f_f algorithms

Article

You Are Not Alone: Towards Cleaning Robot Navigation in
Shared Environments through Deep Reinforcement Learning

Reinis Cimurs *

check for
updates

Citation: Cimurs, R.; Turkovs, V.;
Banis, M.; Korsunovs, A. You Are
Not Alone: Towards Cleaning Robot
Navigation in Shared Environments
through Deep Reinforcement
Learning. Algorithms 2023, 16, 412.
https://doi.org/10.3390/a16090412

Academic Editor: Mircea-Bogdan
Radac

Received: 27 July 2023
Revised: 15 August 2023
Accepted: 18 August 2023
Published: 28 August 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Vilnis Turkovs, Martins Banis and Aleksandrs Korsunovs

SIA Robotic Solutions, LV-1039 Riga, Latvia; vilnis.turkovs@roboticsolutions.lv (V.T.);
martins.banis@roboticsolutions.lv (M.B.); aleksandrs.korsunovs@roboticsolutions.lv (A.K.)
* Correspondence: reinis.cimurs@roboticsolutions.lv

Abstract: For mobile cleaning robot navigation, it is crucial to not only base the motion decisions
on the ego agent’s capabilities but also to take into account other agents in the shared environment.
Therefore, in this paper, we propose a deep reinforcement learning (DRL)-based approach for learning
motion policy conditioned not only on ego observations of the environment, but also on incoming
information about other agents. First, we extend a replay buffer to collect state observations on all
agents at the scene and create a simulation setting from which to gather the training samples for DRL
policy. Next, we express the incoming agent information in each agent’s frame of reference, thus
making it translation and rotation invariant. We propose a neural network architecture with edge
embedding layers that allows for the extraction of incoming information from a dynamic range of
agents. This allows for generalization of the proposed approach to various settings with a variable
number of agents at the scene. Through simulation results, we show that the introduction of edge
layers improves the navigation policies in shared environments and performs better than other
state-of-the-art DRL motion policy methods.

Keywords: deep reinforcement learning; floor-cleaning robots; mobile robot navigation

1. Introduction

Solving mobile robot navigation has been at the forefront of scientific studies for
decades [1,2]. Over the course of extensive development, we have seen many approaches
that try to encode reason into a robotic body so as to enable it to react to its surroundings in
a reasonable and intelligent manner. However, the idea that a human-derived, rule-based
navigation system is sufficient for safe and generalizable motion has not come to fruition.
It has become more and more evident that, while specified rules for robot behavior work
well in limited and controlled environments, it is incredibly difficult to deploy them in
unseen or dynamic scenes in which other agents are not controllable or fully observable. In
such cases, the complexity of the necessary rule-based system becomes unattainable. For
more than a decade, researchers have looked towards deep learning (DL) as an intelligent
and encompassing solution for mobile robot navigation. DL has been applied to robots’
learning of local motion policies based on sensor input [3,4]. This has allowed robots
to learn optimized motion strategies in various settings based solely on sensor data and
minimal hand engineering, and it opens up the possibility of obtaining navigation strategies
that take into account not only observations of the ego-robot itself, but also reasoning about
other participants in the shared environment.

This is highly applicable in the floor-cleaning robot domain, in which the cleaning
robots share spaces with workers, customers, and other equipment. Here, the safety
of other agents and equipment paramount, as is the robot’s ability to interact with and
make navigation decisions, considering them in a reasonable manner. A cleaning robot
is required to carry out its task while considering these other environmental actors, all
while being constrained by the inability to freely maneuver and the absence of backward

Algorithms 2023, 16, 412. https:/ /doi.org/10.3390/a16090412

https:/ /www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16090412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-9256-6655
https://doi.org/10.3390/a16090412
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16090412?type=check_update&version=1

Algorithms 2023, 16, 412

20f18

motion due to its cleaning brush design. Therefore, reacting and interacting with other
agents is even more important. While human actors generally move slowly and can easily
move out of the way of a robot, it is other machinery that needs to be considered more
stringently. In such locations as logistics centers and factories, cleaning robots are often
deployed alongside loaders and other similar machinery. This machinery has its own set of
motion restrictions, and motion disagreements between it and a cleaning robot can be very
costly. Therefore, the motion of this kind of machinery should be taken into account when
developing navigation policies for such mobile robots as automated floor cleaners. Owing
to the fact that other machinery can also include localization and communication systems,
its spatial information can be obtained directly. If no communication is possible, certain
motion features can be inferred from observations. While exact methods of information
exchange remain an open question and are highly dependent on the capabilities of the
robots at hand, their sensors, communication devices, and surrounding environment, such
technical possibilities cannot be ignored, and methods of using this information should be
implemented. This allows for the possibility of training such motion policies that not only
consider the ego robot, but also other navigation agents in the environment. However, to
be able to generalize the interaction with other agents, the exchanged information needs
to be translation and rotation invariant and to allow for a varying number of scene actors.
This reduces the distribution shift for trainable policies and generalizes the approach [5].
Therefore, by expanding on our previous work in training floor cleaning robot motion
policies [6], we propose including a graph-like structured interaction edge embedder
into our trained neural network architecture in order to extract ego-robot frame-aligned
interaction features. This allows the robot to learn its motion policy not only conditioned on
its direct observations of the environment but also on the motion and temporal information
of other agents. Our contributions can be itemized as follows:

¢ We provided an extended DRL replay buffer to simultaneously store the observations
of multiple agents.

* We designed a multi-agent training simulation setting.

* We created a rotation and translation invariant information exchange method for
DRL-based training.

* We designed and tested a neural network architecture with an edge information
embedder for a varying number of scene actors.

The remainder of this paper is organized as follows. In Section 2, related works
are reviewed. Problem formulation is provided in Section 3, and the proposed model is
described in Section 4. Training is discussed in Section 5. The experimental results are
presented in Section 6, and conclusions are provided in Section 7.

2. Related Work

Learning mobile robot policies involving DRL has been an active field since the recent
rise in DL technology. Multiple DRL architectures have been developed for training policies
conditioned directly on sensor data [4,7]. Deep Q-network (DQN) methods have been used
to help robots learn navigation in discreet action spaces from camera as well as laser data [8-11].
Here, a set of actions is presented to a neural network, and the Q-value is estimated for
each of them. The network learns a proper value estimation for each action, and one of
them is selected for execution based on the designed criteria. However, navigation is
conditioned on a specified discrete set of actions, which may be a rough approximation
of robot motion. For robot navigation in a continuous-action space, actor—critic networks
are often used. Soft actor—critic (SAC) is used for the same task in [12-14] with the ability
to obtain smooth actions within a specified range. Deep deterministic policy gradient
(DDPG) and its extension twin delayed deep deterministic policy gradient (TD3) have been
successfully applied to navigation tasks with smooth navigation controls [15-18]. Here,
state representations are given to a neural network that consists of two parallel structures:
the actor and the critic. The actor network part calculates the output actions in the form
of real scalars, and the critic evaluates the value of this state action pair. However, while

Algorithms 2023, 16, 412

30f18

these approaches are successful for learning single robot navigation policies, they do not
consider learned interaction strategies in shared environments. That is to say, they consider
only their internal state and direct observations of the environment for their motion policy.

Collaborative robot navigation is often solved in the federated and swarm robotics
field [19,20]. In the case of federated robot control, there exists a requirement for a central
system that designates tasks and commands to subordinate robots [21]. In such a case,
there is no hard requirement for information exchange between the robots themselves or
specific intelligent interaction modeling. But there is a requirement for a server system
that supervises all the tasks [22]. Swarm robotics requires the exchange of information
through communication channels between agents in the swarm [23-26]. In the floor-
cleaning robot domain, direct exchange between scene agents is difficult and multiple
devices perform different tasks. Besides, not all scene agents can be considered as part
of a single swarm. Moreover, each scene agent needs to perform actions based only on
its tasks and information while taking incoming information into account. In such cases,
more planning-based approaches use a prior map or knowledge of the environment and
devices to create an initial plan of action and update it according to motion rules in certain
instances [27-29]. However, when dealing with unknown environments and scene agents
that are not known before the task execution, other methods of information exchange need
to be used.

To facilitate explicit information exchange, we can form the agents in the scene
and their interactions as a graph. Here, graph neural network (GNN) nomenclature
can be used to define the tasks of the information exchange between the agents and the
agents themselves. Agents can be considered as nodes and their relative state as the edge
information [30,31]. Using this topology, it is possible to obtain a node embedding that
consists of agent information as well as the incoming information of the surrounding
agents. This has been applied in the decentralized path planning domain, where all known
and connected agents in the scene exchange relevant information to update each agent’s
information with their state [32-34]. This helps each agent to obtain a high-level plan for a
more informed path. But for learning policies of individual agents, full-scene connectivity
is often not available. Since surrounding agent information is often not known, deep
sets [35,36] or aggregation over processed node embeddings [37] are used to form a single
vector embedding from an unspecified number of incoming agents. Using such embedding,
it becomes possible to train a policy with DRL that combines not only the agent information
but also the relevant information from other agents in the scene. Taking this into account,
we present a DRL training method based on a TD3 architecture with which to implement
learning motion policies with continuous actions in shared space with an arbitrary number
of scene actors.

3. Problem Formulation

We define the problem of learning cleaning robot navigation as calculating optimal
parameters ¢ for policy 7t. Here, the policy is expressed as taken action a conditioned
on state observation s as 7w(a = A¢|s = S;). This problem can be modeled as a Markov
decision process (MDP) and can be expressed as a tuple (S, A, R,), where § is the set of
states, A is the set of actions, the set of rewards is R and v is the discount factor. To learn the
optimal policy 7* for an agent and condition it not only on the observations from the agent
itself but also other surrounding agents, the state S needs to contain the observation of the
ego agent and other agent features. Therefore, we need to restructure the state observation
S as follows. The set of states can be expressed as a tuple (S, S5), where S, is the set of
states of the ego agent and S is the set of state features of other agents expressed in the ego
agent’s frame of reference. The S itself is a tuple of dynamic number 7 of state features of
other agents (Sf, S5, ..., S). Since 1 is dynamic, the algorithm solving the MDP is required
to be able to deal with a dynamic number of inputs. Therefore, the problem of solving the
MDP for the optimal parameters requires dealing with the following issues:

Algorithms 2023, 16, 412

40f18

¢ Obtain and express translation and rotation-invariant features of other agents in the
ego agent frame for interaction modeling.

* Create a neural network architecture capable of handling an unknown number of n
other agents in any given scene.

The goal of this paper is to solve these issues to obtain optimal policy 7r*.

4. Proposed Model

To learn the optimal parameters for the navigation policy we build upon the neural
network architecture of our previous work in [6]. Namely, we employ a twin delayed deep
deterministic policy gradient-based (TD3) neural network architecture, which allows a
policy to be trained through DRL in continuous action space for smooth robot navigation.
TD3 is an actor—critic type of neural network architecture, where actor and critic parameter
updates are carried out independently and with a delay in update frequencies. Since the
used network architecture is trainable off-policy, rollouts from outdated policies can be
used for actor and critic updates. Therefore, all collected samples are stored in a buffer
from which a sampled selection is used to update network parameters. Observations are
stored as a tuple:

(s,a,7,7,¢c,8) 1)

where s is the current state observation, a is the taken action, r is the observed reward for
the state—action pair, T defines if the state is terminal, ¢ represents the completion of the
episode for the agent and s’ is the observed next state after executing the action. Since the
policy calculates outputs for and includes multiple agents in the scene, each tuple element
contains representative values for all the agents, i.e., s = (s, 51,52, ..., Sp+1)- The completion
flag c signifies which agents in the scene have completed their episode (have collided with
an obstacle or arrived at the goal) and for which new actions are not calculated.

4.1. Data Processing

For each agent s;, in s; at time-step ¢ the following tuple of state observations is stored:

sn = (I, dy, cos(0)t,5in(0)e, vi—1, Wr—1, Xt, Y, &t))

Here, | represents laser observations of the agent, d is the distance from the goal. cos(6)
and sin(0) are cosine and sine expressions of the heading difference between the current
robot’s heading and heading towards the robot and are calculated as:

_ &k
cos(0) = & i (3)

. _oax hg
sin(0) = 7|¢x| i 4)

where « is the heading vector of the agent, and h is the heading vector from the agent
towards its goal. The linear velocity v and angular velocity w at time-step f — 1 expresses the
action at the previous step. The x and y indicate the agents” location in global coordinates.
The preparation of a simultaneous observation for all agents in the scene is visualized in
Figure 1.

S,: (1, d, cos(®), sin(6), v, ;, w,_,, X, Y, &) Store Observation

; —_—
S,: (1, d, cos(®), sin(6), v, , w,_,, X, V,, a) Replay Buffer

Combine Observations

S,: (1, d, cos(®), sin(6), v, , w,_;, X, y, a)

Figure 1. Preparation schematic visualizing an example of an observation with three agents. Each
agent’s individual information is recorded and stored as a part of a single-state observation s;.
Afterward, the state observation is stored in the replay buffer as a single entry.

Algorithms 2023, 16, 412

50f18

For an agent to reason about an interaction with other agents in the scene, the infor-
mation needs to be given relative to its current state. More specifically, the spatial relations
need to be given according to the ego agent’s pose in its frame of reference. Not only
does this explicitly model the relative interaction, but it also allows for the generalization
of interaction information independent of global scene information. To achieve this, the
information in the recorded observation tuple needs to be processed before it can be used in
neural network training. For each agent, the features of other agents need to be transformed
in its frame of reference. With slight abuse of notation, we will borrow the terms of node
and edge features from graph neural network (GNN) literature, where the node features
are the observation features of the ego agent and edge features are other agent features. As
node features N from (2) we use the features that are expressed in ego agents frame:

N = (I;,dt, cos(0)s, sin(0)¢, vi—1, wi—1) ®)

For each agent in the scene, edge features E are calculated from information in (2) for every
other agent:
E; = (v, wj, dj, cos(0,);i,sin(0,)i, cos(6a)i,sin(0x);)

Vi={1,2,..,n} ©)

Here, linear and angular velocities are taken directly from the stored tuple from (2). The
relative distance is calculated as the Euclidean distance between x and y positions of each
agent. The heading towards the agent is expressed as cos(6,) and sin(6,) and calculated
with (3) and (4), respectively, by replacing the heading towards goal hy with the vector
towards the agent location #,. A similar method is applied when calculating the difference
between the heading of the ego agent and the heading of the other agent. This data
processing method prepares all the incoming edge data relative to the ego agent in its frame
of reference. This process is visualized in Figure 2.

Extract Observations for Each Agent in its Frame

N: (1, d, cos(6), sin(@), v, w)
E.+ (W, WY, 0¥, cos(0)%, sin(0,)%, cos(0,)%, sin(6))
B (v, w¥, d¥, cos(6))", sin(6,)", cos(8,)", sin(8,)*)

Sample Observation Obtain Action for Each Agent

s,

- 5.5, d, cos(6), sin(®), v, x, . @) N: 0, d, cos(®), sin(@), v,) -
N\ " " Neural Ne k. -
Replay Buffer || | 5,31/ cas(8) Sini6) v/ @)% @) > 0 = E0%0% 0¥ cos(O)", sin0), cos(0,)%, sin(0,)) e et el

E 4
(%, @, d, cos(®,)%, sin(®,, cos(6,)", sint®, V - [
S (L d, cos(®), sin(®), v, w, .y, @) — = o

N:/(1, d, cos(@), sin(0), v, w)

E (v, @, % cos(0)%, sin(0)", cos(0,)%, sin(0,))
EL (%, @, d% cos(8,)%, sin(0,), cos(6,)%, sin(0,1)

Figure 2. Example of observation preparation into node and edge information in a scene with three
agents. First, a state observation is sampled from the replay buffer. Node and edge information
is formed for each agent in its frame of reference to create an individual sample from each agent’s
perspective. Each created sample is then used in a neural network to update the learned policy.

4.2. Model Architecture

As base model architecture, we use the TD3-based implementation discussed in our
previous work in [6]. However, we make slight changes to the layer layout and activa-
tion functions. Moreover, since we are also considering the incoming edge information
from other agents, this information needs to be embedded and combined with the node
information. To achieve this, we design a local edge information embedder sub-graph.
Since the number of agents in the scene that may interact with the ego agent is dynamic,
this sub-graph must be capable of including varied size inputs. We achieve this by batch-
ing all incoming edge information E into a single batch with n dimensions. This batch
is then passed through a sequence of embedding layers consisting of sequential, fully
connected and continuously differentiable exponential linear unit (CELU) [38] activation

Algorithms 2023, 16, 412

6 of 18

layers. This process returns n-dimensional embedding of all incoming edges. In order
to obtain single-dimension embedding information for all edges, we perform maximum
value aggregation over all embeddings. This aggregation returns the maximal value of
each feature embedding in a single vector representation of all other agents in the scene.
The edge information embedder sub-graph structure is visualized in Figure 3.

Max Aggregation

Figure 3. Edge embedder layer structure for n-dimensional input of other agent information. The
edge information is passed through a series of fully connected layers, all sharing the same weights.
Fully connected layers are represented in yellow and CELU in purple. Max aggregation (visualized
in red) is used to aggregate the encoded information to a single-dimension output.

The input to the neural network consists of ego agent features and a batch of other
agent features, as described in Section 4.1 for every robot in the scene. The actor part of the
neural network embeds the ego agent features with a fully connected linear layer followed
by CELU activation function. The batch of other agent features is embedded using the
sub-graph. The ego agent and other agent embeddings are concatenated, followed by a
fully connected layer and a CELU activation layer. Finally, another fully connected layer
follows with a hyperbolic tangent (Tanh) activation function that constrains the output
to [—1, 1] range. The actor-network output is a two-dimensional vector representing the
obtained linear and angular velocities for the ego agent. The actor—network structure is
depicted in Figure 4, and the layers are described in Table 1.

Edge Embedder

2

1%v %

~0

SIS

Figure 4. Actor-network structure. Inputs of ego agent and other agent information are depicted
in gray. Edge embedder described in Figure 5 is stylized in light red. Fully connected layers are
represented in yellow and CELU in dark purple, with Tanh activation in light purple. Concatenation,
which combines the ego agent features with embedded edge features, is represented with the green
circle. Here, the action calculated in the actor network is also used as an input to calculate state—action
pair value. It is passed directly into the TFC layer, which is depicted in a light green color.

Algorithms 2023, 16, 412

7 of 18

Table 1. Network parameters and structure of actor network.

Actor Network
Layer Input Size Output Size
Edge Encoder:
Linear 7 40
CELU 40 40
Linear 40 80
CELU 80 80
Max Aggregation (n, 80) (1, 80)
Node Encoder:
Linear 25 400
CELU 400 400
Concatenation 400 + 80 480
Action Decoder:
Linear 480 300
CELU 300 300
Linear 300 2
Tanh 2 2

The chosen TD3 implementation uses two critics to mitigate the value overestimation
often present in deep deterministic policy gradient (DDPG) neural networks [39]. Therefore,
we implement two critics with the same layer structure. The critic networks have a similar
architecture to the actor network. We embed the ego agent features and other agent fea-
tures with their respective embedders. After concatenation, we obtain a single-dimension
embedding of all the state information. Then, this information is passed through a single
fully connected linear layer. Critic networks also take as an input the action calculated
by the actor network for the same state information. This information is passed through
a fully connected layer. Then, the output from state and action embeddings is combined
using a transformation fully connected (TFC) layer as described in [40], which is followed
by the activation function. Finally, a Q-value decoder obtains an estimated state-action pair
value. The full critic network structure is depicted in Figure 5, and the parameter values
are described in Table 2.

Edge Embedder
I
|
/ ””””””””””” Action
A 0
I > -
ot [
A A —
~ ~ 1 N
4
19

RIS

Figure 5. Critic network structure. Inputs of ego agent and other agent information are depicted
in gray. Edge embedder described in Figure 5 is stylized in light red. Fully connected layers are
represented in yellow and CELU in dark purple. Concatenation, which combines the ego agent
features with embedded edge features, is represented with the green circle.

Algorithms 2023, 16, 412 8 of 18

Table 2. Network parameters and structure of both critic networks.

Critic Network

Layer Input Size Output Size
Edge Encoder:
Linear 7 40
CELU 40 40
Linear 40 80
CELU 80 80
Max Aggregation (n, 80) (1, 80)
Node Encoder:
Linear 25 400
CELU 400 400
Concatenation 400 + 80 480
Q-Value Decoder:
Linearss;se 480 300
Linear,.tjon 2 300
TFC 300 + 300 300
CELU 300 300
Linear 300 1
5. Training

We use a simulation to train the neural network described in Section 4. This allows the
neural network to be trained with unambiguous information, as well as easing the informa-
tion exchange between the agents. Since it is possible to simultaneously obtain actions for
all agents in the scene, we employ a method of policy training in which observations are
recorded from all participants in the environment. We collect multiple state samples for
each time step in the simulator and calculate the action for all of them based on the current
policy. Moreover, the neural network can learn through interactions with its policy.

5.1. Simulation Setup

The gazebo simulator facilitates obtain state observation as well as action execution.
The Robot Operating System (ROS) is used as a bridge between the neural network and the
simulator. For training, we use a 10 by 10-m walled environment. In the environment, we
place multiple large cubes and cylinders, and their location is randomized at the beginning
of every episode to increase the scene variance and improve the methods’ generalizability.
The actions are executed on simulated turtlebot 3 [41] differential drive robot models that
serve as agents for our neural network. Neural network outputs are communicated to
robots as ROS Twist-type messages. While the proposed method is generally sensor
agnostic, we use laser readings to observe the environment for robot navigation due to the
reduced number of returned sensor values and increased field of view compared to depth
or RGB camera observations. A simulated Velodyne Puck sensor is placed on each robot,
which records laser readings in a 180-degree field of view. This information, along with
the robot’s odometry and executed velocities, is used as part of the state information in
(2). The goal information for calculating values of d, cos(6) and sin(0) is obtained from the
simulator. The goal positions, robots’ starting positions and poses are also randomized at
the start of each episode as not to overlap with any of the obstacles in the environment. We
train the neural network with three robots sharing the environment. The simulation setup
is depicted in Figure 6.

Algorithms 2023, 16, 412

90f18

Figure 6. Gazebo simulator environment used for training neural network policy. Three robots are
randomly placed in the environment and shown with green circles around them. Such obstacles
as cylinders and boxes are also placed in the environment as obstacles, and their locations are
randomized at the start of each episode.

5.2. Training in Simulation

The training setup is executed as follows. A number of robots are initialized in the
environment and assigned random goal positions. All robots execute actions given by
the current policy of the neural network. While performing actions in the environment,
observations in the form of (1) are collected. Once a robot finishes its trajectory, either
by colliding with an obstacle or reaching the goal, its terminal state flag 7 is set. In the
subsequent time step, its completion flag c is also set, and no further actions will be executed
with this robot. However, the robot continues to broadcast its edge information, and it is
still used to calculate the actions of other robots. The training episode concludes when
all the robots have finished their trajectories or the trajectory time steps exceed a pre-set
threshold. After the episode concludes, a batch of observations is sampled from the replay
buffer to update the actor and critic network parameters. When updating neural network
parameters, each observation is preprocessed according to the description provided in
Section 4.1. However, only agents with the unset parameter c are used as ego agents in the
data processing, as only agents that are still executing a trajectory receive rewards for their
actions. Only these samples are then utilized for loss calculation.

5.3. Training Parameters and Bootstrapping

We employ bootstrapping methods to guide and speed up the training convergence.
The basic task of the neural network is to obtain a policy that guides the robot to the goal
position. However, since there is only one goal in the environment, there is a low probability
that a policy based on randomly initialized weights will be able to reach it. This means
that the trajectories with successful goal reaching will be under-represented in the replay
buffer. To mitigate this issue, we set a distance threshold of how far a goal position can

Algorithms 2023, 16, 412

10 0of 18

be randomly placed from its respective robot. We expand this distance every time a robot
reaches its goal. Another method employed is adding Gaussian noise to the obtained action
from the policy. This allows us to take slightly different actions than the ones calculated
and allows for exploration of the policy. We start the training with a set maximum variance
for the Gaussian noise and slightly reduce it at every time step. However, Gaussian noise
by definition is centered around the already existing policy and, in the majority of cases,
will produce very slight deviations from it, especially later in the training process with a
small variance. This is conducive to optimizing an already well-behaving policy. But there
are cases in which drastically different actions could produce more positive outcomes in
the long run. Therefore, for time steps that satisfy the criteria:

p>R @)

where R is a random scalar drawn in the range [0, 1], we take a completely random action
drawn from a uniform distribution. This allows us to randomly take out-of-distribution
actions while still generally executing trajectories following the policy.

The reinforcement algorithm uses rewards to evaluate performance. In our training
setup, we employ the following reward function:

Tg ifdy < 95
T(St, ﬂt) =<, if lmin,t <1 ®)

r+ otherwise,

Here, ¢ is the reward for reaching the goal when the distance to the goal from the robot is
below a threshold 7;. The collision reward 7 is given when the minimum laser reading
Liyin + is below a threshold 7. The immediate reward 7; is calculated as:

1t = Bo X U — ﬁomega X |wt| — B x1)
where f is the coefficient for the respective reward element and r; is a negative reward

depending on closeness to obstacles, obtained as follows:

(10)

7= m + Ne — lmin if lmin < + e
! 0 otherwise,

where 7; is a threshold for the distance to obstacles. The full list of training parameters is
available in Table 3.

Table 3. Network parameters and structure of both critic networks.

Training Parameters

Parameter Value Metric

Reward Function:

rg +100 -
re —100 -
m 1 m
He 0.35 m
Bo 1 -
Bw 0.5 -
Bi 0.5 -
Training Parameters:
Epochs 100 -
Time steps per epoch 5000 -
Max episode length 500 time steps

Seed value 42 -

Algorithms 2023, 16, 412 11 of 18

Table 3. Cont.

Training Parameters

Parameter Value Metric
¥ 0.99 -
Batch size 60 -
Soft target update variable 0.005 -
Policy noise 0.2 -
Root Parameters:
Umax 0.5 m/s
Ummin 0 m/s
Winax 1 r/s
Winin -1 /s
Bootstrapping Parameters:
0.1 -
Starting max goal distance 15 m
Final max goal distance 4.5 m
Max goal distance increment 0.1 m
Starting Gaussian noise 1)
variance
Final Gaussian noise variance 0.1 -
Gaussian noise variance 0.0001)
decrement

6. Experiments

We conducted a series of experiments in a simulated environment to validate our ap-
proach. We designed six scenarios in which multiple robots must simultaneously navigate
to their designated goal positions without colliding. To emphasize the versatility of our
approach in handling environments with varying number of actors, each scenario was
executed with two, three, and four controlled robots, respectively. The scenario setup is
depicted in Figure 7, illustrating the starting positions, headings, and goal positions of
the four robots. The same setup was used for experiments involving fewer robots. Each
experiment was repeated 20 times. While the learned model policy is deterministic, the
simulation is not due to the imprecise timing of message exchanges. As a result, each run
yielded in a slightly different trajectory. This feature enabled us to evaluate the generaliz-
ability and adaptivity of our proposed method. To refer conveniently to our method, we
coined the name you are not alone (YANA). To compare YANA, we performed a direct
comparison with an ablated neural network architecture similar to those used in [15,40],
where a neural network is trained for mobile robot navigation in unknown environments.
We implemented the network architecture in a manner consistent with the referenced pa-
pers, with CELU activation layers to align them with our approach. We trained this neural
network in the same conditions as YANA, employing the same bootstrapping methods
and environment setup. This network model was also trained in a shared environment,
simultaneously collecting trajectories from three robots. As this method was trained in a
shared environment but lacked an information exchange between scene actors, we denote
it as you are (not) alone (YA(n)A). Given that learned behaviors in shared environments
might also exhibit interaction patterns, we further validate the results against the standard
TD3 implementation. In this case, network training was conducted with static obstacles
and a single robot in the scene, while retaining the same training setup otherwise. The
best-performing performing models after 100 epochs of training were compared for each ex-
periment scenario. All robots in the experimental setup were controlled by their respective
policies. As evaluation metrics, we computed the average combined distance traveled, the
average combined number of steps and the average collisions, along with their respective
standard deviations for each experiment setting. The unit of distance is expressed in meters.

Algorithms 2023, 16, 412

12 0f 18

Exp. 1

(@)

(b) (c) (d) (e) ®

Figure 7. Simulated experiment setup. Figures (a—f) visualize each robot’s starting position and
heading for each respective experiment. Large circles represent the robot’s starting position and the
arrows represent their heading. Smaller circles represent goal points for robots of the same color. The
grid is represented with 1 by 1 meter-sized squares.

6.1. Experiments with 2 Robots

First, we perform the experiments in a setting with two robots. The starting positions
and poses of the robots are visualized in Figure 7, although only two robots are initial-
ized. We collect trajectories and metrics for all three compared methods, presented in
Table 4. A representative sample of trajectories is visualized in Figure 8. Observing the
experiments, it becomes evident that the proposed YANA method effectively avoids and
anticipates the motion of another agent in the scene. While other approaches (YA(n)A
and base TD3) succeed in most cases, collisions occur in specific scenarios. For YA(n)A
in Experiments 1 and 5, the robots occasionally arrive at a single location simultaneously,
lacking a learned exchange strategy that results in collisions. In the TD3 case, an issue
arises in Experiment 2 due to an approaching frontal obstacle. The training environment
featured solely static obstacles, rendering frontal dynamic obstacle avoidance challenging,
as the obstacle advances earlier than anticipated. In scenarios in which arriving at the goal
was always successful, distance data indicate that YA(n)A and TD3 select more optimal
routes with less consideration for other agents in the scene. Nevertheless, YANA's distance
measurement remains comparable to other approaches. However, comparing the average
number of steps taken, YANA exhibits a longer time to reach the goal in certain scenarios.
For instance, in Experiment 4, for the robot displayed in red, the YANA approach waits
for the green robot to navigate to a safe distance before initiating its own movement. In
contrast, YA(n)A and TD3 start navigating towards the goal immediately. From the results,
we can see that while YANA outperforms other approaches in terms of safety, YA(n)A and
basic TD3 could still be used for robot navigation in this setting, provided that collision
strategies are improved.

Table 4. Experiments with 2 robots.

Av. Std. Av. Std.
Method Distance Distance Av. Steps Std. Steps Collisions Collisions
Exp. 1:

YANA 14.914 0.122 192.15 2.433 0 0
YA(n)A 8.778 3.987 123.6 66.637 1.35 0.875
TD3 11.992 0.06 143.85 2.433 0 0

Exp. 2:

YANA 7.803 0.238 92.45 17.074 0 0

YA(n)A 8.199 0.161 94.1 3.447 0 0
TD3 4.696 1.606 54.3 17.496 1.55 0.825

Exp. 3:

YANA 7.737 0.103 107.35 7.271 0 0

YA(n)A 8.742 0.444 103.8 8.338 0 0

TD3 7.448 0.051 85.7 1.128 0 0

Algorithms 2023, 16, 412 13 of 18

Table 4. Cont.

Av. Std. Av. Std.
Method Distance Distance Av. Steps Std. Steps Collisions Collisions
Exp. 4:
YANA 4.086 0.259 104.95 25.494 0 0
YA(n)A 4.752 0.211 65 5.776 0 0
TD3 3.741 0.105 47.7 2.341 0 0
Exp. 5:

YANA 6.377 0.437 109.45 16.513 0 0
YA(n)A 5.357 1.662 88.35 27.711 0.55 0.887
TD3 5.991 0.146 82.55 1.05 0 0

Exp. 6:

YANA 3.932 0.097 49.6 0.82 0 0

YA(n)A 3.644 0.08 44.45 1.959 0 0
TD3 3.52 0.054 40.05 0.759 0 0

Exp. 3 Exp. 4 Exp. 5 Exp. 6

Figure 8. Experimental results with 2 robots in 6 scenarios. (a—f) Representative recorded trajectories

with YANA policy. (g-1) Representative recorded trajectories with YA(n)A policy. (m-s) Representa-
tive recorded trajectories with TD3 policy. Robots are represented with a large circle. Their trajectories
and goal positions are represented with a line and a smaller circle in their respective colors. Robots
not at their goal position represent the point of collision.

6.2. Experiments with 3 Robots

Next, we conducted experiments in the same setting with three robots; the results
are presented in Table 5. Representative trajectories from the experiment are visualized
in Figure 9. In this scenario, issues with the YA(n)A and TD3 approaches in collision
avoidance begin to emerge. Although the YA(n)A method employs a training method with
multiple robots in the scene, most instances involve robots moving in separate directions
or observing each other from a distance. However, in these experiments, they are forced to
intersect paths and avoid collisions in a reasonable manner. The lack of robot exchange
strategy becomes evident, as the only experiment in which no collisions were observed is
Experiment 2. With the introduction of an additional agent in the scene, the TD3 method
also experiences a significantly higher collision rate. In contrast, the YANA method still
navigates safely, with a single collision observed in Experiment 5. Comparing distance
measurements across approaches in experiments without reported collisions, it is apparent

Algorithms 2023, 16, 412 14 of 18

that YANA takes less optimal but more cautious trajectories. It demonstrates a willingness
to wait for other robots to pass, as indicated by the average number of steps taken.

Table 5. Experiments with 3 robots.

Av. Std. Av. Std.
Method Distance Distance Av. Steps Std. Steps Collisions Collisions
Exp. 1:

YANA 22.836 2.513 255 43.945 0 0
YA(n)A 12.273 3.299 136.7 42.152 2 0.648
TD3 18.425 0.18 142.15 3.065 0 0

Exp. 2:

YANA 12.63 0.207 110.75 8.213 0 0

YA(M)A 12.827 0.378 102.85 6.491 0 0
TD3 8.041 0.169 83.25 1.292 2 0

Exp. 3:

YANA 12.485 0.856 133.75 18.928 0 0

YA(n)A 6.786 1.913 100.65 31.372 2.55 0.759
TD3 8.202 1.942 108.2 5.166 1.55 0.825

Exp. 4:

YANA 11.311 1.118 175.85 44.755 0 0

YA(M)A 6.959 2.11 132.3 220.107 1.25 0.91
TD3 4.989 1.273 57.6 15.547 1.8 0.523

Exp. 5:

YANA 8.817 0.602 99.9 12.673 0.05 0.223

YA(n)A 6.994 1.312 89.7 17.348 1.65 0.745
TD3 7.656 0.471 66.9 2.074 0.85 0.875

Exp. 6:

YANA 7.446 0.118 62.95 3.456 0 0
YA(M)A 6.312 0.979 68.1 8.347 0.3 0.732
TD3 6.552 0.067 55.25 0.85 0 0

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

(a) (b) (©) (d) (€)
(9) (h) (i) 0) (k)
(m) (" (0) (P) (@

Figure 9. Experimental results with 3 robots in 6 scenarios. (a—f) Representative recorded trajectories

)

with YANA policy. (g-1) Representative recorded trajectories with YA(n)A policy. (m-s) Representa-
tive recorded trajectories with TD3 policy. Robots are represented with a large circle. Their trajectories
and goal positions are represented with a line and a smaller circle in their respective colors. Robots
not at their goal position represent the point of collision.

Algorithms 2023, 16, 412

150f18

6.3. Experiments with 4 Robots

To demonstrate the advantages of the proposed approach when dealing with a greater
number of scene agents, we conducted experiments with four robots; the results are pre-
sented in Table 6. Representative trajectories are visualized in Figure 10. Here, we can
observe a larger increase in collisions for YA(n)A and TD3 methods. However, there is
one additional collision also observed in the case of the YANA method in Experiment
3. Nonetheless, this figure remains notably lower compared to the collision occurrences
in the other methods, particularly in a relatively intricate scenario involving robot ex-
changes. As the number of agents increases, making determinations concerning distance
and step information becomes more challenging, since the other approaches struggle to
achieve collision-free navigation in most scenarios. Despite this, we can still draw similar
conclusions to those derived from the Experiments with two and three robots.

Table 6. Experiments with 4 robots.

Av. Std. Av. Std.

Method Distance Distance Av. Steps Std. Steps Collisions Collisions

Exp. 1:

YANA 31.593 1.966 257.6 45.221 0 0

YA(n)A 11.731 1.889 88.05 33.174 1.889 0.489
TD3 23.863 2.37 1455 4.334 0.45 0.686

Exp. 2:

YANA 17.333 0.237 124.3 9.154 0 0

YA(n)A 16.853 0.213 100.3 2.364 0 0
TD3 8.909 1.686 57.1 16.045 35 0.888

Exp. 3:

YANA 20.204 2.677 196.6 42.668 0.05 0.223

YA(n)A 12.475 3.508 138.85 57.579 2.2 1.472
TD3 12.431 1.744 127.9 11.693 1.95 0.759

Exp. 4:

YANA 22.678 0.869 270.7 15.39 0 0

YA(n)A 14.604 2.289 176.4 32.934 1.75 0.638
TD3 13.11 0.587 203.35 6.318 1.95 0.223

Exp. 5:

YANA 13.981 0.978 186.65 46.646 0.05 0.223

YA(n)A 9.559 1.745 162.5 114.672 2.7 0.923
TD3 12.385 1.323 103.95 5.735 0.55 0.998

Exp. 6:

YANA 8.303 0.227 48.75 2.51 0 0

YA(n)A 7.173 0.129 4445 2.35 0 0
TD3 7.053 0.099 39.9 0.967 0 0
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

(m) (n) (0)) (@) G}

Figure 10. Experimental results with 4 robots in 6 scenarios. (a-f) Representative recorded trajectories

Algorithms 2023, 16, 412

16 of 18

with YANA policy. (g-1) Representative recorded trajectories with YA(n)A policy. (m-s) Representa-
tive recorded trajectories with TD3 policy. Robots are represented with a large circle. Their trajectories
and goal positions are represented with a line and a smaller circle in their respective colors. Robots
not at their goal position, represent the point of collision.

7. Summary and Conclusions

In this paper, we presented a novel approach used to train a mobile robot policy
in shared environments. We presented an approach for training a generalizable policy,
collecting data, and its transformation into translation and rotation invariant features.
By design, our proposed method can be adapted to handle a varying number of scene
agents and to devise interaction policies from an ego vehicle perspective. This implies that
each agent in the scene can make intelligent motion decisions independently, eliminating
the need for an overarching planner for interaction modeling. Through experiments, we
demonstrate the benefits of the proposed network architecture and training methodology.
We also emphasize that simply training a policy in shared environments is not enough to
obtain a well-performing motion policy.

The edge embedder method highlights the advantages of a direct exchange between
agents in the scene. However, determining representative features of other agents remains
an open question and is highly dependent on the capabilities of the robot. In this paper, we
select features that could theoretically be extracted from sequential LIDAR observations
in the floor-cleaning domain. These features can only represent the observable state of
other agents, not their internal structure or tasks. Additional features might benefit from
obtaining more optimal motion policies and exchange strategies. For instance, knowledge
of other agents’ goal positions might help the ego agent to reason about its motion, consid-
ering whether to wait for another agent to pass or take an alternate route. However, such
information exchange would require a direct line of communication between robots in the
scene, the implementation of which is outside the scope of this paper. Another potential
issue is the noise in observable data. While the proposed method assumes sample indepen-
dence and therefore sequential steps do not influence each other, real-world settings could
involve such features as speed and velocity, which are detectable from sequential steps. To
addpress this, data filtering methods, such as introducing Kalman filtering or training with
temporal layers like long short-term memory (LSTM) or gated recurrent unit (GRU), could
be introduced.

In future, we aim to implement and test this approach in real-life settings with differ-
ential drive robots. Additionally, in our training settings, we aim to use pre-trained policies
based on human motion to better learn interaction policies, creating a closer resemblance to
interactions with human-operated robotic devices. We plan to utilize a method outlined in
our previous work [6], where a reward function is based on observed human motion. Then,
a single robot could be used to implement optimal floor cleaning robot policy using edge in-
formation. This policy will be rolled out in a simulation environment in which other agents
utilize pre-trained, human-like policies. This strategy could narrow the simulation-to-
reality gap for cleaning robot navigation and facilitate improved human-robot interaction
in shared spaces. These are the planned future steps of our research.

Author Contributions: Conceptualization, R.C. and M.B.; methodology, R.C.; software, R.C. and V.T,;
validation, R.C., V.T. and A K,; resources, V.T., M.B. and A.K.; writing—original draft preparation,
R.C, V.T. and A K; writing—review and editing, M.B.; visualization, R.C.; project administration,
M.B.; funding acquisition, M.B. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the European Regional Development Fund within the project
“Clean 4.0—accelerating the adoption of autonomous technologies across the European cleaning
ecosystem”, grant number 1.1.1.1/20/A/186.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Algorithms 2023, 16, 412 17 of 18

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DRL Deep Reinforcement Learning.

DL Deep Learning.

DQON Deep Q-Network.

SAC Soft Actor—Critic.

DDPG Deep Deterministic Policy Gradient.

TD3 Twin Delayed Deep Deterministic Policy Gradient.
GNN Graph Neural Network.

MDP Markov Decision Process.

CELU Continuously Differentiable Exponential Linear Unit.
Tanh Hyperbolic Tangent.

TEC Transformation Fully Connected.

ROS Robot Operating System.

YANA You Are Not Alone.

YA(M)A You Are (not) Alone.

LSTM Long Short-Term Memory.

GRU Gated Recurrent Unit.

References

1. DeSouza, G.N.; Kak, A.C. Vision for mobile robot navigation: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 237-267.
[CrossRef]

2. Pandey, A.; Pandey, S.; Parhi, D. Mobile robot navigation and obstacle avoidance techniques: A review. Int. Robot. Autom. J. 2017,
2,96-105. [CrossRef]

3. Xiao, X,; Liu, B.; Warnell, G.; Stone, P. Motion planning and control for mobile robot navigation using machine learning: A survey.
Auton. Robot. 2022, 46, 569-597. [CrossRef]

4. Zhu, K; Zhang, T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Sci. Technol. 2021, 26, 674-691.
[CrossRef]

5. Shi, Y, Li, L; Yang, J.; Wang, Y.; Hao, S. Center-based transfer feature learning with classifier adaptation for surface defect
recognition. Mech. Syst. Signal Process. 2023, 188, 110001. [CrossRef]

6. Cimurs, R.; Merchdan-Cruz, E.A. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning
Robot Navigation. Sensors 2022, 22, 7750. [CrossRef]

7. Jiang, H.; Wang, H.; Yau, W.Y.; Wan, K.W. A brief survey: Deep reinforcement learning in mobile robot navigation. In Proceedings
of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9-13 November
2020; pp. 592-597.

8. Ruan, X;; Ren, D.; Zhu, X.; Huang,]. Mobile robot navigation based on deep reinforcement learning. In Proceedings of the 2019
Chinese Control and Decision Conference (CCDC), Nanchang, China, 3-5 June 2019; pp. 6174-6178.

9. Xue, X; Li, Z.;; Zhang, D.; Yan, Y. A deep reinforcement learning method for mobile robot collision avoidance based on double
dgn. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada,
12-14 June 2019; pp. 2131-2136.

10. Sasaki, H.; Horiuchi, T.; Kato, S. A study on vision-based mobile robot learning by deep Q-network. In Proceedings of the 2017
56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Kanazawa, Japan, 19-22 September
2017; pp. 799-804.

11. Xie, L.; Wang, S.; Markham, A.; Trigoni, N. Towards Monocular Vision based Obstacle Avoidance through Deep Reinforcement
Learning. arXiv 2017, arXiv:1706.09829.

12. Xiang, J.; Li, Q.; Dong, X.; Ren, Z. Continuous control with deep reinforcement learning for mobile robot navigation. In
Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22-24 November 2019; pp. 1501-1506.

13. deJesus, J.C.; Kich, V.A,; Kolling, A.H.; Grando, R.B.; Cuadros, M.A.d.S.L.; Gamarra, D.ET. Soft actor-critic for navigation of
mobile robots. |. Intell. Robot. Syst. 2021, 102, 1-11. [CrossRef]

14. Tang, Y.; Zhao, C.; Wang, J.; Zhang, C.; Sun, Q.; Zheng, W.X.; Du, W.; Qian, F.; Kurths, J. Perception and navigation in autonomous

systems in the era of learning: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1-12. [CrossRef]

http://doi.org/10.1109/34.982903
http://dx.doi.org/10.15406/iratj.2017.02.00023
http://dx.doi.org/10.1007/s10514-022-10039-8
http://dx.doi.org/10.26599/TST.2021.9010012
http://dx.doi.org/10.1016/j.ymssp.2022.110001
http://dx.doi.org/10.3390/s22207750
http://dx.doi.org/10.1007/s10846-021-01367-5
http://dx.doi.org/10.1109/TNNLS.2022.3167688

Algorithms 2023, 16, 412 18 of 18

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.
39.

40.

41.

Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation.
In Proceedings of the 2017 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24-28 September 2017; pp. 31-36.

Dankwa, S.; Zheng, W. Twin-delayed ddpg: A deep reinforcement learning technique to model a continuous movement of an
intelligent robot agent. In Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, Vancouver,
BC, Canada, 26-28 August 2019; pp. 1-5.

Kim, M.; Han, D.K; Park,].H.; Kim,].S. Motion planning of robot manipulators for a smoother path using a twin delayed deep
deterministic policy gradient with hindsight experience replay. Appl. Sci. 2020, 10, 575. [CrossRef]

Gao, J.; Ye, W,; Guo, J.; Li, Z. Deep reinforcement learning for indoor mobile robot path planning. Sensors 2020, 20, 5493.
[CrossRef] [PubMed]

Xianjia, Y.; Queralta,].P.; Heikkonen, J.; Westerlund, T. Federated learning in robotic and autonomous systems. Procedia Comput.
Sci. 2021, 191, 135-142. [CrossRef]

Dias, P.G.F; Silva, M.C.; Rocha Filho, G.P; Vargas, P.A.; Cota, L.P,; Pessin, G. Swarm robotics: A perspective on the latest reviewed
concepts and applications. Sensors 2021, 21, 2062. [CrossRef] [PubMed]

Liu, B.; Wang, L.; Liu, M. Lifelong federated reinforcement learning: A learning architecture for navigation in cloud robotic
systems. IEEE Robot. Autom. Lett. 2019, 4, 4555-4562. [CrossRef]

Rajaratnam, D.; Schaub, T.; Wanko, P; Chen, K ; Liu, S.; Son, T.C. Solving an Industrial-Scale Warehouse Delivery Problem with
Answer Set Programming Modulo Difference Constraints. Algorithms 2023, 16, 216. [CrossRef]

Connor, J.; Champion, B.; Joordens, M.A. Current algorithms, communication methods and designs for underwater swarm
robotics: A review. [EEE Sens. |. 2020, 21, 153-169. [CrossRef]

Dorigo, M.; Theraulaz, G.; Trianni, V. Swarm robotics: Past, present, and future [point of view]. Proc. IEEE 2021, 109, 1152-1165.
[CrossRef]

Calderén-Arce, C.; Brenes-Torres, J.C.; Solis-Ortega, R. Swarm robotics: Simulators, platforms and applications review. Computa-
tion 2022, 10, 80. [CrossRef]

Zhang, M.; Yang, B. Swarm robots cooperative and persistent distribution modeling and optimization based on the smart
community logistics service framework. Algorithms 2022, 15, 39. [CrossRef]

Boldrer, M.; Antonucci, A.; Bevilacqua, P.; Palopoli, L.; Fontanelli, D. Multi-agent navigation in human-shared environments: A
safe and socially-aware approach. Robot. Auton. Syst. 2022, 149, 103979. [CrossRef]

Klanéar, G.; Seder, M. Coordinated Multi-Robotic Vehicles Navigation and Control in Shop Floor Automation. Sensors 2022,
22,1455. [CrossRef] [PubMed]

Senbaslar, B.; Sukhatme, G.S. Asynchronous Real-time Decentralized Multi-Robot Trajectory Planning. In Proceedings of the 2022
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23-27 October 2022; pp. 9972-9979.
Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.
2008, 20, 61-80. [CrossRef]

Velickovi¢, P. Everything is connected: Graph neural networks. Curr. Opin. Struct. Biol. 2023, 79, 102538. [CrossRef] [PubMed]
Li, Q.; Gama, F; Ribeiro, A.; Prorok, A. Graph neural networks for decentralized multi-robot path planning. In Proceedings of
the 2020 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020-24
January 2021; pp. 11785-11792.

Li, Q; Lin, W,; Liu, Z.; Prorok, A. Message-aware graph attention networks for large-scale multi-robot path planning. IEEE Robot.
Autom. Lett. 2021, 6, 5533-5540. [CrossRef]

Lin, S; Liu, A.; Wang, J.; Kong, X. A review of path-planning approaches for multiple mobile robots. Machines 2022, 10, 773.
[CrossRef]

Zaheer, M; Kottur, S.; Ravanbakhsh, S.; Poczos, B.; Salakhutdinov, R.R.; Smola, A.J. Deep sets. Adv. Neural Inf. Process. Syst. 2017,
30, 1-11.

Karch, T.; Colas, C.; Teodorescu, L.; Moulin-Frier, C.; Oudeyer, P.Y. Deep sets for generalization in rl. arXiv 2020, arXiv:2003.09443.
Liu, Z.; Yang, D.; Wang, Y.; Lu, M.; Li, R. EGNN: Graph structure learning based on evolutionary computation helps more in
graph neural networks. Appl. Soft Comput. 2023, 135, 110040. [CrossRef]

Barron,].T. Continuously differentiable exponential linear units. arXiv 2017, arXiv:1704.07483.

Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10-15 July 2018; pp. 1587-1596.

Cimurs, R.; Suh, LH.; Lee, J.H. Goal-driven autonomous exploration through deep reinforcement learning. IEEE Robot. Autom.
Lett. 2021, 7, 730-737. [CrossRef]

Amsters, R.; Slaets, P. Turtlebot 3 as a robotics education platform. In Robotics in Education: Current Research and Innovations 10;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 170-181.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app10020575
http://dx.doi.org/10.3390/s20195493
http://www.ncbi.nlm.nih.gov/pubmed/32992750
http://dx.doi.org/10.1016/j.procs.2021.07.041
http://dx.doi.org/10.3390/s21062062
http://www.ncbi.nlm.nih.gov/pubmed/33804187
http://dx.doi.org/10.1109/LRA.2019.2931179
http://dx.doi.org/10.3390/a16040216
http://dx.doi.org/10.1109/JSEN.2020.3013265
http://dx.doi.org/10.1109/JPROC.2021.3072740
http://dx.doi.org/10.3390/computation10060080
http://dx.doi.org/10.3390/a15020039
http://dx.doi.org/10.1016/j.robot.2021.103979
http://dx.doi.org/10.3390/s22041455
http://www.ncbi.nlm.nih.gov/pubmed/35214362
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1016/j.sbi.2023.102538
http://www.ncbi.nlm.nih.gov/pubmed/36764042
http://dx.doi.org/10.1109/LRA.2021.3077863
http://dx.doi.org/10.3390/machines10090773
http://dx.doi.org/10.1016/j.asoc.2023.110040
http://dx.doi.org/10.1109/LRA.2021.3133591

	Introduction
	Related Work
	Problem Formulation
	Proposed Model
	Data Processing
	Model Architecture

	Training
	Simulation Setup
	Training in Simulation
	Training Parameters and Bootstrapping

	Experiments
	Experiments with 2 Robots
	Experiments with 3 Robots
	Experiments with 4 Robots

	Summary and Conclusions
	References

