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Abstract: Recently, a hypothesis providing a detailed equation for the Plantower CF_1 algorithm
for PM2.5 has been published. The hypothesis was originally validated using eight independent
Plantower sensors in four PurpleAir PA-II monitors providing PM2.5 estimates from a single site
in 2020. If true, the hypothesis makes important predictions regarding PM2.5 measurements using
CF_1. Therefore, we test the hypothesis using 18 Plantower sensors from four datasets from two
sites in later years (2021–2023). The four general models from these datasets agreed to within 10%
with the original model. A competing algorithm known as “pm2.5 alt” has been published and is
freely available on the PurpleAir API site. The accuracy, precision, and limit of detection for the two
algorithms are compared. The CF_1 algorithm overestimates PM2.5 by about 60–70% compared to
two calibrated PurpleAir monitors using the pm2.5 alt algorithm. A requirement that the two sensors
in a single monitor agree to within 20% was met by 85–99% of the data using the pm2.5 alt algorithm,
but by only 22–74% of the data using the CF_1 algorithm. The limit of detection (LOD) of the CF_1
algorithm was about 10 times the LOD of the pm2.5 alt algorithm, resulting in 71% of the CF_1 data
falling below the LOD, compared to 1 % for the pm2.5 alt algorithm.

Keywords: algorithm; low-cost monitors; calibration; precision; accuracy; PM2.5; Plantower;
PurpleAir; pm2.5 alt; CF_1

1. Introduction
1.1. Low-Cost Optical Sensors

In recent years, there has been an explosion of interest in low-cost particle monitors.
The fundamental question is accuracy. Accuracy can be determined under field conditions
by comparison to nearby regulatory monitors employing the gravimetric-based Federal
Reference Methods (FRM), which require collection of particles over 24 h followed by
weighing filters under strict regulation of temperature and humidity. Since typically
only one day out of every three can be monitored in this way, monitors were developed
to estimate continuous variation of PM mass. The best of these monitors have passed
stringent tests to determine their agreement with the FRM monitors. These monitors are
called Federal Equivalence Monitors (FEM) and are in use at several hundred regulatory
monitor sites in the United States. The accuracy of low-cost monitors can therefore be
determined by comparing to either FRM or FEM monitors at regulatory sites. (For further
information on the development of health standards such as PM2.5 and PM10, and the
development of optical monitors, see Sections S1.0 and S1.1 of Supplementary Materials).

Accuracy can also be determined by laboratory or chamber investigations. In this
approach, several monitors (usually in triplicate) to be tested are placed side by side with
one or more reference monitors in a chamber with controlled temperature and humidity.
A particle source (often organic PSL spheres, inorganic sodium chloride, or Arizona road
dust) is activated and either maintained at a steady concentration or allowed to rise to a
peak and then decay so that a wide variety of concentrations can be created.
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A major source of both field and laboratory investigations of low-cost monitors is the
program known as AQ-SPEC, operated by the South Coast Air Quality Management Dis-
trict (SCAQMD) in California. (This management district includes about 17 million people,
44% of the California population.) Monitors must pass a field test before being adminis-
tered a chamber test. In the field, sensors are tested alongside one or more of South Coast
AQMD’s existing air monitoring stations using traditional federal reference/equivalent
method instruments over a 30- to 60-day period to gauge overall performance. Sensors
demonstrating acceptable performance in the field are then brought to the AQ-SPEC labo-
ratory for more detailed testing in an environmental chamber under controlled conditions
alongside traditional federal reference/equivalent method and/or best available technology
instruments [1].

About 100 field evaluation reports and 49 laboratory evaluation reports are presently
available [2].

Both field and laboratory investigations of low-cost monitors have been carried out by
multiple investigators [3–25]. Many of these involve Plantower sensors.

Plantower Sensors

This paper focuses on Plantower sensors. This focus is supported by the fact that
14 of 47 manufacturers of low-cost particle monitors tested in the AQ-SPEC program use
Plantower sensors (Table 1). In addition, the largest national network of low-cost monitors
(PurpleAir with perhaps 25,000 monitors) uses Plantower sensors exclusively.

Table 1. Low-cost particle instruments using Plantower sensors tested in chamber studies by AQ-SPEC.

Instrument Tested by AQ-SPEC in Laboratory Report Plantower Model

Airbeam 2 7003

Airbeam 3 7003

Air Quality Egg 5003

APT Minima A003

AS-Lung 3003

Davis Instruments A003

PurpleAir PM-I 1003

PurpleAir PM-II 5003

PurpleAir Flex 6003

Redspira 5003

Sain Smart 5003

Smart Citizen Kit 5003

Magna SCI SRL uRAD SMOGGIE A003

1.2. Algorithms for Optical Particle Sensors
1.2.1. Standard Algorithm for Optical Particle Sensors

The standard algorithm employed by many manufacturers of optical particle counters
since the 1970s is a completely open and transparent approach. It typically uses three bins
(0.3–0.5 µm, 0.5–1 µm, and 1–2.5 µm) to calculate PM2.5. For each bin, the assumption
is made that all particles are spherical and have identical diameters Dp equal to some
midpoint (either arithmetic or geometric mean) between the bin boundaries. The volume
of the single particle is then πDp

3/6. All particles are assumed to have the same density ρ.
The mass of the particle is then equal to the density multiplied by the volume: ρπDp

3/6.
The total mass of particles in the bin is equal to the single-particle mass multiplied by the



Algorithms 2023, 16, 392 3 of 19

number Ni of particles in the bin. Finally, PM2.5 is equal to the sum of the masses of all
particles in the three bins:

PM2.5 = aN1 + bN2 + cN3 (1)

where a, b, and c are simply the masses of the single (representative) particle in each bin
and N1, N2, and N3 are the number of particles in each bin. Numerically, assuming the
choice of geometric mean for the particle diameter and a density of 1 g cm−3, the values of
a, b, and c are as follows (Table 2):

Table 2. Calculation of the coefficients a, b, and c.

Bin Dp (Geom. Mean) (µm) Volume (µm3/100)
Mass (Density = 1)

(µg/m3/100)

0.3–0.5 µm 0.387298335 0.000304183 a = 0.000304183

0.5–1 µm 0.707106781 0.001851201 b = 0.001851201

1–2.5 µm 1.58113883 0.020697059 c = 0.020697059

In this table, the volumes and masses have been divided by 100 since the number Ni
of particles is in units of number per deciliter. This allows one to use the numbers reported
by Plantower for N1, N2, and N3 without change.

Therefore, the alt PM2.5 algorithm for a density of 1 g cm−3 is given by Equation (1)
using the values of a, b, and c shown in the above table.

As with all uses of PM2.5 estimates, however, it is always recommended that investiga-
tors compare the PM2.5 predictions to research-grade instruments measuring the aerosol
mixture of interest. In the field, this is usually done by comparing nearby regulatory
monitors using gravimetric Federal Reference Method or continuous Federal Equivalence
Method (FEM/FRM) to the aerosol mixture being measured. The result of the comparison
is a calibration factor (CF) to adjust the PM2.5 estimates. For the choice of geometric mean
and density of 1 as mentioned above, the final equation for PM2.5 becomes

PM2.5 = CF(aN1 + bN2 +cN3) (2)

1.2.2. Application of Standard Algorithm to Plantower Sensors

The standard algorithm in Equation (2) was first applied to Plantower PMS 5003 sensors
used in PurpleAir PA-II monitors [4,19]. These studies tested 33 PurpleAir monitors
within 500 m of 27 regulatory FEM/FRM monitors in California, finding the CF to be 3.0.
The algorithm was therefore named ALT-CF3, where the “ALT” suggests an alternative
algorithm to those supplied by Plantower and the “CF3” is the calibration factor found
in these two studies. Therefore, the algorithm as applied to the PurpleAir monitors using
Plantower PMS 5003 sensors is equal to

ALT-CF3 = 3(aN1 + bN2 + cN3) (3)

where the a, b, and c coefficients are those in the above table.
This algorithm is freely available on the PurpleAir API site, where it has been renamed

“pm2.5 alt”. A major study of 3000 indoor air monitors selected pm2.5 alt as the only
algorithm to be used. The study is expected appear soon in Proceedings of the National
Academy of Sciences (PNAS).

A more recent study showed that both the PMS 1003 and PMS 5003 sensors have an
identical (within 2%) CF of 3.4 [20], leading to the revised Equation (3)

ALT-CF3.4 = 3.4(aN1 + bN2 + cN3) (4)

where a, b, and c are still unchanged from the values in Table 2 above, but the CF is changed
from 3 to 3.4.
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This CF of 3.4 has been used in several studies and is used in this study as well. For
persons wanting to use this most recent value, it is sufficient to multiply the value given in
the API site by 3.4/3, or about a 12% increase in PM2.5 values.

An advantage in using equations of the general form of Equation (2) above is that
it allows an estimate of the contribution made by each size category to the total mass
(PM2.5). For example, typical values of N1, N2, and N3 occurring in a Santa Rosa home
were determined from a full-year dataset from 1 January 2021 to 31 December 2021. These
are entered into Equation (4) to determine the fractional contribution of each bin to total
PM2.5 during this period (Table 3 and Figure 1).

Table 3. Contribution of each bin to PM2.5 over 1 year monitoring indoor particles.

Bin (µm) Mass per Particle
(µg/m3/100)

# Particles (Ni)
per Deciliter

Mass per Bin
(µg/m3)

Fraction of
PM2.5

0.3–0.5 0.000304183 445 0.135 0.146

0.5–1 0.001851201 147 0.272 0.294

1–2.5 0.020697059 25 0.518 0.560
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1.2.3. Algorithms Offered by Plantower

The Plantower manual v2.5 for the PMS 1003 sensor describes two algorithms for
determining PM1, PM2.5, and PM10. One algorithm is labeled as “CF = 1, standard particle”,
the other as “under atmospheric environment”.

The Plantower manual v2.3 for the PMS 5003 sensor has the same labels for the
two algorithms, but there is an added note for the CF1 algorithm: “CF = 1 should be used
in the factory environment.”

Some have interpreted these cryptic descriptions as indicating that the CF = 1 algorithm
should be used indoors and the “under atmospheric environment” algorithm should be
used for outdoor measurements. However, Plantower presented no data to support their
characterization of the two algorithms.

It is easy to determine the relation of the two algorithms. A 10-day run of data in a
Santa Rosa home from 24 April 2019 to 3 May 2019 using a PurpleAir PA-II monitor gave
these results for the relationship (Figure 2). It should be immediately evident that one of
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these two algorithms can have no physical reality; the relationship is simply a mathematical
model. The two algorithms give identical results for all particle concentrations below about
28 µg/m3; a linear relation above that concentration, in which the CF_ATM/CF_1 ratio
increases by about 0.01 unit for the next 50 steps of 1 µg/m3 for the CF_1 algorithm; and
then, beginning at about 78 µg/m3, it curls over to become ultimately fixed at a constant
ratio on the order of 1.5. No possible actual physical process could behave in this way. This
observation by itself does not allow the problematic algorithm to be identified. However,
based on correlations with measurements by other methods, the physically unrealizable
algorithm is CF_ATM, which should, therefore, not be used (See Supplementary Materials
Section S1.2 and Figures S1–S4). It is uncertain why this algorithm was developed, but the
fact that the CF_1 algorithm is found by almost all investigators to overpredict PM mass
may have caused the Plantower engineers to search for a new algorithm that would give
better estimates. In fact, the CF_ATM algorithm does give lower estimates that may be
closer to the truth, but for wrong reasons. Unfortunately, the PurpleAir corporation has
chosen to adopt the CF_ATM algorithm for their outdoor map because it would partially
correct the overestimate of the CF_1 algorithm. While this is true, at least for the small
number of outdoor concentrations >28 µg/m3, it means that a meaningless algorithm is
being used widely by >25,000 consumers with no indication of its lack of scientific basis.
Several studies have concluded that the CF_1 algorithm should be used in place of the
CF_ATM algorithm [9,18].
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Danger of “Proprietary” Algorithms

Plantower presents no information regarding the composition, density, or index
of refraction of the test aerosol used to calibrate its sensors. In fact, it does not even
mention whether a test aerosol was used, or whether its instruments are calibrated. Its
two algorithms are said to be “proprietary”, which seems contrary to the practice of earlier
manufacturers, whose algorithms were openly described.

A problem with “proprietary” algorithms is the ever-present possibility that the man-
ufacturer could change the algorithm at will. If the manufacturer does not announce that
the algorithm has changed, consumers would not know a change had occurred, unless
a careful examination of their historical data might reveal a change in some parameter
(e.g., the relation of particle numbers in adjacent size categories). This is not only a theoreti-
cal possibility but actually occurred for the Plantower PMS 5003 sensor (and possibly other
sensors) in about March of 2022. At that time, the PurpleAir technical staff noticed for some
new instruments a clear change in the relative number of particles in the 0.3–0.5 µm and
0.5–1 µm size categories. Whereas previously the smallest size category (0.3–0.5 um) had
about three times as many particles as the next larger one (0.5–1 um), now both categories
seemed to have about the same number of particles. Plantower had made no notice about
the change, but when contacted by PurpleAir they did admit that a change had occurred.
PurpleAir made the decision not to accept the “new” instruments, which could be distin-
guished from the “old” instruments by the tests that PurpleAir runs on all monitors before
releasing them for sale. After some time, no further “new” instruments were received by
PurpleAir. However, it is unclear whether some of these “new” instruments may still be
available to the 10 or so companies that use Plantower sensors.

1.3. Objectives of this Study
1.3.1. Objective #1

A main objective of this study is to rigorously test the recent “decoded” CF_1 algo-
rithm [26]. In that article, the CF_1 algorithm was found to be nearly perfectly matched by
the following equation:

PM2.5 (CF_1) = a(N1 + N2) + cN3 + d (5)

That is, despite providing specific numbers N1 and N2 of particles in the 0.3–0.5 µm
and 0.5–1 µm size categories, the CF_1 algorithm instead uses a single coefficient to multiply
the sum of the numbers in the two smallest size categories. The best fit to observed CF_1
PM2.5 estimates required an additive component d. Reference [26] used a single six-month
data series of collocated PurpleAir monitors inside and outside a Santa Rosa home from 18
June 2020 to 31 December 2020 to test the model in Equation (4) against observed values of
PM2.5 provided by the CF_1 algorithm. Four PA-II monitors (eight independent sensors)
were used to give eight independent best-fit estimates of PM2.5 as reported using the CF_1
algorithm. The eight individual models were then averaged to give a single general model,
which was then applied again to the observed data. The general model (Equation (4)) had
the following values for the coefficients: a = 0.0042, c = 0.10, and d = −1.17 µg/m3.

The individual best-fit models were all in excellent agreement with the CF_1 observa-
tions. The general model applied to all cases also gave good results. One interesting finding
was that the additive component d was negative and on the order of −1 µg/m3. When the
model was compared to the observations, because of this negative value for d, some model
estimates of PM2.5 were negative. Interestingly, nearly all of the 18,000 negative results
in the model corresponded to values of zero in the observed CF_1 data. This suggested
that, indeed, the CF_1 algorithm is of the form in Equation (4), and that rather than report
negative concentrations, the Plantower approach was to provide zero values instead. This
was apparently the first explanation of the otherwise incomprehensible CF_1 estimates of
zero, since N1 and N2 are never zero.
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Although the general model developed in [26] was convincingly shown to provide
good agreement with the CF_1 algorithm, the agreement was tested against only one fairly
old (2020) database for only one site. A reasonable question arises whether the model
will hold up if tested at other sites with different PurpleAir monitors and using more
recent data.

Therefore, this study further tests the conclusions of reference [26] by using four
additional databases and adding a second site in Redwood City, CA. The newer Santa Rosa
data include two new PurpleAir Flex monitors employing four PMS 6003 sensors, adding
to the other four monitors to provide extensive data on 12 sensors. The Redwood City
databases add three collocated PurpleAir monitors (six independent PMS 5003 sensors).
Both datasets include indoor and outdoor measurements. For each of the four datasets,
individual models of the CF_1 algorithm for each of the independent sensors are created,
and a general model is also estimated. We regress both the individual and general model
predictions on the observed CF_1 values and analyze the effectiveness of the individual
and general models by their intercepts, slopes, and R2 correlations resulting from the
regressions. We also calculate the Mean Absolute Error (MAE) to test the performance of
the individual and general models.

1.3.2. Objective 2

A second main objective of this study is to is to compare the Plantower CF_1 algorithm
to the independent algorithm described above in Equation (3) and available under the
name “PM2.5 alt” in the PurpleAir API site (https://api.purpleair.com/, accessed on
14 August 2023). We compare the precision, accuracy, and limit of detection (LOD) of the
two algorithms for estimating PM2.5.

2. Materials and Methods
Calibration of PurpleAir Monitors 1 and 2

Prior to the start of the present study, two of the PurpleAir monitors used were
calibrated against three research-grade optical particle counters (TSI Model 510 Sidepaks
equipped with PM2.5 cutpoint inlets) [27]. The particle source was aerosol produced from a
single puff of marijuana smoke from a vaping pen. The Sidepaks were part of a group of
six Sidepaks, which were in turn calibrated against gravimetric samplers sampling from
the same indoor source [28]. Over an eight-month period, 47 experiments, each lasting
6–10 h, were carried out in a dedicated 30 m3 room of a home in Santa Rosa, CA, USA. The
experiments plotted the decay of the particle concentration. Following initial mixing, the
decay becomes linear (on a logarithmic scale) for a period of well-mixed concentrations.
The slope is given by the sum of the air change rate a and the deposition rate k. The air
exchange rate was measured by releasing a puff of carbon monoxide and tracking its decay
using a Langan CO monitor T15. The regression line fitted to the decay curve can then
be followed back to the beginning of the experiment to estimate the total mass released
(in mg/puff), using a method developed in [29]. From the gravimetric experiments, the
Sidepaks were determined to have a calibration factor (CF) of 0.44 (SE 0.03) [28]. The
two PurpleAir monitors (numbers 1 and 2 with four independent Plantower sensors 1a,
1b, 2a, and 2b) were determined to have a calibration factor of 3.24, midway between the
calibration factors of 3.0 and 3.4 found in various studies of outdoor air [4,19,20,28]. A
linear least-squares regression of the PurpleAir monitors against the SidePaks resulted in a
slope of 1.00 and an R2 of 98.6% (Figure 3).

Two sites provided data using both the Plantower CF_1 and pm2.5 alt algorithms. At
the Santa Rosa site where monitors 1 and 2 were calibrated, data were collected for one year
(2021) using four monitors (eight Plantower sensors). Three PA-II monitors were collocated
indoors in the same 30 m3 room where monitors 1 and 2 were calibrated. They were placed
1.5 m high with the intake unobstructed. One monitor was outside at a height of 2 m and
at 1 m distance from the house. The monitors collected data every two minutes, and the
data were averaged over 10 min periods. In 2022, two new PurpleAir Flex monitors with

https://api.purpleair.com/
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two Plantower PMS 6003 sensors each were added to the four existing monitors with the
Plantower PMS 5003 sensors. Therefore, a second data collection period was selected for
the Santa Rosa site running from 1 January 2023 to 13 July 2023.
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At the Redwood City site, the data were collected by two collocated PA-II monitors at
1 m height in a 43 m3 room. One PA-II monitor was located outdoors. Two data periods
were selected from this site. The first runs from 29 April 2021 to 31 October 2022. The
second runs from 22 September 2022 to 23 June 2023.

In summary, four datasets from two locations were analyzed for this study (Table 4).
Ultimately, 18 independent Plantower sensors were included.

Table 4. Datasets analyzed in this study.

Site Year Start Date End Date N obs

Santa Rosa 2021 1 January 2021 31 December 2021 52,400

Santa Rosa 2023 1 January 2023 13 July 2023 24,700

Redwood City 2021–2022 29 April 2021 31 October 2022 78,900

Redwood City 2022–2023 22 September 2022 23 June 2023 39,900
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3. Results
3.1. Santa Rosa Site
3.1.1. Santa Rosa 2021 Dataset

Monitors 1–4 were used throughout the full year 2021 in Santa Rosa. Since monitors
1 and 2 were calibrated against the SidePak earlier, they were considered reference monitors
for this study. Monitor 3 (sensors 3a and 3b) monitored outdoor air. Monitor 4 was
collocated indoors with monitors 1 and 2, so the 4a and 4b sensors estimates of PM2.5 for
the alt CF3.4 algorithm were compared with the mean values of monitors 1 and 2 (Table 5).

Table 5. Comparison of collocated sensors 4a and 4b to the calibrated monitors 1 and 2.

Valid N Mean Std. Err. Median Upper
Quartile

mean calibrated monitors (1a, 1b, 2a, 2b) 48,073 2.95 0.029 1.60 3.14

4a pm2.5 alt CF3.4 52,435 2.94 0.039 1.37 2.80

4b pm2.5 alt CF3.4 52,435 3.09 0.042 1.36 2.91

For this year of 2021, the model was tested against the observed CF_1 PM2.5 estimates
for each of the eight sensors. The individual estimates of a–d are found in Table 6. The
mean of those estimates (highlighted row in Table 6) is the general model to be tested.

Table 6. Estimates of a, c, and d for individual best-fit models of CF_1 PM2.5 during 2021.

Sensor N a c d

1a 52,468 0.004127 0.093125 −0.84448

1b 52,468 0.003926 0.111286 −0.97701

2a 51,102 0.00379 0.12145 −1.08068

2b 51,102 0.00446 0.09843 −1.4993

3a 52,468 0.003148 0.103468 −0.78551

3b 52,468 0.003901 0.111096 −0.99718

4a 52,468 0.00476 0.08175 −1.06733

4b 52,468 0.003461 0.12012 −0.9171

mean 0.003947 0.105091 −1.02107
SD 0.000515 0.013643 0.218565

SE 0.000182 0.004824 0.077274

RSD 0.046158 0.045899 −0.07568

RSE 4.60% 4.59% 7.57%

3.1.2. Santa Rosa 2023 Dataset

With the addition of the two Flex monitors in late 2022, all 12 of the Santa Rosa sensors
were available for the 6-month period from 1 January 2023 to 13 July 2023. Mean PM2.5
values for the three monitors 4–6 were compared to the calibrated monitors 1 and 2 (Table 7).
(Monitor 3 was outdoors, so sensors 3a and 3b could not be compared to the calibrated
monitors 1 and 2.)

For the 2023 data, the model was tested against the observed CF_1 PM2.5 estimates for
each of the 12 sensors to determine the parameters a, c, and d for the individual best-fit
models (Table 8). The mean of those estimates is the general model to be tested.
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Table 7. Comparison of collocated monitors 4–6 to the calibrated monitors 1 and 2 in 2023 data from
the Santa Rosa site.

Sensor ID Valid N Mean Std. Err. Lower
Quartile Median Upper

Quartile

1a, 1b, 2a, 2b 24,727 1.01 0.010 0.32 0.61 1.17

4a 24,727 1.07 0.011 0.30 0.61 1.22

4b 24,727 1.16 0.012 0.33 0.64 1.26

5a 24,725 1.06 0.012 0.29 0.57 1.15

5b 24,725 1.15 0.013 0.31 0.62 1.24

6a 24,725 1.17 0.013 0.31 0.62 1.30

6b 24,725 1.07 0.012 0.30 0.59 1.18

Table 8. Individual best-fit models of CF_1 for 12 sensors. The general model is calculated as the
mean values of a, c, and d.

Sensor N a c d

1a 39,011 0.004109 0.092604 −0.614406

1b 39,011 0.003677 0.10811 −0.685727

2a 39,010 0.00447 0.096386 −0.76239

2b 39,010 0.00433 0.078342 −0.959499

3a 39,011 0.00382 0.095303 −0.678204

3b 39,008 0.003972 0.0986 −0.728282

4a 39,001 0.004565 0.079921 −0.92565

4b 39,001 0.004467 0.097416 −0.848253

5a 39,001 0.003897 0.097416 −0.848253

5b 39,001 0.003543 0.106866 −0.612662

6a 38,992 0.002672 0.123556 −0.775122

6b 38,992 0.003937 0.10173 −0.64114

mean 0.003955 0.098021 −0.75663233
SD 0.00052 0.012065 0.11799929

SE 0.00015 0.003483 0.03406346

RSD 0.131586 0.123084 −0.15595327

RSE 0.037986 0.035531 −0.04501983

RSE (%) 3.8% 3.6% 4.5%

PM2.5 estimates from the best-fit individual models and the general model were
regressed on observed CF_1 PM2.5. Results are provided for the 12 tested sensors in Santa
Rosa in 2023 (Table 9). The individual models had a mean intercept of 0.01 µg/m3, a mean
slope of 0.997, and a mean R2 of 0.997. The general models had similar mean values, but
a wider range of individual values. However, no general model failed to meet the EPA
guidelines of 5 µg/m3 for the intercept (range: −0.2 to +0.4 µg/m3) and between 0.9 and
1.1 for the slope (range: 0.93 to 1.08) [17].
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Table 9. Regression results (intercept, slope, R2) for the individual models and the general model on
observed values of CF_1 PM2.5 from the period 1 January 2023 to 7 January 2023 at the Santa Rosa site.

Individual Best-Fit Models General Model

Sensor N Intercept Slope R2 Intercept Slope R2

1a 27,629 0.0115 0.9893 0.9894 −0.134 0.9944 0.9893

1b 27,629 0.0138 0.9877 0.9857 −0.0527 0.9747 0.9854

2a 27,628 0.0149 0.9887 0.9859 −0.018 0.9836 0.9857

2b 27,628 0.0342 0.9612 0.9565 0.2918 1.0116 0.9552

4a 27,611 0.0174 0.9858 0.9853 −0.0386 1.017 0.9853

4b 27,611 0.0111 0.9927 0.9906 0.1851 1.026 0.9919

3OUT a 27,611 0.0184 0.9925 0.9926 0.0491 0.9408 0.9931

3OUT b 27,611 0.0237 0.9932 0.9932 0.0491 0.9408 0.9931

5A 24,723 0.0095 0.9905 0.9905 −0.1325 1.004 0.9905

5b 24,723 0.0133 0.9883 0.9883 −0.1175 0.9925 0.9875

6a 24,723 0.0329 0.9858 0.9858 −0.1124 0.9727 0.9897

6b 24,723 0.0107 0.9898 0.9897 0.1864 1.0035 0.9798

mean 0.0176 0.9871 0.9861 0.0130 0.9885 0.9855

SD 0.0084 0.0085 0.0097 0.1425 0.0274 0.0103

SE 0.00243 0.00246 0.00280 0.04115 0.00792 0.00297

RSD 0.4781 0.0086 0.0099 10.9787 0.0278 0.0105

RSE 0.1380 0.0025 0.0028 3.1693 0.0080 0.0030

RSE (%) 13.8% 0.3% 0.3% 317.0% 0.8% 0.3%

Examples of an individual best-fit model and a general model for the same sensor taken
from the 9-month Santa Rosa data are provided in Figures 4 and 5. Note the extremely close
approach to a zero intercept and slope of 1.00 for the individual model. The general model
has an intercept of −0.053 µg/m3v and a slope of 0.97, but these are still very good results.Algorithms 2023, 16, x FOR PEER REVIEW 12 of 19 
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3.2. Redwood City
3.2.1. Redwood City 2021–2022 Dataset

For this 17-month dataset, all individual models approached the origin closely (0.006 to
0.048 µg/m3). Their slopes and R2 values were above 0.99 in five of six cases. The general
model also meets requirements for a good fit of a model to observed concentrations, with
all intercepts less than 1 µg/m3 and all slopes between 0.95 and 1.065.

The results for the individual and general models may be found in the Supplementary
Materials Section S1.3, Tables S1–S3.

3.2.2. Redwood City 2023 Dataset

For this 9-month dataset, the best estimates for a, c, and d are summarized in Table 10.

Table 10. Best-fit estimates for parameters a, c, and d and regression results (intercept, slope, R2)
for the individual models on observed values of CF_1 PM2.5 from the period 22 September 2023 to
7 December 23 at the Redwood City site.

Sensor a c d

7a 0.004836 0.085754 −0.823199

7b 0.004786 0.088221 −0.737484

8a 0.004441 0.091017 −0.776271

8b 0.003503 0.109911 −0.825874

9a OUT 0.00449 0.08056 −1.61195

9b OUT 0.00487 0.08143 −1.05379

mean 0.004488 0.089482 −0.971428
SD 0.000515 0.010767 0.332573536

SE 0.00021 0.004396 0.135772578

RSD 0.115 0.120 −0.342

RSE 0.047 0.049 −0.140

RSE (%) 4.7% 4.9% 14%
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For the Redwood City site, the regressions of the individual models on observed CF_1
PM2.5 all had intercepts below 0.2 µg/m3 and slopes >0.96 (Table 11). The general model
performed well, with intercepts between −0.32 and +0.74 µg/m3 and slopes between 0.95
and 1.06. Thus, all models met the EPA requirement for an intercept absolute value less
than 5 µg/m3 and a slope between 0.9 and 1.1.

Table 11. Regression parameters (intercept, slope, r2) for the 2023 data from Redwood city.

Sensor Individual Models General Model

Intercept Slope R2 Intercept Slope R2

7a 0.0114 0.9949 0.9949 −0.1413 0.9932 0.9995

7b 0.0133 0.995 0.9953 −0.1942 0.9502 0.9993

8a 0.0266 0.9905 0.9923 −0.04 0.994 0.9856

8b 0.1107 0.962 0.9611 0.0513 0.9892 0.9907

9a OUT 0.0568 0.991 0.991 0.7474 1.0646 0.9967

9b OUT 0.0202 0.9972 0.9972 −0.3219 1.0242 0.9979

mean 0.039833 0.988433 0.988633 0.016883 1.002567 0.99495
SD 0.038427 0.013201 0.013669 0.380112 0.038466 0.005601

SE 0.015688 0.005389 0.00558 0.15518 0.015704 0.002287

RSD 0.965 0.013 0.014 22.514 0.038 0.006

RSE 0.394 0.005 0.006 9.191 0.016 0.002

RSE (%) 39.0% 0.5% 0.6% 919% 1.6% 0.2%

Our second main objective is to compare the two algorithms cf_1 and pm2.5 alt for
precision, accuracy, and limit of detection.

3.3. Precision

The precision of the CF_1 and pm2.5 alt algorithms is calculated by comparing
the A and B sensors within a PA-II or Flex monitor. We have calculated precision by
abs(A − B)/(A + B), although some prefer to use the coefficient of variation (CV) or relative
standard deviation (RSD). The CV and RSD are equal to sqrt(2) times the precision as
defined above. A reasonable choice for an upper limit on precision would be, say, 20%
using the definition above, which corresponds to a CV or RSD of 28%. For each of the
nine monitors during the 6-month 2023 period in both the Santa Rosa and Redwood City
locations, the number of measurements meeting the precision standard of 20% is provided
for both the CF_1 and pm2.5 alt algorithms (Table 12). For the CF_1 algorithm, the fraction
of observations meeting the standard ranges from 0.22 to 0.74; for the pm2.5 alt algorithm,
the fraction ranges from 0.85 to 0.99.

The major loss of observations for the CF_1 algorithm shown in the above table is
due in part to the many values of zero that occur. However, the zero values are not the
only reason for the poor performance. Even considering only those observations with a
precision meeting the standard, the mean and median precision estimates for the CF_1
algorithm are consistently worse than for the pm2.5 alt algorithm. Comparing the precision
of the six Santa Rosa monitors in 2023 for the two algorithms CF_1 and pm2.5 alt, the upper
limit of 0.2 is easily met by the pm2.5 alt algorithm, whereas no mean value for the CF_1
algorithm was able to meet the 0.2 upper limit (Table 13).
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Table 12. Comparison of the number of observations lost for the two algorithms due to poor precision.

Monitor Total N

CF_1 PM2.5 alt

N with
Adequate
Precision

Fraction
with

Adequate
Precision

N with
Adequate
Precision

Fraction
with

Adequate
Precision

1 39,012 8527 0.22 38,489 0.987

2 39,011 19,008 0.49 37,895 0.971

3 38,993 25,308 0.65 38,789 0.995

4 39,012 19,892 0.51 37,795 0.969

5 39,002 20,098 0.52 38,446 0.986

6 39,002 20,716 0.53 38,128 0.978

7 38,290 28,280 0.74 38,128 0.996

8 38,896 23,595 0.61 35,252 0.906

9 38,290 17,439 0.46 32,689 0.854

Table 13. Measured precision using the CF_1 and pm2.5 alt algorithms for six PA-II monitors in Santa
Rosa during 2023.

Valid N Mean Median Upper
Quartile

90th
Percentile

1 precision
pm2.5 alt 39,012 0.050 0.039 0.067 0.11

2 precision
pm2.5 alt 39,011 0.059 0.043 0.081 0.13

4 precision
pm2.5 alt 39,012 0.062 0.047 0.084 0.13

3 OUT
precision
pm2.5 alt

38,993 0.048 0.038 0.067 0.10

5 precision
pm2.5 alt 39,002 0.053 0.040 0.071 0.11

6 precision
pm2.5 alt 39,002 0.053 0.037 0.068 0.11

1 precision
CF_1 32,650 0.53 0.51 0.94 1.00

2 precision
CF_1 29,103 0.26 0.11 0.32 1.00

4 precision
CF_1 30,282 0.26 0.11 0.32 1.00

3 OUT
precision

CF_1
36,584 0.21 0.13 0.23 0.45

5 precision
CF_1 29,618 0.24 0.09 0.29 1.00

6 precision
CF_1 30,060 0.23 0.08 0.27 1.00
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3.4. Accuracy

Since monitors 1 and 2 were calibrated by collocation with three research-grade TSI
Sidepaks Model 510, which had themselves been calibrated against gravimetric monitors,
we estimate the accuracy of the CF_1 algorithm using the average of these two monitors
(four sensors) as the reference. Regressions of the CF_1 estimates against the alt CF3.4
estimates for sensors 1a, 1b, 2a and 2b resulted in slopes of 1.60, 1.65, 1.63, and 1.70,
indicating overestimates by 60–70% for the CF_1 algorithm. Similar overestimates have
also been noted by multiple investigators [3,9,10,12–14]. An example is shown from the
most recent dataset from 1 January 2023 to 13 July 2023 (Figure 6).
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Limit of Detection (LOD)

The LOD for the two algorithms was calculated using a method introduced in [30].
The method involves identifying all cases with the mean/SD < 3 and searching for their
appearance in “batches” of 100 or so samples ordered by concentration. If, beyond a certain
concentration, there are no cases with five or more such values appearing in each 100-
sample batch, then the LOD has about a 95% probability of being that concentration. The
LOD is of particular interest for indoor studies since indoor concentrations are often quite
low. For the five collocated indoor PA-II and Flex monitors in the most recent 2023 data from
Santa Rosa, the LOD was 0.106 µg/m3 for the pm2.5 alt algorithm and 1.22 µg/m3 for the
CF_1 algorithm. Although both values seem fairly small, because of the low concentrations
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in general, only 29% of the 39,014 measurements were above the CF_1 LOD, compared to
99% above the LOD for the pm2.5_alt algorithm.

4. Discussion

In summary, four new datasets with about 200,000 additional observations were
employed to test the basic model of Equation (5) on 18 independent particle sensors
(14 PMS 5003 sensors and 4 PMS 6003 sensors). The individual best-fit models performed
superlatively well, with intercepts mostly within ±0.1 µg/m3 and slopes mostly close to
0.99. Even the general models were well within the guidelines of a successful model, with
intercept absolute values always less than |1| µg/m3 and slopes between 0.95 and 1.06.
The four new general models all had estimates for the a and c parameters generally within
±10% (Table 14). Because of the small value for the additive constant d, the percentage
difference was larger, at about 10–20%.

Table 14. Comparison of general model parameters for four new datasets with the original finding in [26].

Site Year N obs a c d

Santa Rosa 1 2020 134,800 0.0042 0.10 −1.1

Redwood City 2021–2022 78,900 0.0045 0.09 −1.0

Santa Rosa 2021 52,400 0.0040 0.11 −1.0

Redwood City 2022–2023 39,900 0.0045 0.09 −1.0

Santa Rosa 2023 24,700 0.0040 0.10 −0.8
1 From [26].

A measure of the fit of a model to observations is the Mean Absolute Error (MAE).
MAE results were calculated for the individual models and for the general model fits for
the eight sensors in the Santa Rosa site for the 1 January 2023 to 13 July 2023 dataset. For
individual sensors, MAEs ranged from 0.17 to 0.42 µg/m3. For the general models, the
range was only slightly larger, from 0.20 to 0.52 µg/m3. For the four Flex sensors, the
range was from 0.21 to 0.30 for the individual models and 0.23–0.34 for the general models.
For the Redwood City 2023 data, the MAEs for the six sensors 7a to 9b ranged between
0.13 and 0.34 µg/m3 for the individual models and between 0.21 and 0.38 µg/m3 for the
general model, with the exception of an MAE value of 1.24 µg/m3 for sensor 9a, which had
a constant offset of 1.75 µg/m3. Once this offset was subtracted from every measurement,
the agreement with sensor 9b was quite good. This was the only case of a bias encountered
among the 18 sensors tested.

These findings provide support for the original hypothesis in [1] that the CF_1 algo-
rithm has the form shown in Equation (5), in which the numbers of particles N1 and N2
in the two smallest datasets are combined and multiplied by a single parameter. There is
also support for the hypothesis that there is an additional additive component d of order
−1 µg/m3. When this value is used in both the individual and general models, the number
of negative values in the models almost exactly matches the number of zeros reported
by the CF_1 algorithm. This observation suggests a reason for the otherwise mysterious
appearance of multiple zeros in CF_1 estimates when in fact the number of particles in N1
is never zero.

Precision of the CF_1 algorithm was consistently worse than that for the pm2.5 alt
algorithm, with 26–78% of values unable to meet the standard of 20%. For the pm2.5 alt
algorithm, 90–99% of values met the standard for eight of the nine monitors, and even the
ninth monitor lost only 15% of the values compared to 54% for the Cf_1 algorithm.

Accuracy, as found by regressing CF_1 values on the average of the four calibrated
sensors, ranged between 60 and 70% overestimates, agreeing with multiple other studies.

The limit of detection for the CF_1 algorithm, although not obviously high at 1.22 µg/m3,
was more than 10 times higher than the LOD of 0.11 for the pm2.5 alt method, resulting
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in a large percentage of values (71%) below the LOD, compared to 1% for the pm25
alt algorithm.

Finally, we have provided in the Supplementary Materials a brief history of the
development of health standards dating from the London fog of 1952 [31,32] and the
development of aerosol instrumentation for workplace monitoring [33–35], which led
ultimately to the development of today’s low-cost particle monitors [36,37].

5. Conclusions

We find first that the CF_ATM algorithm offered by Plantower has no physical basis
and should not be used.

Secondly, we have confirmed the finding that the CF_1 algorithm has the form
a(N1 + N2) + cN3 + d and have estimated values for a, c, and d within about 10–20%
tolerance. The finding that the additive component d is a negative value on the order of
−1 µg/m3 may explain the large number of zeros often reported by the CF_1 algorithm—they
are due to negative concentrations predicted by the CF_1 algorithm and therefore are set
to zero.

Thirdly, the bias of the CF_1 algorithm, compared to calibrated monitors using the
pm2.5 alt algorithm, is on the order of 60–70% overestimates of PM2.5, a result similar
to those of many investigators. Precision, particularly for the low PM2.5 concentrations
commonly found for indoor air, is poor, resulting in loss of 71% of observations in the most
recent 2023 dataset analyzed. The CF_1 LOD for this set of observations in 2023 was more
than 10 times the LOD for the pm2.5 alt algorithm, resulting in only 29% of observations
exceeding the LOD, compared to 99% for the pm2.5 alt algorithm.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/a16080392/s1, Sections S1.0–S1.3; Figures S1–S4; Tables S1–S3.
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