.2. Constructive Algorithm for (Γ, E∗US)

Algorithm A2 summarizes our constructive algorithm for computing the transitive
reduction (Γ, E∗US). Here, the difference from Algorithm A1 is the method for finding nodes
v satisfying conditions (US1) or (US2). For a given node u in line 6, we find all nodes v
satisfying condition (US1) in lines 7–16, and those satisfying condition (US2) in lines 17–26.
The following describes the latter part.

Let (u, v) be a directed edge added to E in line 22. Let (s̄, t̄) be such that v = Swap(u, s̄, t̄).
From line 20, we have us̄ < ut̄ < b. Note that for each t in line 19, value b gives the smallest
value of uj with uj > us̄ for j ∈ [s̄ + 1, t− 1]. Moreover, due to lines 25–26, uj 6= us̄ for
j ∈ [s̄ + 1, t̄− 1]. Combining these observations, we observe that for j ∈ [s̄ + 1, t̄− 1],

uj < us̄ or uj ≥ b > ut̄ (meaning uj /∈ [us̄, ut̄]).

Therefore, the pair (u, v) satisfies condition (US2). It is easy to verify that this process finds
all vertices v satisfying condition (US2).

Since both of the double FOR loops at lines 7–16 and 17–26 execute in O(n2) time,
Algorithm A2 runs in O(n2(m + 1)n) time.
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Algorithm A2 Constructive algorithm for (Γ, E∗US)
Input: a pair (n, m) of positive integers
Output: the transitive reduction (Γ, E∗US)

1: procedure
2: L← list consisting of (0, 0, . . . , 0) . returns Γ
3: E← empty list . returns E∗US
4: Q← queue consisting of (0, 0, . . . , 0)
5: while Q is not empty do
6: u← DEQUEUE(Q)
7: for s ∈ [1, n] do . for (US1)
8: if (u, s) ∈ DU then
9: flag← True

10: for j ∈ [s + 1, n] do
11: if uj ∈ {us, us + 1} then
12: flag← False, break
13: if flag = True then
14: v← Up(u, s)
15: APPEND(L, v), APPEND(E, (u, v))
16: ENQUEUE(Q, v)
17: for s ∈ [1, n− 1] do . for (US2)
18: b← m + 1
19: for t ∈ [s + 1, n] do
20: if (u, s, t) ∈ DS and ut < b then
21: v← Swap(u, s, t)
22: APPEND(L, v), APPEND(E, (u, v))
23: ENQUEUE(Q, v)
24: b← ut
25: else if ut = us then
26: break
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