
Citation: Touafek, N.; Benbouzid-Si

Tayeb, F.; Ladj, A. A

Reinforcing-Learning-Driven

Artificial Bee Colony Algorithm for

Scheduling Jobs and Flexible

Maintenance under Learning and

Deteriorating Effects. Algorithms 2023,

16, 397. https://doi.org/10.3390/

a16090397

Academic Editor: Marc Sevaux

Received: 11 July 2023

Revised: 18 August 2023

Accepted: 19 August 2023

Published: 22 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Reinforcing-Learning-Driven Artificial Bee Colony
Algorithm for Scheduling Jobs and Flexible Maintenance
under Learning and Deteriorating Effects
Nesrine Touafek 1,* , Fatima Benbouzid-Si Tayeb 1 and Asma Ladj 2

1 Laboratoire des Méthodes de Conception de Systèmes (LMCS), Ecole Nationale Supérieure d’Informatique
(ESI), Algiers BP 68M-16270, Algeria; f_sitayeb@esi.dz (F.B.-S.T.); asma.ladj@railenium.eu (A.L.)

2 Railenium Research and Technology Institute, 59540 Valenciennes, France
* Correspondence: en_touafek@esi.dz

Abstract: In the last decades, the availability constraint as well as learning and deteriorating effects
were introduced into the production scheduling theory to simulate real-world case studies and
to overcome the limitation of the classical models. To the best of our knowledge, this paper is
the first in the literature to address the permutation flowshop scheduling problem (PFSP) with
flexible maintenance under learning and deterioration effects to minimize the makespan. Firstly,
we address the PFSP with flexible maintenance and learning effects. Then, the deteriorating effect
is also considered. Adaptive artificial bee colony algorithms (ABC) enhanced with Q-learning are
proposed, in which the Nawaz–Enscore–Ham (NEH) heuristic and modified NEH heuristics are
hybridized with a maintenance insertion heuristic to construct potential integrated initial solutions.
Furthermore, a Q-learning (QL)-based neighborhood selection is applied in the employed bees phase
to improve the quality of the search space solutions. Computational experiments performed on
Taillard’s well-known benchmarks, augmented with both prognostic and health management (PHM)
and maintenance data, demonstrate the effectiveness of the proposed QL-driven ABC algorithms.

Keywords: permutation flowshop problem; flexible maintenance; learning effect; deteriorating effect;
artificial bee colony algorithm; Q-learning

1. Introduction

Scheduling is an important tool for manufacturers and production engineers since it
deals with the allocation of human and machine resources to satisfy consumer demand.
The objective is to monitor and optimize workloads, as well as to reduce production time
and costs while adhering to all production constraints.

In traditional scheduling problems and models, job processing times are assumed to
be a constant value. However, this hypothesis is not suitable for many realistic situations in
which the job processing time may change owing to job deterioration and/or learning effect
phenomena. Indeed, when the employees execute the same task repeatedly, they learn
how to perform more efficiently. On the other hand, machines wear out after long periods
of processing. Therefore, recent trends in scheduling theory have focused on modeling
real-world production scheduling problems where human learning, as well as machine
deteriorating effects, are taken into account when studying scheduling problems [1,2]. The
learning effect [3] is a natural human-oriented phenomenon appearing among operators
after repeating similar tasks frequently. They gain experience and the execution time
decreases accordingly. Ref. [4] proposed the first modeling of this phenomenon with
a learning curve and since then, multiple models have been proposed in the literature.
Refs. [3,5] were among the pioneers that investigated the learning effect in scheduling
problems, and this was continued in the literature in hundreds of studies with different

Algorithms 2023, 16, 397. https://doi.org/10.3390/a16090397 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16090397
https://doi.org/10.3390/a16090397
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0000-0000-000X
https://doi.org/10.3390/a16090397
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16090397?type=check_update&version=3


Algorithms 2023, 16, 397 2 of 24

machine configurations [6,7]. On the other hand, the deteriorating effect [8,9] is a machine-
oriented phenomenon appearing after processing tasks are conducted on machines for a
long time. The machine performances wear out and therefore additional delays are required
to execute the production schedule. Refs. [8,10] seem to be the first to have investigated
this effect in production scheduling. The interested reader can find extensive surveys of
different scheduling models and problems involving deteriorating jobs in [11,12]. More
recently, Ref. [13] presented an updated survey of the results on scheduling problems
with deteriorating jobs and time-dependent processing times. As for learning and/or
deterioration effects, Ref. [7] reviews the mathematical models for scheduling problems. It
is worth noting that most proposed learning or deteriorating effects functions are either
position-dependent, time-dependent, or sum-of-processing-times-dependent [6,13,14].

To counter the deteriorating effect, increase machines’ availability, and reduce the
overall production costs, maintenance activities should be planned along the production
process [15]. However, unavailability periods for machines appear since the maintenance
activities may take up a potential production time that could otherwise be allocated to com-
pleting production tasks. Therefore, to compensate for this deficiency, maintenance tasks
should be scheduled in an effective way to improve machine availability and minimize dis-
ruption to the production process [16]. Ref. [17] established that appropriate maintenance
planning can preserve machine performance and save 20–30% of total operating costs.

Recently, maintenance strategies have moved towards a smart aspect. In fact, modern
sensor, diagnosis, and prognostic and health management (PHM) technologies allow the
ideal planning of interventions and reduce inopportune spending. Simply put, signals
gathered from embedded sensors (or inspection information) are analyzed in order to
continuously (or periodically) monitor the health state of the production system. Following
that, the current state is inferred and the future progression till failure is predicted in order
to estimate the time left before the occurrence of failure, known as the remaining useful life
(RUL) [18]. Then, the PHM outputs (i.e, RUL) are exploited in the decision making that
concerns maintenance planning. The main advantage of this strategy, namely the decision
making based on prognosis information, which is referred to as a post-prognostic decision
(PPD) [19], is that it maintains the system only when necessary, which reduces the cost of
inopportune maintenance interventions.

The current PPD research on scheduling problems is focused on two main streams.
First, the intent is to make the best PPD regarding maintenance planning. In order to
improve maintenance planning, PHM findings are thus used [20–23]. On the other hand,
the second stream looks into the issue of integrating production jobs and maintenance
operations when making decisions. This can help to avoid production downtime and
improve system availability by establishing the most appropriate integrated production
and maintenance schedule [16,18,24–27].

Metaheuristics have emerged as a common solution approach for scheduling in indus-
try and manufacturing due to the fact that most problems are computationally hard [28].
Recently, bio-inspired metaheuristics, including evolutionary algorithms and swarm in-
telligence algorithms, have become increasingly popular [29]. Evolutionary algorithms
start with a set of random candidate solutions and iteratively generate descendant solu-
tions until an acceptable one is found. Common metaheuristics in this category that have
many applications in scheduling problems are genetic algorithms [30,31], the differential
evolution algorithm [32], and more recently, biogeography-based optimization (BBO) [33].
Swarm Intelligence is an advanced artificial intelligence discipline that uses the behavior
of living swarms such as ants, bees, butterflies, and birds to solve complex problems [34].
Several metaheuristics in this category have been applied to solve scheduling problems
such as Ant Colony Optimization (ACO) [35], Particle Swarm Optimization (PSO) [36],
and more recently, Grey Wolf Optimization (GWO [37]). The artificial bee colony (ABC)
algorithm [38], which has recently been introduced to formulate NP-hard problems, sim-
ulates the social behavior of bees when searching for promising food sources associated
with higher nectar amounts. The ABC algorithm has been extensively applied to solve



Algorithms 2023, 16, 397 3 of 24

various flowshop scheduling problems [39–41]. On the other hand, machine learning (ML)
is an expansive field within artificial intelligence that has gained significant popularity
due to its straightforward algorithms, enabling programs to learn patterns, behaviors,
models, and functions. This acquired knowledge is then utilized to enhance future decision
making and actions. ML can be categorized into three main types: supervised learning,
unsupervised learning, and reinforcement learning. In recent years, reinforcement learning
(RL) methods have been applied to machine scheduling problems [42]. It is noteworthy
that among scheduling problems, jobshop scheduling, flowshop scheduling, unrelated
parallel machine scheduling, and single-machine scheduling have emerged as the most
extensively studied ones [42].

While integrating maintenance decisions in production scheduling problems makes
existing models and solution methods more realistic, it also increases their complexity.
Furthermore, incorporating effects further increases the problem’s complexity. Additionally,
while most research on deteriorating jobs and learning effects has focused on single-machine
problems [1], it is the multimachine problems that are more interesting and closer to real-
world problems. Therefore, the intent of this paper is to explore the permutation flowshop
scheduling problem (PFSP) with flexible maintenance under learning and deteriorating
effects, through the perspective of reinforcement learning algorithms. In this regard,
we propose two Q-learning (QL)-driven artificial bee colony (ABC) algorithms to solve
the defined PFSP with only the learning effect and the defined PFSP with simultaneous
consideration of learning and deteriorating effects. The main advantages of the proposed
hybrid metaheuristic approaches are the following:

1. To be close to realistic production workshops, we propose a novel interpretation
of PHM outputs, where RULs and degradation values are estimated based on the
operating conditions of machines during the processing of production jobs;

2. The use of the QL algorithm, one of the major RL algorithms, to guide the search
process in the employed bees phase of the ABC algorithms;

3. The design of a new heuristic, named INEH, based on the hybridization of the NEH
heuristic [43] and maintenance insertion heuristic [44] concepts, to generate initial
solutions of good quality;

4. A maintenance cost function to be optimized when readjusting maintenance emplace-
ments after being perturbed in employed and onlooker bees phases;

The remainder of this paper is organized as follows. A literature review and the
research gaps are given in Section 2. The problem formulation and objective function
are provided in Section 3. Section 4 details the proposed ABC-based solving approaches.
Section 5 discusses the performance analyses and presents our computational results.
Finally, some conclusions and future works are discussed in Section 6.

2. Brief Literature Review and Research Gaps

Scheduling problems are considered to be of very complex resolution. Not only are
they NP-complete [45], but they are also actually among the most difficult problems to
solve because of the difficulty of computing solutions [46]. The joint scheduling problem
addressed in this paper is even more complex as it involves not only assigning production
jobs and maintenance activities to machines but also accounting for the impact of learning
and deteriorating effects on processing times.

2.1. Metaheuristic Solution Approach

As a result of their efficiency and ability to be used in real-world production envi-
ronments, metaheuristics as approximation methods have made breakthroughs in solving
various complex optimization problems in the industry and become the main methods
used to solve large-scale scheduling problems [47]. Nonetheless, it is worth noting that few
studies in the literature have proposed metaheuristics to solve scheduling problems with
learning and/or deteriorating effects [1,2].



Algorithms 2023, 16, 397 4 of 24

The existing literature can be placed into three main streams according to the consid-
ered effect, namely the learning effect, the deteriorating effect, and finally, the combined
effects. Reference [48] proposed a tabu search algorithm to solve the single-machine
scheduling problem with a time-dependent learning effect. Ref. [49] developed four meta-
heuristics, namely the genetic algorithm (GA), simulated annealing, ABC, and iterated
greedy algorithms to solve a two-stage, three-machine assembly scheduling problem with
a position-dependent learning effect. On the other hand, Ref. [41] proposed an ABC algo-
rithm to solve the flexible flowshop scheduling problem with a step deteriorating effect,
while [50] proposed three metaheuristics including dynamic differential evolution, the
simulated annealing algorithm, and the cloud-theory-based simulated annealing algorithm,
to solve the two-stage assembly scheduling problem under a time-dependent deteriorating
effect. In practical settings, combined effects (learning and deteriorating) are also con-
sidered. In this regard, we can quote the work of [51], which developed a GA to solve
parallel machine scheduling problems under the effects of position-dependent learning
and time-dependent deteriorating effects.

Joint planning of production and maintenance activities, taking into account learning
and/or deteriorating effects has also been studied in the literature. However, works
in this area are even more scarce. From the learning perspective, Ref. [52] solved the
joint flowshop scheduling problem with a hybrid metaheuristic algorithm based on the
simulated annealing algorithm and firefly algorithm. For the deteriorating effect, Ref. [53]
developed a GA to deal with the joint single-machine scheduling problem taking into
account the deteriorating effect. Finally, considering the case of combined effects, Ref. [54]
proposed an ABC algorithm to solve the joint flowshop scheduling problem under the time-
dependent deteriorating effect and position-dependent learning effect. Ref. [55] studied the
joint parallel batching scheduling problem under a combined position-dependent learning
effect and time-dependent deteriorating effect. A hybrid algorithm combining GA and
differential evolution (DE) was proposed for resolution.

Based on the findings of the literature, it has been observed that scheduling problems
frequently feature position-dependent learning effects and/or time-dependent deterio-
rating effects [2]. Furthermore, variable maintenance durations due to learning or dete-
riorating effects is also an important research stream in the scheduling literature. While
variable maintenance durations due to the deterioration effect have most often been consid-
ered [56–58], variable maintenance durations due to the learning effect have scarcely been
studied [54,59].

2.2. Metaheuristic and RL Solution Approach

Recently, there has been a growing focus on using reinforcement learning (RL) [60],
a class of ML algorithms, as an emerging intelligent optimization method for addressing
complex combinatorial optimization problems. The RL algorithms have been successfully
applied to solve a wide range of production scheduling problems [42,61]. Ref. [62] proposed
a Q-learning (QL) algorithm to solve the classical PFSP. The authors reported competitive
results compared to the optimum values proposed in the literature. Ref. [63] applied the QL
algorithm to the makespan hybrid flowshop scheduling problem. To validate the method,
two real-life applications were made. Ref. [64] proposed a multi-agent reinforcement
learning framework for the jobshop scheduling problem. The best results are returned by
the approach using well-known benchmark instances.

In the literature, integrating RL algorithms into metaheuristics has been proven to of-
fer high performance in terms of search robustness, solution quality, and convergence
speed [42]. Metaheuristics can rely on RL algorithms to calibrate their key parame-
ters [31,65] or support their search process [66,67]. Despite extensive efforts to incorporate
RL algorithms into metaheuristics for scheduling problem resolution, little research has
addressed constraints such as maintenance, learning, and deteriorating effects [42]. Fur-
thermore, despite the extensive literature on flowshop scheduling problems, to the best
of our knowledge, references to the problem addressed in this paper, that is, the PFSP



Algorithms 2023, 16, 397 5 of 24

with flexible maintenance under learning and deteriorating effects, are very scarce. Hence,
this paper introduces several enhancements to the ABC algorithm based on the specific
characteristics of the problem under investigation. These improvements, including the
hybrid initialization method and QL-based neighborhood search, aim to improve the search
capability and overall performance.

3. Integrated Problem Description and Effects Mathematical Models

In this section, we first describe the integrated permutation flowshop scheduling
problem (PFSP) with flexible maintenance that we are dealing with. We focus on the
variable duration of maintenance and job processing times due to learning and deteriorating
effects. Furthermore, the assumptions made in this paper are provided. Finally, we discuss
the most salient aspects of learning and deteriorating effects. The following notations are
used for the remainder of this paper:

J indicates a set of production jobs to be processed.
j indicates the index of a job in the set J (1 ≤ j ≤ n).

Mi indicates the ith machine, i is used as the machine index (1 ≤ i ≤ m).
ki indicates the number of planned maintenance operations on machine i.

Mic indicates the planned maintenance operation on machine i at the cth position,
where c is used as the maintenance position indicator (1 ≤ c ≤ ki).

pij indicates the normal processing time of job j on machine i.
pij(t) is the time-dependent deteriorating processing time of job j on machine i, where

t is its start time.
β is the deteriorating index.

pmic is the normal time of the cth maintenance on machine i.
pmic(c) is the position-dependent learning time of the cth maintenance on machine i.

α is the learning index.
σij indicates the degradation of machine i after processing the job j.
Bil indicates a subset of J with n′ jobs where n′ < n.

Cmax indicates the total completion time.

3.1. The Integrated Scheduling of Production and Maintenance Problem

The PFSP is one of the most thoroughly studied scheduling problems in the operation
research literature. Many production scheduling problems resemble a flowshop, and
therefore, it has been extensively studied due to its application in industry [68].

Formally, the PFSP can be described as follows. A set J = {j, 1 ≤ j ≤ n} of n
independent jobs needs to be processed on a set M = {Mi, 1 ≤ i ≤ m} of m independent
machines in the same order on the m machines. We assume that all jobs are available at
time zero and no preemption is allowed. In order to ensure the system’s reliability and
to prevent the occurrence of fatal breakdowns during the processing horizon, machines
are monitored continuously by a PHM module. This module is able to predict, for each
machine Mi, the relative time before failure after processing a job j, noted as RULij, and the
resulting degradation value, σij, is then deduced. When the cumulative jobs degradation
reaches a certain threshold, ∆, a maintenance operation should be planned.

The resulting integrated sequence is denoted Π = {π1, π2, . . . , πm} where πi repre-
sents the corresponding integrated sequence of n jobs and ki (≥ 1) flexible maintenance on
machine Mi. Then πi can be seen as a succession of ki + 1 blocks of jobs (Bil = {subset of J})
separated by maintenance operations (Mic):

πi= {Bi1, Mi1, Bi2, Mi2, . . . , Bik, Miki
, Bi(ki+1)}, where ∪ki+1

l=1 Bil = J.
The general assumptions of the integrated problem are given as follows:

• At time zero, all jobs are available and ready for processing and no preemption
is allowed;

• Each machine can handle at most one action (production or maintenance) and each
job can be processed by at most one machine;

• Each production job j (maintenance operation Mic) requires a basic amount of process-
ing time on each machine i, represented by pij (pmic);



Algorithms 2023, 16, 397 6 of 24

• We fix the degradation value associated to job j after being processed on machine i,
σij = pij/RULij where 0 < σij < 1.

• The maximal authorized threshold degradation ∆ is fixed to 1 for all machines;
• At least one maintenance intervention is performed on each machine and no mainte-

nance intervention is performed after the processing of the last job;
• After a maintenance intervention, the machine is recovered to an “As good as new” state.

3.2. Learning and Deteriorating Effects’ Mathematical Models

Due to the learning effect, we suppose that the maintenance durations will decrease
gradually as they are scheduled later in the sequence. This is the position-dependent
learning model (Equation (1)). On the other hand, for the deteriorating effect, we suppose
that the production job processing times will increase gradually over time. This is the
time-dependent deteriorating model (Equation (2)).

pmic(c) = pmic × cα,−1 < α < 0 (1)

pij(t) = pij + β× t, β > 0 (2)

4. Proposed QL-Driven ABC-Based Solving Approaches

The ABC algorithm [38] is a competitive bio-inspired algorithm that simulates the
behavior of bee colonies when searching for promising food sources associated with higher
nectar amounts. In the ABC algorithm, the food source represents a candidate solution
to the problem and the nectar amount of a source corresponds to the quality, known
as fitness, of the related solution. The ABC search process is conducted by three bee
swarms, namely: employed, onlooker, and scout bees. A review of its fundamentals
and some applications can be found in [69]. In [70], the ABC algorithm showed effective
performances over the differential evolution (DE) algorithm, Particle Swarm Optimization
(PSO), and evolutionary algorithm (EA). The main advantages of the ABC algorithm are its
ability to balance exploitation and exploration, it having few control parameters, its fast
convergence, its strong robustness, and its ease of being combined with other methods [71].
It is also easy to implement compared to GA and Ant Colony Optimization (ACO) [72].

In an attempt to solve the integrated PFSP with a flexible maintenance problem under
learning and deteriorating effects in a reasonable time, in this paper, we propose two
efficient ABC algorithms enhanced with the RL mechanism. The first ABC algorithm,
named IQABC-LE for Integrated QL-based ABC under Learning Effect, takes into account
the learning effect. After generating the initial solutions, the search process of IQABC-
LE starts with the employed bees phase, which applies an RL mechanism to drive the
neighborhood exploitation of the associated solutions in order to update the search space
with optimal solutions. After that, the onlooker bees select the best individuals from the
search space to exploit their neighborhood for further optimization. To allow exploration of
the search space, the scout bees randomly replace the solutions that have not been updated
after a defined number of trials. The search process is iterated until a termination condition
is met. The general scheme of the IQABC-LE algorithm is given in Algorithm 1 and its
flow chart is indicated in Figure 1. The second ABC algorithm, named IQABC-LDE for
Integrated QL-based ABC under Learning and Deteriorating Effects, follows the same steps
as IQABC-LE but also takes into account the deteriorating effect. The main features of the
proposed algorithms are detailed in the sections below.



Algorithms 2023, 16, 397 7 of 24

Figure 1. Flow chart of the IQABC-LE algorithm.

4.1. Food Source Representation and Evaluation

A suitable solution representation is based on the work of [73]. A candidate solution
Sol, i.e., food source, jointly specifies the production job sequence and the maintenance
operations’ positions on each machine and is codded by a two-field structure. The first
field is a vector S = {j, j ∈ [1, n]} representing the production job order. The second field
represents the scheduling of maintenance operations on each machine by a binary matrix P
of m× n size. An element P

[
i, j
]

of P indicates if a maintenance intervention is scheduled
on machine Mi after job j, and then P

[
i, j
]

= 1, or not, and then P
[
i, j
]

= 0. Let

S =
(
1 9 3 8 5 6 7 4 2 0

)
, and

P =

0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0


represent a solution of an integrated flowshop scheduling problem with m = 3 machines
and n = 10 jobs. Then, the execution order of the ten jobs and maintenance operations on
the three machines is the following:

Machine 1: 1, 9, M11, 3, 8, 5, M12, 6, 7, 4, 2, M13, 0.
Machine 2: 1, 9, 3, M21, 8, 5, 6, M22, 7, 4, 2, 0.
Machine 3: 1, 9, M31, 3, 8, 5, 6, M32, 7, 4, 2, 0.



Algorithms 2023, 16, 397 8 of 24

Algorithm 1 IQABC-LE()

Require: Population size (PopSize), Onlooker bees percentage (onlook%), Number of
generations (max_iterations), Abandonment number of trials (limit)

Begin
Ebees[1]← INEH() . Population initialization step
for i← 1 to alpha%PopSize do

Ebees[i]← Modi f iedNeh()
end for
for j← 1 to (PopSize-alpha%PopSize-1) do

Ebees[j]← RandomGeneration()
end for
iter ← 1
while iter ≤ max_iterations do

for i←1 to PopSize do . employed bees phase
NeighborEbee← QL(Ebees[i]) . Qlearning selection (Algorithm 3)
if NeighborEbee ≥ Ebees[i] then

Ebees[i]← NeighborEbee
end if

end for
for i←1 to onlook%PopSize do . onlooker bees phase

Olook[i]← probaSelection(Ebees)
Olook← ILS(Olook[i])
if Olook ≥ Olook[i] then

Ebees[i]←Olook
end if

end for
for i←1 to PopSize do . scout bees phase

if CheckLimit(Ebees[i],limit)=True then
Ebees[i]←RandomGeneration()

end if
end for

end while
Return Best Solution()
End

The objective is to find a solution Sol that minimizes the amount of nectar (the measure
of the quality of a solution), i.e., the best sequencing of jobs and maintenance operations
to be processed for each machine in order to minimize the total completion time of the
schedule, Cmax, taking into account maintenance interventions planning under learning
and deteriorating effects. Considering the learning and the deteriorating effects, and the
fact that the total completion time Cmax depends mainly on the sum of the job processing
times and maintenance durations (see Formula (3)), the Cmax while considering the learning
effect and both effects simultaneously are given by Formulas (4) and (5), respectively.

Cmax = IT + Σj=n
j=1 pmj + Σc=km

c=1 pmmc (3)

Cmax = IT + Σj=n
j=1 pmj + Σc=km

c=1 pmmc(c) = IT + Σj=n
j=1 pmj + Σc=km

c=1 (pmmc × cα) (4)

Cmax = IT + Σj=n
j=1 pmj(t) + Σc=km

c=1 pmmc(c) = IT + Σj=n
j=1 (pmj + β× t) + Σc=km

c=1 (pmmc × cα) (5)

where: IT refers to the total idle time of the last machine m waiting for jobs arrival and km
is the number of inserted maintenance activities on the last machine m.



Algorithms 2023, 16, 397 9 of 24

4.2. Initial Population Generation

To allow quality and diversity in the search space, we generated an initial population
of candidate solutions at random and “seeded” it with some good ones. Therefore, in this
work, we suggest the following three-step initialization procedure to generate an initial
population of PopSize complete integrated solutions (S, P):

• Step 1. Firstly, we generated the first candidate food source of the initial population
with a newly designed heuristic, named INEH, a greedy approximate heuristic based
on the well-known NEH heuristic [43], by modifying its second phase.

• Step 2. Generate α%PopSize production sequences using a modified NEH heuris-
tic [74]. To generate complete food sources, maintenance activities are scheduled using
the PHM-based greedy heuristic of [44]. In this heuristic, maintenance operations are
inserted according to the current accumulated degradation of the machine estimated
by the PHM module, starting from the first machine M1 to the last one Mm.

• Step 3. The rest of the population is generated randomly with production sequences
generated at random and maintenance operations inserted using the heuristic of [44].

The main idea of the INEH heuristic is to build from scratch the sequence of production
jobs and maintenance operations giving priority to jobs with higher processing times to be
scheduled first. In the first phase, the jobs are ordered according to the LPT rule in a list L.
Then, a partial sequence is generated with the first job of L. The second phase is an insertion
procedure to iteratively construct a complete integrated sequence. This phase starts first,
by scanning the current partial sequence, and maintenance operations are inserted when
necessary with respect to the threshold ∆=1 on each machine. Then, by testing the second
job of L in all available positions of the integrated partial sequence. The position that yields
the minimum makespan is chosen to be inserted, and the new partial integrated sequence
overwrites the last one. This insertion step is repeated iteratively with the rest of the jobs.
Detailed steps of the INEH heuristic are given in Algorithm 2.

Algorithm 2 INEH Heuristic

Require: A Set of production jobs

Begin
Let L the list of ranked production jobs in decreasing order of total processing time
(LPT rule).
Insert the first job of L in the first position of the current partial empty sequence.
Update L
while L not Empty do

Insert maintenance operations in the appropriate positions of the current partial
sequence with respect to the threshold ∆

Insert the first job of L in all the k+1 possible positions of the current partial sequence
Evaluate all of k+1 resulting partial sequences
Keep the best sequence as a new current partial sequence
Update L

end while
Return Integrated sequence
End

4.3. QL-Based Employed Bees Phase

RL studies the sequential decision process of interaction between the agent and the
environment [75]. Q-learning (QL) is one of the major RL algorithms that allows agents
to learn an optimal policy through trial and error in an unknown environment. It does
not rely on prior knowledge of the environment’s dynamics [76]. The algorithm uses a
value function called the Q- f unction to estimate the expected cumulative reward for taking
specific actions in certain states and following the optimal policy thereafter.



Algorithms 2023, 16, 397 10 of 24

During the learning process, the agent explores the environment, taking actions and
observing the resulting rewards and next states. These experiences are used to iteratively
update the Q-values, which represent the estimated quality of actions in different states.
The update process is guided by the Bellman equation, which relates the current Q-value
to the expected future Q-values.

Motivated by the above consideration, this paper introduces the QL principle to the
selection of neighborhood structures in order to guide the search process in the employed
bees phase of the proposed IQABC algorithms. Employed bees are in charge of searching
for new and hopefully better food sources. To this end, in the original ABC algorithm, each
employed bee generates one new candidate solution in the neighborhood of the current
solution in one food source. The new candidate replaces the old solution if it is better. In this
paper, each employed bee is placed on a solution from the population and applies one of the
neighborhood structures on it, to generate a new solution. The choice of the neighborhood
structure is performed by the application of a QL algorithm. The new solution replaces the
current one if its quality is better, otherwise, a non-optimization trials counter, nb_trials,
is incremented.

4.3.1. Neighborhood Structures

Neighborhood structures are designed for further optimization of the initial solutions.
Based on previous studies on scheduling, it has been found that the insert neighborhood
is generally more effective for the PFSP [77]. Furthermore, it is advised to incorporate
complementary neighborhood structures to ensure a thorough exploration of the search
space and enhance the effectiveness of the search process. Therefore, in this paper, insert
and swap neighborhoods are used. These neighborhood structures allow the generation of
new solutions by changing the execution order of production jobs. Additionally, a third
type of neighborhood structure involving the shifting of maintenance tasks is utilized.
Based on these neighborhoods, six local search operators are proposed as follows:

1. Swap move on production jobs. It consists of swapping the positions of two produc-
tion jobs selected randomly from the production sequence.

2. Double swap move on production jobs. It consists of making two consecutive swap
moves on the production sequence.

3. Insert move on production. It consists of selecting a production job randomly and
then inserting it into another randomly selected position in the production sequence.

4. Double insert move on production jobs. It consists of making two consecutive
insert moves.

5. Right shift move on maintenance activities. It consists of selecting a maintenance
operation in a selected machine and then shifting it to the right, i.e., after the next job
in the sequence.

6. Left shift move on maintenance activities. It consists of selecting a maintenance
operation in a selected machine and then randomly shifting it to the left, i.e., before
the previous job in the sequence.

4.3.2. Q-Learning Algorithm

In the proposed IQABC algorithms, a QL algorithm is used to guide the choice of
the neighborhood structures in the employed bees phase. The states of the QL model are
defined by the set of population individuals, while the six neighborhood structures indicate
the set of actions. At each iteration, the QL agent observes the current solution (s), selects an
action (a) (a neighborhood structure), which generates a new solution (s′), and consequently,
it receives a reward/penalty (r) signal according to the quality of the generated solution
(see Formula (6)). The agent records its learning experience by a Q-value (Q(s,a)), which
is stored in a Q-table. The update of the Q-value is given in Formula (7), where αql is the
Q-learning rate and γ is the discount factor.

r = 1 + Cmax(S)− Cmax(S′) (6)



Algorithms 2023, 16, 397 11 of 24

Q(s, a) = Q(s, a) + αql × (r + γ×max
a′

Q(s′, a′)−Q(s, a)) (7)

The action selection mechanism is implemented using an ε-greedy strategy, where
the agent can choose the best action considering the associated Q-value (exploitation), or
can select one action randomly (exploration) with an ε probability. Thus, the e-greedy
strategy enables both exploitation and exploration. That is, the agent has to exploit what
it already knows to obtain a reward, but it also needs to explore in order to make better
action selections in the future. The employed bees stage with the QL algorithm is recalled
in Algorithm 3.

Algorithm 3 QL-based Employed bees phase

Require: Search space, Q-table of the population
Begin
for Each solution S from the search space do . S is the current state

Generate a random number a
if a ≤ ε then

Choose the best action (Neighbor structure NS) associated with the best Q-value
of the Q-table.

else
Choose the best action NS randomly

end if
Generate New Solution Sol’ using NS . Sol’ is the next state

end for
r← 1+makespan(Sol)-makespan(Sol′) . reward formula
Update the Q-value of the tuple (Sol,NS) as specified in Formula (7)
if makespan(Sol′) ≤makespan(Sol) then

Replace Sol with Sol′

end if
update the search space
End

To implement the QL algorithm, we used the “pandas” python library. The Q-table is
stored in a DataFrame structure, which is a two dimensional table where indexes (lines)
point to food sources as represented in Section 4.1, and columns refer to a defined list of
neighborhood structures as presented in Section 4.3.1.

4.4. Onlooker Bees Phase

Similar to the employed bees phase, the onlooker bees phase aims to enhance the
intensification of the local search process. Firstly, the onlooker bees select candidate
solutions from the employed bees stage according to the roulette wheel method. Then a
local search heuristic borrowed from the iterated local search (ILS) algorithm [78] with
destruction and reconstruction procedures is applied to selected solutions for exploitation.
The probability that a solution (Soli) is allowed to be selected is defined in Formula (8).

P(Soli) =
f itness(Soli)

∑n
k=1 f itness(Solk)

(8)

4.5. Scout Bees Phase

In the scout bees phase, candidate solutions that have not been updated after a defined
number of trials, let this be limit, are abandoned and replaced by new random ones.

4.6. Readjustment Procedure for Maintenance Cost Minimization

The perturbations on the candidate solutions, through the neighborhood structures
within the employed bees stage, and the local search heuristic within the onlooker bees



Algorithms 2023, 16, 397 12 of 24

phase may disturb the positions of the required maintenance interventions, which can
either be advanced or delayed. In both cases, a maintenance cost needs to be considered.
An early maintenance intervention is detected when the cumulative degradation caused by
the production jobs scheduled before it is less than the threshold ∆. In this case, we define
the maintenance cost as follows:

maint_cost = 200× |Σσ− ∆|+ 100

In the case of tardy maintenance intervention, i.e, when the cumulative degradation
caused by the production jobs scheduled before it is greater than the threshold ∆, we define
the maintenance cost as follows:

maint_cost = 400× |Σσ− ∆|+ 100

An optimal maintenance cost is reached when the cumulative degradation is equal
to ∆.

In this regard, we propose to apply a readjustment procedure (Algorithm 4) after
the generation of new solutions in the employed and onlooker bees phase that browses
complete solutions to detect early/tardy maintenance interventions and tries to readjust
them in the appropriate positions that optimize the maintenance cost.

Algorithm 4 Readjustment procedure

Require: Sol (a returned solution with job permutation vector S and the associated mainte-
nance matrix P), Σσ the cumulative machine degradation.

Begin
Σσ← 0
for Each machine Mi(i ≤ m) do

Σσ← 0
for Each job j from S do

Σσ← Σσ + σij
if P[i,j]=1 then

Σσ← 0.
end if
if Σσ ≥ ∆ then

Insert the maintenance before or after j in order to minimize the maintenance
cost.

Update the matrix P with the maintenance emplacement.
Remove the next maintenance: P[i,(next maintenance position)]← 0.
Σσ← 0.

end if
end for

end for
End

4.7. Termination Condition

The termination condition of the proposed IQABC is a maximum number of iterations
(max_iterations) of the algorithm or when the limit of the number of iterations without
improving the best solution (stagnation) is reached.

5. The Computational Results and Analysis

In this section, the performance of the designed QL-driven ABC algorithms IQABC-LE
and IQABC-LDE is demonstrated through numerical experiments on a well-designed test
bed. The experiments are conducted in Python 3.9.5 on a personal computer with Windows
10 operating system, Intel i5 CPU (2.10 GHz), and 8-GB RAM.



Algorithms 2023, 16, 397 13 of 24

In the following, we first describe how test data are generated. Secondly, to analyze
the performance of our newly proposed algorithms, we conducted two sets of experiments.
In the first set, the calibration process, and a comparison between IQABC without learning
and deteriorating effects and a standard ABC were performed. In the second, we validated
our IQABC algorithms with effects, namely IQABC-LE and IQABC-LDE, by comparing
them with several representative algorithms. We ran, independently, all the algorithms five
times on each instance. The complete details are reported in the next sections.

5.1. Data Generation

We used two types of data to assess our proposed methods. The first was about
production, while the second was about PHM and maintenance data. For the first type, we
ran our experiments on a set of 110 known Taillard instances [79] of different sizes (n × m),
with n ∈ {20,50,100,200} and m ∈ {5,10,20}. To complete the production data with the PHM
data and the maintenance duration, we proceeded as follows:

• For each instance, we generated three levels of machines’ degradation : (1) from
the uniform distribution U [0.02; 0.03] for job processing times below 20; (2) from the
uniform distribution U [0.03; 0.06] for job processing times between 20 and 50; and
from the uniform distribution U [0.06; 0.1] for job processing times above 50.

• Each instance was tested twice, the first time with medium maintenance durations
generated from the uniform distribution U [50, 100], designated as the first maintenance
mode M1, and the second time with long maintenance durations generated from the
uniform distribution U [100, 150], designated as the second maintenance mode M2.

It is challenging to make a fair comparison between our results and those of other
authors. This difficulty arises from the fact that only a small number of authors have
addressed the same problem with the same constraints and objectives, and even fewer with
the same instances for comparison purposes. Therefore, to demonstrate the effectiveness of
our newly proposed QL-driven ABC algorithms, we report the Average Relative Percentage
Deviations (ARPD) provided by each algorithm (after maintenance operations) with respect
to the best-known solution for the Taillard instance without maintenance operations (see
Equation (9)). Taillard’s acceleration technique [80] was applied to compute the makespan.
It allows the CPU time to be reduced by calculating all the partial schedules in a given
iteration in a single step.

ARPD =
1
R
× ΣR

i=1
CSoli

max − Cbest
max

Cbest
max

× 100. (9)

where Cbest
max is Taillard’s best-known solution and CSoli

max is the returned value, and R is the
number of similar scaled instances running.

5.2. IQABC Features Analysis

For the first set of experiments, we undertook a sensitive performance analysis of our
newly proposed algorithms IQABC by varying different parameters. These parameters
were experimentally found to be good and robust for the problems tested. We chose a full
factorial design in which all possible combinations of the following ABC factors were tested:

• Population size PopSize: three levels (50, 70, and 100);
• Onlooker bees percentage onlook%: three levels (20%, 30%, and 40%);
• Abandonment number of trials limit: three levels (5, 10, and 50);
• Number of iterations max_iterations: three levels (100, 150, and 200).

All the cited factors resulted in a total of 3 × 3 × 3 × 3 = 81 different combinations run
on a set of n×m Taillard instances with n ∈ {20; 70; 120; 170; 220} and m ∈ {5; 10; 15; 20}.
The job processing times of the instances were generated uniformly in the interval [1, 99],
and maintenance durations were generated according to the first maintenance mode (M1)
described in Section 5.1. Each instance was executed five times, which meant a total of



Algorithms 2023, 16, 397 14 of 24

16,200 executions. The ARPD was calculated as a response variable. The resulting experi-
ment was analyzed by means of a multifactor analysis of variance (ANOVA) technique [81]
with the least significant difference (LSD) intervals at the 95% confidence level.

Each parameter was set to its most adequate level as follows: PopSize = 70;
onlook% = 40%; Limit = 5; and max_iterations = 200.

For the QL factors, namely the Q-learning index αql , the discount factor γ, and the
probability for the QL mechanism ε, based on the study of [82], four typical combinations
for the QL algorithm were tested:

• C1: α = 0.1, γ = 0.8, ε = 0.2;
• C2: α = 0.1, γ = 0.8, ε = 0.1;
• C3: α = 0.1, γ = 0.9, ε = 0.1;
• C4: α = 0.1, γ = 0.9, ε = 0.2.

After executing different experiments for each combination, we decided to keep the
second combination, as it was able to report better results. Finally, the stagnation factor
was set at 80% since a large number of convergence curves for multiple executions showed
a stabilization of the results up to this value.

5.3. Performance Analysis of IQABC Algorithm without Learning and Deteriorating Effects

To prove the performance of the integrated QL-driven ABC algorithm without learn-
ing and deterioration effects (IQABC), we compared it with three different competing
algorithms for the same problem and constraints without considering the learning and
deteriorating effects. The comparative algorithms are : (1) a population-based metaheuris-
tic, which is the ABC algorithm of [54] with random neighborhood selection; (2) a unique
solution-based metaheuristic, which is the Variable Neighbor Search (VNS) algorithm
of [83]; (3) and finally, INEH, our newly designed constructive heuristic. The comparison
was carried out by means of 1100 runs of the test benchmark. The resulting ARPD values
reported in Table 1 were calculated based on the Cmax value given in Formula (3), with no
consideration of the learning and deteriorating effects, and with respect to the first and
second maintenance modes (M1 and M2).

Table 1. Performance offset from Taillard’s upper bounds of IQABC , ABC, VNS, and INEH algorithms
for maintenance mode 1 and 2.

Instance
M1 M2

ABC VNS INEH IQABC ABC VNS INEH IQABC

20x5 4.69 11.52 6.77 3.11 3.43 10.61 8.87 3.34
20x10 13.34 23.01 16.22 11.45 13.97 24.20 19.09 12.33
20x20 25.35 28.19 27.31 23.16 27.03 32.98 29.46 24.84
50x5 2.02 1.72 2.66 0.54 2.83 1.93 2.83 −0.001
50x10 9.93 8.24 12.11 5.91 12.62 9.95 15.79 6.91
50x20 19.79 18.5 21.94 15.12 24.65 19.28 25.01 16.93
100x5 1.16 1.35 1.47 0.93 1.40 1.46 1.93 0.96
100x10 4.34 5.09 5.56 2.90 6.37 5.48 10.27 3.82
100x20 13.41 15 17.36 11.40 16.31 15.61 21.53 13.22
200x10 1.77 3.13 3.10 1.94 2.58 3.43 6.45 2.68
200x20 7.31 11.21 12.6 6.58 9.53 12.55 16.92 8.94
500x20 2.99 - - 3.08 2.98 - - 3.64

average 8.84 11.54 11.55 7.18 10.30 12.50 14.38 8.13

Table 1 shows that the INEH heuristic produces competitive ARPD results compared
to the VNS metaheuristic, even though the INEH is a constructive method. In fact, for
small instances (20x5, 20x10, 20x20), INEH achieves the best ARPD values: for Mode 1, an
average of 16.76 against 20.90 for VNS; for Mode 2, an average of 19.14 for INEH against
22.59 for VNS. Nonetheless, it fails to reach the results obtained by the VNS algorithm for
large instances (50x5–200x20): for Mode 1, an average of 9.60 against 8.03 for the VNS; and



Algorithms 2023, 16, 397 15 of 24

for Mode 2, an average of 12.59 for INEH against 8.71 for VNS. The great advantage of the
INEH heuristic is its ability to obtain near-optimal solutions in a reasonable computation
time (on average 6.99 time units (TU) compared to 3120.89 TU for VNS).

Although the ABC metaheuristic of [54] gave better solutions than the VNS algorithm,
which is considered an efficient metaheuristic for the problem [83,84], the IQABC algorithm
outperforms it, as can clearly be seen from Table 1 for the two maintenance modes. This is
proved by the employed bees’ local search procedures and the QL-driven neighborhood
selection. To further verify the statistical significance of the difference in ARPD values
between ABC and IQABC for the two maintenance modes, we performed a Friedman’s
two-way analysis of variance test [85]. The result summary in Table 2 as well as the mean
plots displayed in Figure 2 show the significant differences between IQABC and ABC.
Therefore, the IQABC algorithm is significantly superior to the ABC, VNS, and INEH
algorithms. However, the ABC and IQABC algorithms are population-based methods,
which means an important amount of time is used to effectively explore the search space.
Furthermore, the QL mechanism in the IQABC algorithm needs more time to learn optimal
policies. Therefore, it is not meaningful to compare the running times of the IQABC and
ABC algorithms with those of the VNS and INEH heuristics.

Figure 2. Mean plots of ABC and IQABC for the two maintenance modes.

In Figures 3–6, we also compare the convergence curves of the IQABC and ABC
algorithms. We note that the ABC algorithm is more likely to become trapped in premature
convergence, while the IQABC algorithm still finds better optimal solutions at a relatively
more efficient rate, and the better results can be obtained at the final stage. We can conclude
that the QL algorithm in the employed bees phase helps the IQABC algorithm to converge
in a robust and efficient way. This conclusion is supported by the convergence curves of
10 trials on the instance 50x20_M1 as well as the average convergence curve in bold in
Figure 7.

Table 2. IQABC-ABC Friedman’s two-way analysis of variance summary for M1 (left) and M2 (right).

M1 M2

Total N 120 Total N 120

Test statistic 36,300 Test statistic 28,033

Degree of freedom 1 Degree of freedom 1

Asymptotic sig <0.001 Asymptotic sig <0.001

Decision Reject the
null hypothesis Decision Reject the

null hypothesis



Algorithms 2023, 16, 397 16 of 24

Figure 3. Convergence curves of ABC and IQABC for 50x20_M1 and 50x20_M2 instances.

Figure 4. Convergence curves of ABC and IQABC for 100x10_M1 and 100x10_M2 instances.

Figure 5. Convergence curves of ABC and IQABC for 100x20_M1 and 100x20_M2 instances.

Figure 6. Convergence curves of ABC and IQABC for 200x20_M1 and 200x20_M2 instances.



Algorithms 2023, 16, 397 17 of 24

Figure 7. Average convergence of the IQABC for the 50x20_M1 instance.

It is important to note that high ARPD values do not reflect poor solution quality
since they are calculated relative to the best-known Taillard solutions, without taking into
account maintenance tasks and learning/deterioration effects. Therefore, the presented
ARPD deviations (for all experiments) are much higher than they would be if they were
calculated with respect to a more accurate lower bound that takes into account maintenance
tasks and learning/deterioration effects.

5.4. Performance Analysis of the QL-Driven ABC Algorithm with Learning Effect

The performance of the first algorithm, namely the IQABC-LE, is proven through
three scenarios and 1100 executions per scenario on the designed benchmarks completed
with learning indexes (α). First, we assume a small common learning rate among mainte-
nance operators, so we generate small learning indexes (SF) from the uniform distribution
U [0; 0.20]. Then, assuming that the operators learn very quickly at the same rate, large
learning indices (LF) are generated from the uniform distribution U [0.80; 1]. Finally, we
assume that the learning phenomenon is random and depends on the machine charac-
teristics, so the learning indexes are generated from the uniform distribution U [0; 1] per
machine (FPM).

The execution results are compared with the ABC learning algorithm (ABC-LE) re-
ported in [54]. Indeed, the IQABC-LE algorithm implements a QL mechanism to guide the
neighbor structure selection in the employed bees phase, instead of random selection as
in ABC-LE. In addition, the IQABC-LE uses the INEH heuristic to generate one complete
solution, while the ABC-LE algorithm applies the NEH heuristic [43] to generate first, the
production sequence, then, the maintenance heuristic[44] to complete the solution with
maintenance emplacements.

The comparison between the two algorithms is made according to the ARPD values,
which are calculated on the basis of the Cmax values given in Formula (4).

The results presented in Tables 3–5 clearly show the superiority of the IQABC-LE
algorithm over the ABC-LE algorithm. An important note comparing the results of the
IQABC algorithm when considering a learning effect and no effect, is the significant



Algorithms 2023, 16, 397 18 of 24

difference in ARPD values, which increasingly reinforce the need to take into account real
constraints when studying scheduling problems.

From Figure 8, it can be seen that the IQABC-LE algorithm with large learning indexes
(LF) optimizes the Cmax very well compared to the small and random learning indexes. Con-
sequently, it is of great importance for a workshop to improve the ability of its employees
to learn.

Table 3. Performance offset from Taillard’s upper bounds of IQABC-LE and ABC-LE considering
small learning indexes.

Instance
M1 M2

ABC-LE(SF) IQABC-LE(SF) ABC-LE(SF) IQABC-LE(SF)

20x5 4.47 2.79 3.35 3.33
20x10 12.81 11.36 14.44 12.27
20x20 24.76 23.24 27.20 24.88
50x5 1.87 0.27 2.24 −0.25
50x10 8.98 5.43 12.26 6.27
50x20 19.43 14.65 23.37 16.26
100x5 0.39 0.25 0.38 −0.14
100x10 3.7 2.37 4.93 2.50
100x20 12.39 10.46 14.46 11.28
200x10 0.43 0.76 0.74 −0.13
200x20 6.31 5.01 7.16 5.66
500x20 1.26 1.43 0.23 0.42

average 8.07 6.50 9.23 6.86

Table 4. Performance offset from Taillard’s upper bounds of IQABC-LE and ABC-LE considering
large learning indexes.

Instance
M1 M2

ABC-LE(LF) IQABC-LE(LF) ABC-LE(LF) IQABC-LE(LF)

20x5 4.73 3.06 3.29 3.51
20x10 13.34 11.47 14.22 12.52
20x20 25.1 23.23 26.95 24.88
50x5 0.21 −1.06 −0.43 −2.53
50x10 6.85 3.70 8.15 2.97
50x20 16 12.35 18.69 12.39
100x5 −2.82 −3.15 −4.3 −4.94
100x10 −0.4 −1.45 −1.62 −3.60
100x20 7.71 5.83 6.52 3.75
200x10 −3.87 −4.13 -6.36 −7.05
200x20 0.7 −0.22 −1.36 −2.52
500x20 −4.39 −4.79 −8.17 −8.52

average 5.26 3.73 4.63 2.57



Algorithms 2023, 16, 397 19 of 24

Table 5. Performance offset from Taillard’s upper bounds of IQABC-LE and ABC-LE considering
random learning indexes per machine.

Instance
M1 M2

ABC-LE(FPM) IQABC-LE(FPM) ABC-LE(FPM) IQABC-LE(FPM)

20x5 4.4 2.95 3.38 3.44
20x10 13.69 11.42 14.20 12.23
20x20 25.11 23.38 27.28 24.84
50x5 0.76 −0.47 1.24 −1.48
50x10 7.63 4.51 9.86 4.39
50x20 17.66 13.44 20.96 14.34
100x5 −1.47 −1.24 −1.55 −3.02
100x10 1.84 0.47 1.52 −0.38
100x20 9.9 7.70 9.30 7.05
200x10 −1 −2.01 −2.10 −2.74
200x20 3.45 2.40 3.19 2.41
500x20 −0.52 −0.16 −2.49 −1.61

average 6.79 5.19 7.06 4.95

Figure 8. Box plot of the IQABC_LE algorithm with SF, LF, and FPM for both maintenance modes.

5.5. Performance Analysis of the QL-Driven ABC Algorithm with Learning and
Deteriorating Effects

In this section, the IQABC-LDE algorithm with a learning and deteriorating effect is
evaluated on the designed benchmarks completed with random learning and deteriorating
indexes generated from a uniform distribution U [0, 1]. The results of the 1100 executions
are summarized in Table 6 and compared to those of the ABC-LDE reported in [54]. The
ABC-LDE follows the same steps as the ABC-LE, with the addition of the deteriorating
effect. The ARPD values reported in 6 are calculated on the basis of the Cmax values given
in Formula (5).

Once again, the IQABC-LDE is superior to the ABC-LDE, proving the effectiveness
and robustness of the QL-based neighbor selection mechanism when combined with the
ABC metaheuristic. As with the learning effect, we observe a significant difference in the
results obtained with the IQABC algorithm if the learning and degradation effects are not
taken into account, thus emphasizing the need to integrate these effects into the study. In
fact, the deteriorating effect, as opposed to the learning effect, extends processing times. It
is therefore important for manufacturers to implement an efficient maintenance strategy to
prevent machines from deteriorating and additional delays.



Algorithms 2023, 16, 397 20 of 24

Table 6. Performance offset from Taillard’s upper bounds of IQABC-LDE and ABC-LDE considering
random learning and deteriorating indexes per machine.

instance
M1 M2

ABC-LDE IQABC-LDE ABC-LDE IQABC-LDE

20x5 13.04 9.64 12.45 9.24
20x10 23.66 19.31 23.02 19.05
20x20 37.3 30.82 36.17 32.10
50x5 11.30 7.96 12.09 8.59
50x10 18.49 14.09 19.32 13.85
50x20 28.54 23.09 30.06 23.17
100x5 10.84 7.85 11.45 5.62
100x10 13.29 10.41 13.32 8.87
100x20 21.41 17.43 20.32 15.55
200x10 12.86 9.56 8.91 7.18
200x20 17.69 12.92 15.01 12.08
500x20 13.04 9.84 12.45 8.71

average 18.45 14.40 17.88 13.66

6. Conclusions

We addressed the makespan PFSP with flexible maintenance under learning and
deteriorating effects. The maintenance operations are inserted to prevent machine failures
with an intelligent PHM-based policy. In addition, the learning effect on the maintenance
duration is considered and modeled by a decreasing position-dependent function. On the
other hand, the deteriorating effect is assumed to extend the job processing times over
time. For the resolution, the well-known ABC algorithm, which has been successfully
applied to solve the PFSP without learning and deterioration effects, is adapted to the
problem with flexible maintenance, learning, and deteriorating effects in order to find a
faster and near-optimal or optimal solution to the problem. To improve the local search in
the ABC-employed bees phase, a QL algorithm, considered a common potential tool of the
RL mechanism, is carefully integrated into the ABC metaheuristic. Furthermore, a newly
designed heuristic, the INEH, is applied to enrich the search space with a high-quality
complete solution. The adapted ABC algorithm with the new strategies is used to first solve
the integrated PFSP with a learning effect (IQABC-LE) and then also with a deteriorating
effect (IQABC-LDE). We conducted a comprehensive experimental study to evaluate the
IQABC algorithm without considering the learning and deteriorating effects, the IQABC-LE
and IQABC-LDE algorithms. The objective of evaluating these three algorithms is, on the
one hand, to justify the significance of our study when we have considered the learning
and deteriorating effects, and on the other hand, to prove the effectiveness and robustness
of our newly proposed algorithms. For the latter purpose, the experimental results are
compared with those of two existing and competitive metaheuristics in the literature:
ABC and VNS. The computational results and comparisons demonstrate that the new
strategies of the IQABC approach really improve its search performance and IQABC is a
competitive approach for the considered problem. Moreover, the need to consider learning
and deterioration effects for a more realistic and accurate study is also demonstrated and
emphasized. For future work, we propose to integrate more realistic constraints such as the
forgetting effect and human resource constraints in the study of the PFSP. We also expect to
apply other recently introduced bio-inspired metaheuristics, such as BBO and GWO, to
solve the studied scheduling problem, and compare the results with the ABC algorithm.

Author Contributions: Conceptualization, N.T.; data curation, N.T.; formal analysis, N.T., F.B.-S.T.,
and A.L.; methodology, F.B.-S.T. and A.L.; project administration, F.B.-S.T.; software, N.T.; supervision,
F.B.-S.T. and A.L.; validation, F.B.-S.T. and A.L.; writing—original draft, N.T.; writing—review and
editing, F.B.-S.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Algorithms 2023, 16, 397 21 of 24

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Paredes-Astudillo, Y.A.; Montoya-Torres, J.R.; Botta-Genoulaz, V. Taxonomy of Scheduling Problems with Learning and

Deterioration Effects. Algorithms 2022, 15, 439. [CrossRef]
2. Pei, J.; Zhou, Y.; Yan, P.; Pardalos, P.M. A concise guide to scheduling with learning and deteriorating effects. Int. J. Prod. Res.

2022, 61, 1–22. [CrossRef]
3. Biskup, D. Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 1999, 115, 173–178. [CrossRef]
4. Wright, T.P. Factors affecting the cost of airplanes. J. Aeronaut. Sci. 1936, 3, 122–128. [CrossRef]
5. Cheng, T.E.; Wang, G. Single machine scheduling with learning effect considerations. Ann. Oper. Res. 2000, 98, 273–290.

[CrossRef]
6. Azzouz, A.; Ennigrou, M.; Said, L.B. Scheduling problems under learning effects: Classification and cartography. Int. J. Prod. Res.

2017, 56, 1642–1661. [CrossRef]
7. Biskup, D. A state-of-the-art review on scheduling with learning effects. Eur. J. Oper. Res. 2008, 188, 315–329. [CrossRef]
8. Gupta, J.N.; Gupta, S.K. Single facility scheduling with nonlinear processing times. Comput. Ind. Eng. 1988, 14, 387–393.

[CrossRef]
9. Xu, H.; Li, X.; Ruiz, R.; Zhu, H. Group Scheduling with Nonperiodical Maintenance and Deteriorating Effects. IEEE Trans. Syst.

Man, Cybern. Syst. 2021, 51, 2860–2872. [CrossRef]
10. Browne, S.; Yechiali, U. Scheduling deteriorating jobs on a single processor. Oper. Res. 1990, 38, 495–498. [CrossRef]
11. Alidaee, B.; Womer, N.K. Scheduling with time dependent processing times: Review and extensions. J. Oper. Res. Soc. 1999,

50, 711–720. [CrossRef]
12. Cheng, T.E.; Ding, Q.; Lin, B.M. A concise survey of scheduling with time-dependent processing times. Eur. J. Oper. Res. 2004,

152, 1–13. [CrossRef]
13. Gawiejnowicz, S. A review of four decades of time-dependent scheduling: Main results, new topics, and open problems. J. Sched.

2020, 23, 3–47. [CrossRef]
14. Blazewicz, J.; Ecker, K.H.; Pesch, E.; Schmidt, G.; Sterna, M.; Weglarz, J. Time-Dependent Scheduling. In Handbook on Scheduling;

Springer: Berlin/Heidelberg, Germany, 2019; pp. 431–474.
15. Pandey, D.; Kulkarni, M.S.; Vrat, P. Joint consideration of production scheduling, maintenance and quality policies: A review and

conceptual framework. Int. J. Adv. Oper. Manag. 2010, 2, 1–24. [CrossRef]
16. Safari, E.; Sadjadi, S.J. A hybrid method for flowshops scheduling with condition-based maintenance constraint and machines

breakdown. Expert Syst. Appl. 2011, 38, 2020–2029. [CrossRef]
17. Syan, C.S.; Ramsoobag, G. Maintenance applications of multi-criteria optimization: A review. Reliab. Eng. Syst. Saf. 2019,

190, 106520. [CrossRef]
18. Bougacha, O.; Varnier, C.; Zerhouni, N. A review of post-prognostics decision-making in prognostics and health management.

Int. J. Progn. Health Manag. 2020, 11, 31. [CrossRef]
19. Iyer, N.; Goebel, K.; Bonissone, P. Framework for post-prognostic decision support. In Proceedings of the 2006 IEEE Aerospace

Conference, Piscataway, NJ, USA, 4–11 March 2006; p. 10.
20. Lei, X.; Sandborn, P.A. Maintenance scheduling based on remaining useful life predictions for wind farms managed using power

purchase agreements. Renew. Energy 2018, 116, 188–198. [CrossRef]
21. Skima, H.; Varnier, C.; Dedu, E.; Medjaher, K.; Bourgeois, J. Post-prognostics decision making in distributed MEMS-based

systems. J. Intell. Manuf. 2019, 30, 1125–1136. [CrossRef]
22. Gerum, P.C.L.; Altay, A.; Baykal-Gürsoy, M. Data-driven predictive maintenance scheduling policies for railways. Transp. Res.

Part C Emerg. Technol. 2019, 107, 137–154. [CrossRef]
23. Sprong, J.P.; Jiang, X.; Polinder, H. Deployment of Prognostics to Optimize Aircraft Maintenance–A Literature Review. J. Int. Bus.

Res. Mark. 2020, 5, 26–37. [CrossRef]
24. Ladj, A.; Tayeb, F.B.S.; Varnier, C. Hybrid of metaheuristic approaches and fuzzy logic for the integrated flowshop scheduling

with predictive maintenance problem under uncertainties. Eur. J. Ind. Eng. 2021, 15, 675–710. [CrossRef]
25. Zhai, S.; Kandemir, M.G.; Reinhart, G. Predictive maintenance integrated production scheduling by applying deep generative

prognostics models: Approach, formulation and solution. Prod. Eng. 2022, 16, 65–88. [CrossRef]
26. Ladj, A.; Varnier, C.; Tayeb, F.B.S.; Zerhouni, N. Exact and heuristic algorithms for post prognostic decision in a single

multifunctional machine. Int. J. Progn. Health Manag. 2017, 8, 2620. [CrossRef]
27. Safari, E.; Jafar Sadjadi, S.; Shahanaghi, K. Scheduling flowshops with condition-based maintenance constraint to minimize

expected makespan. Int. J. Adv. Manuf. Technol. 2010, 46, 757–767. [CrossRef]
28. Xhafa, F.; Abraham, A. Metaheuristics for Scheduling in Industrial and Manufacturing Applications; Springer: Berlin/Heidelberg,

Germany, 2008; Volume 128.

http://doi.org/10.3390/a15110439
http://dx.doi.org/10.1080/00207543.2022.2049911
http://dx.doi.org/10.1016/S0377-2217(98)00246-X
http://dx.doi.org/10.2514/8.155
http://dx.doi.org/10.1023/A:1019216726076
http://dx.doi.org/10.1080/00207543.2017.1355576
http://dx.doi.org/10.1016/j.ejor.2007.05.040
http://dx.doi.org/10.1016/0360-8352(88)90041-1
http://dx.doi.org/10.1109/TSMC.2019.2917446
http://dx.doi.org/10.1287/opre.38.3.495
http://dx.doi.org/10.1057/palgrave.jors.2600740
http://dx.doi.org/10.1016/S0377-2217(02)00909-8
http://dx.doi.org/10.1007/s10951-019-00630-w
http://dx.doi.org/10.1504/IJAOM.2010.034583
http://dx.doi.org/10.1016/j.eswa.2010.07.138
http://dx.doi.org/10.1016/j.ress.2019.106520
http://dx.doi.org/10.36001/ijphm.2020.v11i2.2928
http://dx.doi.org/10.1016/j.renene.2017.03.053
http://dx.doi.org/10.1007/s10845-017-1312-8
http://dx.doi.org/10.1016/j.trc.2019.07.020
http://dx.doi.org/10.18775/jibrm.1849-8558.2015.54.3004
http://dx.doi.org/10.1504/EJIE.2021.117325
http://dx.doi.org/10.1007/s11740-021-01064-0
http://dx.doi.org/10.36001/ijphm.2017.v8i2.2620
http://dx.doi.org/10.1007/s00170-009-2151-3


Algorithms 2023, 16, 397 22 of 24

29. Ma, H.; Shen, S.; Yu, M.; Yang, Z.; Fei, M.; Zhou, H. Multi-population techniques in nature inspired optimization algorithms:
A comprehensive survey. Swarm Evol. Comput. 2019, 44, 365–387. [CrossRef]

30. Fu, Y.; Wang, H.; Huang, M.; Ding, J.; Tian, G. Multiobjective flow shop deteriorating scheduling problem via an adaptive
multipopulation genetic algorithm. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 2641–2650. [CrossRef]

31. Chen, R.; Yang, B.; Li, S.; Wang, S. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop
scheduling problem. Comput. Ind. Eng. 2020, 149, 106778. [CrossRef]

32. Onwubolu, G.; Davendra, D. Scheduling flow shops using differential evolution algorithm. Eur. J. Oper. Res. 2006, 171, 674–692.
[CrossRef]

33. Zhang, Y.; Gu, X. A biogeography-based optimization algorithm with modified migration operator for large-scale distributed
scheduling with transportation time. Expert Syst. Appl. 2023, 231, 120732. [CrossRef]

34. Monga, P.; Sharma, M.; Sharma, S.K. A comprehensive meta-analysis of emerging swarm intelligent computing techniques and
their research trend. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 9622–9643. [CrossRef]

35. Lin, B.; Lu, C.; Shyu, S.; Tsai, C. Development of new features of ant colony optimization for flowshop scheduling. Int. J. Prod.
Econ. 2008, 112, 742–755. [CrossRef]

36. Marichelvam, M.; Geetha, M.; Tosun, Ö. An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling
problems with the effect of human factors—A case study. Comput. Oper. Res. 2020, 114, 104812. [CrossRef]

37. Luo, S.; Zhang, L.; Fan, Y. Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds by
grey wolf optimization. J. Clean. Prod. 2019, 234, 1365–1384. [CrossRef]

38. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Computer Engineering
Department, Engineering Faculty, Erciyes University: Kayseri, Turkey, 2005.

39. Arık, O.A. Artificial bee colony algorithm including some components of iterated greedy algorithm for permutation flow shop
scheduling problems. Neural Comput. Appl. 2021, 33, 3469–3486. [CrossRef]

40. Li, Y.; Li, X.; Gao, L.; Zhang, B.; Pan, Q.K.; Tasgetiren, M.F.; Meng, L. A discrete artificial bee colony algorithm for distributed
hybrid flowshop scheduling problem with sequence-dependent setup times. Int. J. Prod. Res. 2021, 59, 3880–3899. [CrossRef]

41. Xuan, H.; Zhang, H.; Li, B. An improved discrete artificial bee colony algorithm for flexible flowshop scheduling with step
deteriorating jobs and sequence-dependent setup times. Math. Probl. Eng. 2019, 2019, 1–13. [CrossRef]

42. Wang, L.; Pan, Z.; Wang, J. A review of reinforcement learning based intelligent optimization for manufacturing scheduling.
Complex Syst. Model. Simul. 2021, 1, 257–270. [CrossRef]

43. Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983,
11, 91–95. [CrossRef]

44. Ladj, A.; Varnier, C.; Tayeb, F.S. IPro-GA: An integrated prognostic based GA for scheduling jobs and predictive maintenance in a
single multifunctional machine. IFAC-PapersOnLine 2016, 49, 1821–1826. [CrossRef]

45. Kan, A.R. Machine Scheduling Problems: Classification, Complexity and Computations; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2012.

46. Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A. Recent developments in deterministic sequencing and scheduling: A survey. In
Proceedings of the Deterministic and Stochastic Scheduling: Proceedings of the NATO Advanced Study and Research Institute on Theoretical
Approaches to Scheduling Problems, Durham, UK, 6–17 July 1981; Springer: Berlin/Heidelberg, Germany, 1982; pp. 35–73.

47. Karimi-Mamaghan, M.; Mohammadi, M.; Meyer, P.; Karimi-Mamaghan, A.M.; Talbi, E.G. Machine learning at the service
of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art. Eur. J. Oper. Res. 2022, 296, 393–422.
[CrossRef]

48. Zheng, C.; Chen, H.; Xu, R. Tabu search algorithms for minimizing total completion time on a single machine with an actual
time-dependent learning effect. Nat. Comput. 2019, 18, 287–299. [CrossRef]

49. Wu, C.C.; Bai, D.; Azzouz, A.; Chung, I.H.; Cheng, S.R.; Jhwueng, D.C.; Lin, W.C.; Said, L.B. A branch-and-bound algorithm and
four metaheuristics for minimizing total completion time for a two-stage assembly flow-shop scheduling problem with learning
consideration. Eng. Optim. 2020, 52, 1009–1036. [CrossRef]

50. Wu, C.C.; Azzouz, A.; Chung, I.H.; Lin, W.C.; Ben Said, L. A two-stage three-machine assembly scheduling problem with
deterioration effect. Int. J. Prod. Res. 2019, 57, 6634–6647. [CrossRef]

51. Arık, O.A.; Toksarı, M.D. A genetic algorithm approach to parallel machine scheduling problems under effects of position-
dependent learning and linear deterioration: Genetic algorithm to parallel machine scheduling problems. Int. J. Appl. Metaheuristic
Comput. (IJAMC) 2021, 12, 195–211. [CrossRef]

52. Vahedi Nouri, B.; Fattahi, P.; Ramezanian, R. Hybrid firefly-simulated annealing algorithm for the flow shop problem with
learning effects and flexible maintenance activities. Int. J. Prod. Res. 2013, 51, 3501–3515. [CrossRef]

53. Ghaleb, M.; Taghipour, S.; Sharifi, M.; Zolfagharinia, H. Integrated production and maintenance scheduling for a single degrading
machine with deterioration-based failures. Comput. Ind. Eng. 2020, 143, 106432. [CrossRef]

54. Touafek, N.; Benbouzid-Si Tayeb, F.; Ladj, A.; Dahamni, A.; Baghdadi, R. An Integrated Artificial Bee Colony Algorithm for
Scheduling Jobs and Flexible Maintenance with Learning and Deteriorating Effects. In Proceedings of the Conference on Computational
Collective Intelligence Technologies and Applications, Hammamet, Tunisia, 28–30 September 2022; Springer: Berlin/Heidelberg, Germany,
2022; pp. 647–659.

http://dx.doi.org/10.1016/j.swevo.2018.04.011
http://dx.doi.org/10.1177/0954405417691553
http://dx.doi.org/10.1016/j.cie.2020.106778
http://dx.doi.org/10.1016/j.ejor.2004.08.043
http://dx.doi.org/10.1016/j.eswa.2023.120732
http://dx.doi.org/10.1016/j.jksuci.2021.11.016
http://dx.doi.org/10.1016/j.ijpe.2007.06.007
http://dx.doi.org/10.1016/j.cor.2019.104812
http://dx.doi.org/10.1016/j.jclepro.2019.06.151
http://dx.doi.org/10.1007/s00521-020-05174-1
http://dx.doi.org/10.1080/00207543.2020.1753897
http://dx.doi.org/10.1155/2019/8520503
http://dx.doi.org/10.23919/CSMS.2021.0027
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/j.ifacol.2016.07.847
http://dx.doi.org/10.1016/j.ejor.2021.04.032
http://dx.doi.org/10.1007/s11047-016-9539-4
http://dx.doi.org/10.1080/0305215X.2019.1632303
http://dx.doi.org/10.1080/00207543.2019.1570378
http://dx.doi.org/10.4018/IJAMC.2021070109
http://dx.doi.org/10.1080/00207543.2012.750771
http://dx.doi.org/10.1016/j.cie.2020.106432


Algorithms 2023, 16, 397 23 of 24

55. Kong, M.; Liu, X.; Pei, J.; Cheng, H.; Pardalos, P.M. A BRKGA-DE algorithm for parallel-batching scheduling with deterioration
and learning effects on parallel machines under preventive maintenance consideration. Ann. Math. Artif. Intell. 2020, 88, 237–267.
[CrossRef]

56. Li, X.J.; Wang, J.J. Parallel machines scheduling based on the impact of deteriorating maintenance. J. Interdiscip. Math. 2018,
21, 729–741. [CrossRef]

57. Lu, S.; Liu, X.; Pei, J.; Thai, M.T.; Pardalos, P.M. A hybrid ABC-TS algorithm for the unrelated parallel-batching machines
scheduling problem with deteriorating jobs and maintenance activity. Appl. Soft Comput. 2018, 66, 168–182. [CrossRef]

58. Zhang, X.; Wu, W.H.; Lin, W.C.; Wu, C.C. Machine scheduling problems under deteriorating effects and deteriorating rate-
modifying activities. J. Oper. Res. Soc. 2017, 69, 439–448. [CrossRef]

59. Yang, S.J.; Yang, D.L. Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance
activities. Omega 2010, 38, 528–533. [CrossRef]

60. Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction. Robotica 1999, 17, 229–235. [CrossRef]
61. Usuga Cadavid, J.P.; Lamouri, S.; Grabot, B.; Pellerin, R.; Fortin, A. Machine learning applied in production planning and control:

A state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 2020, 31, 1531–1558. [CrossRef]
62. Fonseca-Reyna, Y.C.; Martínez-Jiménez, Y.; Nowé, A. Q-learning algorithm performance for m-machine, n-jobs flow shop

scheduling problems to minimize makespan. Investig. Oper. 2018, 38, 281–290.
63. Han, W.; Guo, F.; Su, X. A reinforcement learning method for a hybrid flow-shop scheduling problem. Algorithms 2019, 12, 222.

[CrossRef]
64. Martínez Jiménez, Y.; Coto Palacio, J.; Nowé, A. Multi-agent reinforcement learning tool for job shop scheduling problems. In

Proceedings of the International Conference on Optimization and Learning; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–12.
65. Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A reinforcement learning approach to parameter estimation in dynamic job shop

scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [CrossRef]
66. Zhao, F.; Zhang, L.; Cao, J.; Tang, J. A cooperative water wave optimization algorithm with reinforcement learning for the

distributed assembly no-idle flowshop scheduling problem. Comput. Ind. Eng. 2021, 153, 107082. [CrossRef]
67. Li, Z.; Wei, X.; Jiang, X.; Pang, Y. A kind of reinforcement learning to improve genetic algorithm for multiagent task scheduling.

Math. Probl. Eng. 2021, 2021, 1–12. [CrossRef]
68. Pan, Z.; Wang, L.; Wang, J.; Lu, J. Deep Reinforcement Learning Based Optimization Algorithm for Permutation Flow-Shop

Scheduling. In IEEE Transactions on Emerging Topics in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2021.
69. Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N. A comprehensive survey: Artificial bee colony (ABC) algorithm and

applications. Artif. Intell. Rev. 2014, 42, 21–57. [CrossRef]
70. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697.

[CrossRef]
71. Zhao, F.; Wang, Z.; Wang, L. A Reinforcement Learning Driven Artificial Bee Colony Algorithm for Distributed Heterogeneous

No-Wait Flowshop Scheduling Problem with Sequence-Dependent Setup Times. IEEE Trans. Autom. Sci. Eng. 2022. [CrossRef]
72. Lei, D.; Yang, H. Scheduling unrelated parallel machines with preventive maintenance and setup time: Multi-sub-colony artificial

bee colony. Appl. Soft Comput. 2022, 125, 109154. [CrossRef]
73. Benbouzid-Sitayeb, F.; Guebli, S.A.; Bessadi, Y.; Varnier, C.; Zerhouni, N. Joint scheduling of jobs and preventive maintenance

operations in the flowshop sequencing problem: A resolution with sequential and integrated strategies. Int. J. Manuf. Res. 2011,
6, 30–48. [CrossRef]

74. Ruiz, R.; Maroto, C.; Alcaraz, J. Two new robust genetic algorithms for the flowshop scheduling problem. Omega 2006, 34, 461–476.
[CrossRef]

75. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
76. Han, G.; Gong, A.; Wang, H.; Martínez-García, M.; Peng, Y. Multi-AUV collaborative data collection algorithm based on

Q-learning in underwater acoustic sensor networks. IEEE Trans. Veh. Technol. 2021, 70, 9294–9305. [CrossRef]
77. Ruiz, R.; Stützle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J.

Oper. Res. 2007, 177, 2033–2049. [CrossRef]
78. Tasgetiren, M.F.; Pan, Q.K.; Suganthan, P.; Oner, A. A discrete artificial bee colony algorithm for the no-idle permutation flowshop

scheduling problem with the total tardiness criterion. Appl. Math. Model. 2013, 37, 6758–6779. [CrossRef]
79. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]
80. Taillard, E. Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 1990, 47, 65–74. [CrossRef]
81. Borror, C.; Montgomery, D. Mixed resolution designs as alternatives to Taguchi inner/outer array designs for robust design

problems. Qual. Reliab. Eng. Int. 2000, 16, 117–127. [CrossRef]
82. Jiménez, Y.M. A Generic Multi-Agent Reinforcement Learning Approach for Scheduling Problems. Ph.D. Thesis, Vrije Universiteit

Brussel, Brussels, Belgium, 2012; Volume 128.
83. Ladj, A.; Tayeb, F.B.S.; Varnier, C.; Dridi, A.A.; Selmane, N. A Hybrid of Variable Neighbor Search and Fuzzy Logic for the

permutation flowshop scheduling problem with predictive maintenance. Procedia Comput. Sci. 2017, 112, 663–672. [CrossRef]

http://dx.doi.org/10.1007/s10472-018-9602-1
http://dx.doi.org/10.1080/09720502.2018.1467585
http://dx.doi.org/10.1016/j.asoc.2018.02.018
http://dx.doi.org/10.1057/s41274-017-0200-0
http://dx.doi.org/10.1016/j.omega.2010.01.003
http://dx.doi.org/10.1109/TNN.1998.712192
http://dx.doi.org/10.1007/s10845-019-01531-7
http://dx.doi.org/10.3390/a12110222
http://dx.doi.org/10.1016/j.cie.2017.05.026
http://dx.doi.org/10.1016/j.cie.2020.107082
http://dx.doi.org/10.1155/2021/1796296
http://dx.doi.org/10.1007/s10462-012-9328-0
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1109/TASE.2022.3212786
http://dx.doi.org/10.1016/j.asoc.2022.109154
http://dx.doi.org/10.1504/IJMR.2011.037912
http://dx.doi.org/10.1016/j.omega.2004.12.006
http://dx.doi.org/10.1109/TVT.2021.3097084
http://dx.doi.org/10.1016/j.ejor.2005.12.009
http://dx.doi.org/10.1016/j.apm.2013.02.011
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1016/0377-2217(90)90090-X
http://dx.doi.org/10.1002/(SICI)1099-1638(200003/04)16:2<117::AID-QRE309>3.0.CO;2-0
http://dx.doi.org/10.1016/j.procs.2017.08.120


Algorithms 2023, 16, 397 24 of 24

84. Jomaa, W.; Eddaly, M.; Jarboui, B. Variable neighborhood search algorithms for the permutation flowshop scheduling problem
with the preventive maintenance. Oper. Res. 2021, 21, 2525–2542. [CrossRef]

85. Zimmerman, D.W.; Zumbo, B.D. Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on
ranks. J. Exp. Educ. 1993, 62, 75–86. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12351-019-00507-y
http://dx.doi.org/10.1080/00220973.1993.9943832

	Introduction
	Brief Literature Review and Research Gaps
	Metaheuristic Solution Approach
	Metaheuristic and RL Solution Approach

	Integrated Problem Description and Effects Mathematical Models
	The Integrated Scheduling of Production and Maintenance Problem
	Learning and Deteriorating Effects' Mathematical Models

	Proposed QL-Driven ABC-Based Solving Approaches
	Food Source Representation and Evaluation
	Initial Population Generation
	QL-Based Employed Bees Phase
	Neighborhood Structures
	Q-Learning Algorithm

	Onlooker Bees Phase
	Scout Bees Phase
	Readjustment Procedure for Maintenance Cost Minimization
	Termination Condition

	The Computational Results and Analysis
	Data Generation
	IQABC Features Analysis
	Performance Analysis of IQABC Algorithm without Learning and Deteriorating Effects 
	Performance Analysis of the QL-Driven ABC Algorithm with Learning Effect
	Performance Analysis of the QL-Driven ABC Algorithm with Learning and Deteriorating Effects

	Conclusions
	References

