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Abstract: Industrial projects are plagued by uncertainties, often resulting in both time and cost over-
runs. This research introduces an innovative approach, employing Reinforcement Learning (RL), to
address three distinct project management challenges within a setting of uncertain activity durations.
The primary objective is to identify stable baseline schedules. The first challenge encompasses the
multimode lean project management problem, wherein the goal is to maximize a project’s value
function while adhering to both due date and budget chance constraints. The second challenge
involves the chance-constrained critical chain buffer management problem in a multimode context.
Here, the aim is to minimize the project delivery date while considering resource constraints and
duration-chance constraints. The third challenge revolves around striking a balance between the
project value and its net present value (NPV) within a resource-constrained multimode environment.
To tackle these three challenges, we devised mathematical programming models, some of which were
solved optimally. Additionally, we developed competitive RL-based algorithms and verified their
performance against established benchmarks. Our RL algorithms consistently generated schedules
that compared favorably with the benchmarks, leading to higher project values and NPVs and shorter
schedules while staying within the stakeholders’ risk thresholds. The potential beneficiaries of this
research are project managers and decision-makers who can use this approach to generate an efficient
frontier of optimal project plans.

Keywords: lean project management; multimode project scheduling; stability and robustness in
project scheduling; project value; critical chain buffer management; project net present value; integer
programming; chance constraints; reinforcement learning

1. Introduction

Uncertainty is a common challenge in project management and scheduling, which
causes many projects to go over budget and miss their deadlines [1]. According to a report
that analyzed over 50,000 projects from 1000 organizations, more than half of the projects
(56%) had cost overruns, and 60% of them were delayed [2]. According to a 2021 publication
by the Project Management Institute, projects worldwide exceed their budget and schedule
by 38% and 45%, respectively [3]. The same report also reveals that the products or services
delivered by the projects failed to meet the expectations of 44% of customers, implying
that the projects did not provide the value that customers anticipated. This situation has
prompted researchers in recent years to develop new frameworks for project management
that can better deliver value and handle uncertainty.

This paper addresses three new problems in project management and scheduling. The
problems account for uncertainty by using stochastic activity durations and are formulated
as chance-constrained mixed integer programs (MIPs). The problems also use a multimode
setting, where each activity has one or more modes or options from which to choose.
Therefore, the solution to the problem involves selecting one mode for each activity.
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The first challenge that this study tackles is a new application of Lean Project Manage-
ment (LPM), which is a widely used framework to deal with the issue of schedule and cost
overruns. The aim of LPM is to maximize value (also referred to as benefit in the literature)
and minimize waste in the shortest possible time.

The value of a project is determined by a set of attributes that vary according to
stakeholders’ preferences. These attributes may include aspects such as design aesthetics,
features, functions, reliability, size, speed, availability, and so on [4]. We follow the approach
proposed in [5], which defines an objective function that captures the value from the
perspective of the customers and stakeholders. In Section 6, we offer an example of how to
compute the value of a project.

We present a new LPM approach that can handle uncertain activity durations. Unlike
previous studies on project scheduling that did not consider project value, we aim to
maximize the value of the project while avoiding cost and schedule overruns. We use
reinforcement learning (RL) algorithms to generate a stable project plan that meets the
desired threshold for schedule and budget violation probabilities.

We present an MIP model that adopts a multimode approach. Each mode has data on
the project scope, such as fixed and resource costs and stochastic duration parameters, and
on the product scope, i.e., value parameters. The mode selection affects not only the project
cost, duration, and probabilities of meeting the schedule and budget (through the stochastic
duration parameters), but also the project value. Hence, the optimal activity modes both
stabilize the project plan and maximize the project value. In Section 6, we illustrate this
with a small project example where each activity mode has value and duration parameters.
We explain how to compute the project value using these parameters and how to plot an
efficient frontier to balance value, on-time, and on-budget probabilities.

We use a novel approach to solve the problem by applying a heuristic based on RL,
which we explain in Section 5. RL-based heuristics are known for finding fast solutions
in various applications with uncertain environments. The type of heuristic we propose is
uncommon in the project scheduling domain in general and has never been used for our
type of problem. We use this approach because solving chance-constrained MIPs is often
impractical and time-consuming during the project planning stage. For example, when
planning a new product development project, multiple project tradespace alternatives are
usually created and solved, and the solution time of these alternatives is crucial. Decision
makers can use our approach to plot an efficient frontier with the optimal project plans for
given probabilities of meeting the schedule and budget.

The second challenge that we explore in this paper is a new formulation of Critical
Chain Buffer Management (CCBM), which is a well-known framework that addresses
uncertainty and the issue of project overruns. The usual procedure for generating a
schedule within this framework is to use an appropriate scheduling method to find a
baseline schedule that is optimal or near optimal for the problem with fixed activity
durations and then apply a buffer sizing technique to add time buffers—namely, a project
buffer (PB) and feeding buffers (FBs).

In this paper, we focus on solving the chance-constrained CCBM problem. We present a
mixed-integer linear programming (MILP) model for the multimode problem and propose
an RL-based algorithm to solve it. We demonstrate that solving the chance-constrained
CCBM problem produces shorter project durations than solving the deterministic-constrained
problem and then adding time buffers. We also prove that our RL-based method is effective
in creating CCBM schedules compared with established benchmarks.

The third challenge that we address in this paper is building a novel model that
integrates uncertainty and chance constraints with two of the most important objectives
in project management: the maximization of the project’s net present value (NPV) and
project value. The maximization of the project NPV (max-NPV) problem is highly relevant
in the current context. Decision makers need to compare different project alternatives,
make go/no go decisions, and decide which projects will be in their project portfolio [6].
Nevertheless, it is well known that the evaluation of a project should not only depend
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on financial factors; a project can have a high NPV but fail to deliver the expected value
to customers and other stakeholders. As mentioned earlier, project value is becoming an
essential factor in project management.

Most studies have investigated the max-NPV problem and project value separately
instead of integrating them. We argue that considering both goals together provides a
more comprehensive assessment of a project when evaluating different project options.
We propose a new formulation of the optimization problem that combines both NPV and
project value, which we call the tradeoff between project value and NPV (TVNPV). We
design RL-based algorithms to solve the TVNPV problem and explore the tradeoff between
attaining both objectives.

Each of the three challenges is critical because they help to solve different aspects of the
situation pointed out above: the high percentage of time and cost overruns, caused in part
by project uncertainty, and the failure to deliver value to stakeholders. The LPM challenge
tackles value and adopts due date and budget chance constraints to avoid overruns. CCBM
focuses directly on the robust minimum duration project plans to avoid delays. TVNPV
takes a more holistic approach and deals both with the financial objective in the context of
risk by maximizing a robust formulation of the NPV and satisfying stakeholders’ needs
and expectations by maximizing value.

Our study presents several novel contributions. Firstly, in terms of problem formula-
tion, we introduce three new models: an LPM one, a CCBM one, and a TVNPV one. Our
LPM is the first model to maximize a value function with chance constraints. Our CCBM
model is novel since it tackles the chance-constrained problem directly and addresses
multimode problems, which is rare in the literature. The TVNPV model considers project
value and NPV in tandem for the first time and introduces the concept of robust NPV.
Secondly, in terms of solution methods, we apply RL to the three problems. This heuristic
approach is seldom employed within the realm of project management and has yet to be
applied to similar problems of this nature.

The rest of the paper is organized as follows: Section 2 provides a literature review
of the relevant research in the field. Section 3 gives a brief overview of the materials
and methods used in this study and provides a method flowchart. Section 4 presents the
quantitative models that are used in the paper. Section 5 describes the RL solution that
is proposed in this paper. Section 6 provides an example of how the RL solution can be
applied. Section 7 describes the experimental setting used to evaluate the RL solution.
Section 8 presents the results of the experiments. Section 9 discusses the results and their
implications. Finally, Section 10 concludes the paper with a summary of the main findings
and suggestions for future research.

2. Literature Review

We now review the key publications related to the three research tracks related to this
paper: project value management, CCBM, and the max-NPV problem.

2.1. Project Value Management

Value management is a common theme in LPM research. Some researchers use quali-
tative methods to explore various aspects of value, such as frameworks for defining and
measuring value [7–11], mechanisms for creating value [12], challenges for decommission-
ing projects [13], and implications of offshore projects [14].

Other researchers use quantitative methods to assess value in terms of stakeholder
preferences and attributes [4,15,16]. Some of them apply quality function deployment
(QFD), a technique that translates customer needs into engineering requirements [17],
to project management [18–20]. We use QFD to determine project value by using value
parameters in the activity modes, as shown in an example in Section 6.

Another line of research in project value integrates the project scope and the product
scope by extending the concept of activity modes to include value parameters in addition to
cost and duration. The mode selection affects the project value. Cohen and Iluz [21] propose
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to maximize the ratio of effectiveness to cost, while [22] aligns the activity modes with
the architectural components. Some studies also demonstrate the use of simulation-based
training for LPM implementation [23,24]. Balouka et al. [5] develop and solve an MIP that
maximizes the project value in a deterministic multimode project scheduling problem. We
build on their work by modeling and solving the problem with stochastic activity durations,
which is more realistic but also more challenging, as uncertainty can lead to delays and
overruns that affect the optimal mode selection.

LPM suggests using schedule buffers to prevent schedule overruns [25], but it does
not recommend any specific buffering methods (we review the literature on this topic
in the next section). Previous studies on project scheduling with robustness or stability,
however, have not considered project value. In this study, we develop and solve a new
LPM model that maximizes project value and avoids cost and schedule overruns. We create
a stable project plan that keeps the probabilities of violating the schedule and budget below
a desired level.

Our method for achieving stability is similar to the buffer scheduling framework
because, when we select activity modes, we create a time gap between the baseline project
duration and its due date. This time gap will cushion activity delays to meet the on-
schedule and on-budget probabilities set by the decision makers. Hoel and Taylor [26]
suggest using Monte Carlo simulation to set the size of a baseline schedule’s buffer. We
advance their work by directly searching for a baseline schedule that gives us the highest
value under the desired on-schedule and on-budget probabilities. Our solution method is
based on simulation, which supports our approach.

Project scheduling and its solutions, both exact, using MILP, and heuristic, using
methods such as genetic algorithms (GAs), have been extensively studied in the literature.
Value functions in project scheduling are a novel concept, introduced by [5]. No one has
ever shown the combination of value functions and chance constraints.

2.2. CCBM

There is a large body of literature on CCBM scheduling and buffer sizing methods
for single-mode projects. Some studies use fuzzy numbers to model uncertainty. For
example, ref. [27] uses fuzzy numbers to estimate the uncertainty of project resource usage
and determine the size of the PB with resource constraints. Zhang et al. [28] used an
uncertainty factor derived from fuzzy activity durations and other factors to calculate
the PB. Ma et al. [29] used fuzzy numbers to create a probability matrix with all possible
combinations of realized activity durations.

Other recent studies use probability density functions (PDFs) to represent uncertainty
in activity duration. For instance, ref. [30] uses an approximation technique for the convo-
lution to combine activity-level PDFs and model project-level variability. Zhao et al. [31]
used classical methods for sizing the FBs and proposed a two-stage rescheduling approach
to solve resource and precedence conflicts and prevent critical chain breakdown and non-
critical chain overflow. Ghoddousi et al. [32] extended the traditional root square error
method (RSEM) [33] to develop a multi-attribute buffer sizing method. Bevilacqua et al. [34]
used goal programming to minimize duration and resource load variations and insert the
PB and FBs using RSEM. Ghaffari and Emsley [35] showed that some multitasking can
reduce buffer sizes by releasing resource capacity. Hu et al. [36] considered a modified
CCBM approach with two types of resources: regular resources available until a cutoff
date and irregular emergency resources available after that date. Hu et al. [37] focused on
creating a new project schedule monitoring framework using a branch-and-bound algo-
rithm and RSEM for scheduling and buffering. Salama et al. [38] combined location-based
management with CCBM in repetitive construction projects and introduced a new resource
conflict buffer. Zhang et al. [39] calculated the PB using the duration rate and network
complexity of each project phase and monitored the buffer dynamically for each phase.

Some researchers also use information flow between project activities. For example,
Zhang et al. [40] proposed optimal sequencing of the critical chain activities based on the
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information flow and the coordination cost, aiming to reduce duration fluctuation and
buffering. Zhang et al. [41] used two factors to calculate the PB using the design structure
matrix: physical resource tightness and information flow between activities. Information
flows are also used in [42], whose work is extended in [43]. In their studies, they considered
rework risks and a rework buffer in scheduling.

There are few publications on CCBM buffer sizing and scheduling for multimode
projects. Some recent publications include [44], which uses work content in resource-time
units to generate activity modes and compares two types of CCBM schedules. Peng et al. [45]
combined mode selection rules and activity priority rules (PRs) for scheduling multimode
projects with CCBM. Ma et al. [46] used three modes—urgent, normal, and deferred—to
level multiple resources and add five metrics to the RSEM buffer calculation formula.
Buffer management is also studied in contexts other than CCBM. A discussion of those
methodologies falls outside the scope of this paper; some examples are [47–55].

Previous research has some drawbacks. Researchers mostly focused on using PDFs
either to compute the buffers for a schedule that was already built based on fixed activity
durations or to assess the buffered schedule using simulation, rather than finding a time-
buffered schedule by solving the chance-constrained CCBM problem. Few researchers
have explored RL applications in project scheduling, despite the proven effectiveness of
RL-based methods in dealing with uncertain environments, as mentioned above. Lastly,
there is little research on multimode CCBM problems. This study, hoping to address some
of these gaps, focuses on solving the chance-constrained CCBM problem. We present an
MILP model for the multimode problem and propose an RL-based algorithm to solve
it. We conduct experiments with two objectives: (1) To examine the chance-constrained
CCBM problem and compare the obtained project duration with the traditional method
in which the deterministic-constrained problem is first solved and then the time buffers
are inserted; (2) To evaluate the effectiveness of our RL-based method in the generation of
CCBM schedules compared with established benchmarks.

2.3. Max-NPV Problem

Extensive research has been conducted regarding the max-NPV problem. Russell [56]
conducted an investigation into the deterministic problem, employing a linearization
technique that approximated the objective function through the first terms of the Taylor
expansion. Subsequently, a wealth of additional studies have contributed to the existing
body of knowledge on the max-NPV problem. Notably, ref. [57] demonstrated its NP-
hardness, while [58] proposed a precise solution approach tailored to smaller projects
as well as a Lagrangian relaxation method coupled with a decomposition strategy for
more extensive problems. Additionally, ref. [57] devised a methodology that involved
grouping activities together, and in a subsequent publication [59], they further expanded
their work to encompass capital constraints and various cash outflow models. Klimek [60]
explored projects characterized by payment milestones and investigated diverse scheduling
techniques, including activity right-shift, backward scheduling, and left-right justification.

The deterministic max-NPV problem, when extended to accommodate multiple modes,
presents a multimode variant of the original problem. Chen et al. [61] successfully achieved
optimal solutions for projects containing up to 30 activities and three modes by utilizing a
network flow model. Building upon the scheduling technique mentioned earlier in [57],
ref. [62] further expanded their approach to incorporate multimode projects and diverse
payment models for cash inflows. The examination of these payment models continued in
the context of the max-NPV discrete time/cost tradeoff problem. In this regard, ref. [63]
compared the impact of three distinct solution representations by integrating them into an
iterated local search algorithm. Additionally, ref. [64] addressed a bi-objective optimization
problem, aiming to balance the NPV between the contractor and the client.

The stochastic max-NPV problem serves as another extension to the original deter-
ministic max-NPV problem, introducing random variables for activity durations and cash
flows. Wiesemann and Kuhn [65] provided an in-depth review of the early literature on this



Algorithms 2023, 16, 395 6 of 38

subject. In their study, Creemers et al. [66] focused on maximizing the expected value of
NPV (eNPV) while considering variable activity durations, the risk associated with activity
failure, and different approaches or modules to mitigate this risk. Resource constraints,
however, are not taken into account in their analysis. Similarly, ref. [6] explored the notion
of a general project failure risk that diminishes as project progress is made. They also
considered activity-specific risks. It is worth noting that completing earlier activities sooner
not only eliminates the risk of failure, thereby improving the eNPV, but also potentially
accelerates costs, consequently worsening the eNPV. Incorporating weather condition mod-
eling into stochastic durations, ref. [67] introduced decision variables in the form of gates.
These gates dictate when resources become available for specific activities, allowing for a
more comprehensive analysis of the problem at hand.

In the study conducted by [68], optimal solutions on a global scale were identified
for the stochastic NPV problem. Specifically, the focus was on activity durations that
followed a phase-type distribution, deterministic cash flows, and the absence of resource
constraints. Expanding on these findings, the authors further applied them to determine
the optimal sequence of stages in multistage sequential projects characterized by stochastic
stage durations. In doing so, exact expressions in closed form were derived for the mo-
ments of NPV, with the utilization of a three-parameter lognormal distribution to accurately
approximate the distributions of NPV [69]. Additionally, it was demonstrated that this
problem is equivalent to the least-cost fault detection problem, which was established
by [69] and [70]. Hermans and Leus [71] contributed to the field by presenting a novel and
efficient algorithm. Their research specifically pertains to Markovian PERT networks, where
activities are exponentially distributed and no resource constraints exist. Interestingly, their
findings reveal that the optimal preemptive solution also solves the non-preemptive case.
Zheng et al. [49] investigated the max-eNPV problem, considering stochastic activity dura-
tions, utilizing two proactive scheduling time buffering methods, and incorporating two
reactive scheduling models. The goal of their research was to explore different approaches
to tackling this problem effectively. Liang et al. [72] proposed time-buffer allocation as a
means to address the max-eNPV problem. They introduced the expected penalty cost as
a measure of solution robustness, aiming to enhance the reliability of the proposed solu-
tions. Lastly, ref. [73] delved into the consideration of uncertainty in both activity duration
and cash flow while simultaneously incorporating two objectives: maximizing eNPV and
minimizing NPV risk. Notably, their model does not include resource constraints.

3. Materials and Methods

The method flowchart is shown in Figure 1. The situation of project delays, cost
overruns, and reduced value (Section 1) motivated the researchers to model three challenges
that help solve different aspects of the situation: LPM, CCBM, and TVNPV. Each of these
challenges is modeled by introducing mathematical programming formulations (Section 4)
and novel RL-based solutions (Section 5). The challenges are illustrated in an example
(Section 6). Experiments were designed, and datasets were prepared by supplementing the
well-known PSPLIB datasets with relevant information for each model (Section 7). Data
analysis was performed on the results (Section 8).
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Figure 1. Method flowchart.

4. Quantitative Models

In this section, we present the mathematical models representing our three problems.

4.1. LPM

Our LPM deterministic model is formulated as a MIP, aiming to maximize the project
value while considering duration and cost constraints. We now provide an overview of our
notation, model, and explanations of its objectives and constraints.

We consider a project consisting of J activities, where each activity j can be executed
in one of Mj modes and is preceded by a set of immediate predecessors
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(j). Executing
activity j in mode m requires a duration djm and incurs a fixed cost cjm. Additionally, there
are K renewable resources available, each with a unit cost ck per period. Resource k is
consumed by activity j in mode m at a rate of rjmk units. The project is constrained by a
due date D and a budget C. We assume that if the project adheres to the budget constraint,
the required resources can be readily acquired. Similar assumptions regarding resource
availability can be found in studies on time-cost tradeoff problems and recent project
scheduling research [73–77].

The project encompasses V different value attributes, denoted by the parameter Vjmv,
which represents the value of attribute v for activity j executed in mode m. Decision
variable V′jv corresponds to the value of attribute v for activity j when executed in its
selected mode. To determine the project value for each attribute v, we define the function
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Fv

(
V′1v, . . . , V′Jv

)
which takes into account the individual attribute values V′jv, and the

function V ′′ (F1, . . . , FV), which calculates the project value based on the attribute values.
Within our model, the binary decision variable δjm indicates whether activity j is

performed in mode m. Additionally, decision variable tj denotes the starting time of activity
j, where j ranges from 0 to J + 1. In this context, j = 0 denotes a project milestone that has
only one mode and does not have any duration, cost, resources, or value. It functions as the
starting point of the project. Conversely, j = J + 1 represents another milestone signifying
the project’s end.

The model itself is:

Maximize V ′′
(

F1

(
V′11, . . . , V′J1

)
, . . . , FV

(
V′1v, . . . , V′Jv

))
, (1)

subject to:

V′jv =

Mj

∑
m=1

δjmVjmv, ∀j = 1, . . . , J, ∀v = 1, . . . , V, (2)

Mj

∑
m=1

δjm = 1, ∀j = 1, . . . , J, (3)

t0 = 0, (4)

tJ+1 ≤ D, (5)

tj ≥ ti +
Mi

∑
m=1

dimδim, ∀i ∈
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J

∑
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Mj

∑
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(
cjm +

K

∑
k=1

ckrjmkdjm

)
δjm ≤ C, (7)

δjm ∈ {0, 1}, ∀j = 1, . . . , J, ∀m = 1, . . . , Mj, (8)

tj ≥ 0, ∀j = 0, . . . , J + 1. (9)

Objective (1) aims to maximize the project value, which is a specific function of the
chosen modes. Constraints (2) are responsible for determining the value attributes based on
the selected modes. Constraints (3) introduce the binary decision variable that indicates the
chosen mode for each activity. These constraints ensure that exactly one mode is selected
for each activity. Constraint (4) sets the beginning of the project as the starting time for
milestone 0. Constraint (5) ensures that the project is completed within the specified due
date. Constraints (6) ensure that an activity cannot start before its immediate predecessor is
finished. Constraint (7) restricts the fixed and resource costs to be within the project budget.
Lastly, constraints (8) and (9) are integrality and nonnegativity constraints.

In the case of a model with stochastic activity durations, constraints (5) and (7) cannot
be guaranteed with certainty. Hence, we need to model them as chance constraints. A
common approach to solving such stochastic programs is using a scenario approach (SA),
which was introduced by [78] and applied in several project scheduling papers [79–81]. The
idea behind SA is to generate S samples or scenarios representing the possible outcomes
of the random variables in the constraints, such as the activity durations. These samples
replace the deterministic scenario. If our objective function is linear, the resulting SA
program becomes a MILP, which can be solved using commercial solvers. We employ
this method as a benchmark in the computational experiments presented in Section 7 (a
discussion of SA falls outside the scope of this paper; more details on this topic can be
found in [78]).

To continue our presentation of the LPM model, we must now introduce additional
notation and constraints and provide an explanation for the SA formulation of our problem.
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We can define parameters S and djms to represent the number of scenarios sampled and
the duration of activity j in mode m for scenario s, respectively. Parameters β and β̂
are established as the desired probabilities of the project finishing within the due date
and on budget, while parameters θ and θ̂ serve as upper limits for the project’s delay
and budget overrun. Let decision variable tjs represent the starting time of activity j in
scenario s, j = 0, . . . , J + 1, and let binary decision variables τs and τ̂s indicate whether
the project finishes within the due date and on budget, respectively, in scenario s. In the
SA model, the objective function (1) and constraints (2) and (3) remain unchanged while
tjs, ∀s = 1, . . . , S, replace tj in constraints (9). Constraints (10) through (15) provided below
replace constraints (4) to (7).

t0,s = 0, ∀s = 1, . . . , S, (10)

tJ+1,s − θ(1− τs) ≤ D, ∀s = 1, . . . , S, (11)

S

∑
s=1

τs ≥ βS, (12)

tjs ≥ tis +
Mi

∑
m=1

dimsδim, ∀i ∈
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J

∑
j=1

Mj

∑
m=1

(
cjm +

K

∑
k=1

ckrjmkdjms

)
δjm − θ̂(1− τ̂s) ≤ C, ∀s = 1, . . . , S, (14)

S

∑
s=1

τ̂s ≥ β̂S, (15)

τs, τ̂s ∈ {0, 1}, ∀s = 1, . . . , S, (16)

tjs ≥ 0, ∀j = 0, . . . , J + 1, ∀s = 1, . . . , S. (17)

Constraints (10) define the project’s starting time as the beginning of milestone 0 across
all scenarios. Constraints (11) maintain the project’s completion within the due date (τs = 1)
or within the specified upper bound (τs = 0). To meet the desired probability, constraint
(12) guarantees that the proportion of scenarios completing within the due date aligns
accordingly. In each scenario, constraints (13) ensure that no activity can commence before
its immediate predecessor concludes. Constraints (14) enforce the project’s adherence to
the budget (τ̂s = 1) or the specified upper limit (τ̂s = 0). Constraint (15) ensures that
the fraction of scenarios completed within the budget aligns with the desired probability.
Lastly, constraints (16) and (17) represent the integrality and nonnegativity conditions,
respectively.

Our LPM model is highly relevant and applicable to project management in several
ways. Firstly, the objective function and the chance constraints aim to maximize project
value while meeting the deadline and staying within budget—a key objective for project
managers. Secondly, the LPM model considers uncertainties in activity durations, which
is a common challenge in project management. By incorporating stochastic duration
parameters, the model provides a more realistic representation of project timelines and
allows project managers to make more informed decisions. Thirdly, the model adopts a
multimode approach that considers the impact of mode selection on project cost, duration,
and value. This allows project managers to optimize project outcomes by selecting the
most appropriate mode for each activity. Finally, the LPM model provides a framework for
decision-making that can help project managers balance project schedule, cost, and value.

4.2. CCBM

Traditionally, the CCBM scheduling approach begins by creating a baseline schedule
that minimizes the project duration based on deterministic estimates of activity durations
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such as the median or mean values [82]. This involves solving the resource-constrained
project scheduling problem (RCPSP) or its multimode extension. Due to the NP-hard nature
of the problem [83], heuristic methods are commonly used, especially for larger projects.

Once a baseline schedule is established, the PBs and FBs are inserted using a buffer-
sizing technique such as the methods discussed in Section 2.2. The aim is to create a
stable schedule that can be evaluated using robustness measures described in relevant
literature, such as the standard deviation of project length, stability cost, and timely project
completion probability [44].

The on-time probability not only serves as an indicator of schedule robustness but also
plays a role in buffer calculation. Hoel and Taylor [26] proposed the use of Monte Carlo
simulation to determine the cumulative distribution function (CDF) for project completion
time, thereby determining the size of the PB. For example, if we aim for a 95% probability
of completing the project on schedule, the PB would be the difference between the project
duration at the 95th percentile and the duration of the baseline schedule.

Let us go one step further. If we directly search for the shortest time-buffered schedule
that meets the desired on-time probability, we can identify a schedule with the same
probability but a shorter duration. This leads us to the chance-constrained CCBM problem,
where we consider multimode projects. In this problem formulation, we not only search
for the schedule but also determine the activity modes that result in the shortest project
duration while meeting the desired on-time probability. This duration encompasses the
baseline schedule, nominal (deterministic) activity durations, and the PB. In this paper, we
define project delivery as this time-buffered project duration, which represents the deadline
we can meet (i.e., deliver the project) with the desired on-time probability.

To model our chance-constrained CCBM problem, we adopt a MILP approach using
the flow-based formulation described in [84], extending it to accommodate multimode
projects. We handle the chance constraints using SA as in the LPM model but require
additional parameters and decision variables that were not present there.

There are K distinct renewable resources available, each having a total availability of
Rk units. When activity j is executed in mode m, it requires rk

jm units of resource k. For a
given scenario s, the earliest start time for activity j is denoted as ESjs, while LSjs represents
the latest start time.

The project delivery is represented by decision variable Dp. Project milestones 0 and
J + 1 have a singular mode, zero duration, and no resource requirements. Binary decision
variable zij is employed to indicate if activity j commences after the completion of activity i,
taking a value of 1 in such cases. The flow variable φk

ij models the amount of resource k
transferred from activity i to activity j.

Our chance-constrained CCBM model incorporates constraints (3), (8), (12), and (16)
from the LPM model. Moving forward, we will present the model, followed by an explana-
tion of the objective function and the remaining constraints.

Min Dp, (18)

subject to:
tJ+1,s − θ(1− τs) ≤ Dp, ∀s = 1, . . . , S, (19)

zij + zji ≤ 1, ∀i = 0, . . . , J, ∀j = 1, . . . , J + 1, ∀i < j, (20)

zij + zjh − zih ≤ 1, ∀i, j, h = 0, . . . , J + 1, ∀i 6= j 6= h, (21)

zij = 1, ∀i ∈
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tjs − tis −Mzij ≥
Mi
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m=1

δimdims −M, ∀i, j = 0, . . . , J + 1, ∀i 6= j, ∀s = 1, . . . S, (23)
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ESjs ≤ tjs ≤ LSjs, ∀j = 0, . . . , J + 1, ∀s = 1, . . . , S, (24)

φk
ij −min

(
r̃k

im, r̃k
jm′

)
zij − (1− δim)

(
r̃max,k

ij −min
(

r̃k
im, r̃k

jm′

))
−
(

1− δjm′
)(

r̃max,k
ij −min

(
r̃k

im, r̃k
jm′

))
≤ 0, where rmax,k

ij = max

(
max

m=1,...,Mi
r̃k

im, max
m′=1,...,Mj

r̃k
jm′

)
,

∀i = 0, . . . , J, ∀j = 1, . . . , J + 1, ∀i 6= j, ∀k = 1, . . . , K, ∀m = 1, . . . , Mi , ∀m′ = 1, . . . , Mj,

where r̃k
jm =

{
rk

jm if 0 < j < n + 1

Rk if j = 0 or j = n + 1,

(25)

∑
j∈{1,...,J+1}\{i}

φk
ij =

Mi

∑
m=1

r̃k
imδim, ∀i = 0, . . . , J, ∀k = 1, . . . , K, (26)

∑
i∈{0,...,J}\{j}

φk
ij =

Mj

∑
m=1

r̃k
jmδjm, ∀j = 1, . . . , J + 1, ∀k = 1, . . . , K, (27)

0 ≤ φk
ij ≤ min

(
max

m=1,...,Mi
r̃k

im, max
m=1,...,Mj

r̃k
jm

)
, ∀i = 0, . . . , J, ∀j = 1, . . . , J + 1, ∀i 6= j,

∀k = 1, . . . , K.
(28)

The objective function (18) is designed to minimize the project’s delivery time. Con-
straints (19) indicate whether a scenario is completed within the desired timeframe. Con-
straints (20) and (21), derived from previous works [84,85], prevent cycles of 2 or 3 or
more activities. Constraints (22) enforce the precedence relationships between activities.
Constraints (23) establish the relationship between continuous activity start time variables
and binary sequencing variables. Constraints (24) define upper and lower bounds for
activity start times. Constraints (25), drawing from [85], establish a connection between the
continuous resource flow variables, binary sequencing variables, and mode variables.

Outflow constraints (26) guarantee that all activities, except for milestone J + 1, trans-
fer their resources (when finished with them) to other activities. Inflow constraints (27)
ensure that all activities, except for milestone 0, receive their resources from other activ-
ities. Constraints (28) set bounds on the flow variables based on the maximum resource
consumption modes.

It is important to note that the general constraints (25) and (28) can be reformulated
as MIP constraints using linear and special-ordered set constraints, along with auxiliary
variables [86]. Commercial solvers such as Gurobi automatically handle the equivalent
formulation (in [85], these constraints are also handled by the solver).

Once the MILP is solved, constructing a schedule follows a straightforward approach.
The project is represented as an activity-on-node (AON) network, with arcs connecting
activities j to their immediate predecessors
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(j). Finally, we schedule all activities
using the “early start” approach, where each activity commences when its immediate
predecessor concludes.

For the baseline schedule, the activity duration used is typically the most likely
duration based on a three-point estimate. After the completion of the last activity, the PB is
inserted, calculated as the difference between the project delivery time and the baseline
duration. An example illustrating this approach can be found in Section 6.

To insert FBs, we adopt the method proposed by [26] and applied in subsequent works,
e.g., [88,89] (the latter employing the method as an upper bound for the buffers). In this
approach, activities are scheduled using an “early start” strategy, and the FB is determined
based on the free float of the activity that merges into the critical chain, ensuring that no
new resource conflicts arise from the insertion of FBs. Thus, since we initiate all activities
as early as possible, we can disregard the size of FBs in our problem.
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Our CCBM model is extremely significant for project management applications, espe-
cially for addressing uncertainties and risks in project scheduling. The objective function
and chance constraints allow the project manager to produce time-buffered project plans
that minimize the project delivery date while staying within the stakeholders’ risk thresh-
old. In the Introduction, we discussed the importance of this topic, and in Section 2.2, we
discussed the limitations of existing scheduling methods. In Section 8, we demonstrate
the effectiveness of the proposed CCBM model in producing shorter project durations
compared with established benchmarks.

4.3. TVNPV

In line with Section 4.2, we utilize the flow-based formulation introduced by [84] and
extend it to encompass multimode projects, NPV, value functions, and chance constraints.
The primary objective of the TVNPV model is to maximize the robust project NPV and the
project value. To address the chance constraints, we employ SA. We now describe additional
parameters and decision variables that are not present in the LPM and CCBM models.

Within the problem context, we have K distinct renewable resources, each associated
with a unit cost ck per period. Additionally, activity j executed in mode m incurs a fixed cash
inflow or outflow cjm, consisting of fixed costs and payments received. For convenience,
we assume that payments are received or made at the end of each activity. To avoid gaps
between activities and prevent indefinitely postponing activities with negative cash flows,
two main approaches exist in the literature: (1) utilizing a deadline [57] and (2) assuming
a sufficiently large payout at the end of the project to offset the gains from postponing
activities impacting project completion [66]. In this paper, we adopt the latter approach.

When aiming to minimize project duration, a common measure of robustness is the
timely project completion probability [44]. In our problem, we adapt this concept and
introduce the decision variable rNPV to represent the robust NPV. It signifies the project
NPV achieved with a probability of at least γ. Thus, instead of evaluating the robustness of
a given schedule, we search directly for a schedule with the desired level of robustness.

Several parameters are defined within the model. NPVUP serves as an upper bound
for rNPV.>r denotes the discount rate, while EFjs and LFjs represent the earliest and latest
finish times for activity j in scenario s, respectively. Additionally, Tmax acts as an upper
bound for the project’s duration.

To represent the finish time of activity j in scenario s, we introduce the decision variable
f js ∈

{
EFjs, . . . , LFjs

}
. Binary variable τ̃s takes the value 1 if the scenario NPV is greater

than rNPV. Moreover, decision variable β js represents the discount factor for activity j in
scenario s, and βUP serves as an upper bound for the discount factor.

Objective function weights w1 and w2 are included to determine the tradeoff between
rNPV and the project value. By solving the MIP for different values of w1 and w2, we can
identify the efficient frontier that balances these objectives.

To linearize two sets of constraints, we introduce additional variables. Binary variables
tp

js are assigned a value of 0 for all p < f js and 1 for all p ≥ f js, p = 0, . . . , Tmax. Variables
yjms replace the products β jsδjm. The model incorporates constraints (2), (3), (8), (20)–(22),
and (25)–(28) from the LPM and CCBM models.

We now present the model, providing an explanation of the objective function, fol-
lowed by an overview of the remaining constraints. Subsequently, we will discuss the
linearization of the nonlinear constraints.

Max
(

w1rNPV + w2V ′′
(

F1
(
V′11, . . . , V′ J1

)
, . . . , FV

(
V1V
′ , . . . , V JV

′

)))
, (29)

subject to:

J+1

∑
j=0

Mj

∑
m=1

(
cjm +

K

∑
k=1

ckrjkmdjms

)
β jsδjm + NPVUP(1− τ̃s) ≥ rNPV, ∀s = 1, . . . , S, (30)
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β js = (1 +>r)− f js , ∀j = 0, . . . , J + 1, ∀s = 1, . . . , S, (31)

S

∑
s=1

τ̃s ≥ γS, (32)

f js −
Mj

∑
m=1

δjmdjms −Mzij ≥ fis −M, ∀i, j = 0, . . . , J + 1, ∀i 6= j, ∀s = 1, . . . S, (33)

EFjs ≤ f js ≤ LFjs, ∀j = 0, . . . , J + 1, ∀s = 1, . . . , S, (34)

The primary objective of the model, captured in the objective function (29), is to
maximize a weighted sum of the project’s rNPV and its overall value. This approach, known
as the weighted-sum method, is widely employed in multi-objective optimization [90] and
has been utilized in various project scheduling studies, e.g., [72,91,92].

To ensure the robustness of the project’s NPV, constraints (30) are introduced, which
evaluate whether a scenario’s NPV surpasses the project’s rNPV. Inspired by [93], we adopt
a discrete discount factor in constraints (31). Constraint (32) is employed to monitor the
fraction of scenarios that yield the desired rNPV, enforcing this fraction to remain above a
predetermined threshold.

The interdependence between the continuous activity finish time variables and the bi-
nary sequencing variables is established through constraints (33). Additionally, constraints
(34) provide necessary bounds for the activity’s finish times.

Constraints (30) pose a challenge due to the nonlinearity arising from the product
of the discount factor and the indicator variable, β jsδjm. To address this nonlinearity, we
replace constraints (30) with constraints (35) that involve auxiliary variables, denoted as
yjms. To ensure the equivalence of yjms and β jsδjm, constraints (36)–(39) are introduced to
maintain the relationship between these variables within the model.

J+1

∑
j=0

Mj

∑
m=1

yjms

(
cjm +

K

∑
k=1

ckrjkmdjms

)
+ NPVUP(1− τs) ≥ rNPV, ∀s = 1, . . . , S, (35)

yjms ≤ βUPδjm, ∀j = 0, . . . , J + 1, ∀m = 1, . . . , Mj, ∀s = 1, . . . , S, (36)

yjms ≤ β js, ∀j = 0, . . . , J + 1, ∀m = 1, . . . , Mj, ∀s = 1, . . . , S, (37)

yjms ≥ β js −
(
1− δjm

)
βUP, ∀j = 0, . . . , J + 1, ∀m = 1, . . . , Mj, ∀s = 1, . . . , S, (38)

yjms ≥ 0, ∀j = 0, . . . , J + 1, ∀m = 1, . . . , Mj, ∀s = 1, . . . , S. (39)

To replace the exponential discount factor from constraints (31), we introduce linear
constraints (40) into the model. Additionally, we incorporate the following constraints into
the model:

• Constraints (41) establish a connection between the binary variables tp
js and f js.

• Constraints (42) ensure that an activity can only have a single finish time.
• Constraints (43) impose bounds on tp

js, as the predecessor will always have a value of
1 before its successor.

• Constraints (44) and (45) fix the value of tp
js for finish times occurring before the early

finish and after the late finish, respectively.
• Finally, constraints (46) determine the fixed value for the initial milestone.

β js =
Tmax

∑
p=1

(1 +>r)−p
(

tp
js − tp−1

js

)
, ∀j = 0, . . . , J + 1, ∀s = 1, . . . , S, (40)
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Tmax

∑
p=1

p
(

tp
js − tp−1

js

)
= f js, ∀j = 0, . . . , J + 1, ∀s = 1, . . . , S, (41)

Tmax

∑
p=1

(
tp

js − tp−1
js

)
= 1, ∀j = 1, . . . , J + 1, ∀s = 1, . . . , S, (42)

tp
is ≥ tp

js, ∀i ∈ (j), ∀j = 1, . . . , J + 1, ∀p = 0, . . . , Tmax, ∀s = 1, . . . , S, (43)

tp
js = 0, ∀j = 1, . . . , J + 1, ∀p = 0, . . . , EFj − 1, ∀s = 1, . . . , S, (44)

tp
js = 1, ∀j = 1, . . . , J + 1, ∀p = LFj + 1, . . . , Tmax, ∀s = 1, . . . , S, (45)

tp
0,s = 1, ∀p = 0, . . . , Tmax, ∀s = 1, . . . , S. (46)

We can use a commercial solver to solve the MIP if the value function of the project
is linear because the constraints are linearized, as explained before. This method is our
benchmark for the computational experiments that we present in Section 7.

Our TVNPV model is very useful and suitable for project management in various
aspects. Firstly, the objective function and the chance constraints aim to maximize both
project value and NPV. This is a new and useful tool for decision-making because it allows
the generation of project plans on the efficient frontier with different optimal combinations
of value and NPV. Secondly, the uncertainties in activity durations and the chance con-
straints enable the calculation of a robust NPV according to the stakeholders’ tolerance for
risk. Additionally, the model employs a multimode approach that evaluates the impact of
mode selection on project cost, duration, resources, and value.

5. The RL Solution

RL has demonstrated remarkable achievements in various domains, ranging from
mastering backgammon at a level comparable to the world’s best players [94] to success-
fully landing unmanned aerial vehicles (UAVs) [95], defeating top-ranked contestants
in Jeopardy! [96], and achieving human-level performance in Atari games [97]. These
accomplishments highlight the effectiveness of RL in dealing with uncertain environments.
Inspired by this success, we apply RL to the formulations described in Section 4. While
RL-based heuristics have been employed in project scheduling [98,99], to the best of our
knowledge, no previous work has addressed multimode problems with chance constraints
using RL.

The RL framework begins by placing an agent in a state denoted as S. The agent
takes an action denoted as A and transitions to state S ′, receiving a reward denoted as
R′. Subsequently, the agent performs action A′, moves to state S ′′ , and receives reward
R′′ , and the pattern continues. Hence, the agent’s life trajectory can be represented as
S ,A,R′,S ′,A′,R′′ ,S ′′ ,A′′ ,R′′′ ,S ′′′ ,A′′′ , and so on. To guide the agent’s behavior in each
state, a policy denoted as π(S ,A) is followed, instructing the agent which action to take.
The objective of the RL problem is to learn a policy that maximizes the agent’s cumulative
reward. Additionally, we introduce an action-value function denoted as q(S ,A), which
estimates the reward for taking action A in state S and subsequently following policy
π(S ,A).

By applying the RL model to the formulations outlined in Section 4, we define a
state as a project activity denoted by j. The agent takes action by selecting a mode m̂j
and additionally, in CCBM and TVNPV, a start time t̂j for activity j, and then proceeds
to the next activity. After determining modes and start times for all activities j = 1, . . . , J,
the agent can calculate its reward R(j, m, t). As the agent receives rewards, it learns the
action-value function q(j, m, t) and the corresponding policy π(j, m, t) to be followed.

In this study, we utilize Monte Carlo control (MCC), an RL method based on [100].
MCC leverages Monte Carlo simulation to estimate CDFs for the activity durations, which
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are used in reward calculations. The algorithms for each of the three problems consist of
a main procedure in which multiple functions are called. This section presents the main
procedures along with a high-level explanation. The pseudocode and detailed explanations
for each function can be found in Appendix A.

The LPM main procedure is shown in Algorithm 1. The iterative process comprises
three key steps:

• Policy calculation: The policy is a table of the probabilities of the agent taking each
action. In our case, this means selecting a mode for each activity. We employ a
technique called ε-greedy policies, where we examine the action-value table and
assign a probability ε of picking a random mode for an activity. Otherwise, we pick
the mode with the highest action-value.

• Reward computation: We use the policy to select the modes and then compute the
reward for this action. In LPM, we model the reward as the project value, calculated
by the project-specific value function. For an example of a value function, see Section 6.

• Action-value update: The reward obtained by this choice of modes is used to update
the action-value table. To calculate the new action-values, we either average all the
rewards obtained for this specific mode choice (RL1) or use a constant-step formula
(RL2). For more details on these action-value update variants, see Appendix A.

Algorithm 1: Main MCC procedure for LPM.

initialize_action_values from Algorithm A1
while not stopping criterion:

calculate_policy from Algorithm A2
calculate_reward from Algorithm A3
update_action_values_RL1 from Algorithm A4
or update_action_values_RL2 from Algorithm A5

If the stopping criterion is not met, the policy is recalculated based on the updated
action-values, initiating a new iteration of the cycle.

The main procedure for the CCBM model is shown in Algorithm 2. Focusing on the
features that differ from the previous LPM–RL algorithm, in CCBM, an action consists of
selecting a start time for an activity in addition to the mode. Regarding the reward, we
construct an early-start resource-feasible baseline schedule and model the reward as the
reciprocal of the delivery date, defined in Section 4.2.

Algorithm 2: Main procedure for MCC for CCBM and TVNPV.

initialize_action_values from Algorithm A6
while not stopping criterion:

calculate_policy from Algorithm A7
choose_mode_start from Algorithm A8
calculate_reward from Algorithms A9 and A10
update_action_values_RL1 from Algorithm A4
or update_action_values_RL2 from Algorithm A5

Finally, regarding the TVNPV RL algorithm, the difference between it and the previous
CCBM is the reward calculation. The reward is the objective function value, which is the
weighted sum between rNPV and project value. Instead of an early-start schedule, the
project activities are scheduled according to the selected start-time action. This way, we
account for cash inflows and outflows, since in the latter case, it is advantageous to postpone
an activity instead of starting it early.

6. Example

To provide a concrete illustration of our problem and the RL solution approach, let us
consider as an example the development of a radar system, drawn from a real-world project.
In Figure 2, we present the project’s AON network, while Table 1 provides a list of the
project’s five activities, each with two available modes. The table includes the optimistic,
most likely, and pessimistic durations (O, ML, and P) of the activities, their respective fixed
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costs (FC), the required resources per period for each mode (engineers, E, and technicians,
T), the value parameters, and the income received upon activity completion.

Figure 2. Project network diagram.

Table 1. Summary of data for radar development.

Activity Mode Duration FC Resources Value Parameters Income

O ML P E T R Q Re

Systems engineering Small team 5 7 10 2000 1 0 0.8
Large team 3 4 4 4000 3 1 0.99

Transmitter design Reengineer 3 5 8 5000 2 1 50 0.99 0.9
52,500New design 7 9 11 10,000 4 2 100 0.95 0.8

Receiver design Reengineer 3 5 9 2000 2 1 30 0.95 0.9
New design 8 10 11 15,000 3 1 200 0.8 0.99

Antenna design Reengineer 3 7 9 3000 3 2 10 0.8 0.9
New design 6 7 9 7000 5 2 30 0.99 0.9

Integration and testing In-house 3 4 4 4000 3 3 0.99 0.9
20,000Subcontract 2 2 5 6000 1 0 0.9 0.99

It is worth noting that three of the five activities exhibit negative cash flows, i.e., fixed
and resource costs, while the remaining two activities yield positive cash flows due to the
generated income. This example effectively illustrates how value is defined and measured
in practice. The needs and expectations of project stakeholders are translated into value
attributes such as range, quality, and reliability (R, Q, and Re, respectively, as shown in
Table 1). These attributes are determined by the value parameters associated with each
activity mode. Additionally, it is important to consider the resource unit costs per period,
which amount to USD 100 for engineers and USD 50 for technicians.

In the context of the radar system, we employ the radar equation [101] for computing
the radar range [21]. The quality and reliability of the radar system are also considered, as
they depend on technical parameters such as transmitter power and antenna gain. These
parameters, in turn, are contingent upon the technological alternatives available for each
mode. The selection of a mode for the project plan not only determines its value but
also has a significant impact on cost and NPV, effectively integrating both components of
project value.

The equation for calculating radar range F1 = ([TP][RS][AG])0.25 involves the vari-
ables [TP] (transmitter power), [RS] (receiver sensitivity), and [AG] (antenna gain). These
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parameters are extracted from the corresponding activities in Table 1—namely, transmitter
design, receiver design, and antenna design. Similarly, the equation for radar quality
F2 = 100[SEQ][QT][QR][QA][QI] incorporates the impact of various factors denoted by
[SEQ], [QT], [QR], [QA], and [QI], which represent systems engineering, transmitter, re-
ceiver, antenna, and integration effects on quality, respectively. Likewise, the equation
for radar reliability F3 = 100[AR][IR][TR][RR] considers the contributions of antenna de-
sign, integration effort, transmitter reliability, and receiver reliability, represented by [AR],
[IR], [TR], and [RR], respectively. Finally, the project value is determined by computing
a weighted sum of the three value attributes, a widely used technique in multi-attribute
utility theory [102] expressed as V ′′ = 7/21F1 + 8/21F2 + 6/21F3. We now illustrate this ex-
ample within the context of the three challenges presented in this paper: LPM, CCBM,
and TVNPV.

6.1. LPM

Here we address the optimization of activity modes and start times to maximize the
project value while ensuring a 95% probability of meeting both the schedule and budget
requirements. The project is characterized by a due date of 17 time periods and a budget of
USD 39,800. To achieve our objective, we employed the RL1 algorithm and terminated the
iterations when no further improvement in the maximum project value was observed over
the last 100 iterations.

To facilitate analysis and comparison, we normalized the project values on a scale of 0 to
100, following the approach outlined by [5]. The solution obtained from the algorithm is
presented in the form of a Gantt chart (Figure 3). It is important to note that the activity
durations shown on the Gantt chart correspond to the most likely (nominal) durations
(Table 1). For example, for the activity “systems engineering”, mode “large team”, the most
likely duration is four time periods.

Figure 3. LPM: Gantt chart of radar project plan. The arrows indicate predecessor activities.

The project plan resulting from this optimization approach achieved a project value
of 58.365, which, after normalization, corresponds to a value of 100. The nominal cost
associated with this plan is USD 31,900. Furthermore, the probability of completing the
project on time is 100%, while the probability of staying within the budget stands at 99%.

As outlined in Section 5, our search process is guided by learning and updating the
action-value table, which subsequently leads to the recalculation of the ε-greedy policy. To
illustrate this approach, we provide an overview of the action-value evolution in Table 2,
showcasing the progression from the initial optimistic values to the latest iteration.

One significant advantage of our solution is its ability to support decision-making by
generating an efficient frontier of project plans that incorporate the inherent uncertainty of
project durations. This empowers tradeoff analysis, enabling the selection of the optimal
plan based on a careful balance between risk and value considerations.

To exemplify the practical application of our approach, let us consider a scenario in
our radar project example where the decision-makers aim to reduce the budget by USD
13,300, adjust the due date to 18 time periods, and ascertain the achievable value for the
stakeholders. The efficient frontier for this particular case is depicted in Figure 4.
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Table 2. LPM: evolution of action-values for the radar project.

Optimistic initial values Iteration 10 Iteration 20 Iteration 30
Act Mode1 Mode2 Act Mode1 Mode2 Act Mode1 Mode2 Act Mode1 Mode2

1 999 999 1 0 100 1 0 82.43 1 0 85.14
2 999 999 2 88.89 0 2 82.43 0 2 85.14 0
3 999 999 3 88.89 0 3 87.28 0 3 91.69 0
4 999 999 4 0 88.89 4 41.91 77.78 4 41.91 82.14
5 999 999 5 88.89 0 5 78.1 0 5 80.15 75.0

Iteration 40 Iteration 50 Iteration 100 Iteration 119
Act Mode1 Mode2 Act Mode1 Mode2 Act Mode1 Mode2 Act Mode1 Mode2

1 0 86.42 1 0 84.42 1 0 86.63 1 0 87.7
2 88.75 0 2 86.25 0 2 88.43 11.86 2 89.21 11.86
3 91.22 0 3 88.17 0 3 88.5 0 3 90.07 0
4 41.91 84.21 4 55.87 80.85 4 71.69 82.98 4 74.72 84.68
5 82.88 75.0 5 79.73 75.0 5 82.94 75.0 5 84.66 75.0

Figure 4. LPM: efficient frontier for radar project. Due date: 18 time periods; budget: USD 26,500.

When examining the scenario where the on-time probability stands at 80% and the
on-budget probability at 70%, it becomes apparent that the project is deemed infeasible. If,
however, the decision-makers are willing to accept a lower on-budget probability of 60%,
it becomes possible to achieve the maximum value, approximately 83. This observation
highlights the substantial impact of a constrained budget on the project’s capacity to provide
value to stakeholders. It underscores the significance of incorporating stochastic activity
durations to accurately portray the value that the project can deliver to its stakeholders.

6.2. CCBM

In this and Section 6.3, we consider a scenario where there are 11 engineers and
four technicians available to work on the project. Our goal is to find the shortest project
duration that satisfies a given probability β of completing the project on time. Gantt charts
illustrating the project activities, selected modes, FBs, and PBs are presented in Figures 5–7.
These charts showcase the solutions achieved for different desired probabilities, namely,
90%, 95%, and 100%. The baseline schedule activity durations correspond to the most likely
durations from Table 1.
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Figure 5. CCBM: Gantt chart for 90% on-time probability. The arrows indicate predecessor activities.
The FBs and PBs appear in green, while the critical chain activities are highlighted in black.

Figure 6. CCBM: Gantt chart for 95% on-time probability. The arrows indicate predecessor activities.
The FBs and PBs appear in green, while the critical chain activities are highlighted in black.

Figure 7. CCBM: Gantt chart for 100% on-time probability. The arrows indicate predecessor activities.
The FBs and PBs appear in green, while the critical chain activities are highlighted in black.

As anticipated, the lower the level of risk we are willing to tolerate, indicated by
a higher on-time probability, the longer the duration of the buffered project grows. It
is intriguing to observe the progressive improvement in solutions achieved by our RL
agent. In our RL model, we defined the reward as the reciprocal of the project duration.
Figure 8 displays the learning curves for both variants of action-value updating, RL1 and
RL2, focusing on a 95% on-time probability. At the initial stages of the curves, the influence
of optimistic initial values (described in Section 5) is evident: despite discovering the
minimum delivery duration early on, the agent continued to explore randomly, under
the impression that it might obtain a better reward by pursuing alternative actions, given
the artificially inflated values in the action-value list. Eventually, the delivery duration
stabilized at 18 time periods. As we employed ε-greedy policies (outlined in Section 5),
the agent occasionally explored, resulting in intermittent deviations from the minimum
delivery duration.
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Figure 8. CCBM learning curves for RL1 and RL2: 95% on-time probability.

6.3. TVNPV

We aim to address the problem by considering different weights, w1 and w2, and obtain-
ing the efficient frontier for a 95% probability of rNPV. The resulting frontier, consisting of
four non-dominated points, is depicted in Figure 9. Decision makers can perform a tradeoff
analysis to select the solution that best aligns with stakeholders’ needs and requirements.

Figure 9. TVNPV: efficient frontier for radar project.

As discussed in Appendix A.3, rNPV is determined iteratively by simulating the NPV
CDF. In Figure 10, the CDF plot illustrates the rNPV for the point (76.62, 40,772) in Figure 9.
With the decision makers’ chosen solution, a baseline schedule can easily be constructed
using the process outlined in Algorithm A10 and explained in Appendix A.3. The resulting
Gantt chart is presented in Figure 11. Figure 12 showcases the learning curves for both RL1
and RL2, demonstrating how our action-value updating variants evolve over time.
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Figure 10. NPV CDF plot.

Figure 11. TVNPV: Gantt chart for a project with value = 76.62 and rNPV = 40,772. The arrows
indicate predecessor activities.

Figure 12. TVNPV learning curves for RL1 and RL2: 95% rNPV probability, w1 = w2 = 0.5.

7. Experimental Setting

The experiments were conducted to validate the effectiveness of our RL procedure
in solving the formulations outlined in Section 4. We utilized the PSPLIB dataset [103],
which consists of 535 project instances with 10 activity projects and three activity modes per
project. This dataset is widely recognized as the standard in the literature on multimode
project management [104].

To generate scenarios and simulate runs, we employed three-point estimates for
activity mode durations. Specifically, we defined the dataset’s duration as the most likely
duration, with the optimistic duration set at half this value and the pessimistic duration
set at 2.25 times the most likely duration. These multipliers align with the characteristic
right-skewed distribution of activity durations in project management [47]. Realized
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durations were randomly drawn from a triangular distribution, a common approach in
project simulation [105], and rounded to the nearest integer.

Our RL algorithms were executed using two different methods for updating the action
values, RL1 and RL2, as described in Section 5. We maintained the same probability of a
random action (ε = 0.1) and constant step-size parameter (α = 0.1) as specified in [100]. To
solve the MILP problems in the benchmarks, we employed the Python interface for Gurobi
solver version 9.0. All algorithms were implemented in Python.

The experiments were conducted on a computer equipped with an Intel(R) Core(TM)
i7-7700 CPU 3.60 GHz and 8 GB RAM. For data analysis, we performed pairwise compar-
isons of the objective function values generated by each method. We utilized JMP statistical
software to calculate the p-values for Wilcoxon signed rank (WSR) tests with a significance
level of 0.05.

Below, we provide specific details of the experimental design for each of the three
problems discussed in this paper.

7.1. LPM

We compared the project values obtained from our variants to those of two bench-
marks: a genetic algorithm (GA) and a solution for our MILP problem (Section 4.1). GAs
are widely used for solving project scheduling problems [106], which motivated our se-
lection of a GA as a benchmark. We used the specialized GA proposed by [5] with minor
modifications, as it is specifically designed for value functions and closely aligned with our
problem. The GA parameters included a population size of 500, percentiles for elite and
worst solutions, and a mutation probability of 0.1.

Since the GA fitness function in [5] was designed for deterministic problems only, we
developed a new fitness function suitable for our stochastic settings (details in Appendix A). To
ensure a fair comparison, we terminated RL1 and RL2 at the point when the GA converged
according to its published stopping criterion, i.e., when the best value remained unchanged
for two consecutive generations. We generated additional data for the PSPLIB instances
based on our problem specifications and adjusted the sample size according to the runtime
(additional details in Appendix B).

7.2. CCBM

We employed two methods as benchmarks for the CCBM problem. Firstly, we solved
our MILP from Section 4.2. Secondly, we utilized the best combination of mode-selecting
and activity-selecting PRs reported by [45] (details in Appendix C). We conducted 1000 sce-
narios for both chance constraints using the solver (CS) and chance-constrained RL1 and
RL2 (CRL1 and CRL2). For deterministic constraints using the solver (DS), we modified
the model by removing specific constraints and scenario indexes as follows: Constraints

(23) became tj − ti − Mzij ≥
Mi
∑

m=1
δimdim − M, ∀i, j = 0, . . . , J + 1, ∀i 6= j, and constraints

(24) became ESj ≤ tj ≤ LSj, ∀j = 0, . . . , J + 1. For CS, owing to the increased runtime,
we set a 30-minute limit. In the deterministic-constrained RL1 and RL2 (DRL1 and DRL2)
approaches, the calculate_reward function (refer to Algorithm A9) yielded the recipro-
cal of the project duration without any simulation runs, denoted as R

(
j, m̂j, t̂j

)
= 1/D,

∀j = 1, . . . , J. The stopping criterion for RL1 and RL2 was set to 1000 iterations after visiting
all states with optimistic initial values.

7.3. TVNPV

We selected two benchmarks for the TVNPV problem. Firstly, we solved the MILP
problem described in Section 4.3. Secondly, we employed a tabu search (TS) as proposed
by [107] (see Appendix D for more details about our TS implementation). We opted for
a TS because, in [107], it produced smaller maximal relative deviations from the best
solutions than simulated annealing. The stopping criterion for all RL methods was set to
1000 iterations after visiting all states with optimistic initial values. To determine when
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to stop the process for TS, we established a criterion based on the maximum amount of
time elapsed between RL1 and RL2 for each corresponding instance. Our intention was to
provide TS with a runtime equal to or greater than RL’s runtime.

The objective function was evaluated using equal weights (w1 = w2 = 0.5), and we
set the desired probability (γ) of the project, yielding an rNPV of 0.95. The cash flows for
activity modes were randomly generated from uniform distributions ranging from 0 to
10, with a final payment of 10 at the end. The value attributes and parameters were set up
following the approach used in LPM (see Appendix B).

Table 3 provides a summary of the benchmarks and stopping criteria for each of the
three problems.

Table 3. Benchmarks and stopping criteria for the experiments.

Experiment Benchmark Stop Criterion

LPM GA, MILP Published GA stopping criterion
CCBM Best PR, MILP 1000 iterations after visiting all states with optimistic initial values

TVNPV TS, MILP 1000 iterations after visiting all states with optimistic initial values

8. Results

In this section, we report the results of our computational experiments for each of the
three problems addressed in this paper.

8.1. LPM

In Table 4, which compares the average percent decrease from the optimal project value
for linear objective functions, RL1 and RL2 exhibited values that were on average closer
to SA than GA. Notably, RL2 outperformed RL1. Despite the SA solutions not necessarily
being optimal, they consistently outperformed both GA and RL. It is, however, worth
noting that, in addition to its long running times, SA generated a substantial proportion
of infeasible solutions. These solutions, when simulated on test sets, failed to reach the
on-budget or on-schedule proportion of 0.95, as demonstrated in Appendix E.

Table 4. Average decrease (%) from SA.

GA RL1 RL2

8.19 6.95 3.50

To examine the performance of RL1, RL2, and GA, refer to Table 5. While GA outper-
formed RL1, RL2 demonstrated superiority over GA with stronger statistical significance.
The results validate the effectiveness of our RL-based algorithm as a valuable substitute for
GA during the project planning phase, particularly when dealing with the generation and
resolution of multiple tradespace alternatives within the constraints of runtime.

Table 5. Performance of RL1, RL2, and GA. Average GA running time to reach stopping criterion: 48.01 s.

RL1-GA RL2-GA RL1-RL2

Average difference (%) −0.90 2.28 −2.96
H1 GA > RL1 RL2 > GA RL2 > RL1

p-value 0.041 0.000 0.000

8.2. CCBM

As outlined in the Introduction, our experiments were carried out with two primary
objectives:

1. To showcase that addressing the chance-constrained CCBM problem directly results
in shorter project durations compared with the approach of solving the deterministic-
constrained problem and subsequently incorporating time buffers.
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2. To establish the efficacy of our RL-based method in generating CCBM schedules in
comparison to established benchmarks.

In relation to the first objective, the chance-constrained methods consistently produced
project durations that were shorter than their deterministic-constrained counterparts. Ta-
ble 6 illustrates the percentage difference in project delivery between the chance-constrained
models and their deterministic counterparts (only the optimal CS solutions, where the
Gurobi MIPGap parameter was less than 0.1, were taken into consideration).

Table 6. Chance-constrained methods compared with deterministic-constrained counterparts: Differ-
ence in project delivery.

CRL1-DRL1 CRL2-DRL2 CS-DS

Average difference (%) −6.11 −4.66 −2.77
H1 CRL1 < DRL1 CRL2 < DRL2 CS < DS

p-value 0.000 0.000 0.000

As far as the second objective is concerned, we see that CRL1 had the best performance
compared with the benchmarks. As Table 7 indicates, CRL1 achieved the lowest delivery
times. All the other methods, including CS for the optimal group, had significantly longer
delivery times than CRL1, as confirmed by WSR tests for pairwise comparisons with a
p-value = 0.000. CRL2 also performed better than all the other methods except CRL1 and
CS for the optimal group, with a p-value = 0.000.

Table 7. CRL1 compared with the other chance-constrained methods: Difference in project delivery.

CRL1-CS CRL1-PR CRL1-CRL2

Average difference (%) −3.01 −21.67 −4.05
H1 CRL1 < CS CRL1 < PR CRL1 < CRL2

p-value 0.000 0.000 0.000

8.3. TVNPV

Strong evidence supporting the appropriateness of the RL methods was discovered.
The findings from the pairwise comparison are presented in Table 8, which displays the
average percent difference and WSR p-value for each method pair.

Table 8. Performance of RL1, RL2, SA, and TS.

SA-RL1 RL1-RL2 RL1-TS

Average difference (%) 1.70 0.93 1.87
H1 SA > RL1 RL1 > RL2 RL1 > TS

p-value 0.000 0.000 0.037

Among the methods, RL1 demonstrated the closest alignment with the solver values
for the objectives. Additionally, RL1 outperformed all other methods, with the exception of
the solver itself. In comparison to RL2, TS yielded more favorable outcomes. It is important
to note that, as in Section 8.2, only SA solutions with a maximum gap of 0.1 between
the lower and upper objective bounds were considered. Solutions with larger gaps were
deemed inferior, and including them would have skewed the results.

9. Discussion

During the LPM experiments, we observed that RL generated higher project values,
which is noteworthy considering the well-established proficiency of GA, particularly for
10-activity projects, demonstrated in a study with value maximization in a deterministic
setting [5]. One potential explanation for this result could be attributed to the RL algorithm’s
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inherent nature, whereby the agent takes immediate actions and receives corresponding
rewards, thus continually learning the policy throughout each iteration.

In contrast, GA operates in a more randomized manner. Initially, it generates a
population of solutions, evaluates each one, and attempts to enhance them through the
random mixing of pairs. Discovering optimal solutions through this process takes time
for two primary reasons. Firstly, we must await the completion of the entire population’s
generation and evaluation. Secondly, the fitness value of each solution holds minimal
influence on the quality of solutions generated in subsequent iterations, implying that it is
not effectively utilized for learning.

As stated in the Introduction, LPM aims to create value and minimize waste in the
shortest amount of time. One of the main practical implications of our LPM model is the
ability it offers project managers to generate alternative solutions and conduct tradeoff
analysis, considering different risk levels in terms of time and cost overruns. Each solution
generated is an implementable project schedule with the selected mode for each activity,
maximizing the project value according to the stakeholders’ risk threshold.

Our CCBM experiments yielded compelling results, demonstrating that shorter schedules
can be obtained by directly solving the chance-constrained model instead of resorting to
solving the deterministic model and subsequently incorporating time buffers (Objective 1).
This outcome aligns with our expectations. By addressing the chance-constrained problem
directly and considering the actual realization of activity durations, we make informed
decisions on modes and start times that satisfy the true objective of minimizing the delivery
date. In our context, the project duration encompasses the desired on-time probability,
including the PB that ensures project completion within the specified timeframe. To the
best of our knowledge, no previous work on CCBM scheduling has adopted this outlook.

Furthermore, our investigation revealed that the RL approach produces schedules that
are competitive when compared with well-established benchmarks (Objective 2). Notably,
CRL1 achieved shorter durations than CS, even in cases where CS discovered an optimal
solution. This finding can be explained by the fact that CS identifies an optimal solution
based on a specific sample of scenarios, while a different set of realized durations may lead
to an even shorter schedule. Smaller 10-activity projects, as anticipated, allow for a faster
and more comprehensive exploration of the search space. CRL1 excelled in determining
optimal start-time and mode combinations as well as exploring a greater number of realized
duration instances.

We note that the CS runtimes tend to be considerably longer than those of CRL1, as
evident from the distributions shown in Figure 13. This observation further suggests that
relying solely on MILP solver-based solutions may not be the most advantageous option.
In fact, the time limit masks the 75th percentile for CS, suggesting that it is likely much
higher and further supporting the idea that alternative approaches, such as CRL1, offer
more compelling options.

The performance of PR, which yielded comparatively lower-quality outcomes, was
anticipated. Given that PR does not actively search for or learn solutions, it is relatively
easier to discover superior solutions through RL or MILP approaches.

It was interesting to see that CRL1 outperformed CRL2. We had a different expectation
regarding CRL2 because it uses a constant-step action-value update that assigns more
weight to the recent actions and less weight to the earlier actions. This way, it could learn
faster from the better decisions that are made later in the process, as it did in the LPM
experiments. In the CCBM challenge, however, CRL2 did not meet our expectations, and
we need to investigate further the possible causes and potential improvements for CRL2.

One of the main implications of our study is the usefulness for project managers of
directly solving the chance-constrained CCBM problem. By achieving a lower project deliv-
ery time with the desired probability of on-time completion, they could have a competitive
edge in securing contracts. Our RL-based algorithm can handle this problem and generate
appealing solutions.
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Figure 13. (a) Box plot illustrating the runtime distribution of CS. The maximum runtime value
corresponds to the 30-min time limit. (b) Box plot for CRL1 runtime. The center line in each box
represents the median for the runtimes. The bottom and top of the box show the 25th and 75th
percentiles. The whiskers extend to the minimum and maximum runtime values, excluding outliers.
The data points that fall beyond the whiskers are outliers. The top and bottom of the diamonds are
a 95% confidence interval for the mean. The middle of each diamond is the sample average. The
bracket outside of each box identifies the shortest half, which is the densest 50% of the runtimes.

Turning our attention to TVNPV, our experimental results confirm the validity of RL as
a valuable approach for analyzing the tradeoff between project value and NPV, particularly
when compared with established benchmarks. The RL agent in our methodology effectively
captures signals, represented as rewards, at each iteration to assess solution quality and
promptly takes actions accordingly. This enables an informed search process from the
outset, leveraging real-time information. In contrast, TS operates as a neighborhood
search algorithm with a memory mechanism to avoid local optima but does not utilize
acquired information during the search to guide its subsequent steps. Evidently, this
limitation hampers TS’s ability to explore more promising regions of the search space earlier,
potentially explaining the superior performance of RL1 over TS. Although TVNPV is a new
model and no previous method has been applied to solve it, TS has been extensively used
in max-NPV problems, as seen in [49,59,72,107]. Our results indicate the great potential for
the application of RL in this area, which has up until now been tackled by heuristics [60].

As anticipated, the solver consistently produced the best results. It is worth noting,
however, that, as mentioned in Section 4.2, RCPSP-derived problems are NP-hard, imposing
significant computational time constraints on solver-based methods. Even for 10-activity
projects, the solver failed to find an incumbent solution within the allotted 30-min limit for
33% of the projects.

In line with the CCBM experiments, RL1 exhibited superior performance compared
with RL2, which is an interesting observation. In conclusion, our findings strongly suggest
that employing the RL method for analyzing the project value versus NPV tradeoff can
be a valuable tool for project managers. The near-optimal solutions generated through
this approach can be used to construct an efficient frontier that captures the relationship
between project value and rNPV, enabling decision-makers to conduct a thorough tradeoff
analysis and select project plans that satisfactorily meet stakeholders’ requirements.

10. Conclusions

This paper presents a novel approach for LPM that maximizes value while ensuring
adherence to minimum on-schedule and on-budget probabilities defined by decision
makers. The proposed model employs a stochastic programming formulation with an
SA approach. To achieve fast solutions during the project planning stage, we apply RL
methods with two variations for action-value updates. A comprehensive experiment is
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conducted, comparing both RL variants against two benchmarks: a GA and a commercial
solver solution.

The experimental results highlight the potential of RL methods as an appealing alter-
native to GA for generating high-quality solutions within shorter timeframes. Notably, RL2
outperforms RL1 in the LPM experiments. While SA yields higher objective values, it also
produces a higher proportion of infeasible solutions when tested with datasets, along with
extended running times that are typical of large MILP problems known to be NP-hard [108].

Our research offers valuable insights for decision-makers by enabling the plotting of
an efficient frontier that showcases the best project plans for specific on-schedule and on-
budget probabilities. It is crucial to consider the risk of activity durations when evaluating
project plan options. Using deterministic activity durations could lead to an inflated estima-
tion of the project value, which could result in stakeholder dissatisfaction, as demonstrated
in Appendix F.

Our model has some limitations, despite its advantages. We assume that the project
can obtain the resources it needs as long as it meets the budget constraint; however, this
may not always be true, and resource constraints may still be an issue even if there is
enough money to hire/acquire the resources. The TVNPV model addresses this problem
by incorporating resource constraints.

Additionally, we explore a novel formulation of CCBM, specifically the multimode
chance-constrained CCBM problem. We propose an MILP formulation for this problem and
apply SA to handle the chance constraints. Our innovative use of RL provides a solution
for this formulation, and experimental validation reinforces its efficacy.

Further, our research emphasizes the significance of solving the chance-constrained
problem directly to derive a PB tailored to the desired on-schedule probability. The results
demonstrate that solving the chance-constrained CCBM problem leads to shorter project
durations compared with incorporating time buffers in a baseline schedule generated
by the deterministic approach. We also confirm that our RL method yields competitive
schedules compared with traditional approaches such as PR and MILP solutions. This
contribution empowers decision-makers with the potential to achieve shorter schedules
while maintaining the same on-time probabilities.

Finally, we explore the tradeoff between project value and NPV within a stochastic
multimode framework. We propose a MIP formulation utilizing a flow-based model
with a project-specific value function and a robust NPV decision variable. Robustness is
addressed through chance constraints, which are tackled using SA. Leveraging linearization
techniques, we develop MILP models that can be efficiently solved by commercial solvers
for small projects with linear value functions.

To solve the MIP formulation, we leverage RL and present an illustrative example.
The conducted experiment yields satisfactory results, demonstrating the suitability of RL
for solving our proposed formulation. The practical significance of our contribution lies
in identifying the efficient frontier that allows decision makers to make focused trade-
offs between different project plan alternatives based on robust NPV and project value,
representing the project scope and product scope, respectively. This thorough evaluation
facilitates informed decision-making.

Future research will explore alternative RL techniques to enhance the search for
optimal schedules in larger projects, where action-value tables become impractical due to
their size. Methods such as function approximation and neural networks hold untapped
potential for their application in project scheduling. In the former, the action-value table
is replaced by a function; in the latter, interconnected processing nodes substitute for the
table. In both cases, we can have a more compact representation that requires less memory
while using sophisticated representations to approximate the action-value function, even
in high-dimensional spaces.



Algorithms 2023, 16, 395 28 of 38

Author Contributions: Conceptualization, C.S. and A.S.; methodology, C.S. and Y.T.H.; software, C.S.;
validation, C.S.; formal analysis, C.S.; investigation, C.S.; resources, Y.T.H. and A.S.; data curation,
C.S.; writing—original draft preparation, C.S.; writing—review and editing, Y.T.H.; visualization,
C.S.; supervision, Y.T.H. and A.S.; project administration, C.S., Y.T.H. and A.S.; funding acquisition,
Y.T.H. and A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Israel Science Foundation, grant number 2550/21, and the
Bernard M. Gordon Center for Systems Engineering at the Technion.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

AON Activity-On-Node
CCBM Critical Chain Buffer Management
CDF Cumulative Distribution Function

CRL
Chance-Constrained Reinforcement Learning—A method that applies RL to the
problem with chance constraints

CS
Chance-Constrained Solver—A method that solves the MILP problem with
chance constraints

DRL
Deterministic-constrained Reinforcement Learning—A method that applies RL to the
problem with deterministic constraints

DS
Deterministic-constrained Solver—A method that solves the MILP problem with
deterministic constraints

eNPV Expected Net Present Value
FB Feeding Buffer
GA Genetic Algorithm
LPM Lean Project Management
MCC Monte Carlo Control
MILP Mixed-Integer Linear Program
MIP Mixed Integer Program
NPV Net Present Value
PB Project Buffer
PDF Probability Density Function
PR Priority Rule
QFD Quality Function Deployment
RCPSP Resource-Constrained Project Scheduling Problem
RL Reinforcement Learning
RL1 Reinforcement Learning Algorithm Employing Average Rewards
RL2 Reinforcement Learning Algorithm Employing Constant Step
rNPV Robust Net Present Value
RSEM Root Square Error Method
SA Scenario Approach
TS Tabu Search
TVNPV Tradeoff between Project Value and its Net Present Value
WSR Wilcoxon Signed Rank

Appendix A. Functions Used in the Main RL Procedures

Appendix A.1. LPM

Table A1 summarizes our notation for RL, in addition to the notation utilized in the
quantitative models. Subsequently, we present the pseudocode and provide a comprehen-
sive explanation of our MCC method.
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Table A1. Additional notation for the LPM–RL method.

π ε-greedy policy, decision-making rule
q(j, m) Value of choosing mode m for activity j under ε-greedy policy π
π(j, m) Probability of selecting mode m for activity j under ε-greedy policy π
R(j, m) Reward for selecting mode m for activity j under ε-greedy policy π
ε Probability of random action in ε-greedy policy
m̂j or m̂ Selected mode for activity j
Nj Number of times mode mj is selected for activity j
α Step-size parameter

In Algorithm A1, we illustrate the initial phase of our approach, where we initialize
the action-value table with intentionally overestimated values, employing a technique
referred to as optimistic initial values [100]. The purpose of this strategy is to promote
exploration in the early stages. Initially, the modes with the highest action-values are
chosen, resulting in the agent receiving a reward that may be lower than anticipated. This,
in turn, encourages the agent to select other modes with optimistically high action-values
in subsequent iterations.

Algorithm A1: Initialization of the action-value list.

def initialize_action_values
(

J, Mj, ∀j = 1, . . . , J
)

:

for activity j = 1, . . . , J :
for mode m = 1, . . . , Mj:

q(j, m) = large number
return q(j, m), ∀j = 1, . . . J, ∀m = 1, . . . , Mj

When performing the policy calculation (Algorithm A2), we address a well-known
challenge in RL and other search methodologies, namely, the tradeoff between exploration
and exploitation. Opting for a purely greedy policy, where we select the mode with
the highest action-value for each activity, may lead us to quickly find a solution but
potentially overlook a superior solution achievable through a different combination of
modes. Conversely, employing a random policy would result in pure exploration without
any learning. To strike a balance, we utilize a technique called ε-greedy policies, described
in Section 5.

Moving forward, we use the policy to select modes and then compute the reward for
this action (Algorithm A3). The function’s main concept is that a feasible project plan gets
the reward of the project value, which is our optimization goal; otherwise, it gets a zero
reward as a penalty. The plan is feasible only if it meets or exceeds the decision-makers’
requirements for finishing on time and on budget with certain probabilities.

We utilize two distinct approaches for updating the action-values, as described by [100].
The first method, known as average rewards (RL1), involves calculating the action-values
by taking the average of the rewards obtained each time a particular mode is selected for an
activity. To prevent the accumulation of large lists and the associated increase in memory
usage and runtime, we adopt an incremental approach for computing the averages. The
variable Nj in Algorithm A4 represents the number of times that mode was selected for
the activity.

Algorithm A2: Policy calculation.

def calculate_policy
(

J, Mj, q(j, m), ∀j = 1, . . . , J, ∀m = 1, . . . , Mj

)
:

for activity j = 1, . . . , J :
q∗ = max

m
q(j, m)

x= number of modes m for which q(j, m) = q∗

π(j, m) =


(

1
x

)(
1− ε

Mj

(
Mj − x

))
∀q(j, m) = q∗

ε
Mj
∀q(j, m) 6= q∗

return π(j, m), ∀j = 1, . . . , J, ∀m = 1, . . . , Mj
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Algorithm A3: Reward calculation.

def calculate_reward
(

m̂j, ∀j = 1, . . . , J
)

:

simulate large number of project runs
if proportion on time ≥ β and proportion on budget ≥ β̂ :

returnR
(

j, m̂j

)
= V ′′

else:

returnR
(

j, m̂j

)
= 0

Algorithm A4: Action-value update using average rewards (RL1).

def update_action_values_RL1

(
m̂j, ∀j = 1, . . . , J

)
:

for activity j = 1, . . . , J :

q
(

j, m̂j

)
= q

(
j, m̂j

)
+ 1

Nj

(
R
(

j, m̂j

)
− q
(

j, m̂j

))
return q(j, m), ∀j = 1, . . . , J, ∀m = 1, . . . , Mj

The second method, referred to as constant step (RL2), aims to leverage the learning
process by assigning exponentially higher weight to the most recent actions, which are
expected to be more optimal. The constant α in Algorithm A5 represents the step parameter
used in this method.

Algorithm A5: Action-value update using constant step (RL2).

def update_action_values_RL2

(
m̂j, ∀j = 1, . . . , J

)
:

for activity j = 1, . . . , J :

q
(

j, m̂j

)
= q

(
j, m̂j

)
+ α
(
R
(

j, m̂j

)
− q
(

j, m̂j

))
return q(j, m), ∀j = 1, . . . , J, ∀m = 1, . . . , Mj

Appendix A.2. CCBM

In addition to the notation presented in Table A1, the RL algorithm for CCBM incorpo-
rates the notation provided in Table A2.

Table A2. Additional notation for the CCBM RL method.

q(j, m, t) Value of choosing mode m and start time t for activity j under ε-greedy policy π
π(j, m, t) Probability of choosing mode m and start time t for activity j under ε-greedy policy π
R(j, m, t) Reward for choosing mode m and start time t for activity j under ε-greedy policy π
t̂j Chosen start time for activity j
dML

jm̂ Most likely duration of activity j in chosen mode m̂
rk

jm̂ Quantity of resources of type k needed to execute activity j in chosen mode m̂
A(j) Set of activities executed in parallel to activity j
Nj Number of times mode mj and start time tj are chosen for activity j

As in LPM, we begin by initializing the list of action-values (Algorithm A6). Each
action consists of selecting an activity mode and start time. We divide the time interval
from zero to the latest possible start of the activity into 10 equal segments and use them
as the start times. We then use the action-value list to compute the policy (Algorithm A7).

Algorithm A6: Initialization of the action-value list.

def initialize_action_values
(

J, Mj, LSj, ∀j = 1, . . . , J
)

:

for activity j = 1, . . . , J :
for mode m = 1, . . . , Mj :

for start time t = 0, LSj
9 , 2LSj

9 , . . . , LSj :
q(j, m, t) = large number

return q(j, m, t), ∀j = 1, . . . J, ∀m = 1, . . . , Mj, ∀t = 0, LSj
9 , 2LSj

9 , . . . , LSj
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Algorithm A7: Policy calculation.

def calculate_policy
(

J, Mj, q(j, m, t), ∀j = 1, . . . , J
)

:

for activity j = 1, . . . , J :
q∗ = max

m,t
q(j, m, t)

x = number of action− values for which q(j, m, t) = q∗

π(j, m, t) =


(

1
x

)(
1− ε

10Mj

(
10Mj − x

))
, ∀m, t|q(j, m, t) = q∗

ε
10Mj
∀m, t|q(j, m, t) 6= q∗

return π(j, m, t), ∀j = 1, . . . , J, ∀m = 1, . . . , Mj, ∀t = 0, LSj
9 , 2LSj

9 , . . . , LSj

We then follow the policy to select an action for each activity (Algorithm A8), which
involves choosing a mode and a start time based on the probabilities in the policy table.
To ensure that the start times respect the precedence relations, we shift each activity to the
right by adding the finish time of its immediate predecessor to its chosen start time. This
means that if activity j has a start time of t̂j, we move it to start at t̂j plus the finish time of
its immediate predecessor. We use the most likely duration of each activity in its selected
mode to calculate the finish times. Finally, we arrange all activities in ascending order of
their adjusted start times, resulting in a precedence-feasible list of activities and their modes.

Algorithm A8: Choose activity mode and start time.

def choose_mode_start
(

π(j, m, t), dML
jm̂ ,
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(j)
)

return sorted
(

m̂j

∣∣∣j ∈ {1, . . . , J}, m̂j ∈
{

1, . . . Mj

}
, key = t̂∗j

)
We note that choosing different start times for the actions is equivalent to choosing

different precedence combinations between the activities. The range of possible start
times from zero to the upper bound allows for more flexibility and diversity in starting
or delaying each activity, which can lead to a better and richer search space for solutions.
Moreover, by adjusting the activity list to be precedence-feasible, we avoid wasting time on
infeasible solutions or losing potentially good solutions.

The next step in the algorithm is to compute the reward for the actions taken
(Algorithm A9). We first construct the early-start baseline schedule by taking each ac-
tivity from the list and placing it at the earliest possible time. We start with the finish time
of the most immediate predecessor, and if there are not enough resources, we shift the
activity to the right repeatedly until we reach the next scheduled activity finish time where
there are enough resources. Once we have the schedule, we calculate the project delivery
date. For instance, if the decision-makers want a 95% probability of completing the project
on time, we simulate the baseline schedule 1000 times, sort the finish times, and take the
950th element of the finish time list as the delivery date. Since our goal is to minimize the
delivery date, we define the reward as 1/Dp to follow the RL idea of maximizing the reward.

Algorithm A9: Reward calculation.

def calculate_reward
(

sorted
(

m̂j

)
,
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jm̂ , rk

jm̂, Rk, ∀j = 1, . . . , J, ∀k = 1, . . . , K
)

:

t̂∗j
(

1st activity mode in sorted
(

m̂j

))
= 0

for activity mode m̂j in sorted
(

m̂j

)
except 1st activity mode :

t̂∗j = min
(

tj

∣∣∣tj ≥ t̂∗i + dML
im̂ , ∀i ∈
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jm̂ ≤ Rk

surplus, ∀k = 1, . . . , K
)

,

where Rk
surplus = min

[tj ,tj+dML
jm̂ )

(
Rk −∑i∈A(j) rk

im̂

)
returnR

(
j, m̂j, t̂j

)
= 1/D

∣∣∣Pr
[
t∗J+1 ≤ D

]
≥ β, ∀j = 1, . . . , J
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The final step in the algorithm is to update the action-values using the RL1 and RL2
methods. These methods are almost the same as those in Appendix A.1, with only two
changes: we use

(
J, m̂j, t̂j, ∀j = 1, . . . , J

)
instead of

(
J, m̂j, ∀j = 1, . . . , J

)
as the arguments

for the functions, and we substitute q
(

j, m̂j
)

with q
(

j, m̂j, t̂j
)

andR
(

j, m̂j
)

withR
(

j, m̂j, t̂j
)
.

Appendix A.3. TVNPV

In this section, we focus on the calculate_reward function (Algorithm A10) for TVNPV,
which is different from the one for CCBM as it uses rNPV instead of the project delivery
date. The other RL functions for TVNPV are identical to those for CCBM, as described in
Appendix A.2. We first explain how we insert each activity into the baseline schedule. We
do this for each activity in sequence. We start by finding the interval between the earliest
possible start that respects the precedence relations and the latest finish time of the activities
already scheduled. We divide this interval into 10 equal parts and then place the activity ac-
cording to its start time t̂j in the policy list. For instance, if t̂j is the third start time in the pol-
icy list, we use the third part of the interval, rounding it to the closest finish time of an activ-
ity. If there are not enough resources, we keep moving the activity to the right until we reach
the next finish time of a scheduled activity where there are enough resources. Once we have
the schedule, we calculate the value of the objective function. To calculate rNPV, we simu-
late the NPV CDF. For example, if the decision makers want a 95% probability of achieving
the rNPV, we simulate the baseline schedule 1000 times, sort the NPVs, and take the 50th ele-
ment of the NPV list as the rNPV. We define the reward as the value of the objective function.

Algorithm A10: Reward calculation.

def calculate_reward
(

sorted
(

m̂j

)
,
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)

:

t∗sorted(m̂j)[0]
= 0

for activity mode m̂j in sorted
(

m̂j

)
[1 :] :

I = b− a, where b = max
(

t∗j + dML
jm̂

)
, a = min

(
t∗j
∣∣∣t∗j ≥ t̂∗i + dML

im̂ , ∀i ∈
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Appendix B. A New Fitness Function for the Stochastic GA
We modified the fitness function of the GA that we used for comparison because it

was designed only for deterministic problems. Our stochastic datasets required a different
approach. We defined the fitness value f (I) of a solution I as

f (I) =
{

V ′′ (I), if E(I) = 0
V ′′ (I)− E(I) + Min_V ′′ (feasible solutions)−Max_V ′′ (all solutions), otherwise,

where E(I) = max
(
0, β̂− proportion of on− budget runs

)
. A solution I is the chosen

mode for each activity. This formula penalizes an infeasible solution by measuring the
difference between the actual and the desired on-budget proportion. This scaled penalty
helps the best infeasible solutions become feasible through crossover. Moreover, the formula
ensures that no infeasible solution has a higher fitness value than a feasible one, as [5] did.

Appendix C. LPM Experiment Data Generation and Sample Sizes

To create more data for the PSPLIB instances that matched our problem specifications,
we randomly assigned resource unit costs and activity mode fixed costs from a uniform
distribution within the ranges of (5, 50) and (0, 14,000), respectively, following the method
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of [5]. We calculated the budgets for each project by taking the average of the project
costs, with all modes having the highest cost (fixed and resource) and all modes having the
middle cost. Similarly, we computed the due dates for each project by taking the average of
the project duration, with all modes having the longest duration and all modes having the
middle duration.

We had two value attributes (V = 2) with relative weights of 0.6 and 0.4. We also
defined an additive project value function Fv for each attribute in the linear objective
function. Thus, the objective function V ′′

(
F1

(
V′11, . . . , V′J1

)
, . . . , FV

(
V′1V , . . . , V′JV

))
was

0.6∑J
j=1 V′j1 + 0.4∑J

j=1 V′j2. We randomly selected the value parameters Vjmv from a uniform
distribution within the interval (0, 10).

We set the desired probability of being on schedule and on budget to 0.95 and ran
each solution 1000 times for each project to estimate the percentage of scenarios that met
these criteria. Unlike our model, the model in [5] does not have hard due date constraints;
rather, it has penalty costs instead. Therefore, we used a very high penalty cost for violating
the due date in our GA code, making it impossible to generate a feasible schedule that
exceeded the due date.

We employed our SA model (Section 4.1) with 1000 scenarios to match the 1000 project
simulation runs for the GA and RL.

Appendix D. Mode and Activity PRs Employed in the CCBM Experiment

A comprehensive assessment was conducted by [45] to evaluate a set of 60 PRs for
mode selection and activity selection across diverse datasets. The analysis revealed that the
combination of PRs resulting in the shortest project durations consisted of selecting modes
based on the least total resource usage (LTRU) and activities based on the greatest resource
demand (GRD). Detailed formulas for LTRU and GRD can be found in [45].

To streamline the problem, we initially transformed the multimode scenario into a
single-mode scenario by implementing the LTRU PR. Subsequently, we utilized the GRD
PR in conjunction with the widely recognized serial schedule generation scheme [109] to
generate the project schedule.

Appendix E. The TS Algorithm Used in This Paper

We used the TS method from [107] as a comparison. We made some changes to fit the
formulation in Section 4.3:

• We replaced the original pure NPV objective with the objective function (29) from
Section 4.3.

• TS was for deterministic problems only. For our stochastic problem, we followed the
RL algorithms to compute the objective function: we ran 1000 project simulations as
shown in Algorithm A10 and described in Appendix A.3.

• We did not use any penalty functions because all our solutions were feasible.

TS is not discussed in depth in this paper. For more details on this topic, see [107].

Appendix F. Proportion of Infeasible Solutions

In Table A3, we present the percentage of solutions that were deemed infeasible. Each
solution underwent 10,000 simulation runs, with randomly generated activity durations
drawn according to the distributions and parameters outlined in Appendix B. If fewer than
95% of the simulation runs were completed within the specified time frame or budget, the
solution was classified as infeasible. For each algorithm, we recorded the proportion (P)
of the 535 solutions that fell into this category, along with the corresponding Newcombe
confidence interval (CI) for the proportion of infeasible solutions (calculated using [110]).

Analyzing the results depicted in Table A3, it becomes evident that SA exhibited a
significantly higher proportion of infeasible solutions compared with RL, which nullified
its advantage of higher values.
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Table A3. Confidence interval for proportion of infeasible solutions, 95% confidence level.

RL1 RL2 SA

P CI P CI P CI

0.09 [0.07, 0.12] 0.09 [0.06, 0.11] 0.37 [0.33, 0.41]

Appendix G. Comparing Deterministic to Stochastic Project Values

The significance of incorporating project risk by utilizing stochastic activity durations
is highlighted in Table A4. The table presents a pairwise comparison of project values
between the deterministic and stochastic versions. In the deterministic version, the most
likely durations were used instead of three-point estimates. Consequently, project runs were
not simulated in the GA and RL algorithms, and the MILP was solved without generating
scenarios. Across all algorithms, the project value objectives in the deterministic version
exhibit a significant increase compared with their counterparts in the stochastic version.

Table A4. WSR test p-values comparing deterministic to stochastic project values. The alternative
hypothesis is that deterministic values are greater.

GA RL1 RL2 MILP

p-value 0.000 0.000 0.000 0.000
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