
Citation: Yin, F.; Yuan, X.; Ma, Z.; Xu,

X. Vector Control of PMSM Using

TD3 Reinforcement Learning

Algorithm. Algorithms 2023, 16, 404.

https://doi.org/10.3390/a16090404

Academic Editor: Frank Werner

Received: 30 July 2023

Revised: 18 August 2023

Accepted: 21 August 2023

Published: 24 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Vector Control of PMSM Using TD3 Reinforcement
Learning Algorithm
Fengyuan Yin 1,*, Xiaoming Yuan 1,*, Zhiao Ma 1 and Xinyu Xu 2

1 Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University,
Qinhuangdao 066004, China; m18733791202@163.com

2 Jiangsu Xugong Construction Machinery Research Institute Co., Ltd., Xuzhou 221004, China;
xxy990108@163.com

* Correspondence: 18033587275@163.com (F.Y.); xiaomingbingbing@163.com (X.Y.);
Tel.: +86-195-1619-1280 (F.Y.); +86-137-8056-0557 (X.Y.)

Abstract: Permanent magnet synchronous motor (PMSM) drive systems are commonly utilized in
mobile electric drive systems due to their high efficiency, high power density, and low maintenance
cost. To reduce the tracking error of the permanent magnet synchronous motor, a reinforcement
learning (RL) control algorithm based on double delay deterministic gradient algorithm (TD3) is
proposed. The physical modeling of PMSM is carried out in Simulink, and the current controller
controlling id-axis and iq-axis in the current loop is replaced by a reinforcement learning controller.
The optimal control network parameters were obtained through simulation learning, and DDPG, BP,
and LQG algorithms were simulated and compared under the same conditions. In the experiment
part, the trained RL network was compiled into C code according to the workflow with the help
of rapid prototyping control, and then downloaded to the controller for testing. The measured
output signal is consistent with the simulation results, which shows that the algorithm can signifi-
cantly reduce the tracking error under the variable speed of the motor, making the system have a
fast response.

Keywords: PMSM; FOC; RL; DDPG; TD3; controller

1. Introduction

Due to their simple form, high power density, and high efficiency, PMSMs are widely
employed in numerous industrial control applications [1–3]. The speed of PMSM is mainly
regulated by frequency conversion. Closed-loop speed constant voltage frequency ratio
control (V/F), vector control (VC), and direct torque control are widely used in frequency
conversion speed control [4]. The most common is VC, also known as magnetic Field-
Oriented Control (FOC), which uses a variable-frequency drive (VFD) control three-phase
alternating current (AC) motor to control the output of the motor by adjusting the frequency
converter’s output frequency, output voltage size, and angle [5]. In this paper, the id-axis
and iq-axis of the current loop are accurately controlled by reinforcement learning method
under the FOC framework, so that the inverter can output a suitable PWM signal and
obtain accurate motor speed, providing a new current loop control method.

PMSM is a complex object with multiple variables, strong coupling, and nonlinear and
variable parameters. To obtain better control performance, many scholars have designed
a reasonable controller [6]. Chang, X. et al. [7] proposed a non-singular fast terminal
sliding mode (NNFTSM) control strategy based on extended state observer (ESO) and
tracking differential (TD), in which PMSM has strong robustness to parameter changes and
external load disturbances. Chen, J. et al. [8] adopted a nonlinear adaptive control (NAC)
method of PMSM to estimate the concentrated disturbance terms through the observer, thus
achieving better dynamic performance of the system. Dai, C. et al. [9] proposed a current
restraint controller based on interference observer for PMSM speed control to reduce the

Algorithms 2023, 16, 404. https://doi.org/10.3390/a16090404 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16090404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a16090404
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16090404?type=check_update&version=1

Algorithms 2023, 16, 404 2 of 20

interference of current constraints and external conditions. Guo, T. et al. [10] constructed
a special nonlinear gain to directly establish the Q-axis current penalty mechanism in
the PMSM control action, which solves the problem of overcurrent protection under fast
dynamic conditions. With the rapid development of computer technology, many scholars
have done more research on the intelligent control of PMSM. Xu, Q. et al. [11] adopted
NSGA-II (Non-dominated Sorting Genetic Algorithm-II) to optimize the PID controller
parameters of PMSM. Zhang, W. et al. [12] proposed a new energy efficiency-oriented
sliding mode controller (APIDSMC-PALC) compensation method to suppress the influence
of PMSM servo system torque ripple.

Deep reinforcement learning (DRL) is an ideal multi-objective optimization method
with a high searching ability and a quick convergence rate, and it has demonstrated high
application value in the control sector in recent years. Lu, W. et al. [13] made a control
autonomous underwater vehicle (AUV) by model-free RL based on data informed domain
randomization (DDR) that enables the controller to adapt to sudden changes in dynamics.
Zhang, L. et al. [14] used the RL framework with Actor-Critic network as a new path
ordering algorithm (PRA) to carry out effective relationship learning and path finding,
reducing the dependence on large-scale training data sets. Zhao, B. et al. [15] integrated
input and output data and cyclic neural networks, established an observer to approximate
unknown system dynamics, and solved the problem of optimal stability of unknown
nonlinear systems affected by uncertain input constraints. Zhang, S. et al. [16] used DRL
to enable unmanned aerial vehicles (UAVs) to perform navigation tasks randomly and
dynamically in a multi-obstacle environment. Hong, Z. et al. [17] proposed a control
method of reinforcement learning-PI based on genetic algorithm. The model was built,
and the initial parameters of PI controller were optimized by genetic algorithm. The depth
deterministic strategy gradient algorithm was used to adjust the PI controller in real time,
which realizes the function of position command control of the air rudder servo system.
Yang, C. et al. [18] view of the uncertainty of model parameters and the dynamic coexistence
of fast and slow, a reinforcement learning algorithm independent of model parameters
is proposed to learn controller gain. This method improved the tracking performance
and synchronization performance of the dual-motor system, inhibited the interference of
unknown time-varying load, and avoided the influence of parameter uncertainty. With the
wide application of intelligent control, in motor control, the operation of the motor includes
uncertain factors such as the parameter change and operation disturbance of the motor.
The influence of parameter changes and nonlinear interference in the motor system can be
overcome through reinforcement learning training. The powerful self-learning ability of
RL can be used to improve the control strategy of the system through data, and the optimal
control of the motor can be realized.

In this paper, a current loop controller of PMSM based on RL is studied. PI controller in
FOC current loop is replaced by RL controller, RL training environment is constructed, and
TD3-RL decision mechanism is introduced to train parameters in Actor and Critic network
offline until the expected current control effect is achieved. Finally, a rapid prototype test
was designed, and the RL controller was compiled into C code and downloaded into the
controller for testing, which verified the speed and effectiveness of the TD3-FOC controller
in the speed control of PMSM.

2. PMSM Model and RL
2.1. PMSM Model

The essential components of a PMSM are a permanent magnet pole rotor and a three-
phase winding fixed stator. A rotating magnetic field is produced when a three-phase AC
power supply is applied to the stator winding [19]. The magnetic poles on the rotor interact
with the revolving magnetic field to produce an electromagnetic torque that excites the
rotor to rotate synchronously. The principle of PMSM is shown in Figure 1.

Algorithms 2023, 16, 404 3 of 20Algorithms 2023, 16, x FOR PEER REVIEW 3 of 21

Figure 1. PMSM rotation schematic.

ω

ω φ

= + −

= + + +

()

d

q

i
d s d d q q

i

q s q q d d f

d
u R i L L i

dt
d

u R i L L i
dt

(1)

where ud—D-axis voltage; uq—Q-axis voltage; Rs—stator resistance; id—D-axis current;
iq—Q-axis current; Ld—D-axis equivalent inductance; Lq—Q-axis equivalent inductance;
ω—rotor angular velocity; Φf—Number of flux linkage.

The principle of vector control of PMSM servo system, when id is equal to 0, the D-
axis voltage ud is transformed into: 𝑢 = −𝜔𝐿 𝑖 . (2)

When the D-axis current reaches zero, the D-axis current no longer contributes to the
torque voltage. Electromagnetic torque is generated by the current of the motor. We can
change the torque of the motor by changing the Q-axis current iq. To map the change in
force, the frequency of the current can also be adjusted to control the speed. Finally, the
duration of the speed is used to control the motor speed.

This paper uses RL controller to control the current of PMSM current loop. A typical
FOC architecture was developed in Simulink, where the outer loop controller controls the
speed, while the inner loop PI controller controls the D-axis and Q-axis currents (Figure
2). The RL module is created in the current loop, which replaces the current loop PI con-
troller for this architecture.

Figure 2. RL-FOC for PMSM.

The whole FOC control system consists of three parts, PMSM model, inverter model,
and reinforcement learning model, in which the FOC control framework has two control

a

a’

b

b’

c

c’

Quadrature q

Direct d
Stator

rθ
Rotor

RL
Controller

Invert Park
Transformation

Park
Transformation

Clarke
Transformation

SVPWM Three Phase
Invert

Speed & Position Estimator

uα
uβ

ai
bi
ci

iβ

iα
qi
di

qu
du

fbw

Speed
Controlle

r

𝜔
θ

PMSM

Figure 1. PMSM rotation schematic.

ud = Rsid + Ld
did
dt −ωLqiq

uq = Rsiq + Lq
diq
dt + ω(Ldid + φ f)

 (1)

where ud—D-axis voltage; uq—Q-axis voltage; Rs—stator resistance; id—D-axis current;
iq—Q-axis current; Ld—D-axis equivalent inductance; Lq—Q-axis equivalent inductance;
ω—rotor angular velocity; φf—Number of flux linkage.

The principle of vector control of PMSM servo system, when id is equal to 0, the D-axis
voltage ud is transformed into:

ud = −ωLqiq. (2)

When the D-axis current reaches zero, the D-axis current no longer contributes to the
torque voltage. Electromagnetic torque is generated by the current of the motor. We can
change the torque of the motor by changing the Q-axis current iq. To map the change in
force, the frequency of the current can also be adjusted to control the speed. Finally, the
duration of the speed is used to control the motor speed.

This paper uses RL controller to control the current of PMSM current loop. A typical
FOC architecture was developed in Simulink, where the outer loop controller controls the
speed, while the inner loop PI controller controls the D-axis and Q-axis currents (Figure 2).
The RL module is created in the current loop, which replaces the current loop PI controller
for this architecture.

Algorithms 2023, 16, x FOR PEER REVIEW 3 of 21

Figure 1. PMSM rotation schematic.

ω

ω φ

= + −

= + + +

()

d

q

i
d s d d q q

i

q s q q d d f

d
u R i L L i

dt
d

u R i L L i
dt

(1)

where ud—D-axis voltage; uq—Q-axis voltage; Rs—stator resistance; id—D-axis current;
iq—Q-axis current; Ld—D-axis equivalent inductance; Lq—Q-axis equivalent inductance;
ω—rotor angular velocity; Φf—Number of flux linkage.

The principle of vector control of PMSM servo system, when id is equal to 0, the D-
axis voltage ud is transformed into: 𝑢 = −𝜔𝐿 𝑖 . (2)

When the D-axis current reaches zero, the D-axis current no longer contributes to the
torque voltage. Electromagnetic torque is generated by the current of the motor. We can
change the torque of the motor by changing the Q-axis current iq. To map the change in
force, the frequency of the current can also be adjusted to control the speed. Finally, the
duration of the speed is used to control the motor speed.

This paper uses RL controller to control the current of PMSM current loop. A typical
FOC architecture was developed in Simulink, where the outer loop controller controls the
speed, while the inner loop PI controller controls the D-axis and Q-axis currents (Figure
2). The RL module is created in the current loop, which replaces the current loop PI con-
troller for this architecture.

Figure 2. RL-FOC for PMSM.

The whole FOC control system consists of three parts, PMSM model, inverter model,
and reinforcement learning model, in which the FOC control framework has two control

a

a’

b

b’

c

c’

Quadrature q

Direct d
Stator

rθ
Rotor

RL
Controller

Invert Park
Transformation

Park
Transformation

Clarke
Transformation

SVPWM Three Phase
Invert

Speed & Position Estimator

uα
uβ

ai
bi
ci

iβ

iα
qi
di

qu
du

fbw

Speed
Controlle

r

𝜔
θ

PMSM

Figure 2. RL-FOC for PMSM.

The whole FOC control system consists of three parts, PMSM model, inverter model,
and reinforcement learning model, in which the FOC control framework has two control
loops: the external loop uses PI controller to change the speed, and the internal loop uses
RL agent to change the D-axis and Q-axis current.

Algorithms 2023, 16, 404 4 of 20

2.2. Reinforcement Learning

Reinforcement Learning (RL), also known as evaluation learning, is one of the paradigms
and methodologies of machine learning, which is used to describe and solve the problem that
agents use learning strategies to maximize returns or achieve specific goals in the interaction
process with the environment, the agent is a self-iterative network integration module. RL is a
learning mechanism for learning how to map from state to behavior to maximize the reward
obtained [20].

The architecture of RL can be represented by the following Figure 3. The brain refers
to the agent and the earth refers to the external environment. Starting from the current
state S, after action a is taken, the action gets the corresponding reward value for the
current environment. It feeds back the reward signal R (which represents how good or bad
behavior A is for the final goal) to the agent, so the agent can form a loop, observe some
information from the loop, enter a new state S’, and then make new behaviors and keep
repeating this process until the goal is achieved. The basic process of RL follows such an
architecture [21–23].

Algorithms 2023, 16, x FOR PEER REVIEW 4 of 21

loops: the external loop uses PI controller to change the speed, and the internal loop uses
RL agent to change the D-axis and Q-axis current.

2.2. Reinforcement Learning
Reinforcement Learning (RL), also known as evaluation learning, is one of the para-

digms and methodologies of machine learning, which is used to describe and solve the
problem that agents use learning strategies to maximize returns or achieve specific goals
in the interaction process with the environment, the agent is a self-iterative network inte-
gration module. RL is a learning mechanism for learning how to map from state to behav-
ior to maximize the reward obtained [20].

The architecture of RL can be represented by the following Figure 3. The brain refers
to the agent and the earth refers to the external environment. Starting from the current
state S, after action a is taken, the action gets the corresponding reward value for the cur-
rent environment. It feeds back the reward signal R (which represents how good or bad
behavior A is for the final goal) to the agent, so the agent can form a loop, observe some
information from the loop, enter a new state S’, and then make new behaviors and keep
repeating this process until the goal is achieved. The basic process of RL follows such an
architecture [21–23].

Figure 3. The basic framework of RL.

In contrast to traditional control methods (Figure 4), reinforcement learning is the act
of observing the environment and performing the task in an optimal way, a process that
is equivalent to a controller in a control system. Table 1 can be used to map the RL com-
ponents to the control system [24–26].

Figure 4. Conventional control methods.

Controller Plant
Reference Error

Observation

Manipulated
Variable

+ − + +

+
+

Disturbance

Noise

Figure 3. The basic framework of RL.

In contrast to traditional control methods (Figure 4), reinforcement learning is the
act of observing the environment and performing the task in an optimal way, a process
that is equivalent to a controller in a control system. Table 1 can be used to map the RL
components to the control system [24–26].

Table 1. RL and traditional control scheme architecture mapping table.

RL Control System

Policy Controller

Environment
Everything except the controller—The environment
in the figure above contains the plant, the reference

signal, and the estimated error value.

Observation Any quantifiable value visible to the agent from
the environment

Action Regulate or alter variables

Reward A measurement, an error signal, or a function of
another performance metric

Learning algorithm Adaptive mechanism

Algorithms 2023, 16, 404 5 of 20

Algorithms 2023, 16, x FOR PEER REVIEW 4 of 21

loops: the external loop uses PI controller to change the speed, and the internal loop uses
RL agent to change the D-axis and Q-axis current.

2.2. Reinforcement Learning
Reinforcement Learning (RL), also known as evaluation learning, is one of the para-

digms and methodologies of machine learning, which is used to describe and solve the
problem that agents use learning strategies to maximize returns or achieve specific goals
in the interaction process with the environment, the agent is a self-iterative network inte-
gration module. RL is a learning mechanism for learning how to map from state to behav-
ior to maximize the reward obtained [20].

The architecture of RL can be represented by the following Figure 3. The brain refers
to the agent and the earth refers to the external environment. Starting from the current
state S, after action a is taken, the action gets the corresponding reward value for the cur-
rent environment. It feeds back the reward signal R (which represents how good or bad
behavior A is for the final goal) to the agent, so the agent can form a loop, observe some
information from the loop, enter a new state S’, and then make new behaviors and keep
repeating this process until the goal is achieved. The basic process of RL follows such an
architecture [21–23].

Figure 3. The basic framework of RL.

In contrast to traditional control methods (Figure 4), reinforcement learning is the act
of observing the environment and performing the task in an optimal way, a process that
is equivalent to a controller in a control system. Table 1 can be used to map the RL com-
ponents to the control system [24–26].

Figure 4. Conventional control methods.

Controller Plant
Reference Error

Observation

Manipulated
Variable

+ − + +

+
+

Disturbance

Noise

Figure 4. Conventional control methods.

Traditional control is based on feedback control and state-based modeling control.
Reinforcement learning control started late, and optimal control and reinforcement learning
were not integrated until the Bellman equation in the 1960s. Then, scholars have proposed
various model-based and model-free reinforcement learning methods, and RL is currently
used significantly in trajectory planning and motion control. RL algorithms (such as DQN,
A2C, Actor-Critic, and others) offer a variety of methods for updating training strategies,
and these training algorithms are mostly used to make decisions for complex systems such
as robots and cars [27–29].

2.2.1. DDPG Algorithm

DDPG (Deep Deterministic Policy Gradient) is a depth deterministic strategy gradient
algorithm. It is also a way to solve the problem of continuity control. It is a model-free,
off-policy, or policy-based method. It solves the shortcoming that there is correlation before
and after each parameter update of Actor-Critic neural network, which leads to the neural
network only viewing the problem unilaterally, solving the shortcoming that DQN cannot
be used for continuous action [30–32].

The structure of DDPG is like to Actor-Critic. DDPG can be divided into two major
networks: strategy network and value network. DDPG continues the idea of fixed target
network with DQN, and each network is subdivided into target network and reality
network. However, the update of the target network is somewhat different, and its network
structure is shown in Figure 5.

Algorithms 2023, 16, x FOR PEER REVIEW 5 of 21

Table 1. RL and traditional control scheme architecture mapping table.

RL Control System
Policy Controller

Environment
Everything except the controller—The environment in the figure
above contains the plant, the reference signal, and the estimated

error value.
Observation Any quantifiable value visible to the agent from the environment

Action Regulate or alter variables

Reward A measurement, an error signal, or a function of another
performance metric

Learning algorithm Adaptive mechanism

Traditional control is based on feedback control and state-based modeling control.
Reinforcement learning control started late, and optimal control and reinforcement learn-
ing were not integrated until the Bellman equation in the 1960s. Then, scholars have pro-
posed various model-based and model-free reinforcement learning methods, and RL is
currently used significantly in trajectory planning and motion control. RL algorithms
(such as DQN, A2C, Actor-Critic, and others) offer a variety of methods for updating train-
ing strategies, and these training algorithms are mostly used to make decisions for com-
plex systems such as robots and cars [27–29].

2.2.1. DDPG Algorithm
DDPG (Deep Deterministic Policy Gradient) is a depth deterministic strategy gradi-

ent algorithm. It is also a way to solve the problem of continuity control. It is a model-free,
off-policy, or policy-based method. It solves the shortcoming that there is correlation be-
fore and after each parameter update of Actor-Critic neural network, which leads to the
neural network only viewing the problem unilaterally, solving the shortcoming that DQN
cannot be used for continuous action [30–32].

The structure of DDPG is like to Actor-Critic. DDPG can be divided into two major
networks: strategy network and value network. DDPG continues the idea of fixed target
network with DQN, and each network is subdivided into target network and reality net-
work. However, the update of the target network is somewhat different, and its network
structure is shown in Figure 5.

Figure 5. DDPG network structure.

DDPG consists of four networks: Actor current network, which is responsible for the
iterative update of policy network parameters θ and the selection of current action A ac-
cording to the current state S, which is used to interact with the environment to generate
S’ and R’, the network update process is shown in Figure 6.

ActorNet

Target-ActorNet

TD-Error

Minimized

Target-CriticNet

CriticNet

s

s’

a

a’

q

q’ r

Figure 5. DDPG network structure.

DDPG consists of four networks: Actor current network, which is responsible for
the iterative update of policy network parameters θ and the selection of current action A
according to the current state S, which is used to interact with the environment to generate
S’ and R’, the network update process is shown in Figure 6.

Algorithms 2023, 16, 404 6 of 20Algorithms 2023, 16, x FOR PEER REVIEW 6 of 21

Figure 6. DDPG network update process.

Actor target network: it is responsible for selecting the optimal next action according
to the next state sampled in the empirical playback pool, updating the network parameter
θ’ by soft update. Critic network: responsible for the iterative update of value network
parameter w and the calculation of Q value. Critic target network: responsible for calcu-
lating the Q’ part of the target Q value and soft updating the network parameter w’:

'(', ', ')iy R Q S A wγ= + . (3)

The neural network uses gradient backpropagation to change the parameters of the
Actor and Critic networks:

According to the mathematical derivation in Sylver’s DPG paper [33], the strategy
gradient update algorithm derived by adopting the off-policy training method according
to the Monte Carlo method, when we randomly sample mini-batch data from replay
memory buffers into the policy gradient formula described above, we can make an unbi-
ased estimate of the expected value.

θπ θθ π= = ∂ =
=

∇ = ∇ ∇ (),
1

1() [(, ,)| ()|]
i s i

m

a i i s s a s s
j

J Q s a w s
m

. (4)

The loss function in the network is calculated using a method like supervised learn-
ing, which is usually calculated as the mean square error (MSE) calculation method.

2

1

1() (((), ,))
m

i j j
j

J w y Q S A w
m

φ
=

= − . (5)

DDPG uses a soft update method for network parameters, using the update coeffi-
cient τ, and only slightly modifies some parameters each time. Each iteration will modify
the target network, and the algorithm can still maintain a certain stability.

' (1) '
' (1) '

w w wτ τ
θ τθ τ θ

← + −
← + − . (6)

The target network parameter changes little and is used to calculate the gradient of
the online network in the training process, which is relatively stable and easy to converge
in training. However, with small parameter changes, the learning process is slow, and the
use of a slowly updated target network can easily cause overestimation of Q value, which
makes it difficult to converge the strategy. This defect is solved in TD3.

Environment
1.Action ai μ(si)

2.(si,ri,si+1)

Experience replay buffer

3.Store(si,ai,ri,si+1)

ActorNet Param:θ μ

Target-ActorNet
Param:θ μ

9.Soft update

Optimizer

ActorNetwork

8.Update:θ μ
7.Policy gradient:

μθ
∇ J

CriticNet Param:θ Q

Target-CriticNet
Param:θ Q

9.Soft update

Optimizer

CriticNetwork

6.Update:θ Q

5.yi

7.Gradient:a

7.

5.Q gradient L:θ Q

5.μ’(sj+1)

N x (si,ai,ri,si+1)
4.Sample mini-batch

Gaussion noise

Figure 6. DDPG network update process.

Actor target network: it is responsible for selecting the optimal next action according to
the next state sampled in the empirical playback pool, updating the network parameter θ′ by
soft update. Critic network: responsible for the iterative update of value network parameter
w and the calculation of Q value. Critic target network: responsible for calculating the Q′

part of the target Q value and soft updating the network parameter w′:

yi = R + γQ′(S′, A′, w′). (3)

The neural network uses gradient backpropagation to change the parameters of the
Actor and Critic networks:

According to the mathematical derivation in Sylver’s DPG paper [33], the strategy
gradient update algorithm derived by adopting the off-policy training method according to
the Monte Carlo method, when we randomly sample mini-batch data from replay memory
buffers into the policy gradient formula described above, we can make an unbiased estimate
of the expected value.

∇J(θ) =
1
m

m

∑
j=1

[∇aQ(si, ai, w)
∣∣∣s=si ,a=πθ(s)∇∂πθ(s)

∣∣∣s=si] . (4)

The loss function in the network is calculated using a method like supervised learning,
which is usually calculated as the mean square error (MSE) calculation method.

J(w) =
1
m

m

∑
j=1

(yi −Q(φ(Sj), Aj, w))2. (5)

DDPG uses a soft update method for network parameters, using the update coefficient
τ, and only slightly modifies some parameters each time. Each iteration will modify the
target network, and the algorithm can still maintain a certain stability.

w′ ← τw + (1− τ)w′

θ′ ← τθ + (1− τ)θ′
. (6)

The target network parameter changes little and is used to calculate the gradient of
the online network in the training process, which is relatively stable and easy to converge
in training. However, with small parameter changes, the learning process is slow, and the

Algorithms 2023, 16, 404 7 of 20

use of a slowly updated target network can easily cause overestimation of Q value, which
makes it difficult to converge the strategy. This defect is solved in TD3.

2.2.2. TD3 Algorithm

TD3 (Twin Delayed Deep Deterministic Policy Gradient Algorithm), an online off-
policy deep RL method that is upgraded with DDPG is utilized to handle continuous
control issues [34]. Essentially, the purpose of the TD3 algorithm is to include the Double
Q-Learning algorithm into the DDPG algorithm. Combined with the concept of Double
DQN, there are six networks in TD3, whose network structure is shown in Figure 7.

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 21

2.2.2. TD3 Algorithm
TD3 (Twin Delayed Deep Deterministic Policy Gradient Algorithm), an online off-

policy deep RL method that is upgraded with DDPG is utilized to handle continuous con-
trol issues [34]. Essentially, the purpose of the TD3 algorithm is to include the Double Q-
Learning algorithm into the DDPG algorithm. Combined with the concept of Double
DQN, there are six networks in TD3, whose network structure is shown in Figure 7.

Figure 7. TD3 network structure.

The TD3 algorithm, which is based on the DDPG algorithm, proposes three funda-
mental technologies:
1. Double network: Two sets of Critic networks are adopted, and the smaller value of

the two is taken when calculating the target value, to suppress the overestimation
problem of the network. According to Equation (3), the update mode of the target
value Q’ can be known. The following Equation (7) represents the overestimation
between the target value Q’ and the actual value Q*, when Q’ is close to y:

()' *' ', '| (', ')Q
iQ s a Q s aθ ≥ . (7)

2. Target policy smoothing regularization: when the target value is calculated, the per-
turbation is added to the action of the next state, so that the value evaluation is more
accurate:

()' '
1,2min ', '| |

~ ((0,), ,)

Q Q
i i iy r Q s a

clip N c c

γ θ ε θ

ε σ
== + +

−
. (8)

3. Soft update: After the Critic network is updated for several times, the Actor network
is updated, to ensure that the Actor network training is more stable. A learning rate
τ is introduced, the old target network parameters and the new corresponding net-
work parameters are weighted averaged, and then assigned to the target network:

' '

' '

(1) (1,2)

(1)

i i iQ Q Q i
μ μ μ

θ τθ τ θ
θ τθ τ θ
= + − =

= + −
. (9)

The update process of TD3 algorithm is not much different from that of DDPG algo-
rithm, and the main difference lies in the calculation method of the target value (Equation
(3)). Where Actor networks are updated by maximizing cumulative expected returns (de-
terministic policy gradient), Critic1 and Critic2 networks are updated by minimizing the
error between the evaluated value and the target value (MSE). All target networks are
updated using soft update (Exponential Moving Average (EMA)). In the training phase,
we sample a Batch size of data from the Replay Buffer, assuming that one sample of data
is (s, a, r, s’), the update process of all networks is as follows:

ActorNet

Target-ActorNet

Minimized

Target-CriticNet(2)

CriticNet (2)

s

s’

a

a’

q1

q’ r

q2

TD-Error1

TD-Error2

Minimized

Figure 7. TD3 network structure.

The TD3 algorithm, which is based on the DDPG algorithm, proposes three funda-
mental technologies:

1. Double network: Two sets of Critic networks are adopted, and the smaller value of
the two is taken when calculating the target value, to suppress the overestimation
problem of the network. According to Equation (3), the update mode of the target
value Q′ can be known. The following Equation (7) represents the overestimation
between the target value Q′ and the actual value Q*, when Q′ is close to y:

Q′
(

s′, a′
∣∣∣θQ′

i

)
≥ Q∗(s′, a′). (7)

2. Target policy smoothing regularization: when the target value is calculated, the
perturbation is added to the action of the next state, so that the value evaluation is
more accurate:

y = r + γmini=1,2Q
(

s′, a′
∣∣∣θQ′

i + ε
∣∣∣θQ′

i

)
ε ∼ clip(N(0, σ),−c, c)

. (8)

3. Soft update: After the Critic network is updated for several times, the Actor network
is updated, to ensure that the Actor network training is more stable. A learning rate τ
is introduced, the old target network parameters and the new corresponding network
parameters are weighted averaged, and then assigned to the target network:

θQ′i = τθQi + (1− τ)θQ′i (i = 1, 2)
θµ′ = τθµ + (1− τ)θµ′ . (9)

The update process of TD3 algorithm is not much different from that of DDPG
algorithm, and the main difference lies in the calculation method of the target value
(Equation (3)). Where Actor networks are updated by maximizing cumulative expected
returns (deterministic policy gradient), Critic1 and Critic2 networks are updated by min-
imizing the error between the evaluated value and the target value (MSE). All target
networks are updated using soft update (Exponential Moving Average (EMA)). In the
training phase, we sample a Batch size of data from the Replay Buffer, assuming that one
sample of data is (s, a, r, s′), the update process of all networks is as follows:

Algorithms 2023, 16, 404 8 of 20

Update the Critic1 and Critic2 network parameters, calculate the actions under the
state s′ using the Target Actor network:

a′ = µ′(s′
∣∣∣θµ′). (10)

Then, smooth regularization based on the target strategy, and add noise to the target
action a′, and calculate the target value based on the idea of dual network (Equation (8)),
The parameters in the Critic1 and Critic2 networks are updated using the gradient descent
algorithm to minimize the error between the evaluated value and the target value:

θi ← argminθi N
−1∑ (y−Qθi (s, a))2. (11)

After updating the Critic 1 and Critic 2 networks step d, start updating the Actor
network and calculate the actions in state s using the Actor network, The gradient ascent
algorithm is used to maximize qnew and update the Actor network. The TD3 network
update process is shown in Figure 8.{

anew = µ(s|θµ)
qnew = Q1(s, anew

∣∣θQ1)
. (12)

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 21

Update the Critic1 and Critic2 network parameters, calculate the actions under the
state 's using the Target Actor network:

'' '('|)a s μμ θ= . (10)

Then, smooth regularization based on the target strategy, and add noise to the target
action 'a , and calculate the target value based on the idea of dual network (Equation (8)),
The parameters in the Critic1 and Critic2 networks are updated using the gradient descent
algorithm to minimize the error between the evaluated value and the target value:

21arg min ((,))
i ii N y Q s aθ θθ −← − . (11)

After updating the Critic 1 and Critic 2 networks step d, start updating the Actor
network and calculate the actions in state s using the Actor network, The gradient ascent
algorithm is used to maximize qnew and update the Actor network. The TD3 network up-
date process is shown in Figure 8.

1
1

(|)
(, |)

new
Q

new new

a s
q Q s a

μμ θ
θ

 =

=
. (12)

Figure 8. TD3 network update process.

3. Establish Simulation Model
3.1. Create Environment

A Simulink model of the FOC control architecture is constructed, as shown below in
Figure 9, which includes two control loops: the external speed loop and the internal cur-
rent loop. The outer ring is realized in the speed control subsystem, while the current ring
subsystem mainly changes the speed and torque of the motor by controlling the current
of the two axes. Using the output current signal corresponding to the output voltage, the
appropriate PWM signal is generated to adjust the semiconductor switch of the inverter,
thereby driving the PMSM to achieve the required torque and flux.

Environment
1.Action ai μ(si)

2.(si,ri,si+1)

Experience replay buffer

3.Store(si,ai,ri,si+1)

ActorNet Param:θ μ

Target-ActorNet
Param:θ μ

9.Soft update

Optimizer

ActorNetwork

8.Update:θ μ
7.Policy gradient:

μθ
∇ J

CriticNet Param:θ Q

Target-CriticNet
Param:θ Q

9.Soft update

Optimizer

CriticNetwork

6.Update:θ Q

7.Gradient:a

7.

5.Q gradient L:θ Q

5.μ(sj+1)

N x (si,ai,ri,si+1)
4.Sample mini-batch

Gaussion noise

Target-CriticNet
Param:θ Q

5.Smooth and dual network

5.yi(mini=1,2Q’
i,)ε

Figure 8. TD3 network update process.

3. Establish Simulation Model
3.1. Create Environment

A Simulink model of the FOC control architecture is constructed, as shown below in
Figure 9, which includes two control loops: the external speed loop and the internal current
loop. The outer ring is realized in the speed control subsystem, while the current ring
subsystem mainly changes the speed and torque of the motor by controlling the current
of the two axes. Using the output current signal corresponding to the output voltage, the
appropriate PWM signal is generated to adjust the semiconductor switch of the inverter,
thereby driving the PMSM to achieve the required torque and flux.

Algorithms 2023, 16, 404 9 of 20Algorithms 2023, 16, x FOR PEER REVIEW 9 of 21

Figure 9. PMSM RL-FOC control program construction.

The current loop consists of the following components: three-phase motor current
acquisition; Clarke transformation; Park transformation; and a current loop controller (RL
controller). This research focuses on the RL controller (shown below in Figure 10), which
is primarily made up of external and RL environments. Figure 11 depicts the vector ob-
server (a), reward function (b), and cutoff conditions (c).

Figure 10. RL framework.

(a) (b)

Figure 9. PMSM RL-FOC control program construction.

The current loop consists of the following components: three-phase motor current
acquisition; Clarke transformation; Park transformation; and a current loop controller
(RL controller). This research focuses on the RL controller (shown below in Figure 10),
which is primarily made up of external and RL environments. Figure 11 depicts the vector
observer (a), reward function (b), and cutoff conditions (c).

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 21

Figure 9. PMSM RL-FOC control program construction.

The current loop consists of the following components: three-phase motor current
acquisition; Clarke transformation; Park transformation; and a current loop controller (RL
controller). This research focuses on the RL controller (shown below in Figure 10), which
is primarily made up of external and RL environments. Figure 11 depicts the vector ob-
server (a), reward function (b), and cutoff conditions (c).

Figure 10. RL framework.

(a) (b)

Figure 10. RL framework.

The PMSM model’s related parameters are listed in Table 2 below.

Table 2. Main parameters of PMSM model.

Term Name Symbol Value

Pole pairs p 7
Torque constant Kt 0.0583 N·m/A

Friction coefficient B 7.01 × 10−5 Kg·m2/s
Rate current Ir 7.26 A

Stator resistor Rs 0.293 Ω
D-Axis inductance value Ld 0.877 mH
Q-Axis inductance value Lq 0.777 mH

Inertia J 0.0083 Kg·m2

Max speed Vmax 4300 RPM
Position offset Po 0.165

QEP encoder slits Qs 4096

Algorithms 2023, 16, 404 10 of 20

Algorithms 2023, 16, x FOR PEER REVIEW 10 of 21

(a) (b)

(c)

Figure 11. RL learning and training structure. From left to right, (a) Reward function; (b) Observa-
tion vector; (c) Termination condition.

(a) (b)

(c) (d)

Figure 12. Motor characteristic curve. From left to right, (a) Torque–Speed characteristics; (b)
Power–Speed characteristics; (c) Idq–Speed characteristics; (d) Ipear–Speed characteristics.

3.2. Create RL Module

Figure 11. RL learning and training structure. From left to right, (a) Reward function; (b) Observation
vector; (c) Termination condition.

The motor module is simulated and analyzed. The motor characteristic curve is shown
in Figure 12 below.

Algorithms 2023, 16, x FOR PEER REVIEW 10 of 21

(a) (b)

(c)

Figure 11. RL learning and training structure. From left to right, (a) Reward function; (b) Observa-
tion vector; (c) Termination condition.

(a) (b)

(c) (d)

Figure 12. Motor characteristic curve. From left to right, (a) Torque–Speed characteristics; (b)
Power–Speed characteristics; (c) Idq–Speed characteristics; (d) Ipear–Speed characteristics.

3.2. Create RL Module

Figure 12. Motor characteristic curve. From left to right, (a) Torque–Speed characteristics; (b) Power–
Speed characteristics; (c) Idq–Speed characteristics; (d) Ipear–Speed characteristics.

Algorithms 2023, 16, 404 11 of 20

3.2. Create RL Module

The RL agent network is built in the previously developed Simulink environment.
The network form of the TD3 algorithm is shown in Figure 13. Table 3 defines impor-
tant parameters related to training. After setting the relevant parameters, the model is
trained offline.

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 21

(c) (d)

Figure 12. Motor characteristic curve. From left to right, (a) Torque–Speed characteristics; (b)
Power–Speed characteristics; (c) Idq–Speed characteristics; (d) Ipear–Speed characteristics.

3.2. Create RL Module
The RL agent network is built in the previously developed Simulink environment.

The network form of the TD3 algorithm is shown in Figure 13. Table 3 defines important
parameters related to training. After setting the relevant parameters, the model is trained
offline.

Figure 13. RL learning and training structure.

Table 3. The setting of hyperparameters.

Hyperparameter Symbol Value
Random seed αr 1
Maximal set M 2000

Maximum sub-step size per episode T 5000
Sample Time Ts 2 × 10−4

Time of simulation Tf 3
Experience Buffer Length Β 2 × 106

Quantity of batch N 250
Threshold of gradient ε 1

Learning rate of Actor network La 0.001
Learning rate of Critic network Lc 0.0002

Noise of exploration e 0.1
Delayed updating D 2

L2 Regularization Factor L2 0.001
Target Update Frequency wt 10

512

128

4

36

Normalization

St

Normalization

St

36

1024 4

1028

512

300

1

FC
+

ReLu

FC
+

tanh

FC

Actor Network Critic Network

Concatenate

at

S
+
a

Figure 13. RL learning and training structure.

Table 3. The setting of hyperparameters.

Hyperparameter Symbol Value

Random seed αr 1
Maximal set M 2000

Maximum sub-step size per episode T 5000
Sample Time Ts 2 × 10−4

Time of simulation Tf 3
Experience Buffer Length B 2 × 106

Quantity of batch N 250
Threshold of gradient ε 1

Learning rate of Actor network La 0.001
Learning rate of Critic network Lc 0.0002

Noise of exploration e 0.1
Delayed updating D 2

L2 Regularization Factor L2 0.001
Target Update Frequency wt 10

Factor of discount γ 0.995
Rate of soft renewal τ 0.01

After the program sets the hyperparameters, the training begins. The time of training
is determined by the complexity of the model. The parallel computing toolbox in MATLAB
is used to calculate the RL control model quickly, so that the program and model can run in
interactive and batch mode, and the training time is greatly shortened.

4. Comparison of Simulation Results

When the number of iterations reaches 300, the training ends. It can be seen from
the Figure 14a, the average reward at the end of TD3 was 541 and DDPG was 520. As the
estimate of long-term discount at the beginning of each episode, Q0 is closer to the real
long-term value. As can be seen from the Figure 14b, Q0 under TD3 algorithm training
is 545, while the maximum value of Q0 under DDPG algorithm is 210, which proves that
PMSM current loop control under TD3 algorithm training will have better results. In terms
of training time, TD3 training ended in 3 min and 56 s and DDPG training ended in 5 min

Algorithms 2023, 16, 404 12 of 20

and 55 s. From the training results and training time, TD3 training reward value is higher
and training time is shorter, and therefore, more suitable for RL control in the current loop.

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 21

Factor of discount γ 0.995
Rate of soft renewal τ 0.01

After the program sets the hyperparameters, the training begins. The time of training
is determined by the complexity of the model. The parallel computing toolbox in
MATLAB is used to calculate the RL control model quickly, so that the program and model
can run in interactive and batch mode, and the training time is greatly shortened.

4. Comparison of Simulation Results
When the number of iterations reaches 300, the training ends. It can be seen from the

Figure 14a, the average reward at the end of TD3 was 541 and DDPG was 520. As the
estimate of long-term discount at the beginning of each episode, Q0 is closer to the real
long-term value. As can be seen from the Figure 14b, Q0 under TD3 algorithm training is
545, while the maximum value of Q0 under DDPG algorithm is 210, which proves that
PMSM current loop control under TD3 algorithm training will have better results. In terms
of training time, TD3 training ended in 3 min and 56 s and DDPG training ended in 5 min
and 55 s. From the training results and training time, TD3 training reward value is higher
and training time is shorter, and therefore, more suitable for RL control in the current
loop.

(a) (b)

Figure 14. Training result. From left to right, (a) DDPG training results; (b) TD3 training results.

To evaluate the real control performance of the training network, the above TD3-RL
control is compared with DDPG-RL control, linear quadratic Gauss (LQG) control, and
BP network controller in simulation tests.

The simulation is mainly to verify whether this control method can make the motor
stable in the starting stage, during increasing and decelerating processes, and the loading
and unloading of Work reliably. To better verify the reliability of the algorithm, a variety
of working conditions are reflected in a simulation experiment. First, let the motor start
no-load to the given speed of 1000 r/min, the start time is very short, the stepped speed
rises, and then increase the load torque of 0.03 N·m at 2 s, reduce the given load to 0 N·m
at 4 s, and increase the speed to 3100 r/min. Then, the speed drops step by step. The sim-
ulation experiment results are shown in Figure 15.

Re
w

ar
d

Re
w

ar
d

Figure 14. Training result. From left to right, (a) DDPG training results; (b) TD3 training results.

To evaluate the real control performance of the training network, the above TD3-RL
control is compared with DDPG-RL control, linear quadratic Gauss (LQG) control, and BP
network controller in simulation tests.

The simulation is mainly to verify whether this control method can make the motor
stable in the starting stage, during increasing and decelerating processes, and the loading
and unloading of Work reliably. To better verify the reliability of the algorithm, a variety
of working conditions are reflected in a simulation experiment. First, let the motor start
no-load to the given speed of 1000 r/min, the start time is very short, the stepped speed
rises, and then increase the load torque of 0.03 N·m at 2 s, reduce the given load to 0 N·m
at 4 s, and increase the speed to 3100 r/min. Then, the speed drops step by step. The
simulation experiment results are shown in Figure 15.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 21

Figure 15. Motor speed under different algorithms.

As can be seen from Figure 16, the error fluctuation is particularly obvious, and the
cumulative error of TD3 (the error integral under each simulation step) is smaller than
that of the other three methods. As can be seen below from Table 4, compared with BP
and LQG, the error of the two RL algorithms in signal tracking is smaller, while the step
signal rise time of the system under TD3 algorithm is 0.1 s, the overshoot is 7.38%, and the
stabilization time is 18.54% less than that of DDPG algorithm.

Figure 16. Error integral curve.

Table 4. Performance comparison under different control algorithms.

Performance Parameters BP LQG DDPG TD3
Settling time 0.98 s 0.82 s 0.89 s 0.8 s

Risetime 0.2 s 0.19 s 0.15 s 0.1 s
Undershoot 15.03% 12.7% 12.21% 7.76%

Figures 17 and 18 show the corresponding D-axis current and Q-axis current under
the four algorithms.

0 1 2 3 4 5 6 7 8 9 10
Time/s

-1000

0

1000

2000

3000

4000

5000

Ro
ta

te
Sp

ee
d/

RP
M

SpeedRef
SpeedTD3
SpeedDDPG
SpeedBP
SpeedLGQ

2 2.2 2.4
1000

1500

2000

2500

In
t-E

rro
r

Figure 15. Motor speed under different algorithms.

As can be seen from Figure 16, the error fluctuation is particularly obvious, and the
cumulative error of TD3 (the error integral under each simulation step) is smaller than
that of the other three methods. As can be seen below from Table 4, compared with BP
and LQG, the error of the two RL algorithms in signal tracking is smaller, while the step

Algorithms 2023, 16, 404 13 of 20

signal rise time of the system under TD3 algorithm is 0.1 s, the overshoot is 7.38%, and the
stabilization time is 18.54% less than that of DDPG algorithm.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 21

Figure 15. Motor speed under different algorithms.

As can be seen from Figure 16, the error fluctuation is particularly obvious, and the
cumulative error of TD3 (the error integral under each simulation step) is smaller than
that of the other three methods. As can be seen below from Table 4, compared with BP
and LQG, the error of the two RL algorithms in signal tracking is smaller, while the step
signal rise time of the system under TD3 algorithm is 0.1 s, the overshoot is 7.38%, and the
stabilization time is 18.54% less than that of DDPG algorithm.

Figure 16. Error integral curve.

Table 4. Performance comparison under different control algorithms.

Performance Parameters BP LQG DDPG TD3
Settling time 0.98 s 0.82 s 0.89 s 0.8 s

Risetime 0.2 s 0.19 s 0.15 s 0.1 s
Undershoot 15.03% 12.7% 12.21% 7.76%

Figures 17 and 18 show the corresponding D-axis current and Q-axis current under
the four algorithms.

0 1 2 3 4 5 6 7 8 9 10
Time/s

-1000

0

1000

2000

3000

4000

5000

Ro
ta

te
Sp

ee
d/

RP
M

SpeedRef
SpeedTD3
SpeedDDPG
SpeedBP
SpeedLGQ

2 2.2 2.4
1000

1500

2000

2500

In
t-E

rro
r

Figure 16. Error integral curve.

Table 4. Performance comparison under different control algorithms.

Performance
Parameters BP LQG DDPG TD3

Settling time 0.98 s 0.82 s 0.89 s 0.8 s
Risetime 0.2 s 0.19 s 0.15 s 0.1 s

Undershoot 15.03% 12.7% 12.21% 7.76%

Figures 17 and 18 show the corresponding D-axis current and Q-axis current under
the four algorithms.

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 21

Figure 17. D-axis current.

Figure 18. Q-axis current.

The stator current amplitude is constant during the motor starting process, because
the deviation between the given speed and the current speed value is too large, so that the
outer loop PI of the speed is saturated. Due to the limiting effect of the controller, the given
current of the output Q-axis is the limiting value, and the current of the D-axis is controlled
by id = 0, so the amplitude of the stator three-phase current is constant. It can be seen from
Figure 17 that TD3 algorithm has the smallest id fluctuation when torque is applied, and iq
response speed is faster than other algorithms. TD3-FOC has faster speed and torque cur-
rent response than the other three algorithms in the start-up stage, loading stage, and un-
loading stage, and has better control performance.

Figure 17. D-axis current.

Algorithms 2023, 16, 404 14 of 20

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 21

Figure 17. D-axis current.

Figure 18. Q-axis current.

The stator current amplitude is constant during the motor starting process, because
the deviation between the given speed and the current speed value is too large, so that the
outer loop PI of the speed is saturated. Due to the limiting effect of the controller, the given
current of the output Q-axis is the limiting value, and the current of the D-axis is controlled
by id = 0, so the amplitude of the stator three-phase current is constant. It can be seen from
Figure 17 that TD3 algorithm has the smallest id fluctuation when torque is applied, and iq
response speed is faster than other algorithms. TD3-FOC has faster speed and torque cur-
rent response than the other three algorithms in the start-up stage, loading stage, and un-
loading stage, and has better control performance.

Figure 18. Q-axis current.

The stator current amplitude is constant during the motor starting process, because
the deviation between the given speed and the current speed value is too large, so that the
outer loop PI of the speed is saturated. Due to the limiting effect of the controller, the given
current of the output Q-axis is the limiting value, and the current of the D-axis is controlled
by id = 0, so the amplitude of the stator three-phase current is constant. It can be seen from
Figure 17 that TD3 algorithm has the smallest id fluctuation when torque is applied, and
iq response speed is faster than other algorithms. TD3-FOC has faster speed and torque
current response than the other three algorithms in the start-up stage, loading stage, and
unloading stage, and has better control performance.

5. Experiment
5.1. Real-Time Simulation

To validate the deep learning workflow, we used Simulink and Controller. The trained
RL agent is deployed to the controller and the DRL compiled C code is tested in real
time. By measuring the analog signal output of the controller, the control effect of the
four algorithms on the current loop are compared. The working process is shown below in
Figure 19.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 21

5. Experiment
5.1. Real-Time Simulation

To validate the deep learning workflow, we used Simulink and Controller. The
trained RL agent is deployed to the controller and the DRL compiled C code is tested in
real time. By measuring the analog signal output of the controller, the control effect of the
four algorithms on the current loop are compared. The working process is shown below
in Figure 19.

Figure 19. Real-time simulation workflow.

5.2. Rapid Control Prototype
Rapid Control Prototype (RCP) is a technique to adjust control algorithms on hard-

ware prototype. The supplied algorithm model can be executed on a real-time controller
connected to the actual I/O by using the interface module in conjunction with the Simulink
platform to import mathematical models rapidly and easily.

RCP can cut down on the amount of time needed for debugging, hardware adapta-
tion, code translation, and other tasks during the learning or development phase. The ac-
tual object can be controlled and tested once the algorithm has been swiftly downloaded
and implemented through the fast control prototype simulator. The RCP technique has
the following benefits over the conventional method:
(1) Easy deployment: quick and efficient deployment of control algorithms, which less-

ens the need for subsequent development.
(2) Simple coordination: by connecting to the controlled object, any issues with the con-

trol technique can be rapidly identified. Offline digital simulation is performed be-
fore the algorithm model is downloaded to the control board in C for further debug-
ging.

(3) High degree of adaptability: the RCP simulation platform’s powerful performance
and abundant resources can suit a variety of research and development objectives.
Based on the concept of RCP technology, the RL controller is downloaded to the con-

troller through the code compilation tool for online data monitoring, verifying the correct-
ness of the simulation results and greatly reducing the test time.
5.3. Code Generation

Machine learning is a complex process that requires a significant amount of pro-
cessing to train models, yet has memory and compute restrictions for embedded devices.
We first trained the agent in the simulated environment using the MATLAB Coder tool
chain, which reduced the time and effort required for producing, redeploying, and testing
C/ C ++ code. The finalized code was then deployed with the help of code generating tools.
Figure 20 depicts the workflow.

Figure 19. Real-time simulation workflow.

Algorithms 2023, 16, 404 15 of 20

5.2. Rapid Control Prototype

Rapid Control Prototype (RCP) is a technique to adjust control algorithms on hard-
ware prototype. The supplied algorithm model can be executed on a real-time controller
connected to the actual I/O by using the interface module in conjunction with the Simulink
platform to import mathematical models rapidly and easily.

RCP can cut down on the amount of time needed for debugging, hardware adaptation,
code translation, and other tasks during the learning or development phase. The actual
object can be controlled and tested once the algorithm has been swiftly downloaded and
implemented through the fast control prototype simulator. The RCP technique has the
following benefits over the conventional method:

(1) Easy deployment: quick and efficient deployment of control algorithms, which lessens
the need for subsequent development.

(2) Simple coordination: by connecting to the controlled object, any issues with the control
technique can be rapidly identified. Offline digital simulation is performed before the
algorithm model is downloaded to the control board in C for further debugging.

(3) High degree of adaptability: the RCP simulation platform’s powerful performance
and abundant resources can suit a variety of research and development objectives.

Based on the concept of RCP technology, the RL controller is downloaded to the
controller through the code compilation tool for online data monitoring, verifying the
correctness of the simulation results and greatly reducing the test time.

5.3. Code Generation

Machine learning is a complex process that requires a significant amount of processing
to train models, yet has memory and compute restrictions for embedded devices. We first
trained the agent in the simulated environment using the MATLAB Coder tool chain, which
reduced the time and effort required for producing, redeploying, and testing C/C ++ code.
The finalized code was then deployed with the help of code generating tools. Figure 20
depicts the workflow.

Algorithms 2023, 16, x FOR PEER REVIEW 16 of 21

Figure 20. RL module conversion compilation.

Pre-trained agents were loaded and tested in embedded controllers using the RL
Agent block, but we discovered that this functional module did not permit direct code
generation. We constructed a MATLAB function block and swap out the existing RL train-
ing Settings to do deep learning reasoning in Simulink and produce code to download to
the controller for testing. The function block takes advantage of the new deep learning
function to do reasoning on the training strategy in Simulink. The trained DRL network
actor, the agent data file, and the policy evaluation function are all contained in the same
folder and are generated by the interface function which is constructed to generate the
interface function. We then developed and deployed whole Simulink real-time apps on
embedded hardware by utilizing deep learning networks’ common C/C++ code generat-
ing capabilities. Figure 21 depicts the main steps in creating code.

Figure 21. RL Control module.

Replace the smart block with the MATLAB Function block. Since it has been trained,
it does not need the observation vector and cutoff module. The PWM analog signal output
port of NBC801 is connected at the signal output end to facilitate data acquisition with
DEWE. The hardware test scheme is shown in Figure 22.

This experiment uses NBC801 as the controller. NBC801 is a secondary programma-
ble embedded controller with benefits in a wide range of temperatures and voltages as
well as excellent seismic performance. Its IP67 level of protection allows it to fully satisfy
the application requirements for severe working environments. Table 5 lists the hardware
parameters of NBC801. Data acquisition, control output, data storage, CAN communica-
tion, RS232 communication, and other hardware tasks have all been integrated into the
controller. To output the control signal, we use the IO terminal library built on the Sim-
ulink platform. The output signal is scaled, configured as a proportional output, and the
DEWE data collector is used to gather the signal data to confirm that the output terminal
of the controller is within the operating range.

Figure 20. RL module conversion compilation.

Pre-trained agents were loaded and tested in embedded controllers using the RL
Agent block, but we discovered that this functional module did not permit direct code
generation. We constructed a MATLAB function block and swap out the existing RL
training Settings to do deep learning reasoning in Simulink and produce code to download
to the controller for testing. The function block takes advantage of the new deep learning
function to do reasoning on the training strategy in Simulink. The trained DRL network
actor, the agent data file, and the policy evaluation function are all contained in the same
folder and are generated by the interface function which is constructed to generate the
interface function. We then developed and deployed whole Simulink real-time apps on
embedded hardware by utilizing deep learning networks’ common C/C++ code generating
capabilities. Figure 21 depicts the main steps in creating code.

Algorithms 2023, 16, 404 16 of 20

Algorithms 2023, 16, x FOR PEER REVIEW 16 of 21

Figure 20. RL module conversion compilation.

Pre-trained agents were loaded and tested in embedded controllers using the RL
Agent block, but we discovered that this functional module did not permit direct code
generation. We constructed a MATLAB function block and swap out the existing RL train-
ing Settings to do deep learning reasoning in Simulink and produce code to download to
the controller for testing. The function block takes advantage of the new deep learning
function to do reasoning on the training strategy in Simulink. The trained DRL network
actor, the agent data file, and the policy evaluation function are all contained in the same
folder and are generated by the interface function which is constructed to generate the
interface function. We then developed and deployed whole Simulink real-time apps on
embedded hardware by utilizing deep learning networks’ common C/C++ code generat-
ing capabilities. Figure 21 depicts the main steps in creating code.

Figure 21. RL Control module.

Replace the smart block with the MATLAB Function block. Since it has been trained,
it does not need the observation vector and cutoff module. The PWM analog signal output
port of NBC801 is connected at the signal output end to facilitate data acquisition with
DEWE. The hardware test scheme is shown in Figure 22.

This experiment uses NBC801 as the controller. NBC801 is a secondary programma-
ble embedded controller with benefits in a wide range of temperatures and voltages as
well as excellent seismic performance. Its IP67 level of protection allows it to fully satisfy
the application requirements for severe working environments. Table 5 lists the hardware
parameters of NBC801. Data acquisition, control output, data storage, CAN communica-
tion, RS232 communication, and other hardware tasks have all been integrated into the
controller. To output the control signal, we use the IO terminal library built on the Sim-
ulink platform. The output signal is scaled, configured as a proportional output, and the
DEWE data collector is used to gather the signal data to confirm that the output terminal
of the controller is within the operating range.

Figure 21. RL Control module.

Replace the smart block with the MATLAB Function block. Since it has been trained,
it does not need the observation vector and cutoff module. The PWM analog signal output
port of NBC801 is connected at the signal output end to facilitate data acquisition with
DEWE. The hardware test scheme is shown in Figure 22.

Algorithms 2023, 16, x FOR PEER REVIEW 17 of 21

Figure 22. Rapid control prototype experiment of RL.

Table 5. Mainframe’s technical specifications of NBC801.

Type Technical Specifications
MCU Mononuclear & 32 bit & 600 MHz

Current operating system Simulink & CODESYS
Memory space 512 KB × RAM Flash 16 MB

Interface 1 × USB 3.0 & 2 × USB 2.0
Computer interface 4 × CAN, 1 × RS 232

Power supply +9–+32 V

Port channel number

20 × AI(0–5 V/0–20 mA), 4 × AI(0–5 V/32 V), 2 × AI(0–2.2 kΩ)
10 × PI
8 × DO

30 × PWM
Dimension 242 × 234 × 40 mm

5.4. Result Analysis
Through the DEWE DS-CAN2 data acquisition device, we view the output signal

after the generated application has been loaded and launched on the embedded controller.
During the initial stage, the speed increased rapidly and steadily (Figure 23). When

the rotational speed is stable at 1000 r/min, the overshoot n1 ≈ 100 r/min is reached. When
the motor is suddenly loaded with 0.03 N·m, the speed overshoot time of PMSM starting
stage under TD3 algorithm is about 0.2 s. When loading, the speed regulation time is about
0.3 s. At this time, the Q-axis current can quickly track the reference signal and reach sta-
bility quickly, while the D-axis current is not affected by the Q-axis current and always
fluctuates near zero, indicating that the TD3-FOC control has good dynamic steady-state
control performance. Figure 24 error integral curve shows the speed tracking effect of the
four algorithms.

Figure 22. Rapid control prototype experiment of RL.

This experiment uses NBC801 as the controller. NBC801 is a secondary programmable
embedded controller with benefits in a wide range of temperatures and voltages as well
as excellent seismic performance. Its IP67 level of protection allows it to fully satisfy the
application requirements for severe working environments. Table 5 lists the hardware
parameters of NBC801. Data acquisition, control output, data storage, CAN communication,
RS232 communication, and other hardware tasks have all been integrated into the controller.
To output the control signal, we use the IO terminal library built on the Simulink platform.
The output signal is scaled, configured as a proportional output, and the DEWE data
collector is used to gather the signal data to confirm that the output terminal of the controller
is within the operating range.

Table 5. Mainframe’s technical specifications of NBC801.

Type Technical Specifications

MCU Mononuclear & 32 bit & 600 MHz
Current operating system Simulink & CODESYS

Memory space 512 KB × RAM Flash 16 MB
Interface 1 × USB 3.0 & 2 × USB 2.0

Computer interface 4 × CAN, 1 × RS 232
Power supply +9–+32 V

Port channel number

20 × AI(0–5 V/0–20 mA), 4 × AI(0–5 V/32 V), 2 × AI(0–2.2 kΩ)
10 × PI
8 × DO

30 × PWM
Dimension 242 × 234 × 40 mm

Algorithms 2023, 16, 404 17 of 20

5.4. Result Analysis

Through the DEWE DS-CAN2 data acquisition device, we view the output signal after
the generated application has been loaded and launched on the embedded controller.

During the initial stage, the speed increased rapidly and steadily (Figure 23). When
the rotational speed is stable at 1000 r/min, the overshoot n1≈ 100 r/min is reached. When
the motor is suddenly loaded with 0.03 N·m, the speed overshoot time of PMSM starting
stage under TD3 algorithm is about 0.2 s. When loading, the speed regulation time is
about 0.3 s. At this time, the Q-axis current can quickly track the reference signal and reach
stability quickly, while the D-axis current is not affected by the Q-axis current and always
fluctuates near zero, indicating that the TD3-FOC control has good dynamic steady-state
control performance. Figure 24 error integral curve shows the speed tracking effect of the
four algorithms.

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 21

Figure 23. Motor speed under different algorithms.

Figure 24. Error integral curve.

Figures 25 and 26 show the dynamic response process of D-axis and Q-axis current
in the speed regulation process of the four algorithms, respectively. As can be seen from
the figure, the id and iq fluctuations of TD3-FOC controlled PMSM when the load is applied
are smaller than those of the other three algorithms; the experimental results are consistent
with the simulation results.

0 1 2 3 4 5 6 7 8 9 10
Time/s

-1000

0

1000

2000

3000

4000

5000

Ro
ta

te
Sp

ee
d/

RP
M

SpeedRef
SpeedTD3
SpeedDDPG
SpeedBP
SpeedLGQ

2 2.2 2.4
1000

1500

2000

2500

In
t-E

rro
r

Figure 23. Motor speed under different algorithms.

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 21

Figure 23. Motor speed under different algorithms.

Figure 24. Error integral curve.

Figures 25 and 26 show the dynamic response process of D-axis and Q-axis current
in the speed regulation process of the four algorithms, respectively. As can be seen from
the figure, the id and iq fluctuations of TD3-FOC controlled PMSM when the load is applied
are smaller than those of the other three algorithms; the experimental results are consistent
with the simulation results.

0 1 2 3 4 5 6 7 8 9 10
Time/s

-1000

0

1000

2000

3000

4000

5000

Ro
ta

te
Sp

ee
d/

RP
M

SpeedRef
SpeedTD3
SpeedDDPG
SpeedBP
SpeedLGQ

2 2.2 2.4
1000

1500

2000

2500

In
t-E

rro
r

Figure 24. Error integral curve.

Figures 25 and 26 show the dynamic response process of D-axis and Q-axis current in
the speed regulation process of the four algorithms, respectively. As can be seen from the
figure, the id and iq fluctuations of TD3-FOC controlled PMSM when the load is applied
are smaller than those of the other three algorithms; the experimental results are consistent
with the simulation results.

Algorithms 2023, 16, 404 18 of 20
Algorithms 2023, 16, x FOR PEER REVIEW 19 of 21

Figure 25. D-axis current.

Figure 26. Q-axis current.

We can see that the PMSM model controlled by TD3-FOC performs well in terms of
speed tracking and current tracking output of the model, which indicates that the code of
TD3-FOC algorithm is compiled and implemented successfully in the controller, and it
has produced a good current control effect.

6. Conclusions
This paper presents a current control algorithm based on TD3-FOC. The PMSM

model and RL model framework are established, and RL controller block is used to replace
the current loop controller to update the old model. In addition, vector observer, reward
function, and cutoff function are defined for training current control, TD3 and DDPG al-
gorithms are trained, BP and LQG are trained under the same conditions, and the results
of the four algorithms in PMSM current loop control are compared by simulation and
experiment. The results show that the velocity tracking performance of vector control is
improved when the stator current is controlled by TD3-FOC. Finally, through rapid pro-
totyping experiment, the trained network is compiled into C code and downloaded to the
embedded controller. The data acquisition device collects the output signal of the control-
ler, which is consistent with the simulation results, and the correctness of the control
scheme is verified.

Figure 25. D-axis current.

Algorithms 2023, 16, x FOR PEER REVIEW 19 of 21

Figure 25. D-axis current.

Figure 26. Q-axis current.

We can see that the PMSM model controlled by TD3-FOC performs well in terms of
speed tracking and current tracking output of the model, which indicates that the code of
TD3-FOC algorithm is compiled and implemented successfully in the controller, and it
has produced a good current control effect.

6. Conclusions
This paper presents a current control algorithm based on TD3-FOC. The PMSM

model and RL model framework are established, and RL controller block is used to replace
the current loop controller to update the old model. In addition, vector observer, reward
function, and cutoff function are defined for training current control, TD3 and DDPG al-
gorithms are trained, BP and LQG are trained under the same conditions, and the results
of the four algorithms in PMSM current loop control are compared by simulation and
experiment. The results show that the velocity tracking performance of vector control is
improved when the stator current is controlled by TD3-FOC. Finally, through rapid pro-
totyping experiment, the trained network is compiled into C code and downloaded to the
embedded controller. The data acquisition device collects the output signal of the control-
ler, which is consistent with the simulation results, and the correctness of the control
scheme is verified.

Figure 26. Q-axis current.

We can see that the PMSM model controlled by TD3-FOC performs well in terms of
speed tracking and current tracking output of the model, which indicates that the code of
TD3-FOC algorithm is compiled and implemented successfully in the controller, and it has
produced a good current control effect.

6. Conclusions

This paper presents a current control algorithm based on TD3-FOC. The PMSM model
and RL model framework are established, and RL controller block is used to replace the
current loop controller to update the old model. In addition, vector observer, reward
function, and cutoff function are defined for training current control, TD3 and DDPG
algorithms are trained, BP and LQG are trained under the same conditions, and the results
of the four algorithms in PMSM current loop control are compared by simulation and
experiment. The results show that the velocity tracking performance of vector control
is improved when the stator current is controlled by TD3-FOC. Finally, through rapid
prototyping experiment, the trained network is compiled into C code and downloaded
to the embedded controller. The data acquisition device collects the output signal of the
controller, which is consistent with the simulation results, and the correctness of the control
scheme is verified.

Algorithms 2023, 16, 404 19 of 20

Author Contributions: Conceptualization, F.Y.; data curation, F.Y.; formal analysis, F.Y., Z.M. and
X.X.; methodology, F.Y.; project administration, F.Y. and X.Y.; software, F.Y.; supervision, F.Y. and X.Y.;
validation, Z.M. and X.X.; writing—original draft, F.Y.; writing—review and editing, F.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sarlioglu, B.; Morris, C.T. More Electric Aircraft: Review, challenges, and opportunities for commercial transport aircraft. IEEE

Trans. Transp. Electron. 2015, 1, 54–64. [CrossRef]
2. Zhang, M.; Mccarthy, Z.; Finn, C.; Levine, S.; Abbeel, P. Learning deep neural network policies with continuous memory states.

In Proceedings of the International Conference on Robotics and Automation, Stockholm, Sweden, 16 May 2016; pp. 520–527.
3. Lenz, I.; Knepper, R.; Saxena, A. DeepMPC: Learning deep latent features for model predictive control. In Proceedings of the

Robotics Scienceand Systems, Rome, Italy, 13–17 July 2015; pp. 201–209.
4. Bolognani, S.; Bolognani, S.; Peretti, L.; Zigliotto, M. Design and implementation of model predictive control for electrical motor

drives. IEEE Trans. Ind. Electron. 2009, 56, 1925–1936. [CrossRef]
5. Tiwari, A.; Singh, S.; Singh, S. PMSM Drives and its Application: An Overview. Recent Adv. Electr. Electron. Eng. 2023, 16, 4–16.
6. Beaudoin, M.; Boulet, B. Improving gearshift controllers for electric vehicles with reinforcement learning. Mech. Mach. Theory

2022, 169, 104654. [CrossRef]
7. Chang, X.; Liu, L.; Ding, W.; Liang, D.; Liu, C.; Wang, H.; Zhao, X. Novel nonsingular fast terminal sliding mode control for a

PMSM chaotic system with extended state observer and tracking differentiator. J. Vib. Control 2017, 23, 2478–2493. [CrossRef]
8. Chen, J.; Yao, W.; Ren, Y.; Wang, R.; Zhang, L.; Jiang, L. Nonlinear adaptive speed control of a permanent magnet synchronous

motor: A perturbation estimation approach. Control Eng. Pract. 2019, 85, 163–175. [CrossRef]
9. Dai, C.; Guo, T.; Yang, J.; Li, S. A disturbance observer-based current-constrained controller for speed regulation of PMSM

systems subject to unmatched disturbances. IEEE Trans. Ind. Electron. 2021, 68, 767–775. [CrossRef]
10. Guo, T.; Sun, Z.; Wang, X.; Li, S.; Zhang, K. A simple current-constrained controller for permanent-magnet synchronous motor.

IEEE Trans. Ind. Inf. 2019, 15, 1486–1495. [CrossRef]
11. Xu, Q.; Zhang, C.; Zhang, L.; Wang, C. Multi-objective Optimization of PID Controller of PMSM. Control Sci. Eng. 2014,

2014, 471609.
12. Zhang, W.; Cao, B.; Nan, N.; Li, M.; Chen, Y. An adaptive PID-type sliding mode learning compensation of torque ripple in

PMSM position servo systems towards energy efficiency. ISA Trans. 2020, 110, 258–270. [CrossRef] [PubMed]
13. Lu, W.; Cheng, K.; Hu, M. Reinforcement Learning for Autonomous Underwater Vehicles via Data-Informed Domain Random-

ization. Appl. Sci. 2023, 13, 1723. [CrossRef]
14. Zhang, L.; Li, D.; Xi, Y.; Jia, S. Reinforcement learning with actor-critic for knowledge graph reasoning. Sci. China Inf. Sci. 2020,

63, 1–3. [CrossRef]
15. Zhao, B.; Liu, D.; Luo, C. Reinforcement learning-based optimal stabilization for unknown nonlinear systems subject to inputs

with uncertain constraints. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4330–4340. [CrossRef] [PubMed]
16. Zhang, S.; Li, Y.; Dong, Q. Autonomous navigation of UAV in multi-obstacle environments based on a Deep Reinforcement

Learning approach. Appl. Soft. Comput. 2022, 115, 108194. [CrossRef]
17. Nicola, M.; Nicola, C.; Selis, teanu, D.; Ionete, C. Control of PMSM Based on Switched Systems and Field-Oriented Control Strategy.

Automation 2022, 3, 646–673. [CrossRef]
18. Hong, Z.; Xu, W.; Lv, C.; Ouyang, Q.; Wang, Z. Control Strategy of Deep reinforcement Learning-PI Air Rudder Servo System

based on Genetic Algorithm optimization. J. Mech. Electron. Eng. 2019, 40, 1071–1078.
19. Yang, C.; Wang, H.; Zhao, J. Model-free optimal coordinated control for rigidly coupled dual motor systems based on reinforce-

ment learning. IEEE/ASME Trans. Mechatron. 2023, 16, 1–13.
20. Pesce, E.; Montana, G. Learning multi-agent coordination through connectivity-driven communication. Mach. Learn. 2022,

112, 483–514. [CrossRef]
21. Li, Y.; Wu, B. Software-Defined Heterogeneous Edge Computing Network Resource Scheduling Based on Reinforcement Learning.

Appl. Sci. 2022, 13, 426. [CrossRef]
22. Huo, L.; Tang, Y. Multi-Objective Deep Reinforcement Learning for Personalized Dose Optimization Based on Multi-Indicator

Experience Replay. Appl. Sci. 2022, 13, 325. [CrossRef]

https://doi.org/10.1109/TTE.2015.2426499
https://doi.org/10.1109/TIE.2008.2007547
https://doi.org/10.1016/j.mechmachtheory.2021.104654
https://doi.org/10.1177/1077546315617633
https://doi.org/10.1016/j.conengprac.2019.01.019
https://doi.org/10.1109/TIE.2020.3005074
https://doi.org/10.1109/TII.2018.2860968
https://doi.org/10.1016/j.isatra.2020.10.045
https://www.ncbi.nlm.nih.gov/pubmed/33121733
https://doi.org/10.3390/app13031723
https://doi.org/10.1007/s11432-018-9820-3
https://doi.org/10.1109/TNNLS.2019.2954983
https://www.ncbi.nlm.nih.gov/pubmed/31899437
https://doi.org/10.1016/j.asoc.2021.108194
https://doi.org/10.3390/automation3040033
https://doi.org/10.1007/s10994-022-06286-6
https://doi.org/10.3390/app13010426
https://doi.org/10.3390/app13010325

Algorithms 2023, 16, 404 20 of 20

23. Wu, C.; Pan, W.; Staa, R.; Liu, J.; Sun, G.; Wu, L. Deep reinforcement learning control approach to mitigating actuator attacks.
Automatica 2023, 152, 110999. [CrossRef]

24. Jean, C.; Kyandoghere, K. Systems Science in Engineering for Advanced Modelling, Simulation, Control and Optimization; CRC Press:
Boca Raton, FL, USA, 2019; pp. 34–50.

25. Riazollah, F. Servo Motors and Industrial Control Theory; Springer: Berlin/Heidelberg, Germany, 2014; pp. 21–40.
26. GonzálezRodríguez, A.; BarayArana, R.; RodríguezMata, A.; RobledoVega, I.; Acosta, C. Validation of a Classical Sliding Mode

Control Applied to a Physical Robotic Arm with Six Degrees of Freedom. Processes 2022, 10, 2699. [CrossRef]
27. Dhulipati, H.; Ghosh, E.; Mukundan, S.; Korta, P.; Tjong, J.; Kar, N. Advanced design optimization technique for torque profile

improvement in six-phase PMSM using supervised machine learning for direct-drive EV. IEEE Trans. Energy Convers. 2019,
34, 2041–2051. [CrossRef]

28. Zhao, X.; Ding, S. Research on deep rein-forcement learning. Comput. Sci. 2018, 45, 1–6.
29. Wen, G.; Philip, C.C.L.; Sam, G.S.; Yang, H.; Liu, X. Optimized adaptive nonlinear tracking control using actor–critic rein-forcement

learning policy. IEEE Trans. Ind. Inf. 2019, 15, 4969–4977. [CrossRef]
30. Thuruthel, T.G.; Shih, B.; Laschi, C.; Tolley, M.T. Soft robot perception using embedded soft sensors and recurrent neural networks.

Sci. Rob. 2019, 4, 1488–1497. [CrossRef] [PubMed]
31. Zhang, F.; Li, J.; Li, Z. A TD3-based multi-agent deep reinforcement learning method in mixed cooperation-competition

environment. Neurocomputing 2020, 411, 206–215. [CrossRef]
32. Yao, J.; Ge, Z. Path-Tracking Control Strategy of Unmanned Vehicle Based on DDPG Algorithm. Sensors 2022, 22, 7881. [CrossRef]
33. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. OpenAI 2014,

12, 387–395.
34. Vrabie, D.; Vamvoudakis, K.; Lewis, F. Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles.

IET Digit. Libr. 2012, 3, 1–47.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.automatica.2023.110999
https://doi.org/10.3390/pr10122699
https://doi.org/10.1109/TEC.2019.2933619
https://doi.org/10.1109/TII.2019.2894282
https://doi.org/10.1126/scirobotics.aav1488
https://www.ncbi.nlm.nih.gov/pubmed/33137762
https://doi.org/10.1016/j.neucom.2020.05.097
https://doi.org/10.3390/s22207881

	Introduction
	PMSM Model and RL
	PMSM Model
	Reinforcement Learning
	DDPG Algorithm
	TD3 Algorithm

	Establish Simulation Model
	Create Environment
	Create RL Module

	Comparison of Simulation Results
	Experiment
	Real-Time Simulation
	Rapid Control Prototype
	Code Generation
	Result Analysis

	Conclusions
	References

