
Citation: Guerra, J.F.;

Garcia-Hernandez, R.; Llama, M.A.;

Santibañez, V. A Comparative Study

of Swarm Intelligence Metaheuristics

for UKF-Based Neural Training

Applied to Identification and Control

of Robotic Manipulator. Algorithms

2023, 16, 393. https://doi.org/

10.3390/a16080393

Academic Editors: Sándor Szénási

and Gábor Kertész

Received: 1 July 2023

Revised: 10 August 2023

Accepted: 15 August 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Comparative Study of Swarm Intelligence Metaheuristics in
UKF-Based Neural Training Applied to the Identification and
Control of Robotic Manipulator
Juan F. Guerra , Ramon Garcia-Hernandez * , Miguel A. Llama and Victor Santibañez

Tecnologico Nacional de Mexico, Instituto Tecnologico de La Laguna, Torreon 27000, Mexico;
m.jfguerrac@correo.itlalaguna.edu.mx (J.F.G.); mllama@lalaguna.tecnm.mx (M.A.L.);
vasantibanezd@lalaguna.tecnm.mx (V.S.)
* Correspondence: rgarciah@lalaguna.tecnm.mx

Abstract: This work presents a comprehensive comparative analysis of four prominent swarm
intelligence (SI) optimization algorithms: Ant Lion Optimizer (ALO), Bat Algorithm (BA), Grey Wolf
Optimizer (GWO), and Moth Flame Optimization (MFO). When compared under the same conditions
with other SI algorithms, the Particle Swarm Optimization (PSO) stands out. First, the Unscented
Kalman Filter (UKF) parameters to be optimized are selected, and then each SI optimization algorithm
is executed within an off-line simulation. Once the UKF initialization parameters P0, Q0, and R0 are
obtained, they are applied in real-time in the decentralized neural block control (DNBC) scheme for
the trajectory tracking task of a 2-DOF robot manipulator. Finally, the results are compared according
to the criteria performance evaluation using each algorithm, along with CPU cost.

Keywords: swarm intelligence; neural networks; robot control; unscented Kalman filter

1. Introduction

Metaheuristics can be classified into various categories based on their natural inspi-
ration [1]. One prominent category is swarm intelligence-based algorithms, which draw
inspiration from the collective behavior of social insect colonies, bird flocks, or animal
herds. Swarm intelligence (SI) algorithms simulate the cooperative and self-organizing
behavior observed in natural swarms to solve complex optimization problems [2,3].

SI, inspired by the collective behavior of social insect colonies, encompasses a diverse
range of algorithms that facilitate efficient problem-solving through cooperation and self-
organization. These algorithms simulate the collaboration and information exchange
observed in natural swarms, enabling them to achieve global optimization. By harnessing
the collective intelligence exhibited by swarm systems, SI metaheuristics offer promising
avenues for optimizing neural network training and enhancing the identification and
control capabilities of robotic systems.

To conduct a comprehensive analysis, we selected four state-of-the-art SI algorithms
known for their unique characteristics and optimization strategies. Ant Lion Optimization
(ALO), drawing inspiration from the hunting behavior of ant lions; employs a powerful
search mechanism to explore and exploit the solution space efficiently. Bat Algorithm (BA)
mimics the echolocation behavior of bats, utilizing frequency tuning and pulse emission
concepts to achieve effective optimization. Grey Wolf Optimizer (GWO) emulates the
social hierarchy and hunting dynamics of grey wolves, employing three fundamental
types of wolf-inspired operators to strike a balance between exploration and exploitation.
Moth Flame Optimization (MFO), inspired by the moth’s phototaxis behavior toward
flames, incorporates attraction and repulsion mechanisms to guide the optimization process
effectively. Finally, we compare these algorithms against the well-established Particle
Swarm Optimization (PSO), which draws inspiration from the social behavior of bird

Algorithms 2023, 16, 393. https://doi.org/10.3390/a16080393 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16080393
https://doi.org/10.3390/a16080393
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9421-2108
https://orcid.org/0000-0003-0602-8795
https://orcid.org/0000-0002-6280-0981
https://orcid.org/0000-0002-0870-8615
https://doi.org/10.3390/a16080393
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16080393?type=check_update&version=1

Algorithms 2023, 16, 393 2 of 23

flocking, enabling particles to adaptively search the solution space based on individual and
swarm experience.

Overall, SI algorithms offer powerful optimization techniques that leverage the col-
lective intelligence and self-organization observed in natural swarms. Their robustness,
global exploration capabilities, self-adaptation, parallelism, scalability, and bio-inspired
concepts make them well-suited for addressing a wide range of optimization problems in
various domains. By mimicking the behavior of swarms, these algorithms provide effective
solutions and insights for solving complex optimization challenges [4,5].

Furthermore, the nature-inspired characteristics of SI optimization methods introduce
robustness and adaptability to different problem domains. They can be readily applied to
robotic systems, including those with complex dynamics and uncertain environments [6].
By employing metaheuristic optimization techniques, the Unscented Kalman Filter (UKF)
initialization parameters can be tailored to specific robotic platforms and tasks, leading to
an improved estimation and control performance.

By integrating SI algorithms with UKF-based neural training, we aim to improve the ac-
curacy of identification and control in a two-degrees-of-freedom (DOF) robot manipulator.

To elaborate further, let us delve into the distinguishing features and underlying
principles of ALO, BA, GWO, and MFO algorithms. ALO utilizes a population of artificial
ant lions to mimic hunting behaviors, where each ant lion represents a potential solution in
the search space [7]. The algorithm employs pride update and position update mechanisms
to perform efficient exploration and exploitation. BA, on the other hand, emulates the
echolocation behavior of bats to optimize solutions. Bats navigate through a combination
of random flight, frequency tuning, and pulse emission, allowing them to find optimal so-
lutions in dynamic environments [8]. GWO, inspired by the cooperative hunting dynamics
of grey wolves, utilizes three types of wolf operators (alpha, beta, and delta) to balance
exploration and exploitation. The alpha wolf coordinates exploration, while the beta and
delta wolves perform local exploitation and global exploration, respectively [9]. MFO
draws inspiration from the attraction of moths to flame, employing attraction and repulsion
mechanisms to guide the optimization process effectively. Moths are attracted to the light
source but are also repelled by other moths, leading to a balanced exploration–exploitation
trade-off [10].

To compare these algorithms against the widely used PSO, we consider PSO ability
to adaptively search the solution space based on individual and swarm experience. PSO
employs velocity updates and position adjustments to explore and exploit the search space
efficiently [1,11,12]. By contrasting the unique characteristics and optimization strategies of
ALO, BA, GWO, and MFO with the PSO algorithm, we can gain valuable insights into their
relative strengths and weaknesses by applying them to our proposed identification and
control scheme. We selected these algorithms mainly because of the following advantages:
their small numbers of tuning parameters, low CPU time costs, the ability to maintain joint
torque limits, and a better overall performance than other SI algorithms, such as Artificial
Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Accelerated
Particle Swarm Optimization (APSO), and Whale Optimization Algorithm (WOA).

The structure of this work is as follows. In Section 2, we mentioned some main
characteristics of the SI algorithms employed. Section 3 describes the methodology of
neural identification and control scheme. The simulation and real-time results for trajectory
tracking are presented in Section 4. Discussions of the results are reflected in Section 5.
Finally, concluding remarks are given in Section 6.

2. Swarm Intelligence Algorithms

Metaheuristics are a family of optimization algorithms designed to find suitable
solutions for complicated optimization problems. In contrast to traditional optimization
methods, which aim to find the global optimal, metaheuristic algorithms obtain acceptable
results quickly, even in the presence of multiple local optima.

Algorithms 2023, 16, 393 3 of 23

In summary, metaheuristics are fantastic tools for finding good solutions to a wide
variety of optimization problems. They are especially useful in situations where traditional
methods are not effective, such as problems with high dimensionality, non-convex, noise,
or incomplete data.

Bio-inspired algorithms are unique metaheuristic methods inspired by natural pro-
cesses, phenomena, concepts, and systems mechanisms. Each has features and strengths
that provide interpretability and inspiration for solving real-world problems in diverse
fields, such as engineering, computer science, economics, and biology. These algorithms
mimic the behavior of systems in nature, such as evolutionary computation and swarm
behavior [1].

SI is a subfield of bio-inspired algorithms that draws inspiration from collective
behavior in nature and focuses on the emergent behavior of decentralized populations
through local interactions and self-organization. Figure 1 shows the flow chart of the
proposed methodology, which is described as follows: firstly, the UKF parameters to be
optimized are selected; then, each SI optimization algorithm is executed within an off-line
simulation. Once the UKF initialization parameters P0, Q0, and R0 are obtained, they
are applied in real-time in the decentralized neural block control (DNBC) scheme for the
trajectory tracking task of a 2-DOF robot manipulator. Finally, the results are compared
according to the objective function evaluation.

Figure 1. Proposed methodology flowchart.

Although there is an endless number of SI algorithms, which have multiple modifica-
tions, in the proposed approach, we use algorithms in their original versions, of which a
brief description is presented below.

Algorithms 2023, 16, 393 4 of 23

2.1. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a widely used metaheuristic algorithm inspired
by the collective behavior of bird flocks or fish schools. It has demonstrated remarkable
success in solving various optimization problems [11]. PSO operates on the principle of
iteratively adjusting the positions and velocities of particles in a multidimensional search
space. Algorithm 1 shows the implementation of PSO [12].

Algorithm 1 PSO Pseudocode

Require:
1: n: number of particles
2: d: dimension of the search space
3: tmax: maximum number of iterations
4: w: inertia weight
5: ϕ1: cognitive acceleration coefficient
6: ϕ2: social acceleration coefficient
7: xi: position of particle i
8: vi: velocity of particle i
9: pbesti: best position of particle i

10: gbest: global best position
Ensure:
11: x∗: optimal solution
12: f ∗: optimal fitness
13: Function PSO()
14: for i = 1 to n do
15: Initialize xi and vi randomly
16: end for
17: while t < tmax do
18: for i = 1 to n do
19: Update velocity: vi ← wvi + ϕ1(pbesti − xi) + ϕ2(gbest− xi)
20: Update position: xi ← xi + vi
21: end for
22: for i = 1 to n do
23: if f (xi) < f (pbesti) then
24: pbesti ← xi
25: end if
26: if f (xi) < f (gbest) then
27: gbest← xi
28: end if
29: end for
30: t← t + 1
31: end while
32: x∗ ← gbest
33: f ∗ ← f (gbest)
34: end Function

2.2. Ant Lion Optimizer (ALO)

The Ant Lion Optimizer (ALO) is a potent metaheuristic algorithm inspired by the
predatory behavior of ant lions. It has gained significant attention in optimization engi-
neering due to its ability to deal with complex problems effectively. ALO displays unique
characteristics that distinguish it from other metaheuristics, such as PSO [7].

ALO emulates the hunting strategy employed by ant lions to capture their prey, which
consists of building conical pits in sandy areas. For optimization problems, ALO capitalizes
on this natural behavior to explore and exploit the solution space efficiently. Algorithm 2
shows the implementation of ALO [13].

Algorithms 2023, 16, 393 5 of 23

Algorithm 2 ALO Pseudocode

Require:
1: p: number of antlions
2: u: upper bounds of variables
3: l: lower bounds of variables
4: alpha: evaporation rate
5: beta: attractiveness rate
6: tmax: maximum number of iterations
7: xi: position of antlion i
8: f (xi): fitness of antlion i
9: x∗i : best position of antlion i

10: f (x∗i): best performance of antlion i
Ensure:
11: x∗: optimal solution
12: f ∗: optimal fitness
13: Function ALO()
14: for i = 1 to p do
15: Initialize xi randomly
16: end for
17: while t < tmax do
18: for i = 1 to p do
19: Generate a new position x′i
20: Calculate the fitness of x′i
21: if f (x′i) < f (xi) then
22: xi ← x′i
23: end if
24: end for
25: for i = 1 to p do
26: Evaporation: xi ← xi + α(x∗i − xi)

27: Attractiveness: xi ← xi + β(xi − xbest)

28: end for
29: t← t + 1
30: end while
31: x∗ ← xbest

32: f ∗ ← fbest

33: end Function

2.3. Bat Algorithm (BA)

The Bat Algorithm (BA) is an SI algorithm inspired by the echolocation behavior of
bats. The BA demonstrates unique characteristics that set it apart from other metaheuristic
algorithms [8].

The algorithm begins by initializing a population of bats, where each bat represents a
potential solution to the optimization problem. Bats fly through the search space, continu-
ously adjusting their positions and velocities based on their knowledge. BA implementation
is illustrated in Algorithm 3 [1].

Algorithms 2023, 16, 393 6 of 23

Algorithm 3 BA Pseudocode

Require:
1: n: number of bats
2: d: dimension of the search space
3: tmax: maximum number of iterations
4: A: loudness
5: r: pulse rate
6: α: cooling factor
7: γ: wavelength
8: xi: position of bat i
9: f (xi): fitness of bat i

10: x∗i : best position of bat i
11: f (x∗i): best fitness of bat i
Ensure:
12: x∗: optimal solution
13: Function BA()
14: for i = 1 to n do
15: Initialize xi randomly
16: end for
17: while t < tmax do
18: for i = 1 to n do
19: Generate a new position x′i
20: Calculate the fitness of x′i
21: if f (x′i) < f (xi) then
22: xi ← x′i
23: end if
24: Update loudness: αi ← αi − 1
25: Update pulse rate: βi ← βi + 1
26: end for
27: for i = 1 to n do
28: Probability of loudness: pi =

1
αi

29: Probability of pulse rate: qi =
1
βi

30: if pi > qi then
31: xi ← xi + γ(x∗i − xi)
32: else
33: xi ← xi − γ(xi − xbest)
34: end if
35: end for
36: t← t + 1
37: end while
38: x∗ ← xbest
39: f ∗ ← f (xbest)
40: end Function

2.4. Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) is an SI algorithm inspired by the hunting behavior
of grey wolves in nature. The GWO imitates the social hierarchy and cooperative hunting
strategies observed in wolf packs to guide the search for optimal solutions [9].

In the GWO, a population of candidate solutions, represented as grey wolves, explores
the search space by adjusting their positions and mimicking the hunting behaviors of alpha,
beta, and delta wolves. GWO implementation is shown in Algorithm 4 [14].

Algorithms 2023, 16, 393 7 of 23

Algorithm 4 GWO Pseudocode

Require:

1: n: number of wolves

2: d: dimension of the search space

3: tmax: maximum number of iterations

4: a: alpha coefficient

5: b: beta coefficient

6: c: delta coefficient

7: xi: position of wolf i

8: f (xi): fitness of wolf i

9: x∗i : best position of wolf i

10: f (x∗i): best fitness of wolf i

Ensure:

11: x∗: optimal solution

12: Function GWO()

13: for i = 1 to n do

14: Initialize xi randomly

15: end for

16: while t < tmax do

17: for i = 1 to n do

18: Calculate a, b, and c

19: Update position: xi ← xi + a(x∗i − xi) + b(xb
i − xi) + c(xc

i − xi)

20: end for

21: for i = 1 to n do

22: if f (xi) < f (x∗i) then

23: x∗i ← xi

24: end if

25: end for

26: t← t + 1

27: end while

28: x∗ ← xbest

29: f ∗ ← f (xbest)

30: end Function

2.5. Moth Flame Optimization (MFO)

The Moth Flame Optimization (MFO) is an SI algorithm inspired by the navigation
behavior of moths in nature. The MFO mimics the attraction of moths toward artificial
light sources to guide the search for optimal solutions [10]. Algorithm 5 displays MFO
implementation [15].

Algorithms 2023, 16, 393 8 of 23

Algorithm 5 MFO Pseudocode

Require:
1: n: number of moths
2: d: dimension of the search space
3: tmax: maximum number of iterations
4: a: absorption coefficient
5: r: random number
6: xi: position of moth i
7: f (xi): fitness of moth i
8: x∗i : best position of moth i
9: f (x∗i): best fitness of moth i

Ensure:
10: x∗: optimal solution
11: Function MFO()
12: for i = 1 to n do
13: Initialize xi randomly
14: end for
15: while t < tmax do
16: for i = 1 to n do
17: Generate a new position x′i
18: Calculate the fitness of x′i
19: if f (x′i) < f (xi) then
20: xi ← x′i
21: end if
22: Absorption: xi ← xi − a(x∗i − xi)
23: Random walk: xi ← xi + r(xbest − xi)
24: end for
25: t← t + 1
26: end while
27: x∗ ← xbest
28: f ∗ ← f (xbest)
29: end Function

3. Decentralized Neural Block Control (DNBC-UKF)

This section shows the proposed SI optimization approach for UKF learning of decen-
tralized neural block control (DNBC-UKF) [16] applied to a 2-DOF robot manipulator.

For this purpose, we take the system to the following form

X 1
i,k+1 = f 1

i

(
X 1

i

)
+ B1

i

(
X 1

i

)
X 2

i + Γ1
i`,

...

X r
i,k+1 = f r

i

(
X 1

i , · · · ,X r
i

)
+ Br

i

(
X 1

i , · · · ,X j
i

)
ui + Γr

i`

(1)

where i = 1, . . . , N, j = 1, . . . , r − 1, l = 1, . . . , mij. N is the number of subsystems and

ui ∈ Rmi is the input vector. f j
i , Bj

i, and Γj
i are assumed smooth and bounded functions, with

f j
i (0) = 0, and Bj

i(0) = 0; in addition, the structures of the subsystems are expressed by

mi1 ≤ mi2 ≤ · · · ≤ mij ≤ pi. On the other hand, the interconnection terms Γj
i are described

by reflecting the relation between the i-th subsystem and the other ones.

Algorithms 2023, 16, 393 9 of 23

The following RHONN structure is used in order to identify the behavior of system (1)

x1
i,k+1 = w1

i,kS
(
X 1

i,k

)
+ w

′1
i X 2

i,k,

...

xr
i,k+1 = wr

i,kS
(
X 1

i,k, · · · ,X r
i,k

)
+ w

′r
i ui,k

(2)

where xj
i,k+1 =

[
x1
i x2

i · · · xr
i

]> is the j-th block neuron state with i = 1, . . . , N and

j = 1, . . . , r − 1; w
′ j
i,k are fixed parameters with rank(w

′ j
i) = mij. S(•) is the activation

function and ui,k represents the input vector.

The NN training task consists of finding values of wj,k
i that minimize the identification

error. For this reason, we propose to use a learning method using only the identification
error information, such as the UKF described in Figure 2.

-

-

- -
-

-
-

-

-

-
-

-
-

-
-

-
-

- -

-

Figure 2. UKF framework.

The UKF is a powerful estimation and control tool: with wide applications in control
theory; for the identification of nonlinear systems; and for the training of neural networks.
Its versatility lies in its ability to handle nonlinear dynamics, non-Gaussian distributions,
and uncertainties associated with real-world systems.

In the context of control theory, the UKF serves as an efficient means for state estima-
tion in nonlinear systems. It allows for the real-time estimation of the system’s internal
states, which are often unobservable or difficult to measure directly [17]. By incorporating
nonlinear models and the measured system outputs, the UKF provides accurate and reliable
estimates of the system’s states, enabling effective control strategies to be devised. The
estimated states obtained from the UKF can then be utilized for feedback control, trajectory
tracking, and system stabilization in a wide range of dynamic systems [18,19].

The UKF also plays a significant role in the identification of nonlinear systems. Identi-
fication refers to the process of determining the mathematical models or parameters that
represent the underlying dynamics of a system based on observed input–output data. Non-

Algorithms 2023, 16, 393 10 of 23

linear systems pose significant challenges in identification due to their complex dynamics.
The UKF addresses these challenges by iteratively updating the system model parameters,
enabling an accurate estimation of the nonlinear system’s behavior. By leveraging the
filtering and estimation capabilities of the UKF, researchers and engineers can effectively
identify the dynamics, parameters, and structure of complex nonlinear systems, leading to
an improved understanding and control of such systems [20].

Additionally, the UKF is employed in the training of neural networks, specifically in
the context of Recurrent Neural Networks (RNNs). RNNs are powerful architectures for
modeling sequential data and time series. It is possible to use the UKF in the training process
to optimize the internal states, weights, and biases of the network in order to improve
its learning capability and prediction accuracy [21]. By incorporating the UKF within
the training process, the neural network can effectively capture and model the complex
nonlinear dependencies present in the data, leading to an improved performance in tasks
such as time series forecasting, speech recognition, and natural language processing [22,23].

The initialization of a UKF involves determining the initial state estimate, the covari-
ance matrix and the process noise covariance matrix, which can make the selection of these
initialization parameters a complex task, especially when using heuristic techniques [18].
The challenge arises because these parameters significantly impact the filter’s perfor-
mance and are often problem-specific, requiring domain expertise and careful tuning. The
manual selection of these parameters can be time-consuming, and may not guarantee
optimal performance.

In such scenarios, employing metaheuristic optimization methods proves to be a
promising approach for selecting these initialization parameters. Metaheuristic optimiza-
tion methods offer several advantages when applied to the selection of UKF initialization
parameters. Firstly, these methods provide a systematic and automated approach to pa-
rameter tuning, relieving the burden of manual parameter selection. They can efficiently
explore the vast parameter space, searching for the optimal combination that minimizes the
error or maximizes a performance metric. By leveraging the search mechanisms inherent in
metaheuristic algorithms, such as exploration and exploitation, the initialization parameters
can be fine-tuned to enhance the convergence and accuracy of the UKF.

Secondly, metaheuristic optimization methods can handle nonlinearity, multimodal-
ity, and non-convexity in the optimization landscape, which are common challenges in
parameter selection for UKF initialization. These algorithms possess the flexibility to adapt
and explore diverse regions of the parameter space, avoiding local optima and finding
near-optimal or globally optimal solutions.

3.1. SI Optimization for UKF Learning

Using the UKF to estimate the NN weights, and correcting for identification errors, the
filter is updated at each step. Usually, Pj

i , Qj
i , and Rj

i are initialized as diagonal matrices with

entries Pj
i (0), Qj

i(0), and Rj
i(0), respectively. Given that, typically, these entries are defined

heuristically, we propose employing SI methods to improve the UKF training algorithm.
According to the optimal control theory [24], it is common to use error-based perfor-

mance measures such as those described in Table 1. On the other hand, in (3), the Bolza
form [25] is described and used as an objective function to evaluate the overall performance,
including information from the control input of the system.

J =

Bolza form︷ ︸︸ ︷
e>k f Lek f T︸ ︷︷ ︸
Mayer form

+

k f

∑
k0

[
e>k Qek + u>k Ruk

]
T︸ ︷︷ ︸

Lagrange form

(3)

Algorithms 2023, 16, 393 11 of 23

where k0 is the initial iteration; k f is the final iteration; T is the sampling time; ek is
the error vector; uk is the control input vector; and L, Q, and R are gain matrices with
appropriate dimensions.

Table 1. Performance criteria.

Criteria Formula

Integral Absolute Error (IAE)
t
T
∑

k=0
|ek|

Integral Squared Error (ISE)
t
T
∑

k=0
e2

k

Integral Time-weighted Absolute Error (ITAE)
t
T
∑

k=0
k|ek|

Integral Time-weighted Squared Error (ITSE)
t
T
∑

k=0
ke2

k

Although the Bolza form is a good performance criterion, it presents a serious dis-
advantage for this work. The final value of the error vector is not very useful for our
methodology because it does not significantly represent the system identification and trajec-
tory tracking; in other words, we need to know how it behaves throughout the simulation.
For this reason, we propose an objective function, based on that found in [26], for the SI
algorithms as follows:

fobj = $1MSE(ei,k) + $2MSE(zi,k) +

t
T

∑
k=0

[$3(ui,k−1 − ui,k)] (4)

where MSE represents the mean square error; t is the total time of the simulation; ei,k
represents the identification error; zi,k is the tracking error; ui,k represents the input control;
and $1, $2, and $3 are scaling factors to bring all the terms of the objective function to a
similar order.

3.2. DNBC-UKF Controller Design

Once the RHONN training has been defined, we design a controller based on the
tracking error zi as follows:

zj
i,k = xj

i,k − x1j
id,k (5)

where xj
id,k is the desired trajectory signal and xj

i,k is the NN state [27].
The new value is obtained as:

zj
i,k+1 = wj

i,kS(X 1
i,k, . . . ,X j

i,k) + w
′ j
i ui,k − xj

id,k+1. (6)

Then, system (2) should be expressed as a function of variables zj
i,k as:

zj
i,k+1 = kj

iz
j
i,k + w

′ j
i ui,k − xj

id,k+1 (7)

When a sliding mode control strategy is implemented, the control input must be
limited by u0i as:

|ui,k| ≤ u0i. (8)

The sliding surface is designed as SDi,k = zr
i,k = 0; then, system (7) is rewritten

as follows:
SDi,k+1 = wr

i,kS(X 1
i,k, . . . ,X r

i,k) + w
′r
i ui,k − xr

id,k+1. (9)

Algorithms 2023, 16, 393 12 of 23

The proper selection of the sliding manifold [28] presents the possibility of finding a
bounded control law by u0i; the control ui,k is composed as

ui,k =

ueqi,k for

∥∥∥ueqi,k

∥∥∥ ≤ u0i,

u0i
ueqi ,k

‖ueqi ,k‖ for
∥∥∥ueqi,k

∥∥∥ > u0i,
(10)

where ueqi,k is calculated from SDi,k+1 = 0 as

ueqi,k =
1

w′r
i

[
−wr

i,kS(X 1
i,k, . . . ,X r

i,k) + xr
id,k+1

]
. (11)

Figure 3 illustrates the block diagram of the proposed SI optimization approach.

d

d

Figure 3. Decentralized neural identification and control scheme with SI optimization approach.

4. Results

The performance of the proposed approach was analyzed and compared using the
following SI algorithms: ABC, ACO, ALO, BA, CS, GWO, MFO, PSO, APSO, and WOA.
The comparisons were performed to find the algorithm that best minimizes the trajectory
tracking error without exceeding the limits of the input torques.

This last condition of not surpassing the torque bounds is necessary for algorithm
selection in real-time experiments. The experiments were performed on a 2-DOF vertical
direct-drive robot manipulator, which is located at the Tecnologico Nacional de Mex-
ico/Instituto Tecnologico de La Laguna, Mexico.

4.1. Prototype Description

To illustrate the implementation of the proposed scheme, we used the robot manipula-
tor shown in Figure 4, which consists of two rigid links articulated by high-torque brushless
direct-drive servos that present a reduced backlash and a significantly lower joint friction
to drive the joints. The robot actuators act as torque sources and receive analog voltage as a
torque reference signal. Joint positions are obtained using incremental encoders that send
information to a DAQ [16].

The numerical values for the 2-DOF robot manipulator parameters alongside the
dynamic model can be found in [29].

In order to prove the proposed approach, the discrete-time trajectories [27] were
chosen as

x1
1d,k = b1(1− ed1kT3

) + c1(1− ed1kT3
) sin(ω1kT)[rad],

x1
2d,k = b2(1− ed2kT3

) + c2(1− ed2kT3
) sin(ω2kT)[rad]

where b1 = π/4, c1 = π/18, d1 = −2.0, and ω1 = 5 [rad/s] are used for the first joint,
while b2 = π/3, c2 = 25π/36, d2 = −1.8, and ω2 = 1 [rad/s] are used for the second joint.

Algorithms 2023, 16, 393 13 of 23

l1

lc1

l2

lc2

χ1

χ2

I2

m2

m1

I1

Figure 4. Diagram of the 2-DOF robot manipulator.

4.2. Simulation Results

For the simulations, the parameter settings of the SI algorithms considered are sum-
marized as follows: starting with the common parameters, the number of iterations, which
was 15; the population size was 30; the variables were 54; and the simulation time was 10 s.
The particular parameter settings are given in Table 2.

Table 2. Parameter settings for SI algorithms.

Reference Algorithm Parameter Values

[30] ABC Limit: 100, Fl : 0.1, Fu: 0.9, p: 0.5
[31] ACO α: 1.0, β: 3.0, Evaporation Rate: 0.5
[32] ALO Probabilistic Switch: 0.1, Random Walk Length: 1.5, Levy Flight a: 1.0, b: 1.0
[33] BA A: 0.25, r: 0.5, α: 1.0, γ: 0.1, fmin: 0.0, fmax: 2.0
[34] CS Discover Rate pa: 0.25, Levy Flight a: 0.1, b: 0.9
[35] GWO a0: 2.0
[36] MFO a: 1.0, b: 1.0
[37] PSO ϕ1: 2.0, ϕ1: 2.0, w: 0.7, vmax: 0.1
[37] APSO ϕ1: 1.5, ϕ2: 1.5, w: 0.7, vmax: 0.1, pa: 0.1, pr: 0.1
[38] WOA a1: 2.0, a2: −1.0

SI algorithms presented in Table 2 were considered for comparison purposes because
they have been employed previously in the state-of-the-art for neural network training, as
reported in [39–48].

In all simulations, the specifications of the test machine were an AMD Ryzen 9 4900HS®

(AMD Ryzen is a registered trademark of Advanced Micro Devices, Inc., Santa Clara, CA,
USA) CPU 3.0 GHz and 16 GB of RAM. Moreover, the experiments were performed in the
MATLAB R2015a environment® (MATLAB is a registered trademark of MathWorks, Inc.,
Natick, MA, USA).

For comparative purposes, we tested each SI algorithm 50 times independently. To
qualify the results, we calculated statistical data of the mean, standard deviation (SD), and
the best and worst results for different performance indices and the proposed objective
function. The performance of the algorithms is reflected in a small mean value with a
low standard distribution, implying a small difference between the best and worst results.
Table 3 shows the performance measures.

Algorithms 2023, 16, 393 14 of 23

Table 3. Simulation results performance.

ABC ACO

IAE ISE ITAE ITSE BOLZA Fobj IAE ISE ITAE ITSE BOLZA Fobj

Best 1.6659 2.0687 1.9251 3.1455 1.2122 1.4809 Best 1.1065 7.0311 1.9234 0.7806 1.3876 1.7014
Worst 4.9574 17.3234 4.4748 14.6351 2.9154 2.5511 Worst 8.4880 55.0904 3.7347 7.7709 4.0725 2.8205
Mean 3.0176 8.3139 3.3381 6.4803 1.9728 1.7846 Mean 2.1222 19.0324 2.4459 3.2221 2.7406 1.9049
SD 0.6569 3.5723 0.4139 1.9143 0.2121 0.0855 SD 0.5998 6.9280 0.3136 0.8942 0.4055 0.1137
Avg. CPU time 385.6374 382.4414 377.5315 388.1568 329.2899 327.3551 Avg. CPU time 319.4551 270.9993 273.8600 285.6364 271.8496 271.7896

ALO BA

IAE ISE ITAE ITSE BOLZA Fobj IAE ISE ITAE ITSE BOLZA Fobj

Best 0.4117 0.8757 0.1221 0.0297 0.4798 0.7722 Best 0.4622 0.6824 0.2282 0.0778 0.8319 0.7865
Worst 2.4396 8.0046 1.6833 1.7144 2.3748 2.4519 Worst 3.0243 6.5020 1.7291 5.6521 2.5186 2.1805
Mean 0.9106 2.1424 0.5598 0.4147 0.9967 1.4478 Mean 0.9396 2.2031 0.6312 1.6451 1.4602 1.5367
SD 0.4119 0.9296 0.3396 0.3418 0.4452 0.1835 SD 0.4535 1.3601 0.3055 1.2372 0.2681 0.1425
Avg. CPU time 195.2782 193.8541 188.2104 195.6159 199.8425 193.8247 Avg. CPU time 162.2854 251.0991 173.2529 172.2656 234.0957 188.7852

CS GWO

IAE ISE ITAE ITSE BOLZA Fobj IAE ISE ITAE ITSE BOLZA Fobj

Best 1.1682 8.6384 1.9009 2.2488 2.1922 2.2349 Best 0.5485 0.8409 0.2685 0.1061 0.9654 1.0775
Worst 7.6640 26.8575 5.1201 17.8572 4.8216 3.7666 Worst 4.0810 13.8469 6.0435 11.2769 4.6651 2.7274
Mean 3.3023 17.9493 2.9659 6.2737 3.5290 2.9180 Mean 1.1522 2.2295 2.2620 1.5815 2.1502 1.7703
SD 1.2205 3.2834 0.7816 2.6353 0.4599 0.2444 SD 0.8178 2.8493 1.0776 1.8125 0.8949 0.2275
Avg. CPU time 317.7669 313.6375 312.7115 313.0690 312.2985 313.7871 Avg. CPU time 197.7674 199.4584 200.7393 200.1622 225.8913 199.8676

MFO PSO

IAE ISE ITAE ITSE BOLZA Fobj IAE ISE ITAE ITSE BOLZA Fobj

Best 0.5013 0.6742 0.2346 0.0871 0.6720 1.0254 Best 1.5053 4.6942 0.5468 1.5487 1.4258 1.4388
Worst 4.4130 10.5064 5.7266 7.2781 4.6758 2.7274 Worst 6.4121 29.8629 3.3398 11.8439 4.6686 3.8913
Mean 2.0395 3.5393 2.7144 1.1115 2.8113 1.7599 Mean 2.5117 14.8761 2.2052 5.0699 2.3209 2.1410
SD 0.9656 1.8749 1.1719 1.4426 0.9352 0.2437 SD 0.7388 6.2862 0.3225 2.2650 0.7198 0.4797
Avg. CPU time 196.3359 193.7482 196.1711 195.6669 194.9560 195.0981 Avg. CPU time 205.5427 204.3713 205.1566 204.0309 204.3103 203.5299

Algorithms 2023, 16, 393 15 of 23

Table 3. Cont.

APSO WOA

IAE ISE ITAE ITSE BOLZA Fobj IAE ISE ITAE ITSE BOLZA Fobj

Best 1.2219 9.6568 1.0353 2.0965 1.3454 1.3019 Best 0.7574 0.9207 0.9669 0.3357 1.0693 1.3655
Worst 7.5709 89.5887 5.9703 21.9045 12.5607 5.9705 Worst 4.3771 45.0806 4.9312 8.2819 4.7169 4.7380
Mean 3.2289 36.6708 2.3626 11.7262 2.2305 3.4699 Mean 2.0837 2.5373 1.8365 1.9530 2.3689 1.9793
SD 0.9328 15.0780 0.7621 3.7311 1.2944 0.8019 SD 0.5674 3.6982 0.6706 1.2024 0.5636 0.3771
Avg. CPU time 195.5655 194.8540 195.7047 195.3598 228.1618 203.4104 Avg. CPU time 171.9729 163.0374 163.3186 162.5492 155.6390 155.6390

Algorithms 2023, 16, 393 16 of 23

4.3. Experimental Results

The selection of the ALO, BA, GWO, MFO, and PSO algorithms for real-time exper-
iments was because they show a balanced performance with low computational costs.
However, the main reason was that during the entire simulation, none of them exceeded
the torque limits.

Real-time experiments were implemented using Ansi C on WinMechLab, a real-time
platform running on an Intel Pentium 4 PC with real-time Windows XP, with a 2.5 ms
sampling period, and using a MultiQ-PCI data acquisition board from Quanser Consulting
Inc., Markham, ON, CAN [49].

Figures 5 and 6 show the tracking trajectories for each link obtained in the simulation
using the SI algorithms compared to the non-optimized UKF, we include in Table 4 and
Figure 7 the values of the performance of the algorithms by evaluating the objective function
and L2-norm, described by

L2-norm =

√
T
t

n

∑
i=0
||zi,k||2

where T is the sampling time and t is the total time of the simulation, which, for this case
is 20 s. In addition, Table 5 includes the RMS of the joint input torques comparing each
algorithm with the UKF with non-optimized parameters. Moreover, the input pairs for
each link are shown in Figures 8a to 9e.

Table 4. Objective function evaluation for real-time experimentation.

Algorithm UKF fobj

non-optimized 2.0023

ALO 1.2678

BA 1.3529

GWO 1.4797

MFO 1.3948

PSO 1.7829

Table 5. RMS for joint input torques of SI algorithms.

Algorithm UKF RMS(u1,k) RMS(u2,k)

non-optimized 30.6562 2.5715

ALO 30.5262 2.5931

BA 30.3053 2.6880

GWO 30.7568 3.2744

MFO 30.3398 2.8736

PSO 30.5262 2.5931

Algorithms 2023, 16, 393 17 of 23

Figure 5. Trajectory tracking position error link 1.

Figure 6. Trajectory tracking position error link 2.

Figure 7. L2-norm for SI algorithms.

Algorithms 2023, 16, 393 18 of 23

(a) (b)

(c) (d)

(e)
Figure 8. Input torque link 1 with SI optimization. (a) Input torque link 1 ALO. (b) Input torque link
1 BA. (c) Input torque link 1 GWO. (d) Input torque link 1 MFO. (e) Input torque link 1 PSO.

Algorithms 2023, 16, 393 19 of 23

(a) (b)

(c) (d)

(e)
Figure 9. Input torque link 2 with SI optimization. (a) Input torque link 2 ALO. (b) Input torque link
2 BA. (c) Input torque link 2 GWO. (d) Input torque link 2 MFO. (e) Input torque link 2 PSO.

5. Discussion

For the tracking control problem of a 2-DOF robot manipulator, we proposed a DNBC
controller, which does not require any knowledge of the system since it uses a UKF-trained
neural identifier, whose added value presents an optimization tuning via SI algorithms.
Everyone tuned the initial filter parameters in an off-line simulation subsequently used in
real-time experiments.

Algorithms 2023, 16, 393 20 of 23

The selection of SI algorithms employed in this work is due to the following criteria:

1. Few tuning parameters.
2. Good exploitation–exploration balance.
3. Low computational cost concerning their performance.

The computational cost is the factor that we consider to be most important when
carrying out the proposed optimization task, at least for the off-line simulation. Since the
stochastic nature of both the UKF filter and the algorithms must be taken into account, in
addition to the added cost of the controller, this translates into an increase in the number of
attempts to achieve acceptable results. For this reason, Table 3 shows the average CPU time
for each SI algorithm utilized.

Interpreting the results obtained in the off-line simulation, we can highlight the
following:

1. According to Tables 2 and 3, all algorithms meet the selection criteria, have few
parameters, acceptable performance, and relatively low CPU time.

2. All performance indices show similar average CPU time for each algorithm. The
algorithm with the lowest average CPU time was BA, while the highest was ABC.

3. Based on the statistical mean and standard deviation, the best-performing algorithm
overall was ALO, followed by BA, GWO, and MFO, in that order.

In the case of real-time experiments, the principal selection criterion is to maintain
joint torque limits. Only the Bolza form (3) and the objective function (4) of all performance
measures consider the joint torques. Although Table 3 shows that all algorithms perform
well, input torque signals in the simulation of the ABC, ACO, CS, APSO, and WOA
algorithms exceeded the joint torque limits. For this reason, they were discarded from
being used in real-time experiments.

Interpreting the results obtained in real-time, we can reach the following final remarks:

1. According to Figures 5–7, all algorithms perform better than the UKF without op-
timization. This demonstrates the advantages of using the proposed methodology.
Table 4 shows the values of the objective function (4) evaluated in all used algorithms;
the performance of these algorithms is reflected by minimizing the value of the ob-
jective function since it is described in terms of tracking and identification errors. As
we can observe, the one with the best performance is the ALO, which we can also
contrast in Figure 7. The controller performance shows a notorious improvement
concerning a previous heuristic tuning.

2. Concerning Figure 5, the performance of the GWO for the first link is not up to par.
However, according to Figure 6, this algorithm on the second link performs better
than the other algorithms. Figure 9c exhibits this in the noise of the input torque
signal, which is reflected in the RMS value in Table 5.

6. Conclusions

In this work, we have presented the implementation of SI-inspired algorithms in the
selection of UKF initialization parameters and their real-time application in a discrete-time
decentralized neural block control scheme. We proposed a new objective function that
effectively utilizes information from trajectory tracking and identification errors paired with
the slopes of the input torques. This function allows us to meet minimizing tracking errors
without overshooting the bounds on the control input signals. We performed in simulation
a comparative experimental study of the performance of the following SI algorithms:
ABC, ACO, ALO, BA, CS, GWO, MFO, PSO, APSO, and WOA. For this analysis, we used
five performance indices in addition to our proposed objective function. The real-time
experiments were carried out on a 2-DOF robot manipulator, showing ALO, BA, GWO,
MFO, and PSO performance, which were the best in our comparative study.

In summary, the main contribution of this work is the implementation of the use
of SI-inspired algorithms in the selection of UKF initialization parameters and its real-
time implementation in a discrete-time decentralized neural block control; moreover, an

Algorithms 2023, 16, 393 21 of 23

experimental comparative study of performance was carried out between the ALO, BA,
GWO, MFO, and PSO.

Author Contributions: Conceptualization, J.F.G., R.G.-H., M.A.L. and V.S; methodology, J.F.G., R.G.-
H., M.A.L. and V.S; software, J.F.G. and V.S; validation, J.F.G., R.G.-H., M.A.L. and V.S.; formal
analysis, J.F.G., R.G.-H., M.A.L. and V.S.; investigation, J.F.G., R.G.-H., M.A.L. and V.S.; resources,
J.F.G., R.G.-H., M.A.L. and V.S.; writing—original draft preparation, J.F.G. and R.G.-H.; writing—
review and editing, J.F.G., R.G.-H., M.A.L. and V.S.; visualization, J.F.G., R.G.-H., M.A.L. and V.S.;
supervision, R.G.-H., M.A.L. and V.S.; project administration, R.G.-H.; funding acquisition, R.G.-H.,
M.A.L. and V.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by financial support of the research projects of the Tecnológico
Nacional de México/I. T. La Laguna and CONACYT.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors would like to thank to all the staff in División de Estudios de
Posgrado e Investigación del Tecnológico Nacional de México/I. T. de La Laguna.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
ACO Ant Colony Optimization
ALO Ant Lion Optimizer
APSO Accelerated Particle Swarm Optimization
BA Bat Algorithm
CS Cuckoo Search
DOF Degrees of Freedom
EKF Extended Kalman filter
GWO Grey Wolf Optimizer
IAE Integral Absolute Error
ISE Integral Squared Error
ITAE Integral Time-weighted Absolute Error
ITSE Integral Time-weighted Squared Error
MFO Moth Flame Optimization
MSE Mean Square Error
NBC Nonlinear Block Control
NN Neural network
PSO Particle Swarm Optimization
RHONN Recurrent High Order Neural Networks
RMS Root Mean Square
SD Standard Deviation
SI Swarm Intelligence
UKF Unscented Kalman filter
WOA Whale Optimization Algorithm

References
1. Yang, X.S.; Karamanoglu, M. Nature-inspired computation and swarm intelligence: A state-of-the-art overview. In Nature-Inspired

Computation and Swarm Intelligence; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–18.
2. Tang, J.; Liu, G.; Pan, Q. A review on representative swarm intelligence algorithms for solving optimization problems: Applica-

tions and trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [CrossRef]
3. Alanis, A.Y. Bioinspired Intelligent Algorithms for Optimization, Modeling and Control: Theory and Applications. Mathematics

2022, 10, 2334. [CrossRef]
4. Degas, A.; Islam, M.R.; Hurter, C.; Barua, S.; Rahman, H.; Poudel, M.; Ruscio, D.; Ahmed, M.U.; Begum, S.; Rahman, M.A.; et al.

A survey on artificial intelligence (AI) and eXplainable AI in air traffic management: Current trends and development with future
research trajectory. Appl. Sci. 2022, 12, 1295. [CrossRef]

http://doi.org/10.1109/JAS.2021.1004129
http://dx.doi.org/10.3390/math10132334
http://dx.doi.org/10.3390/app12031295

Algorithms 2023, 16, 393 22 of 23

5. Cao, X.; Yan, H.; Huang, Z.; Ai, S.; Xu, Y.; Fu, R.; Zou, X. A multi-objective particle swarm optimization for trajectory planning of
fruit picking manipulator. Agronomy 2021, 11, 2286. [CrossRef]

6. Malik, A.; Henderson, T.; Prazenica, R. Multi-objective swarm intelligence trajectory generation for a 7 degree of freedom robotic
manipulator. Robotics 2021, 10, 127. [CrossRef]

7. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
8. Yang, X.S.; He, X. Bat algorithm: Literature review and applications. Int. J. Bio-Inspired Comput. 2013, 5, 141–149. [CrossRef]
9. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
10. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]
11. Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; IEEE: New York, NY, USA, 1995; Volume 4, pp. 1942–1948.
12. Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2019.
13. Oliveira, J.; Oliveira, P.M.; Boaventura-Cunha, J.; Pinho, T. Evaluation of hunting-based optimizers for a quadrotor sliding mode

flight controller. Robotics 2020, 9, 22. [CrossRef]
14. Panda, M.; Das, B. Grey wolf optimizer and its applications: A survey. In Proceedings of the Third International Conference on

Microelectronics, Computing and Communication Systems: MCCS 2018; Springer: Singapore, 2019; pp. 179–194.
15. William, M.V.A.; Ramesh, S.; Cep, R.; Kumar, M.S.; Elangovan, M. MFO Tunned SVR Models for Analyzing Dimensional

Characteristics of Cracks Developed on Steam Generator Tubes. Appl. Sci. 2022, 12, 12375. [CrossRef]
16. Guerra, J.F.; Garcia-Hernandez, R.; Llama, M.A.; Santibañez, V. UKF-Based Neural Training for Nonlinear Systems Identification

and Control Improvement. IEEE Access 2022, 10, 114501–114513. [CrossRef]
17. Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the Adaptive Systems for

Signal Processing, Communications, and Control Symposium 2000, AS-SPCC, the IEEE 2000, Lake Louise, AB, Canada, 4 October
2000; IEEE: New York, NY, USA, 2000; pp. 153–158.

18. Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422. [CrossRef]
19. Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006.
20. Särkkä, S. Bayesian Filtering and Smoothing; Cambridge University Press: Cambridge, UK, 2013.
21. Zhang, G.; Qi, Y. Neural network-based nonlinear dynamic modeling for process control. Control Eng. Pract. 2005, 13, 185–192.
22. Zhang, Z. Neural networks for nonlinear dynamic system modeling and identification. In Proceedings of the Advances in Neural

Networks; Springer: Berlin/Heidelberg, Germany, 2008; pp. 268–272.
23. Alanis, A.Y.; Arana-Daniel, N.; Lopez-Franco, C. Bio-Inspired Algorithms for Engineering; Butterworth-Heinemann: Oxford,

UK, 2018.
24. Kirk, D.E. Optimal Control Theory: An Introduction; Courier Corporation: North Chelmsford, MA, USA, 2004.
25. Sethi, S.P.; Sethi, S.P. What Is Optimal Control Theory? Springer: Berlin/Heidelberg, Germany, 2019.
26. Llama, M.; Flores, A.; Garcia-Hernandez, R.; Santibañez, V. Heuristic global optimization of an adaptive fuzzy controller for the

inverted pendulum system: Experimental comparison. Appl. Sci. 2020, 10, 6158. [CrossRef]
27. Garcia-Hernandez, R.; Lopez-Franco, M.; Sanchez, E.N.; Alanis, A.Y.; Ruz-Hernandez, J.A. Decentralized Neural Control: Application

to Robotics; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2017; Volume 96.
28. Utkin, V.; Guldner, J.; Shi, J. Sliding Mode Control in Electro-Mechanical Systems; CRC Press: Boca Raton, FL, USA, 2009.
29. Kelly, R.; Davila, V.S.; Perez, J.A.L. Control of Robot Manipulators in Joint Space; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2005.
30. Camarena, O.; Cuevas, E.; Pérez-Cisneros, M.; Fausto, F.; González, A.; Valdivia, A. Ls-II: An improved locust search algorithm

for solving optimization problems. Math. Probl. Eng. 2018, 2018, 1–15. [CrossRef]
31. Deif, D.S.; Gadallah, Y. An ant colony optimization approach for the deployment of reliable wireless sensor networks. IEEE

Access 2017, 5, 10744–10756. [CrossRef]
32. Abualigah, L.; Shehab, M.; Alshinwan, M.; Mirjalili, S.; Elaziz, M.A. Ant lion optimizer: A comprehensive survey of its variants

and applications. Arch. Comput. Methods Eng. 2021, 28, 1397–1416. [CrossRef]
33. Chakri, A.; Ragueb, H.; Yang, X.S. Bat algorithm and directional bat algorithm with case studies. In Nature-Inspired Algorithms

and Applied Optimization; Springer: Cham, Switzerland, 2018; pp. 189–216.
34. Hernandez-Barragan, J.; Martinez-Soltero, G.; Rios, J.D.; Lopez-Franco, C.; Alanis, A.Y. A Metaheuristic Optimization Approach

to Solve Inverse Kinematics of Mobile Dual-Arm Robots. Mathematics 2022, 10, 4135. [CrossRef]
35. Mirjalili, S.; Gandomi, A.H. Comprehensive Metaheuristics: Algorithms and Applications; Elsevier: Amsterdam, The Netherlands, 2023.
36. Mirjalili, S. Handbook of Moth-Flame Optimization Algorithm: Variants, Hybrids, Improvements, and Applications; CRC Press: Boca

Raton, FL, USA, 2022.
37. Mirjalili, S. Evolutionary algorithms and neural networks. In Studies in Computational Intelligence; Springer: Cham, Switzerland,

2019; Volume 780.
38. Mirjalili, S.; Dong, J.S.; Lewis, A. Nature-inspired optimizers. Stud. Comput. Intell. 2020, 811, 7–20.
39. Abdolrasol, M.G.; Hussain, S.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial

neural networks based optimization techniques: A review. Electronics 2021, 10, 2689. [CrossRef]

http://dx.doi.org/10.3390/agronomy11112286
http://dx.doi.org/10.3390/robotics10040127
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1504/IJBIC.2013.055093
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.3390/robotics9020022
http://dx.doi.org/10.3390/app122312375
http://dx.doi.org/10.1109/ACCESS.2022.3217816
http://dx.doi.org/10.1109/JPROC.2003.823141
http://dx.doi.org/10.3390/app10186158
http://dx.doi.org/10.1155/2018/4148975
http://dx.doi.org/10.1109/ACCESS.2017.2711484
http://dx.doi.org/10.1007/s11831-020-09420-6
http://dx.doi.org/10.3390/math10214135
http://dx.doi.org/10.3390/electronics10212689

Algorithms 2023, 16, 393 23 of 23

40. Na, Q.; Yin, G.; Liu, A. A novel heuristic artificial neural network model for urban computing. IEEE Access 2019, 7, 183751–183760.
[CrossRef]

41. Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M. Ant lion optimizer: Theory, literature review, and application in
multi-layer perceptron neural networks. In Nature-Inspired Optimizers: Theories, Literature Reviews and Applications; Springer:
Cham, Switzerland, 2020; pp. 23–46.

42. Bangyal, W.H.; Ahmad, J.; Rauf, H.T. Optimization of neural network using improved bat algorithm for data classification. J.
Med. Imaging Health Inform. 2019, 9, 670–681. [CrossRef]

43. Tran-Ngoc, H.; Khatir, S.; De Roeck, G.; Bui-Tien, T.; Wahab, M.A. An efficient artificial neural network for damage detection in
bridges and beam-like structures by improving training parameters using cuckoo search algorithm. Eng. Struct. 2019, 199, 109637.
[CrossRef]

44. Zhang, X.; Hou, J.; Wang, Z.; Jiang, Y. Joint SOH-SOC estimation model for lithium-ion batteries based on GWO-BP neural
network. Energies 2022, 16, 132. [CrossRef]

45. Pham, V.D.; Nguyen, Q.H.; Nguyen, H.D.; Pham, V.M.; Bui, Q.T. Convolutional neural network—Optimized moth flame
algorithm for shallow landslide susceptible analysis. IEEE Access 2020, 8, 32727–32736. [CrossRef]

46. Liu, X.h.; Zhang, D.; Zhang, J.; Zhang, T.; Zhu, H. A path planning method based on the particle swarm optimization trained
fuzzy neural network algorithm. Clust. Comput. 2021, 24, 1901–1915. [CrossRef]

47. Khan, A.; Bukhari, J.; Bangash, J.I.; Khan, A.; Imran, M.; Asim, M.; Ishaq, M.; Khan, A. Optimizing connection weights of
functional link neural network using APSO algorithm for medical data classification. J. King Saud-Univ.-Comput. Inf. Sci. 2022,
34, 2551–2561. [CrossRef]

48. Brodzicki, A.; Piekarski, M.; Jaworek-Korjakowska, J. The whale optimization algorithm approach for deep neural networks.
Sensors 2021, 21, 8003. [CrossRef]

49. Pizarro-Lerma, A.; Santibañez, V.; Garcia-Hernandez, R.; Villalobos-Chin, J. Sectorial fuzzy controller plus feedforward for the
trajectory tracking of robotic arms in joint space. Mathematics 2021, 9, 616. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2960687
http://dx.doi.org/10.1166/jmihi.2019.2654
http://dx.doi.org/10.1016/j.engstruct.2019.109637
http://dx.doi.org/10.3390/en16010132
http://dx.doi.org/10.1109/ACCESS.2020.2973415
http://dx.doi.org/10.1007/s10586-021-03235-1
http://dx.doi.org/10.1016/j.jksuci.2020.10.018
http://dx.doi.org/10.3390/s21238003
http://dx.doi.org/10.3390/math9060616

	Introduction
	Swarm Intelligence Algorithms
	Particle Swarm Optimization (PSO)
	Ant Lion Optimizer (ALO)
	Bat Algorithm (BA)
	Grey Wolf Optimizer (GWO)
	Moth Flame Optimization (MFO)

	Decentralized Neural Block Control (DNBC-UKF)
	SI Optimization for UKF Learning
	DNBC-UKF Controller Design

	Results
	Prototype Description
	 Simulation Results
	Experimental Results

	Discussion
	Conclusions
	References

