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Abstract: Transformer models are being increasingly used in end-to-end speech recognition systems
for their performance. However, their substantial size poses challenges for deploying them in real-
world applications. These models heavily rely on attention and feedforward layers, with the latter
containing a vast number of parameters that significantly contribute to the model’s memory footprint.
Consequently, it becomes pertinent to consider pruning these layers to reduce the model’s size. In
this article, our primary focus is on the feedforward layers. We conduct a comprehensive analysis
of their parameter count and distribution. Specifically, we examine the weight distribution within
each layer and observe how the weight values progress across the transformer model’s blocks. Our
findings demonstrate a correlation between the depth of the feedforward layers and the magnitude
of their weights. Consequently, layers with higher weight values require less pruning. Building upon
this insight, we propose a novel pruning algorithm based on variable rates. This approach sets the
pruning rate according to the significance and location of each feedforward layer within the network.
To evaluate our new pruning method, we conduct experiments on various datasets. The results reveal
its superiority over conventional pruning techniques, such as local pruning and global pruning.

Keywords: model compression; variable scale pruning; end-to-end speech recognition; transformer
architecture; weight magnitude

1. Introduction

Transformer architecture has gained significant attention recently and has emerged as
the state-of-the-art approach in various sequence-to-sequence tasks. These tasks encompass
a wide range of applications, such as natural language processing [1], image retrieval [2],
emotion detection [3], and speech recognition [4]. In the domain of speech recognition,
transformer architecture has enabled the development of end-to-end automatic speech
recognition (ASR) systems. Indeed, the advantage of an end-to-end ASR system is that
it eliminates the requirement for multiple modules, such as the lexicon, acoustic models,
and linguistic models, found in conventional hidden Markov models [5] or hybrid models
that combine neural networks with hidden Markov models [6]. Instead, in end-to-end
systems, all the necessary acoustic and linguistic knowledge is seamlessly integrated within
a single neural network. This integration simplifies the ASR process by consolidating all
relevant information into a unified framework. However, the transformer models used in
various applications, including automatic speech recognition, tend to be excessively large
and over-parameterized, as highlighted in [7–9].

The complexity of these models has consequences on the memory requirements and
the computational cost. These issues can be addressed by studying compression methods
that could have the following outcomes [10]:

- Memory Usage Reduction: Compressing transformer models helps mitigate excessive
memory requirements, allowing for more efficient utilization of resources.
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- Prediction Latency and Energy Consumption: By compressing the models, prediction
latency is reduced, resulting in faster and more energy-efficient computations.

- Inference on Resource-Constrained Devices: Compressed transformer models enable
their deployment on devices with limited hardware resources, such as mobile devices,
making ASR systems more accessible and efficient.

- Ease of Learning, Fine-Tuning, and Distributed Training: Compressed models are
easier to train, fine-tune, and distribute, facilitating their adoption in various settings
and scenarios.

- Ease of Deployment and Updating: Compressed transformer models offer advantages
in terms of deployment and updating processes, enabling seamless integration into
production systems.

The literature on model compression encompasses a wide range of techniques aimed
at addressing the challenges posed by large and over-parameterized models. For instance,
Qi et al. [11] established a theoretical understanding of the architecture of deep neural net-
works, exploring their representation and generalization capabilities for speech processing,
which, in turn, affect the empirical performance of the pruned ASR model. Furthermore, in
their work, Qi et al. [12] proposed an alternative model compression technique based on
the tensor-train network to reduce the complexity of the ASR model.

In general, model compression techniques involve quantization [13], pruning [14],
knowledge distillation [15], matrix decomposition [16], and parameter sharing [17]. In the
field of automatic speech recognition (ASR), pruning has been successfully employed in var-
ious model architectures, such as the multilayer perceptron (MLP), as studied in [18]; long
short-term memory (LSTM) networks, as explored in [19]; convolutional neural networks
(CNN), as described in [20]; and their combinations, as investigated in [21]. Regarding
transformer-based ASR systems, research has focused on quantization [22], parameter
sharing [7], weight magnitude pruning [23], and, recently, on knowledge distillation [24].

In particular, in [23], we conducted a comprehensive analysis of ASR transformer
models across multiple languages. Our findings revealed that the feedforward layers, in
comparison to other layers in the model, have the highest parameter count, occupying
a substantial portion of the model’s overall size. Furthermore, as these layers undergo
global pruning, their Sparsity progressively decreases. The current paper is an extension
of this work. Consequently, the focus of the research was directed towards pruning the
feedforward layers. To achieve this, the weights of the feedforward layers were examined
within each block and between encoder blocks and decoder blocks. This analysis uncovered
a progressive distribution of weights in the feedforward layers, with deeper layers having
higher weight values. Based on these insights, the primary contribution of the research
was the proposal of a pruning technique that takes into account the layer positioning and
gradually reduces the weights of the feedforward layers.

The structure of this paper is as follows: Section 2 provides a comprehensive review
of the relevant literature and prior work in the field. Section 3 offers a detailed description
of the ASR transformer model under investigation. Subsequently, Section 4 introduces
the proposed variable scale pruning method. The experimental setup and results are
presented in Section 5. Finally, Section 6 discusses the obtained results and provides the
key conclusions derived from this study.

2. Related Work

Model pruning techniques refer to a range of methods employed to decrease the size
of models while maintaining performance levels within an acceptable range [10]. These
techniques focus on removing redundant parameters or structures from neural networks,
resulting in a reduced memory footprint and computational demands. By doing so, model
pruning enhances generalization, reduces the dependency on a large number of training
examples, and accelerates the speed of learning and/or classification processes [14].
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2.1. Pruning Structure

Pruning methods can be broadly categorized into two main groups [10]:

• Unstructured pruning [2], which is a pruning technique that involves removing
individual weights from a weight matrix. When a weight value is replaced with zero,
it effectively prunes a connection. This type of pruning is commonly referred to as
sparse pruning [23], as it results in sparse matrices (as shown on Figure 1b).

• Structured pruning [25] is a pruning technique that specifically targets the removal of
entire blocks of weights, rather than individual weights, within a neural network. This
approach enables pruning at a higher level of granularity, allowing for the elimination
of larger structural components. For instance, in fully connected layers [26], it is
possible to zero out blocks of connections (refer to Figure 1d), or even entire rows or
columns of a weight matrix (as shown on Figure 1c), resulting in the removal of entire
neurons. Similarly, in convolutional neural networks (CNNs), filters or channels can
be removed, and in transformer models [27,28], even attention heads can be pruned.

Figure 1. The different pruning structures: (a) no pruning (b), unstructured pruning (c), neuron
pruning (d), block pruning (e), layer(s) pruning.

Pruning can be incorporated into the training process as an additional step between
training epochs (iterative pruning), applied all at once after the model training is complete
(one-shot pruning) [13], or applied between fine-tuning steps [25]. The importance of
the weights can be determined by their magnitude [29], their gradients [30], or a custom
measurement [31].

Our focus lies on unstructured pruning, specifically targeting the removal of connec-
tions. This approach centers on pruning the smallest independent elements of the model,
which allows for pruning in large quantities without significant impacts on performance.

2.2. Sparse Matrix

Nonetheless, unstructured pruning comes with certain limitations. A significant draw-
back is the Sparsity that arises within the pruned model. This Sparsity manifests as numer-
ous parameters with zero values, leading to irregular memory access patterns that may not
be efficiently optimized by conventional hardware architectures. To address this concern,
specific approaches can be adopted, such as utilizing sparse matrix representations [32] or
employing hardware accelerators [33] designed explicitly for sparse computations.

When dealing with sparse matrices [34], significant reductions in memory require-
ments can be achieved by storing only the non-zero entries. There are several ways to
represent sparse matrices, such as the Coordinate List (COO), the Compressed Sparse Row
(CSR), and the Compressed Sparse Column (CSC) [32]. Regarding sparse matrix hardware
accelerators, they often employ specialized architectures and algorithms that leverage the
Sparsity of the matrix to minimize memory usage and optimize computational operations.
They can provide efficient storage and processing of sparse matrices, allowing for faster
matrix–vector multiplications, matrix factorization, and other operations commonly used
in scientific computing, machine learning, and graph analytics. They play a crucial role in
accelerating computations involving sparse matrices, enabling faster and more efficient
processing of data with a reduced memory footprint and improved performance.

The objective of the FVLLMONTI project (fvllmonti.eu), of which this research work
is a part, is to create 3D stacked hardware layers for neural networks. The goal is to
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achieve highly efficient speech recognition and machine translation through meticulous
hardware/software co-optimization. To this end, a hardware accelerator [33] utilizing a
sparse matrix representation will be utilized in this pursuit.

2.3. Pruning Schemes

Global and local pruning techniques are two common approaches used in model
compression by pruning [25,35].

• Global pruning involves pruning a fixed percentage of weights across the entire
model [36]. It is a systematic approach that identifies and removes the least important
weights. Typically, a threshold is set, and weights below this threshold are pruned.
Global pruning aims to reduce the overall size of the model by eliminating a portion
of the weights (see Figure 2). However, it may not take into account the specific
importance of weights in different parts of the model.

• Layer-wise pruning, also known as local pruning, specifically targets individual
layers within a model for pruning. This technique, also referred to as class-uniform
pruning [29], entails removing a fixed percentage of parameters from each layer, as
shown on Figure 2.

The study conducted in [2] applies class distribution pruning, where the pruning
threshold for each layer is determined by multiplying a quality parameter with the standard
deviation of the layer’s weights. This approach is compared with global and local pruning
methods [36]. The results demonstrate that global pruning yields the best performance
among the three techniques.

Figure 2. Local pruning (on the left) versus global pruning (on the right).

3. ASR Transformer

The transformer model [1] is a sequence-to-sequence architecture designed to map an
input sequence (x1, x2, ..xT) to an output sequence (y1, y2, .., yL). Its structure consists of
two main components: the encoder and the decoder. The encoder takes the input sequence
and transforms it into an intermediate sequence of encoded features (h1, h2, .., hN). On the
other hand, the decoder generates predictions for each character yl based on the encoded
features (h1, h2, .., hN) and the previously decoded characters (y1, y2, .., yl−1). Both the
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encoder and the decoder comprise a stack of attention and feedforward network blocks,
allowing the model to capture contextual dependencies and make accurate predictions.

3.1. Model Architecture

Our ASR transformer model adopts the architecture described in [37]. Prior to entering
the encoder, the input acoustic features undergo subsampling via two convolution layers.
The encoder and decoder modules consist of multi-head attention (MHA) and feedforward
(FF) layers. Each layer is accompanied by a residual connection and normalization. Figure 3
provides a simplified illustration of the ASR transformer model’s structure.

Figure 3. ASR transformer main components.

The layers of the encoder refine the representation of the input sequence with a suite of
multi-head, self-attention, and linear transformations. The self-attention operation allows
frames to gather context from all timesteps and build an informative sequence at a high
level [37]. Specifically, the inputs of each layer are projected into queries Q, keys K, and
values V with Q ∈ Rtq∗dq , K ∈ Rtk∗dk , and V ∈ Rtv∗dv . t∗ are the elements numbers in
different inputs and d∗ are the corresponding element dimensions. Usually, these are
tk = tv and dq = dk.

Scaled Dot-Product Attention [1] is then computed as:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

The MHA is applied to take advantage of the different representations that are simul-
taneously present. The multi-head attention is obtained by performing this calculation h
times. h is the number of heads.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)W0 (2)
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where
headi = Attention(QWQ

i , KWK
i , VWV

i ) (3)

The projection matrices are WQ
i ∈ Rdmodel∗dq , WK

i ∈ Rdmodel∗dk , WV
i ∈ Rdmodel∗dv , and

W0 ∈ Rh∗dv∗dmodel . In this work, dk = dq = dv = dmodel/h.
The outputs of multi-head attention go through a two-layer position-wise feedforward

network (FFN) with hidden size d f f [1].

FFN(x) = W2ReLU(W1x + b1) + b2 (4)

b1 ∈ Rd f f and b2 ∈ Rdmodel are the biases. The weight matrices are W1 ∈ Rdmodel∗d f f and
W2 ∈ Rd f f ∗dmodel .

3.2. Model Development

For the development of end-to-end transformer models, we used the Libri-trans [38]
and VoxforgeIT [39] datasets in conjunction with the Espnet toolkit [4].

Libri-trans is a subset of the LibriSpeech database, which was created as part of the
Librivox project (librivox.org) [40]. It contains 236 h of annotated English utterances from
audiobooks. VoxforgeIT, on the other hand, is an Italian dataset developed within the
Voxforge project (voxforge.org) and provides 20 h of audiobooks. Both datasets are divided
into three sets: a training set, a development set, and a test set. For the Libri-trans dataset,
231 h are used for model training, while 2 h and 3.45 h are allocated for the development
and evaluation sets, respectively. In the case of VoxforgeIT, 80% of the data are used for
training, and the remaining data are evenly split between the development and test sets.
To augment the data, we applied speed perturbation [41] with ratios of 0.9, 1.0, and 1.1.
This technique effectively multiplies the quantity of data by three, providing additional
variations for training.

Espnet is an open source toolkit that integrates Kaldi [42] tools for data processing and
parameter extraction, along with PyTorch (pytorch.org) modules for model estimation. For
the input features, we computed 80 filter bank coefficients, which were then normalized
based on the mean and variance. Filter bank (F-bank) parameters enable the extraction
of relevant information from speech signals in the frequency domain. By capturing the
spectral content of speech, they provide a representation that is more suitable for various
speech processing tasks including speech recognition.

As for the representation of transcripts, we used subword units. Specifically, the Vox-
forgeIT system utilizes character-level representation, while the Libri-trans system employs
byte-pair coding subwords. For the training stage, we ran stochastic gradient descent
(SGD) over the training set with the Adam update rule [43] using square root learning
rate scheduling [1] (25,000 warmup steps and 64 minibatch sizes). The architecture of the
developed models is illustrated in Table 1. The Libri-trans model consists of 27.92 million
parameters, while the VoxforgeIT model has 35.07 million parameters. This corresponds to
approximately 107 and 134 megabytes of memory, respectively.

Table 1. Architecture of the transformer models: number of encoder and decoder blocks, dimension
of feedforward layers, dimension of attention layers, and number of attention heads.

Encoder
Blocks

Decoder
Blocks

Feedforward
Dim

Attention
Dim

Heads
Number

Libri-trans 12 6 1024 256 4
VoxforgeIT 18 6 2048 256 4

librivox.org
voxforge.org
pytorch.org
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The performance of these models in Automatic Speech Recognition (ASR) is as follows:
In the case of Libri-trans, the Word Error Rate (WER) achieved was 6.6% on the test set and
6.3% on the development set. These results surpass the current state-of-the-art performance
of 15.1% reported in [44] on the test set. As for VoxforgeIT, the Character Error Rate (CER)
obtained was 9.3% on the test set and 10.3% on the development set. These results also
outperform the state-of-the-art performance of 9.6% documented in [45] on the test set.

4. Adaptive Pruning

Within this section, we will introduce our suggested technique for pruning the ASR
transformer model.

4.1. Model Sizing

The ASR transformer model comprises three main components: the embedding, the
encoder, and the decoder. The acoustic embedding involves two convolution layers respon-
sible for subsampling the acoustic features. The encoder and decoder consist of multiple
blocks of attention layers (ATs) and feedforward layers (FFs). Each layer is accompanied by
a residual connection and normalization. Figure 4 illustrates the distribution of the encoder
and decoder parameters.

According to Figure 4, the feedforward layers contain the majority of parameters,
accounting for over 60% of the total model size. Consequently, our focus in the subsequent
discussion will be primarily on these feedforward layers.

Figure 4. The distribution of attention, feedforward, and other layer parameters between the encoder
and decoder of the Libri-trans and VoxforgeIT models. Other layers are the embedding, input and
output, and normalization layers.

4.2. Feedforward Layers’ Behaviour

In every encoder and decoder block, there exist two feedforward (FF) layers, denoted
as FF1 and FF2. Our focus is on examining the weight distribution of these FF1 and FF2
layers. To accomplish this, we visualize the histograms displaying the weight magnitudes
of the FF1 encoder layers in Figure 5. Upon observation, we noticed a trend where the
weight magnitudes are relatively low in the initial layers, progressively increasing as the
layers become deeper.

Figures 6 and 7 provide evidence to support this observation, as they demonstrate the
progression of the average weight magnitude across the FF1 and FF2 layers in both the
encoder and decoder.
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Figure 5. Evolution of the weight magnitude (×105) of the FF1 layers through the encoder blocks of
the Libri-trans model.

Figure 6. Evolution of the average magnitudes of the FF1 and FF2 layer weights through the encoder
blocks of the VoxforgeIT model.
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Figure 7. Evolution of the average magnitudes of the FF1 and FF2 layer weights through the decoder
blocks of the VoxforgeIT model.

4.3. Feedforward Layers’ Adaptive Pruning

The variable scale pruning method we propose focuses on pruning the early feedfor-
ward layers to a greater extent compared with the deeper layers. This approach involves
utilizing a decreasing pruning rate (see Figure 8). Assuming that the pruning rate of the
feedforward layers follows an arithmetic sequence, we define two sequences: U with
parameter α representing the pruning rate of the encoder layers, and V with parameter
β representing the pruning rate of the decoder layers. When considering two consecu-
tive layers n and n + 1, with Un denoting the pruning rate of the current layer and Un+1
representing the pruning rate of the next layer, the following relationship holds:

Un+1 = Un − α (5)

If n and n + 1 are decoder layers, then:

Vn+1 = Vn − β (6)

where α and β are positive numbers. For the first layers of the encoder and decoder, the
initial pruning rates U0 and V0 are set empirically.

Figure 8. Adaptive pruning: layer n is pruned with a pruning rate Un, while layer n + 1 is pruned
with a lower pruning rate Un+1, where Un > Un+1.

5. Experiments and Results

The evaluation of various pruning techniques, including global, local, and variable
scale (i.e., adaptive), was performed using the transformer models described in Section 3.2.
Unstructured pruning with the L1 norm were employed to prune connections. Individual
weights were set to zero according to their magnitude. The adaptive pruning parameters
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for the Libri-trans and VoxforgeIT datasets were determined by utilizing the development
data. Subsequently, the evaluation was conducted using the test data.

5.1. Baseline Systems

For the purpose of conducting a comparative analysis, we conducted preliminary
experiments on both global and local pruning techniques utilizing the test sets from the
Libri-trans and VoxforgeIT datasets. The outcomes of these experiments are illustrated on
Figures 9 and 10 .

Figure 9. Error rate as a function of global and local pruning rate for the Libri-trans system.

Figure 10. Error rate as a function of global and local pruning rate for the VoxforgeIT system.

An observation we made is that when the pruning rate is 30%, there is a slight increase
in the error rate of approximately 4.7% relative for Libri-trans and 2.1% for VoxforgeIT.
Additionally, it is worth noting that the attention layers contribute significantly to the
model size, as indicated on Figure 4. As a result, we will at least fix the attention layer
pruning rate at 30% and focus on varying the pruning rate of the feedforward layers fin the
subsequent analysis.

5.2. Pruning Settings

The adaptive pruning technique was applied in a single step to the feedforward and
to the attention layers after the model was trained. The encoder and decoder pruning rates
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are represented by the arithmetic sequences U and V. To fix the initial pruning amounts U0
and V0 and the differences α and β, adaptive pruning was applied to the development data
as follows:

1. fix α and β;
2. for each pair (U0, V0)—

(a) use Formulas (5) and (6) to prune the feedforward layers;
(b) evaluate the system using the pruned model and the development dataset;
(c) note the error rate and the Sparsity.

The algorithm was executed three times on each dataset, with different pruning rates
applied to the attention layers. Specifically, for the Libri-trans dataset, the pruning rates
used were 30%, 35%, and 40%. For the VoxforgeIT dataset, the pruning rates employed
were 35%, 40%, and 45%. α and β were chosen empirically. For example, for a pruning
rate of 30% and α = 0.01, the first encoder layer is pruned with the coefficient U0 = 0.3; the
second is pruned with U1 = U0 − α = 0.3 − 0.01 = 0.29. Thus, for a 12th encoder block , the
pruning rate of the last layer is U12 = 0.19 (i.e., a pruning rate of 19%).

The results of the adaptive pruning technique applied to development data are re-
ported in Appendix A. They are illustrated by Tables A1–A6. Among these results, the best
tradeoffs between WER and Sparsity are identified and highlighted in bold. To determine
the optimal tradeoff, one must select a specific WER value from the table and then choose
the lowest associated sparsity level. Based on the obtained tradeoffs, we deduced the
encoder parameters U0 and V0, which correspond to the optimal initial pruning amounts.
For both the Libri-trans and VoxforgeIT settings, we extracted the optimal values of the
(WER, Sparsity) pairs from Tables A1–A6. Subsequently, we organize and present these
optimal values comparatively in Tables 2 and 3. This arrangement allows us to effectively
demonstrate the relative trade-offs achieved for each set of parameters.

Table 2. Adaptive pruning of the Libri-trans model: best tradeoffs between the WER and the model
Sparsity (SP.). The fixed parameters are the pruning rate of the multi-head attention layers (PR. hd)
and α = β = 0.01.

PR. hd Best Tradeoffs (WER, Sparsity)

30 (%) WER 6.5 6.8 7.1 7.7 8.2 8.9 9.2
SP. 31.62 37.87 44.12 46.62 49.12 51.62 52.87

35 (%) WER 6.6 7.0 7.3 7.6 8.2 9.0 9.6
SP. 34.12 41.62 44.12 46.62 50.37 52.87 55.37

40 (%) WER 6.8 6.9 7.0 7.1 7.5 8.4 9.5
SP. 35.37 37.87 40.37 41.62 45.37 51.12 55.37

Table 3. Adaptive pruning of the VoxforgeIT model: Best tradeoffs between the WER and the model
Sparsity (SP.). The fixed parameters are the pruning rate of the multi-head attention layers (PR. hd)
and α = β = 0.01.

PR. hd Best Tradeoffs (WER, Sparsity)

35 (%) WER 10.5 10.6 10.7 10.9 11.5 12.3
SP. 44.23 48.04 49.68 51.22 57.57 61.37

40 (%) WER 10.4 10.5 10.8 11.1 11.4 12.2
SP. 42.88 46.06 50.50 55.58 58.76 62.56

45 (%) WER 10.5 10.8 11.1 11.6 12.2 12.6
SP. 46.82 52.53 57.30 61.11 63.96 65.87

Figures 11 and 12 present the optimal pairs (WER, Sparsity) for different pruning rates,
along with the results for global and local pruning for the purpose of comparison.



Algorithms 2023, 16, 398 12 of 19

Figure 11. The development error rate is plotted as a function of Sparsity for the Libri-trans system
after applying local, global, and variable scale pruning techniques.

Figure 12. The development error rate is plotted as a function of Sparsity for the VoxforgeIT system,
after applying local, global, and variable scale pruning techniques.

In both the Libri-trans and VoxforgeIT datasets, adaptive pruning demonstrates su-
perior performance compared with local and global pruning methods. This outcome
was expected due to the estimation of variable scale pruning parameters using the
development data.

5.3. Pruning Evaluation

The three types of pruning, namely local, global, and variable scale, were applied to
the test data without any parameter modifications. The values of U0, V0, α, and β remained
the same as those set on the development data.

Figures 13 and 14 present the error rates for varying Sparsity levels, reaching up
to 52.5% for Libri-trans and 62.5% for VoxforgeIT. It is noteworthy that, beyond these
thresholds, the application of global pruning results in a significant increase in the error
rate. Specifically, the error rate exceeds 24% for Libri-trans and 13.9% for VoxforgeIT.

In all cases, variable scale pruning demonstrates superior performance compared with
global and local pruning techniques.
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Figure 13. The test error rate is plotted as a function of Sparsity for the Libri-trans system after
applying local, global, and variable scale pruning techniques.

Figure 14. The test error rate is plotted as a function of Sparsity for the VoxforgeIT system after
applying local, global, and variable scale pruning techniques.

The Word Error Rate (WER) of the non-pruned Libri-trans system is reported to be
6.6% in Section 3.2. According to Figure 13, when the WER is 7.3%, variable scale pruning
achieves a Sparsity gain of 7%. This allows the model to be compressed to 52.5% while
maintaining a WER of 8.9%. This corresponds to a relative increase in the error rate of
approximately 13.5%.

In Section 3.2, it is stated that the non-pruned VoxforgeIT system achieved a Character
Error Rate (CER) of 9.3%. The information presented in Figure 14 clearly shows that, for a
CER of 9.5%, the variable scale pruning models exhibit 6% higher Sparsity values compared
with the locally or globally pruned models. Furthermore, when the pruned system achieves
a Sparsity level of 57%, the CER remains at approximately 10%. As a result, we can deduce
an absolute increase in the error rate of 0.7% when the model is compressed to 57%.

It is worth noting that VoxforgeIT’s transformer model demonstrates a higher level of
over-parameterization compared with that of Libri-trans, as evidenced by its larger Sparsity
at the same increase in error rate.

Overall, these results highlight the effectiveness of variable scale pruning in achieving
a favorable trade-off between Sparsity and error rate for both datasets. Setting a maximum
allowable relative increase of 10% in the error rate (i.e., WER = 7.3% for Libri-trans and
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CER = 10.3% for VoxforgeIT), the most optimal pairs of (error rate, pruning rate) were found
to be (7.6%, 43%) for the Libri-trans system and (10.3%, 59.5%) for the VoxforgeIT system.

6. Conclusions and Future Work

This paper presents a novel approach for pruning transformer models in end-to-end
speech recognition, addressing the significant complexity and size of these models that
hinder their efficient deployment in Automatic Speech Recognition tasks. While trans-
former systems exhibit excellent performance, their large size poses challenges for practical
implementation. In order to overcome this limitation, our work focused on studying and
optimizing pruning techniques specifically tailored to the transformer architecture.

In this study, we devised a method that centers around analyzing the evolution of
weights within the feedforward layers present in both the encoder and decoder blocks
of the transformer. Through careful observation, we found that deeper layers tend to
possess higher weights compared with earlier layers. Leveraging this insight, our proposed
approach, named variable scale pruning, applies a pruning rate that decreases progressively
as the layer depth increases.

To validate the effectiveness of our method, we conducted experimental evaluations on
diverse databases. The results showcased the superiority of our approach over traditional
local and global pruning methods. Remarkably, our technique achieved an impressive
model compression rate of up to 59.5%, all while maintaining a less than 10% relative
reduction in accuracy.

Looking ahead, there are exciting research directions to explore. One such avenue
involves investigating the application of variable scale pruning on attention head layers,
which play a vital role in the transformer’s performance. Additionally, we intend to
delve into fine-tuning techniques for the pruned models, aiming to further optimize their
performance without sacrificing compression gains. In the present era, there is a growing
trend in the adoption of large and pre-trained models, known as foundation models.
Through fine-tuning, these models continually improve their efficiency and hold a crucial
advantage in being able to work with minimal labeled data. The pruning of such models
offers a compelling and promising avenue for further research.

By advancing the field of transformer model pruning for end-to-end speech recog-
nition, our work contributes to the broader goal of enabling the widespread adoption of
efficient and high-performing transformer systems in real-world applications.
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Appendix A. Adaptive Pruning Settings

In this appendix, we present the results obtained through adaptive pruning with the
development data from the Libri-trans and VoxforgeIT databases. The approach involves
fixing the pruning rate for the attention layers while systematically varying the pruning
rate for the feedforward layers. This variable rate is determined by the parameters U0 and

https://zenodo.org/record/6482585.YsmV
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http://www.repository.voxforge1.org/downloads/ for Libri-trans
http://www.repository.voxforge1.org/downloads/ for Libri-trans
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V0, which subsequently allow us to calculate the model’s overall pruning rate. The error
rate is duly recorded. As highlighted earlier in Section 5.2, among these findings, the most
advantageous tradeoffs between WER and Sparsity are identified and underscored through
bold formatting. To determine the most optimal pairs (WER, Sparsity), it is essential
to select a specific WER value from the table and then choose the associated minimum
sparsity level.

Table A1. Adaptive pruning of the Libri-trans model: WER and Sparsity. The overall pruning rate
(i.e., Sparsity) of the model is derived from the values of the pairs (U0, V0). The fixed parameters are:
attention layer pruning rate = 30% and α = β = 0.01.

U0 (%)

V0 (%) 30 35 40 45 50 55 60 65

30 WER 6.5 6.6 6.6 6.7 6.8 6.9 7.1 7.1
Sparsity 26.62 29.12 31.62 34.12 36.62 39.12 41.62 44.12

35 WER 6.5 6.5 6.6 6.7 7.0 7.2 7.7 8.4
Sparsity 27.87 30.37 32.87 35.37 37.87 40.37 42.87 45.37

40 WER 6.6 6.5 6.6 6.7 7.0 7.3 7.8 8.5
Sparsity 29.12 31.62 34.12 36.62 39.12 41.62 44.12 46.62

45 WER 6.6 6.6 6.7 6.8 7.1 7.3 7.8 8.6
Sparsity 30.37 32.87 35.37 37.87 40.37 42.87 45.97 47.87

50 WER 6.7 6.6 6.8 6.7 7.2 7.4 7.9 8.6
Sparsity 31.62 34.12 36.62 39.12 41.62 44.12 46.62 49.12

55 WER 6.8 6.7 6.9 6.9 7.2 7.5 8.2 8.7
Sparsity 32.87 35.37 37.87 40.37 42.87 45.37 47.87 50.37

60 WER 6.9 6.9 7.1 7.1 7.4 7.7 8.2 8.9
Sparsity 34.12 36.62 39.12 41.62 44.12 46.62 49.12 51.62

65 WER 7.1 7.1 7.1 7.4 7.6 7.9 8.6 9.2
Sparsity 35.37 37.87 40.37 42.87 45.37 47.87 50.37 52.87

Table A2. Adaptive pruning of the Libri-trans model: WER and Sparsity. The overall pruning rate
(i.e., Sparsity) of the model is derived from the values of the pairs (U0, V0). The fixed parameters are:
attention layer pruning rate = 35% and α = β = 0.01.

U0 (%)

V0 (%) 30 35 40 45 50 55 60 65 70 75

30 WER 6.6 6.6 6.6 6.7 6.9 7.2 7.7 8.3 9.5 11.6
Sparsity 27.87 30.37 32.87 35.37 37.87 40.37 42.87 45.37 47.87 50.37

35 WER 6.7 6.6 6.7 6.8 7.0 7.2 7.8 8.4 9.6 11.8
Sparsity 29.12 31.62 34.12 36.62 39.12 41.62 44.12 46.62 49.12 51.62

40 WER 6.7 6.6 6.7 6.8 7.1 7.3 7.8 8.5 9.7 11.9
Sparsity 30.37 32.87 35.37 37.87 40.37 42.87 45.37 47.87 50.37 52.87

45 WER 6.7 6.6 6.8 6.9 7.3 7.3 7.9 8.5 9.6 12.1
Sparsity 31.62 34.12 36.62 39.12 41.62 44.12 46.62 49.12 51.62 54.12

50 WER 6.8 6.7 6.9 6.9 7.3 7.4 8.1 8.6 9.7 12.0
Sparsity 32.87 38.37 37.87 40.37 42.87 45.37 47.87 50.37 52.87 55.37

55 WER 6.9 6.8 7.0 7.0 7.4 7.6 8.3 8.8 9.9 12.2
Sparsity 34.12 36.62 39.12 41.62 44.12 46.62 49.12 51.62 54.12 56.62

60 WER 7.0 7.0 7.1 7.3 7.5 7.8 8.4 9.0 10.1 12.6
Sparsity 35.37 37.87 40.37 42.87 45.37 47.87 50.37 52.87 55.37 57.87

65 WER 7.1 7.1 7.2 7.3 7.7 8.0 8.5 9.3 10.4 13.3
Sparsity 36.62 39.12 41.62 44.12 46.62 49.12 51.62 54.12 56.62 59.12

70 WER 7.4 7.3 7.4 7.6 8.0 8.2 8.8 9.6 10.9 13.6
Sparsity 37.87 40.37 42.87 45.37 47.87 50.37 52.87 55.37 57.87 60.37
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Table A3. Adaptive pruning of the Libri-trans model results: WER and Sparsity. The overall pruning
rate (i.e., Sparsity) of the model is derived from the values of the pairs (U0, V0). The fixed parameters
are: attention layer pruning rate = 40% and α = β = 0.01.

U0 (%)

V0 (%) 30 35 40 45 50 55 60 65

30 WER 6.7 6.7 6.7 7.0 7.1 7.3 7.9 8.6
Sparsity 29.12 31.62 34.12 36.62 39.12 41.62 44.12 46.62

35 WER 6.7 6.8 6.8 6.9 7.1 7.4 8.0 8.6
Sparsity 30.37 32.87 35.37 37.87 40.37 42.87 45.37 47.87

40 WER 6.9 6.8 6.9 7.0 7.1 7.5 7.9 8.8
Sparsity 31.62 34.12 36.62 39.12 41.62 44.12 46.62 49.12

45 WER 6.8 6.8 7.0 7.0 7.2 7.5 8.0 8.9
Sparsity 32.87 35.37 37.87 40.37 42.87 45.37 47.87 50.37

50 WER 7.0 6.9 6.9 7.2 7.4 7.6 8.0 8.9
Sparsity 34.12 36.62 39.12 41.62 44.12 46.62 49.12 51.62

55 WER 7.0 7.0 7.0 7.2 7.5 7.8 8.4 9.0
Sparsity 73.37 37.87 40.37 42.87 45.37 47.37 50.37 52.87

60 WER 7.0 6.9 7.1 7.4 7.6 7.9 8.4 9.3
Sparsity 36.62 39.12 41.62 44.12 46.62 49.12 51.12 54.12

65 WER 7.2 7.1 7.3 7.4 7.8 8.1 8.9 9.5
Sparsity 37.87 40.37 42.87 45.37 47.87 50.37 52.87 55.37

Table A4. Adaptive pruning of the VoxforgeIT model: CER and Sparsity. The overall pruning rate
(i.e., Sparsity) of the model is derived from the values of the pairs (U0, V0). The fixed parameters are:
attention layer pruning rate = 35% and α = β = 0.01.

U0 (%)

V0 (%) 45 50 55 60 65 70 75

60 CER 10.5 10.5 10.6 10.9 11.4 11.4 11.5
Sparsity 38.52 41.69 44.87 48.04 51.22 52.11 53.22

65 CER 10.5 10.5 10.6 10.9 11.5 11.5 11.8
Sparsity 39.15 42.30 45.50 48.68 51.85 55.03 57.12

70 CER 10.5 10.5 10.6 10.9 11.5 11.5 12.0
Sparsity 39.80 43.01 46.14 49.31 52.50 55.66 59.01

75 CER 10.5 10.5 10.6 10.9 11.5 11.5 12.2
Sparsity 40.62 43.60 46.77 49.95 53.12 56.30 59.2

80 CER 10.5 10.5 10.6 10.9 11.5 11.5 12.2
Sparsity 41.06 44.23 47.41 50.58 53.76 57.01 60.11

85 CER 10.5 10.5 10.6 10.9 11.2 11.5 12.5
Sparsity 41.70 44.87 48.04 51.22 54.40 57.57 60.74

90 CER 10.6 10.6 10.7 11.0 11.2 11.6 12.3
Sparsity 42.33 45.50 49.68 51.85 55.03 58.20 61.38
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Table A5. Adaptive pruning of the VoxforgeIT model: CER and Sparsity. The overall pruning rate
(i.e., Sparsity) of the model is derived from the values of the pairs (U0, V0). The fixed parameters are:
attention layer pruning rate = 40% and α = β = 0.01.

U0 (%)

V0 (%) 45 50 55 60 65 70 75

60 CER 10.4 10.5 10.6 10.9 11.1 11.4 12.0
Sparsity 39.71 45.88 46.06 49.23 52.41 555.58 58.76

65 CER 10.4 10.5 10.6 10.8 11.1 11.4 12.0
Sparsity 40.34 43.52 46.70 49.87 53.04 56.22 59.39

70 CER 10.4 10.5 10.6 10.8 11.1 11.4 12.0
Sparsity 41.0 44.15 47.33 50.50 52.41 56.85 60.03

75 CER 10.4 10.5 10.6 10.9 11.1 11.4 12.0
Sparsity 41.61 44.79 47.96 51.14 54.31 57.49 60.11

80 CER 10.4 10.5 10.6 10.9 11.1 11.5 12.1
Sparsity 42.25 45.42 48.60 51.77 54.95 58.12 61.03

85 CER 10.4 10.5 10.7 10.9 11.1 11.4 12.2
Sparsity 42.88 46.06 49.23 52.41 55.58 58.76 62.20

90 CER 10.5 10.6 10.7 11.0 11.2 11.6 12.2
Sparsity 46.69 49.87 53.04 56.22 59.39 62.56

Table A6. Adaptive pruning of the VoxforgeIT model: CER and Sparsity. The overall pruning rate
(i.e., Sparsity) of the model is derived from the values of the pairs (U0, V0). The fixed parameters are:
attention layer pruning rate = 45% and α = β = 0.01.

U0 (%)

V0 (%) 45 50 55 60 65 70 75

60 CER 10.5 10.6 10.7 10.9 11.1 11.6 12.3
Sparsity 44.92 47.77 50.63 53.49 56.34 59.20 62.06

65 CER 10.5 10.6 10.8 10.9 11.1 11.7 12.3
Sparsity 45.87 48.73 51.58 54.44 57.30 60.15 63.01

70 CER 10.5 10.6 10.8 11.0 11.2 11.7 12.4
Sparsity 46.82 49.68 52.53 55.39 58.25 62.11 63.96

75 CER 10.6 10.7 10.9 11.0 11.3 11.8 12.5
Sparsity 47.77 50.63 53.49 56.34 59.20 62.06 64.92

80 CER 10.7 10.7 11.0 11.1 11.4 11.9 12.6
Sparsity 48.73 51.58 54.44 57.30 60.15 63.01 65.87

85 CER 10.9 11.0 11.1 11.4 11.6 12.1 12.9
Sparsity 49.68 52.53 55.39 58.25 61.11 63.96 66.82

90 CER 11.1 11.2 11.3 11.5 11.8 12.3 13.1
Sparsity 50.63 53.49 56.34 59.20 62.06 64.92 67.77
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