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Abstract: A neural-network-assisted numerical method is proposed for the solution of Laplace and
Poisson problems. Finite differences are applied to approximate the spatial Laplacian operator on
nonuniform grids. For this, a neural network is trained to compute the corresponding coefficients for
general quadrilateral meshes. Depending on the position of a given grid point x0 and its neighbors,
we face with a nonlinear optimization problem to obtain the finite difference coefficients in x0. This
computing step is executed with an artificial neural network. In this way, for any geometric setup of
the neighboring grid points, we immediately obtain the corresponding coefficients. The construction
of an appropriate training data set is also discussed, which is based on the solution of overdetermined
linear systems. The method was experimentally validated on a number of numerical tests. As
expected, it delivers a fast and reliable algorithm for solving Poisson problems.

Keywords: boundary value problems; Laplacian; Poisson problem; neural networks; finite difference
discretization; learning data; nonuniform mesh

1. Introduction

In the last decade, the widespread use of artificial neural networks (ANNs) led to
a significant step forward in computer science and computational mathematics. A wide
range of practical problems, including segmentation and classification tasks, could be
efficiently solved using this tool. Here, the related mathematical models fall into the class of
discrete problems. At the same time, we have to keep in mind that the engine of the ANN-
based algorithms is a gradient-based continuous optimization algorithm enriched with
stochastic elements. This gives the first motivation to also apply ANN-based techniques
for the numerical solution of problems arising from continuous mathematical models. The
numerical solution of partial differential equations (PDEs) constitutes an important class of
these, having a central role in the natural sciences and engineering.

Accordingly, a family of ANN-based methodologies was developed for solving partial
differential equations (PDEs) numerically. The most common approach is the class of the
so-called physics-informed neural networks (PINNs). In this framework, the solution
candidates are optimized based on the most straightforward error terms. To compute
these, one has to calculate consistency error in the governing equations and boundary
conditions. In concrete terms, the approximations are substituted into the physical laws
constituting the mathematical problem. For a general description of this method, we refer
to [1,2]. A number of specific forms of this method were developed and applied for a scale
of classical PDE problems arising in real-life applications; see, e.g., [3]. Beyond these, the
above framework can be extended to the numerical solution of stochastic [4] and inverse
problems [5,6] as well.
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A possible shortcut of this procedure is to seek approximations only from a class of
functions that satisfy the governing equation exactly. In this case, we only have to care
about parameters (unknowns) associated with the boundary, which can largely decrease the
dimension of the corresponding optimization problems. Such an algorithm is introduced
in [7] and applied to the numerical solution of Dirichlet-to-Neumann problems.

To summarize these developments and further approaches in detail, a number of
review articles have been published in the past years. Among them, we propose [8,9],
where a really wide range of further specific references can be found. All of these approaches
offer a complete procedure for the numerical solution of PDEs.

At the same time, in the last 75 years, a wide class of conventional numerical methods
were developed for solving PDEs. A natural idea is to combine these with the efficient
computational tools offered by the ANNs. This is also the aim of the present study. In other
words, we propose here an ANN-assisted numerical solution of PDEs. In this framework,
instead of the entire approximation procedure, only an important and technical step of a
conventional numerical method is executed using an ANN.

In the course of the numerical solution of a PDE, we usually first have to discretize the
underlying problem including the governing equation and the boundary data. Whenever
we can choose purely function-space-based discretizations, it is mostly connected to a phys-
ical discretization of the computational domain, where the equation is posed. Generating
a suitable mesh for this purpose is still a challenging problem. At this step, one can also
make use of ANN-based procedures; see, e.g., [10–12].

Having this mesh at hand, choosing a specific finite element or finite difference
discretization method and, finally, incorporating the given boundary data, we obtain
an algebraic (or linear algebraic) system of equations. The construction of such finite-
difference-based approximations will be the focus of our study.

In case of uniform rectangular meshes, we can easily derive finite difference approx-
imations of various differential operators and convert the original problem quickly into
a system of equations. Otherwise, which is the case in almost all real-life engineering
problems, we need to deal with simplicial (or even hybrid) meshes and use an appropriate
Galerkin-type discretization. Generating this mesh with the corresponding data structure
and collecting (assembling) the system of equations may be rather time-consuming. For
the details of this procedure, we refer to [13], Section 8. In the case of linear problems like
the Laplacian equation, this can take even longer compared to the solution of the system of
equations. Even for nonlinear problems, including iterative solvers, the assembling may
take a significant portion of the computational time [14].

Here, we consider the case of the Laplacian operator. Accordingly, our aim in the
present work is to develop an ANN that generates the finite difference discretization matrix
of the Laplacian and meets the following requirements:

(i) It also works on nonuniform and nonrectangular grids;
(ii) It is very quick and uses only neighboring relations between the grid points;
(iii) It delivers an accurate discretization of the Laplacian.

Note that the numerical approximation of the Laplacian operator has a long history
and a number of efficient approximations were elaborated. It has a central role not only in
classical diffusion problems but also in several computationally intensive mathematical
models, such as equations for wave propagation, Navier–Stokes equations or free-surface
wave equations [15].

Summarized, the main motivation of the present work is to utilize the tool of the
ANNs for the accurate discretization of the Laplacian operator. We perform this in the
framework of a finite difference approximation. Our contribution here is to provide the
coefficients for nonregular meshes. Instead of a pointwise optimization procedure, these
coefficients will be computed by an ANN, which we train in advance.

The setup of our contribution is the following. After a short review, we discuss the
principle of our algorithm. Then, the two main components, the procedure for generating
learning data and the construction of the neural network, will be explained. Finally, in a
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series of numerical experiments, an experimental analysis will be carried out to test the
efficiency of our algorithm.

Note in advance that the methodology we develop here can be easily extended for
a number of differential operators, where a computationally efficient finite difference
approximation is needed on a nonuniform spatial mesh.

2. Materials and Methods

We first state the mathematical problems to solve. To ease the presentation, we
perform the study in the two-dimensional case, but the principle is still valid in three space
dimensions.

2.1. Problem Statement and Mathematical Background

We investigate the numerical approximation

J

∑
j=0

aju(xj) ≈ ∆u(x0) (1)

of the Laplacian operator at a given point x0. Here, {xj}J
j=1 denotes the adjacent grid

points to x0 with given function values {u(xj)}J
j=1 and u(x0), respectively. In practice, the

coefficients {aj}J
j=0 are to be optimized, which depend on the position of the grid points.

Indeed, we apply this approximation for a spatial discretization of a domain Ω, which can
be regarded as a grid. The aim of such an approximation is the numerical solution of some
PDE. To demonstrate the principles, we consider the simple Poisson’s problem{

∆u(x) = f (x) x ∈ Ω
u(x) = g(x) x ∈ ∂Ω,

(2)

where Ω ⊂ R2 denotes the computational domain, u : Ω → R is the unknown function
and g : ∂Ω→ R is given. The well-posedness of (2) is ensured in H1(Ω) provided that Ω
is a bounded Lipschitz domain, f ∈ H−1(Ω) and g ∈ H

1
2 (∂Ω) (see [16]).

Concerning the numerical solution of (2), in the most easy case, using a uniform rectan-
gular grid, we have locally the geometric setup shown on the left in Figure 1. Here, for
the approximation of ∆u(x0), we use the function values at x1, x2, x3 and x4, which are
considered the neighbors of x0.

Then, in a given grid point x0, we have the classical five-point approximation

∆u(x0) ≈
u(x1)− 2u(x0) + u(x3)

h2
x

+
u(x2)− 2u(x0) + u(x4)

h2
y

, (3)

so that in this case, in (1), we will have

a0 = − 2
h2

x
− 2

h2
y

, a1 = a3 =
1
h2

x
and a2 = a4 =

1
h2

y
. (4)

This has the approximation order 2, i.e., for the difference of the two sides in (3), the
choice in (4) delivers the approximation order 2 with respect to both variables:

∆u(x0)−
u(x1)− 2u(x0) + u(x3)

h2
x

+
u(x2)− 2u(x0) + u(x4)

h2
y

= O(h2
x) +O(h2

y), (5)

provided that the function u is four-times continuously differentiable. Whenever it seems
to be a strict assumption, for a number of PDEs (such as diffusion problems), including
the Laplacian operator, we have smooth analytic solutions. In practice, the pointwise
approximations in (3) are assembled into a matrix Dh,FD. Incorporating also the boundary
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condition and using the vector fh for the pointwise values of f in the grid points, we finally
have a linear algebraic problem to solve:

Dh,FDuh,FD = fh (6)

The solution uh,FD is then called a finite difference (FD) approximation of u in (2).
In another well-known case, one can discretize any domain into (possibly curved)

triangles and, based on this tessellation, a first-order finite element (FE) approximation can
be applied. This situation in a special geometric case is presented on the right in Figure 1.
Here, the neighbors of x0 are the points x1, x2, . . . , x6.

x1

x0

x3

x4

x2

hy

hx

x1 x0 x3

x4 x5

x6 x2

hx

hs

Figure 1. Two regular constellations of grid points: a fixed one x0 and its neighbors. They are
presented on a uniform rectangular grid (left) and on a uniform simplicial (or triangular) grid (right).
Neighboring points are connected. On the right-hand side, hs =

5
3 hx.

In this case, instead of the direct form of the Laplacian operator, its weak form is
discretized. At the same time, in the course of the numerical solution of (2), this approach
also leads to a linear system to solve:

Dh,FEuh,FE = fh,FE (7)

Here, the unknown vector uh,FE ∈ RN consists of coefficients of a finite element basis,
while fh,FE represents the scalar product of f with the basis elements. Usually, a lifting also
has to be applied to incorporate the boundary conditions. In any case, again, the matrix
Dh ∈ RN×N can be regarded as an approximation of ∆ on the entire domain Ω. Accordingly,
in a specific case, shown on the right of Figure 1, we can determine the coefficients as in (4)
to obtain

a0 = − 1
h2

x
· 44

9
, a1 = a2 = a3 = a4 =

1
h2

x
· 25

18
and a5 = a6 = − 1

h2
x
· 1

3
. (8)

In the course of computing these coefficients, we have used the ratio hs =
5
3 hx. Note

that this discretization leads to a second-order convergence with respect to the L2(Ω)-norm.
To compare the above cases, we also give the position of the nonzero elements and

the total number of the nonzeros in the matrices Dh,FD and Dh,FE corresponding to the
discretizations in (4) and (8), respectively. To visualize the nonzero entries of these matrices,
we have depicted them in Figure 2.



Algorithms 2023, 16, 410 5 of 14

Figure 2. Location of nonzero elements in the discretization matrix Dh,FD corresponding to (4) (left)
and Dh,FE corresponding to (8) (right), respectively. The total matrix size 25× 25 corresponds to
the number of the interior grid points. The conventional Matlab notation nz is for the number of
nonzeros.

Whenever the finite element discretization is flexible regarding the geometry of the
domain, compared to the simple finite difference approximation given by Dh,FD, it has
some drawbacks as well:

• We need more nonzero entries in the matrices Dh,FE, as one can observe in Figure 2. It
enhances both the assembling time of the matrices and the solution of the correspond-
ing linear systems.

• We need to generate and store the entire structure of the mesh, including a list of
triangles with their nodes and faces.

• In a nonuniform grid, we need to transform the gradient of basis functions on each
of the triangles according to the transformation of the reference triangles computing
Jacobian matrices and their inverses (see [13]).

To avoid all of these, our objective is to develop a finite difference approximation,
which has the beneficial properties in (i)–(iii).

A direct way for constructing such a second-order approximation is, however, impos-
sible even in the one-dimensional case using two neighboring grid points. This is stated,
e.g., in an early contribution [17]. One should also note that, assuming a quasi-uniform
one-dimensional mesh, the second-order accuracy can be preserved. Here, the difference in
the neighboring grid distances should be one magnitude less compared to the grid size.

In a general case, a possible idea to obtain a second-order (or even higher-order) finite
difference scheme without using a wide stencil (data from more neighboring grid points) is
offered by the so-called method of compact difference schemes introduced in [18]. In this
framework, the coefficients are not given explicitly; they have to be computed using a linear
system. In the corresponding equalities, on the left hand side the linear combination of
function values are given as in (1) or (3). At the same time, on the right hand side, again, a
linear combination of the second-order derivatives arises. This idea was further developed;
see, e.g., [19].

Another approach is to introduce further appropriate grid points, where the original
simple finite differences deliver a higher-order approximation. Such a construction is
analyzed in detail in [20], which also discusses the stability issues for the corresponding
time-dependent problems.

We choose here an alternative way. Without introducing new variables or solving linear
systems for optimal finite difference coefficients, an ANN will be utilized for constructing
an optimal finite difference approximation.
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2.2. Principles of the Present Algorithm

A natural easy choice could be to generalize (3) by preserving the second-order accu-
racy. As we have mentioned, we cannot just provide a simple formula for this. Instead, we
could perform an optimization procedure to determine the coefficients, which approximate
the Laplacian operator as accurately as possible.

Before digging into the details, we immediately reduce the setup of this problem:

• One can obviously assume the translation-invariant property of the approximation.
Accordingly, we may assume that x0 = (0, 0).

• Also, any physically meaningful approximation should be scale-invariant. In concrete
terms, if we have the optimal coefficients {aj}4

j=0 for some configuration {xj}4
j=1, then

we should have { 1
r2 aj}4

j=0 for the configuration {r · xj}4
j=1.

However, a separate optimization procedure in all of the grid points would be ex-
tremely time-consuming. This is the point where artificial neural networks come into the
picture and the following main principle is established.

An ANN should be trained to learn this optimization in the sense that it should give the
coefficients {aj}4

j=0 in (1) using the positions {xj}4
j=1 as an input.

Formally, we associate the mapping N to the ANN, such that

N : (x1, x2, x3, x4)→ (a0, a1, a2, a3, a4)

First, we reduce the problem again by requiring that the Laplacian of the constant

function is computed in (0, 0) exactly. This means that
4

∑
j=0

aj = 0, so that we have

a0 = −
4

∑
j=1

aj.

With this simplification, we have to optimize only the set of parameters {a1, a2, a3, a4}.
Note that a second-order approximation can reconstruct the Laplacian for all at most

second-order polynomials.

p0(x, y) = 1, p1(x, y) = x, p2(x, y) = y,

p3(x, y) = x2, p4(x, y) = y2, p5(x, y) = xy.
(9)

2.3. Construction of Learning Data

A main cornerstone for the practical construction of a corresponding ANN is to create
a suitable learning data set. To obtain this, we compute the optimal coefficients {aj}4

j=1

for a number of possible positions {xj}4
j=1. In concrete terms, we start from the standard

geometry x1 = (−1, 0), x2 = (0,−1), x3 = (1, 0), x4 = (0, 1). By means of the scale-
invariant property, this will be sufficient for all configurations. Adding a relatively small
random number to all coordinates, we perturb them to have

x̃1 = (−1 + d11, d12), x̃2 = (d21,−1 + d22), x̃3 = (1 + d31, d32), x̃4 = (d41, 1 + d42).

as shown in Figure 3. This can be performed simultaneously to obtain a nonuniform
tessellation of a computational domain Ω (see Figure 4).
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x̃1

x̃3

x̃2

x̃4

Figure 3. The standard position of neighboring discretization points (small black bullets) and their
perturbations (large blue bullets) to obtain learning data. This can be considered the perturbation of
the neighboring relation in the left of Figure 1.

Figure 4. Grid points in a square-shaped computational domain obtained with a simultaneous
perturbation of a uniform square grid. The boundary grid points are unchanged.

For this given data, we approximate the optimal coefficients {aj}4
j=1 as follows.

In the perturbed grid points {x̃j}4
j=1, we “solve” the system of equations


100p1(x̃1) 100p1(x̃2) 100p1(x̃3) 100p1(x̃4)
100p2(x̃1) 100p2(x̃2) 100p2(x̃3) 100p2(x̃4)

p3(x̃1) p3(x̃2) p3(x̃3) p3(x̃4)
p4(x̃1) p4(x̃2) p4(x̃3) p4(x̃4)
p5(x̃1) p5(x̃2) p5(x̃3) p5(x̃4)

 ·


a1
a2
a3
a4

 =


0
0
2
2
0

 (10)

for the unknown coefficients (a1, a2, a3, a4) in the least-square sense. In rough terms, we
are looking for the coefficients (a1, a2, a3, a4), which can reconstruct the Laplacian for the
polynomials p1, p2, p3, p4 and p5 in (9) as accurately as possible.

Here, we have applied a weight of 100 for the first-order polynomials. This is a
hyperparameter: the above value could deliver a good performance regarding the final
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approximation properties. The motivation for applying this is to ensure the first-order
accuracy.

In the implementation, we use the efficient approximative solver numpy.linalg.lstsq
in Python for the problem in (10). This was performed for a number of 1600 random
perturbations. Note that both of the random perturbations and the least-square solution
can be implemented in a vectorized form, enhancing the efficiency of the whole procedure.

2.4. Setup of the Artificial Neural Network

Having an appropriate set of learning data at hand, the final practical issue is to design
a feasible neural network for computing the above coefficients {aj}4

j=1. In any case, to keep
the computational costs at a low level, this should contain relatively few parameters. Also,
since the mapping N is nonlinear, we need to incorporate nonzero activation functions. In
concrete terms, we have applied the so-called SeLu activation function, which is given with

SeLu : R→ R, SeLu(x) =

{
α0x x > 0
α0 · α1ex−1 x ≤ 0.

Within the Keras package of Python, we have used the standard parameters α0 ≈ 1.0507
and α1 ≈ 1.6733, respectively.

After a long series of experiments, the following structure is proposed:

• The input layer is of size 8, obtaining the 8 coordinates of (x1, x2, x3, x4).
• The first hidden layer, a dense one, is of size 4, using the SeLu activation function and

a bias term.
• The second hidden layer is again a dense one of size 12 using the SeLu activation

function and a bias term.
• Finally, the output layer is also dense and of size 4, and it is equipped with a linear

activation function without a bias term.

The above structure is displayed in Figure 5.

Input layer,
dim. = 8

Layer 1, dim. = 4

Layer 2, dim. = 12

Output layer,
dim. = 4

dense activation: SeLu

dense activation: SeLu

dense activation: none

Figure 5. The structure of the ANN for computing the finite difference coefficients.

Altogether, this setup contains 144 parameters, which have to be optimized during
the learning procedure. Note that in the majority of the applications of ANNs a much
larger number of parameters is used. At the same time, for the efficiency of the algorithm,
we need a really simple setup, which is comparable to the complexity of a single matrix-
vector product. Also, if we obtain an acceptable accuracy with 144 parameters, a more
sophisticated system could suffer from overfitting and would require an extra regularization
procedure.
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Altogether, the algorithm to build a matrix Dh,FD for the approximation of the Lapla-
cian consists of the following steps:

(i) Generate randomly perturbed grid points and training data using the least-square
approximation for (10).

(ii) Construct the ANN in Figure 5 and train it using the above data.
(iii) Construct a quadrilateral spatial grid on the computational domain Ω.
(iv) For each grid point x0 and its neighbors x1, x2, x3 and x4, we apply an affine linear

mapping to transform the midpoint to the origin and scale one distance to be one.
(v) We apply the ANN to the above setup and scale back the distances to obtain the

finite difference coefficients (a1, a2, a3, a4) for the neighboring points.
(vi) We compute a0 = −a1 − a2 − a3 − a4 and have all the coefficients at hand.
(vii) For an arbitrary function u, we can approximate its Laplacian in all interior points

by assembling the matrix Dh,NN.

Remarks:

1. Note that in Python the above operation of the ANN can also be vectorized, leading
to an efficient implementation.

2. We can incorporate any inhomogeneous Dirichlet boundary data, since these values
are simply given on the boundary grid points.

3. We could make this procedure completely mesh-free using only grid points. At the
same time, using a quadrilateral mesh, the neighbors of a certain grid point can
be specified automatically. Also, these kind of meshes are practically useful (see,
e.g., [21]) and these can be obtained using the frequently used mesh generators.

4. Here, Dh,NN has the same structure as Dh,FD (see the left of Figure 2), but the nonzero
entries were computed using our ANN.

In practical cases, for the numerical solution of (2), we not only have to approximate
the Laplacian but we also have to solve a problem given in (6).

3. A Summary: The ANN-Assisted Numerical Method

By incorporating the ANN-based approximation into the conventional FD numerical
method, we summarized the proposed PDE solver for the Laplacian problem in Figure 6.

grid points,
four neighbors

deviations from
the neighbors

ANN shown in Figure 5

jth row and
column of Dh,NN

solve the system
Dh,NNuh,NN = fh

for the grid point xj

input of the ANN

output of the ANN

collecting for all j

Figure 6. Block diagram of our entire algorithm for the numerical solution of (2).
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4. Results: An Experimental Analysis

We first test the performance of the ANN, then the approximation property of the
matrix Dh,FD and, finally, the computational error regarding uh,FD.

4.1. Performance of the ANN

In all experiments, we use the same ANN. The corresponding hyperparameters in the
training procedure are chosen as follows:

• Learning rate: 0.002;
• Proportion of training and validation data: 80–20%;
• Number of epochs: 400;
• Batch size: 80;
• Loss function: mean squared error;
• Optimizer: ADAM.

The performance of the learning algorithm is shown in Figure 7.

Figure 7. Learning performance of the ANN given in Section 2.4.

According to this, the ANN could learn the the coefficients of the approximation. Also,
in Figure 8, one can observe a good agreement of the testing and the training loss. Note
that further increasing the size of layers does not result in a further decrease in the testing
loss, while we need more epochs to arrive at the same level of accuracy.

Figure 8. Error between the training and validation loss.



Algorithms 2023, 16, 410 11 of 14

4.2. Performance of the ANN-Based Approximation of the Laplacian

In the first series of experiments, we investigate the accuracy of the numerical ap-
proximation of the Laplacian. In concrete terms, we compare the standard five-point
approximation in (3) with the approximation provided by the trained ANN.

The computational domain is Ω = (0, 1)× (0, 1), and we apply a nonuniform grid, as
shown in Figure 4. Here, we have used the number of 21× 21 grid points.

The approximation was tested in the case of the following model problem:{
∆u(x, y) = (2− x2y2 − x4) · cos xy− 4xy sin xy in Ω
u(0, y) = 0, u(1, y) = cos y, u(x, 0) = x2, u(x, 1) = x2 · cos x,

(11)

which has the analytic solution u(x, y) = x2 · cos xy. Our aim here is to compare the
pointwise approximation given by the ANN-based approximation with the ∆ operator. To
quantify this, we compute the quantity

(
∑
xj

|∆u(xj)− (Dh,FDu)j|2
) 1

2

, (12)

which is the `2-norm of the error of the approximation Dh,NN ≈ ∆ on the grid. Here, xj in
the summation applies to all of the grid points.

We compare this quantity with the `2-norm

(
∑
xj

|∆u(xj)−
1

0.052 (−4u(xj) + u(xj+1) + u(xj+2) + u(xj+3) + u(xj+4)

) 1
2

, (13)

given by the standard five-point approximation. Here, according to the geometric setup in
Figure 1, the indices j + 1, j + 2, j + 3 and j + 4 denote the indices of the neighboring grid
points of xj.

While the first one is approximately 0.5, the second one is ≈6. This was the average of
a number of experiments. Here, the random positions in Figure 4 can effect the above error
terms.

This shows a real advance of our approach versus the conventional approximation. At
the same time, we need to solve the problem in (11) numerically.

4.3. Performance of the ANN-Based Numerical Solution of (2)

In this series of experiments, we investigate the model problem
∆u(x, y) = −16x cos 4y in Ω
u(0, y) = y, u(π

2 , y) = y + π
2 · cos 4y, u(x, 0) = x on ∂Ω

u(x, 1 + cos x
4 ) = 1 + cos x

4 + x · cos 4(1 + cos x
4 ) on ∂Ω,

(14)

where the computational domain is given by

Ω = {(x, y) : 0 < x <
π

2
, 0 < y < 1 +

cos x
4
}.

Note that (14) has the analytic solution u(x, y) = y + x · cos 4y.
The domain Ω was discretized using a nonuniform grid. The motivation of this arises

from the study of moving boundary problems for water waves [15], where the velocity
potential exhibits more variation nearer to the free surface. In this way, for an equally
accurate discretization, we need here more grid points compared to the bottom region.
Also, the number of the grid points is frequently identical on each vertical segment. Using
this convention, we can easily record the neighboring relations. A corresponding grid is
shown in Figure 9.
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Figure 9. The computational domain Ω corresponding to the model problem in (14).

In concrete terms, we have 21 grid points along all vertical segments. Also, we have
21 segments in the discretization. Performing again a comparison between the ANN-based
and conventional approximation of the Laplacian, the errors given by (12) and (13), we
obtain 0.33 and 6.5, respectively. Here, we have a significant advance of our approach. Also,
we have compared the final computational errors in the discrete L2-norm to obtain

(
∑
xj

|xj − xj+1| · |xj − xj+2| · |u(xj)− (uh,NN)j|2
) 1

2

≈ 0.018

and (
∑
xj

|xj − xj+1| · |xj − xj+2| · |u(xj)− (uh,FD)j|2
) 1

2

≈ 0.065.

Here, uh,FD denotes the numerical solution of (14) using the conventional finite differ-
ence method given with the (6) matrix based on the discretization in (13). Likewise, uh,NN
denotes the solution of the equation Dh,NNuh,NN = fh, where Dh,NN is the discretization
matrix obtained by our ANN. The comparison of the errors above also shows the advance
of our approach.

Another way of obtaining an accurate discretization matrix is to perform the optimiza-
tion procedure discussed in Section 2.3 pointwise in each x0. This, however, significantly
increases the computational time. Regarding this, a comparison is shown in Table 1. The
proposed ANN-based algorithm becomes faster only for a large number of grid points.
This is typically the case in real-life situations.

Table 1. Computing time for the finite difference coefficients for different numbers of grid points.

# of Grid Points 6 · 106 6 · 105 6 · 104 6 · 103 6 · 102

ANN-based computation 126 s 13.6 s 1.36 s 0.286 s 0.0848 s
Pointwise optimization 331 s 33.3 s 3.3 s 0.339 s 0.0405 s

5. Discussion and Conclusions

We have presented an ANN-based finite difference approximation for Poisson prob-
lems on nonuniform grids. The ANN given in Section 2.4 could deliver an appropriate
matrix Dh,FD to approximate the Laplacian. In the framework of an FD approximation
(see Figure 6), this could also be used to enhance the accuracy of the numerical solution of
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(2), as pointed out in Section 4.3. Also, our algorithms offer a fast computation of the FD
coefficients (see Table 1).

The main benefit of the present approach is the application of this procedure for
moving boundary problems. In the course of the numerical solution of these problems, we
have to generate a new mesh in each time step, which requires a highly efficient procedure.

The construction of such a complex algorithm will be the continuation of this research.
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