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Abstract: In this study, we propose a population-based, data-driven intelligent controller that lever-
ages neural-network-based digital twins for hypothesis testing. Initially, a diverse set of control laws
is generated using genetic programming with the digital twin of the system, facilitating a robust
response to unknown disturbances. During inference, the trained digital twin is utilized to virtually
test alternative control actions for a multi-objective optimization task associated with each control
action. Subsequently, the best policy is applied to the system. To evaluate the proposed model
predictive control pipeline, experiments are conducted on a multi-mode heat transfer test rig. The
objective is to achieve homogeneous cooling over the surface, minimizing the occurrence of hot
spots and energy consumption. The measured variable vector comprises high dimensional infrared
camera measurements arranged as a sequence (655,360 inputs), while the control variable includes
power settings for fans responsible for convective cooling (3 outputs). Disturbances are induced by
randomly altering the local heat loads. The findings reveal that by utilizing an evolutionary algo-
rithm on measured data, a population of control laws can be effectively learned in the virtual space.
This empowers the system to deliver robust performance. Significantly, the digital twin-assisted,
population-based model predictive control (MPC) pipeline emerges as a superior approach compared
to individual control models, especially when facing sudden and random changes in local heat
loads. Leveraging the digital twin to virtually test alternative control policies leads to substantial
improvements in the controller’s performance, even with limited training data.

Keywords: model predictive control; digital twin; neural network; deep learning; genetic programming;
evolutionary algorithm; heat transfer; temperature control; data driven control; data-driven engineering

1. Introduction

Model Predictive Control (MPC) represents an advanced control method that dis-
tinguishes itself by employing a mathematical system model to anticipate future system
behavior and makes proactive decisions in response to expected deviations from a set point.
Unlike traditional control methods that reactively rely on past and present system behavior,
MPC combines the principles of feedback control and numerical optimization to achieve
optimal control outcomes. By continuously optimizing the system model in real-time, MPC
determines an optimal trajectory for the manipulated variable.

The essential constituents of MPC encompass three fundamental elements: (i) a predic-
tive model capturing the dynamics of the controlled system, (ii) a trajectory to be tracked
and (iii) an optimal controller achieved through continuous optimization. Notably, only
the initial value of the optimized output trajectory is implemented in the system, with
the prediction and optimization process being repeated at each time step. This adaptive
approach enables MPC to dynamically respond to changing conditions and deliver accurate
control by considering future system behavior.

As the MPC revolves around the iterative solution of an optimization problem, it
necessitates a system model, as well as a mathematical description of the corresponding
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control law [1]. These models are traditionally derived from first principles or obtained
through system identification techniques using measured data [2]. However, an attractive
alternative approach is to directly implement an MPC controller using solely measured data,
without relying on prior knowledge of an accurate model [3]. The data-driven approach
particularly offers practical advantages in scenarios where (i) obtaining a precise model may
be challenging, time-consuming and/or expensive to evaluate; (ii) the process is ill-defined;
(iii) the process is time-variant or stochastic in nature. Herein, recent advancements in
machine learning facilitates the creation of input–output-based digital twin models (DT)
that do not require a thorough mathematical description of the process [4], enabling the
implementation of intelligent controllers that can adapt to the system dynamics and change
their control policies in real time. These techniques allow for treating the system and
the physical process within itself as a black box [5], while maintaining good accuracy, by
approximating the mapping from the input to the output space [6].

Examples of using machine learning in MPC cover a broad range of applications. In
one of the early works, Liu and Atkeson combined the linear quadratic regulator with un-
supervised clustering (k-nearest neighbor) [7]. Other shallow learning applications include
Gaussian process modeling for the safe exploration of dynamical systems [8], the optimal
energy management in commercial building micro-grids [9], heating, ventilation and air-
conditioning (HVAC) control of a hospital surgery center [10]; Bayesian regression for safe
predictive learning control [11], statistical time series modeling (ARIMA) for optimal energy
management [9], random forests for HVAC systems [12] and support vector machines for
milling [13]. Feed-forward neural network (NN) applications within an MPC framework
can also be found in various disciplines. Piche et al. [14] implemented an NN to regulate
set point changes in a polyethylene reactor, resulting in a 30% improvement in transition
speed and a significant reduction in controlled variable fluctuations. The work of Mu and
Rees [15] is another early example combining NNs with MPC to control the shaft speed
of a gas turbine engine. Gas turbine models were created via a nonlinear autoregressive
moving average model with exogenous inputs (NARMAX) and neural networks, enabling
an improved control performance compared to PID controllers through various step tests.
Afram et al. [16] employed NNs to develop a supervisory MPC for residential heating,
ventilation, and air conditioning(HVAC) systems. Their approach successfully reduced the
operating costs of the equipment, while ensuring that thermal comfort constraints were not
compromised. In comparison to the fixed set-point (FSP) approach, the NN-augmented
MPC achieved cost savings ranging from 6% to 73%, depending on the season. Similarly,
Li et al. [17] investigated the application of an NN in the context of MPC, focusing on
temperature control in a stirred tank reactor. Maddalena et al. [18] used NNs to generate
control laws for MPC of voltage-current regulation in DC-DC converters. Similarly, Nu-
bert et al. [19] demonstrated that the computation time of MPC can be drastically reduced
with an NN controller for real-world robotic systems. In another study, Shin et al. [20]
employed an NN in conjunction with MPC to control a simulated depropanizer in Aspen
HYSYS, achieving a remarkable 60% reduction in settling time compared to a traditional
PID controller. Nunez et al. [21] utilized a recurrent neural network (RNN) along with a
particle swarm optimization (PSO) to model an industrial paste thickening process. The
RNN-based MPC successfully maintained the desired concentration of the paste thickener,
even in the presence of severe pump failures. Other RNN-based applications include
solving a generic nonconvex control problem [22], optimal policy selection [23], fault di-
agnosis for HVAC systems [24], theory [25] and application [26] of a generic nonlinear
system for open-loop simulations, multi-mode process control of a generic system [27],
chemical reactor control [28], crystallization processes [29] annealing furnaces [30], N-tank
problems [31] and corn production [32]. Achirei et al. [33] very recently introduced a model-
based predictive controller that utilized the object map obtained from the convolutional
neural network (CNN) detector and light detection and ranging (LIDAR) data to guide
an omnidirectional robot to specific positions in a warehouse environment. For a more
comprehensive understanding of recent advancements in model predictive control, we rec-
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ommend consulting several key papers. Sand [34] offers a detailed comparison of different
predictive control methods. In the realm of autonomous systems, Rosolia et al. [35] delve
into the realm of data-driven control. For those interested in chemical process systems,
Rawlings and Maravelias [36] provide a comprehensive exploration. Schwenzer et al. [37]
present a holistic view of model predictive control, while Schweidtmann et al. [38] explore
the integration of machine learning techniques in this context.

The literature review on NN-augmented MPC reveals the successful utilization of
neural networks as effective approximators in MPC. Recent advancements in deep learning,
such as neural networks with memory functions (RNNs) and specialized architectures
capable of handling spatial information (CNNs), have further enhanced the representational
power of data-driven models. Our contribution introduces a noteworthy progression
within the domain of intelligent control strategies, stemmed from the strategic utilization
of ConvLSTM-based digital twins’ spatiotemporal pattern extraction abilities, enabling the
successful implementation of a real-time population-based MPC in systems with many
controlled variables. In particular, we propose a data-driven intelligent controller that
leverages NN-based digital twins for hypothesis testing. Initially, a diverse set of control
laws is generated using genetic programming with the digital twin of the system, facilitating
a robust response to unknown disturbances. During inference, the trained digital twin is
utilized to virtually test alternative control actions for a multi-objective optimization task
associated with each control action. Subsequently, the best policy is applied to the system.
To evaluate the proposed intelligent control pipeline, experiments are conducted on a multi-
mode heat transfer test rig. The measured variable vector comprises high-dimensional
infrared camera measurements arranged in a sequence (i.e., 655,360 inputs), while the
control variable includes power settings for three fans responsible for convective cooling.
Disturbances are induced by randomly altering the set point of local heat loads. The
objective is to achieve homogeneous cooling over the surface, minimizing the occurrence
of hot spots and energy consumption.

The structure of this paper is outlined below. Section 2 begins by providing an
explanation of the experimental setup. Next, the model architecture of the NN-based
digital twin is detailed. Then, the genetic programming implementation for generating a
diverse control law population is described. Lastly, the design of the experiment used to
evaluate the performance of MPC is presented. In Section 3, the predictive capabilities of
the digital twin are assessed, followed by an evaluation of the MPC performance in real
time test experiments. The paper concludes with a discussion about the current limitations
of the approach, and the future directions.

2. Materials and Methods
2.1. Experimental Setup

This case study is motivated by the significant impact that high-temperature technical
processes can have on the degradation of components. Accordingly, the proposed approach
seeks to develop an intelligent controller using machine learning techniques to enable
predictive cooling. The main objective is to generate control laws that facilitate a uniform
temperature distribution, thereby minimizing the stresses and deformations arising from
the formation of hot spots in the presence of unknown disturbances, or sudden changes in
the thermal load.

The physical setup is designed as a multi-mode cooling problem. It consists of the
following components (Figure 1):

• A copper plate—selected due to its high thermal conductivity in order to reduce the
duration of the experiments;

• The copper plate is coated with a high-emissivity black paint (Nextel Velvet Coating
811-21) for improved signal-to-noise ratio;

• Three heating strips on the backside of the plate arranged in a “Z”-like pattern—
310 mm × 17 mm, 24 V, 36 W;

• Three fans located on the perimeter of the plate—SUNON, 12 V, 1.62 W;
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• A data acquisition module (myDAQ, NI) with an in-house built control unit;
• A mid-wave infrared camera—FLIR SC5000, (512 × 640) pixels;
• A LabVIEW interface for the real-time control of the system.

The infrared camera detects thermal radiation emitted by the copper plate and other
components. The detected radiation is dependent on the plate surface temperature only for
constant ambient conditions. This is achieved by conducting the tests in an air-conditioned
room. This way, changes in the camera signal can be directly attributed to changes in the
plate surface temperature.

A single experiment begins from an initial steady state s0. A heating disturbance is
then introduced through the strips and the fan loads are adjusted. The experiment lasts
until a new steady state s1 is reached. Figure 2 depicts the recordings of two experiments
(top row and bottom row) from the training dataset. The first six frames show the steady-
state temperature distribution reached at the end of the previous operating point, while the
final two frames illustrate the new steady state under the new thermal loads and cooling
configuration. There are two options for s0. We either start with the system completely shut
down (no heating or cooling), or we carry on with the steady state reached in the previous
operating point.

Figure 1. The physical setup is devised as a multi-mode cooling problem, depicted in the upper
section. The arrangement of fans around the copper plate is illustrated in the lower left corner, while
the configuration of heating strips at the back of the plate, along with randomly placed thermal
insulators, is shown in the lower right corner.
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Figure 2. Visualization of two experiments from the dataset.

The following conditions are used to define the second steady state s1 (Figure 3):

1. The per pixel percentage difference of consecutive frames after 16 × 16 max filter is
less than 1.5%. The application of this max filter is required for two reasons. First, due
to thermal inertia, the difference between consecutive frames can be small, and thus
we increase the rigidity of the steady-state condition. Second, we reduce the impact of
objects that have the same temperature in all frames (e.g., the frame around the plate).

2. The pixels with a 3% deviation in consecutive frames are less than 1% of the total
pixels in a frame after a 16× 16 max filter.

It is important to highlight that thermal insulation is absent at the slab edges as well
as behind the resistance heating strips. The experimental configuration, illustrated in
Figure 1, was executed in this manner. Once the system attains a steady state, it does
so due to the interplay of forced and natural convection, conduction, and radiative heat
transfer processes. In other words, the system was deliberately rendered more susceptible
to environmental disturbances and fluctuations.

Figure 3. Evolution of consecutive frames over the course of an experiment. (Left): Mean pixel
value change compared to the first steady-state condition. (Right): The percentage of pixels with a
deviation larger than 3%.

2.2. Dataset

The training of the digital twin model necessitates a substantial amount of data. In
this study, we performed 323 experiments, with each experiment saved as an individual
HDF-file. The dataset was split into an 87.5/12.5% training-validation split and the frames
were captured at a fixed rate of 1 image per 30 s. Each frame is stored as a grayscale
image. The selection of the frame rate was based on preliminary experiments aimed at
identifying the system’s thermal inertia and response time. A higher frame rate would
yield negligible differences between the images, making it challenging for the model to
capture the temperature field’s evolution. Conversely, longer time intervals may result in
the loss of crucial information, such as heat propagation mechanisms and the formation
and dissipation of local hot spots.
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Within each experiment, the first six frames (2 min and 30 s) represent the initial
steady state, denoted as s0. This allows for the use of up to six frames as an input sequence,
ensuring that all subsequent frames after thermal disturbances can be utilized as the
ground truth at least once, maximizing the information within the dataset. Furthermore,
to cover the parameter space for heating and cooling loads, we randomly sampled fan
settings from a 0 to 100% workload with 20% increments and heating strip loads from 0 to
100% workload with 25% increments. In other words, fan settings and heating loads were
randomly sampled from a pool of 63 and 53 possible configurations, respectively. These
settings are also saved in the labels of the HDF5-files for post-processing purposes.

It is important to note that different initial conditions, heat loads, and fan settings
influence the behavior of the system. Consequently, each configuration requires a varying
amount of time to reach a steady-state operation, leading to variations in the sequence
lengths across different experiments. Table 1 summarizes the distribution of experiment
durations in the dataset.

Table 1. Summary of Experiment Duration in the Dataset.

Duration in Frames Number of Experiments

8 32
9 103
10 85
11 48
12 35
13 16
14 4

2.3. Digital Twin
2.3.1. Model Architecture

The digital twin serves as the fundamental component of the proposed MPC pipeline.
Hence, an extensive parametric study was conducted to identify an appropriate architecture
and training protocol (see Appendix A for details). The model is based on Convolutional
Long Short-Term Memory (ConvLSTM) cells [6]. Given the thermal inertia and slow evolu-
tion of the temperature field, it is anticipated that a smaller kernel size would yield better
results. This hypothesis was confirmed through numerical experiments, where models
utilizing a 3 × 3 kernel outperformed those employing a 5 × 5 kernel. Hence, the standard
ConvLSTM cell with a 3 × 3 convolutional kernel is employed as the fundamental building
block of the model. Following the lead of prior studies implementing ConvLSTM-based
models, we adopt an auto-encoder structure. This choice offers two significant advantages.
Firstly, it allows for the extraction of rich semantic information at a relatively low compu-
tational cost. Secondly, the learned compression of input data can considerably reduce
the workload associated with the genetic programming-based optimization process, while
enabling a high accuracy (mean absolute percentage error, Equation (1)). The architecture
of the model is depicted in Figure 4.

The encoder is constructed by stacking seven convolutional layers with an increasing
number of channels. Semantic information is extracted and the spatial dimension of the
input is compressed by each layer. Various compression strategies, such as max pooling,
average pooling, and strided convolution, were compared in the preliminary tests. The
best results were achieved using a strided convolution with a stride of two. The structure
of a single convolutional layer consists of (i) a ConvLSTM cell with a 3 × 3 kernel, (ii) a
stride of two, (iii) L2 weight regularization and (iv) batch normalization. This structure
enables the compression of the input image of size n× 512× 640× 1 to a n× 4× 5× 256
tensor, which contains rich semantic features. The parameter n represents the number of
frames in the input sequence. The feature tensor is subsequently flattened into a vector for
further processing.
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(a)

(b)

(c)

Figure 4. Deployed digital twin model architecture. (a) The next sequence predictor architecture with
input and output sequence length of two. The fan settings vector is appended to the output of the
first dense layer. (b) A detailed view of the encoder architecture. The input sequence is compressed to
a latent state representation through 7 convolutional layers with (16, 32, 64, 64, 128, 128, 256) channels,
respectively. (c) A detailed view of the decoder. The output of the second dense layer is reshaped
into a 2× 4× 5× 256 tensor. The reconstruction is conducted through 7 consecutive deconvolutional
layers with (256, 128, 64, 32, 16, 8, 1) channels, respectively.

Following the encoder, a small fully connected network comprising two dense layers
is employed. Due to the limited size of the training dataset, the number of dense layers is
restricted to avoid overfitting, as supported by the parametric study conducted. Each dense
layer includes (i) a dense layer with ReLU activation, (ii) a normal initializer, (iii) dropout
regularization and (iv) batch normalization. The first dense layer consists of 2048 nodes and
employs a dropout rate of 0.2. The optimal parameters were determined experimentally,
considering the trade-off between computational burden and model performance. Next,
the fan settings vector obtained from the experiment filename is appended. We select
this point to introduce the meta-parameters since this is the layer containing the densest
representation of the inputs. Hence, it is an ideal concatenation point that can serve as an
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input to the GP-based controller. The fan settings vector comprises one hundred repetition
of the duty cycle values for each fan. This extension is necessary since the original vector
contains only three entries, one for each fan. By appending the initial vector to itself, its
relevance to the output of the neural network is increased. This enables the model to
learn the impact of the ventilators on the plate’s temperature distribution. The size of the
second dense layer is predetermined as m× 5120, where m represents the length of the
predicted sequence. This ensures that the output is rescaled to m× 4× 5× 256 to initiate
the upscaling of the prediction. To accurately capture the influence of the fans, dropout
is disabled in this layer. The activation and initializer used are the same as in the first
dense layer.

The final component of the model is the decoder, which mirrors the structure of
the encoder. It consists of seven “deconvolutional” layers with a decreasing number of
channels. Unlike the encoder, the deconvolutional blocks in the decoder upscale their inputs.
Therefore, non-strided convolution and an upsampling layer, which doubles the height and
width of the input, are utilized. The structure of the block includes (i) ConvLSTM cell (same
as the encoder cell but with a stride of 1), (ii) batch normalization and (iii) upsampling
layer. The decoder output has the shape m× 512× 640× 1 and represents the prediction
for the next “m” frames in the sequence.

It is pertinent to highlight that the digital twin model operates as a functional ap-
proximator. In essence, this model facilitates the mapping of the temperature distribution
across a defined spatial region, over a specific time interval. This mapping takes the form
of predicting the temperature field for the upcoming minute based on the temperature
distribution observed in the preceding minute—a configuration often referred to as a
sequence-to-sequence prediction. It is crucial to emphasize that this mapping encompasses
not only the intricate temporal relationships but also the intricate spatial correlations within
the field. These predictions are executed on a grid whose spatial resolution mirrors the
input dimensions (512 × 640), preserving the structured nature of the grid and facilitating a
seamless translation of insights between the physical domain and the digital representation.
This framework, driven by the principles of neural networks, extends the familiar principles
of function approximation to the realm of dynamic systems, such as the multi-mode heat
transfer setup developed in this work.

2.3.2. Training Protocol

Determining optimal hyperparameters for training neural networks can pose a chal-
lenge and often necessitates an empirical approach. In our case, extensive testing was
conducted, leading to the derivation of the following list of hyperparameters:

• The batch size was set to 16.
• The optimizer employed was Adam, utilizing a default initial learning rate of 0.001.
• A learning rate decay scheme was employed, wherein lrt = lrt−1 × 0.99 was initiated

after the tenth epoch, with decay continuing until a minimum value of 0.000001
was reached.

• Training was conducted for 800 epochs on an NVIDIA GeForce RTX 3080 GPU. Early
stopping was implemented with a patience of 100 epochs.

• One hundred copies of the fan settings vector were utilized.

The selection of an appropriate loss function significantly influences the performance
of the model. In this study, the mean absolute percentage error (MAPE) was adopted, with
the following conventions: 0

0 = 0 and a
0 = ∞ for all a 6= 0 [39]. Equation (1) demonstrates

the calculation of the MAPE loss, where n denotes the number of pixels in the image, p
represents the predicted value for a given pixel, and gt signifies the ground truth value.

LOSSMAPE =
1
n

n

∑
i=1

(pi − gti)

gti
∗ 100 (1)
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Preliminary tests indicated that utilizing MAPE as the loss function yielded signifi-
cantly improved the performance in comparison to the mean absolute error (MAE) or mean
squared error (MSE) for both the training and validation datasets.

To maximize the utilization of all available data, the sequence length was limited to
two, considering the duration of the experiments in the dataset as described in Table 1.
For instance, an experiment comprising 8 frames contributed a single input-ground truth
sequence pair, while 9 frames resulted in 2 pairs, and so forth. To prevent the model from
memorizing the order of entries in the dataset, all sequence pairs were randomly shuffled.

2.4. Control Policy Generation Using Genetic Programming

The subsequent component of the pipeline involves the utilization of genetic program-
ming (GP) to generate control policies for the fans. GP is a variant of Genetic Algorithms
(GA) developed by John R. Koza, where the solution is encoded in a tree structure in-
stead of a string [40–42]. Similar to GA, GP draws inspiration from nature and mimics
the evolutionary process by iteratively applying a set of genetic operations on an initially
randomly selected pool of candidate solutions [41,43,44]. However, unlike GA, which aims
to solve specific optimization tasks, genetic programming focuses on creating a model with
a predefined objective [45].

In this study, the controller population is designed with two primary objectives. Firstly,
it aims to adjust the fans to achieve a homogeneous temperature field. Secondly, it strives to
prevent the occurrence of local hot spots. Evaluating these phenomena can be challenging,
and relying solely on a single metric may be insufficient. To address this issue, we propose
a combination of three metrics to assess the performance of the controller. The first metric
targets the homogeneity of the temperature field by minimizing the standard deviation
of the pixel values. A lower standard deviation indicates a more uniform temperature
distribution. However, relying solely on this metric is inadequate for effectively penalizing
hot spot formation. Hence, we introduce a second loss, referred to as the hot spot loss,
which calculates the sum of all positive pixel values after subtracting the mean temperature
from each pixel. This loss function encourages strong cooling and discourages the formation
of regions with temperatures significantly higher than the system’s average temperature.
Additionally, we incorporate an auxiliary loss function to penalize excessive fan usage:

LossSTD =

√
∑n

i=1 (xi − µ)2

n

Losshotspot =
m

∑
i=1

xi − µ

Loss f anload =
1

300

3

∑
i=1

fi

(2)

where µ represents the mean value, n corresponds to the total number of pixels, and m
corresponds to the number of pixels with values larger than µ. To ensure an appropriate
evaluation, we scale these three losses to the same order of magnitude and assign weights
to emphasize their relative importance. The assigned weights are 5, 5, and 1, respectively.
This weight distribution ensures that the fan load loss only becomes relevant when different
control laws produce similar temperature distributions.

Control Model Architecture

The integration of the controller into the pipeline requires a trained next-sequence
predictor. As explained in Section 2.3.1, the predictive model is compiled as two parts,
separated at the output of the initial dense layers. This separation offers a significant
advantage: it allows the entire 2× 512× 640× 1 input sequence to be compressed into a
vector consisting of only 2048 data points. This compressed vector is used as the input for
the GP-based controllers. By employing this compression technique, the entire input space
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can be spanned by deeper trees, enabling the generation of solutions based on the complete
temperature field, rather than randomly selected local regions of interest.

Control laws in the form of a 3D vector are generated by each candidate in the
population (Figure A1). To align with the expected input dimensions of the second part of
the predictor, the vector is duplicated 100 times. Next, the proposed fan settings vector is
appended, and predictions are generated using the decoder component of the digital twin
model. These predictions are then evaluated against a predefined fitness function, and the
corresponding fitness scores are assigned to the respective individuals (Figure A1).

The GP controller undergoes evolutionary training for 5 generations on each training
experiment, amounting to a total of 1410 generations. Limiting the training to only 5 gener-
ations per sequence prevents overfitting to a specific problem, allowing for the transmission
of genes that exhibit generalization capabilities across various heating loads. This can be
considered similar to the early stopping policies in NN training. For additional information
on the GP controller’s configuration and the reasoning behind the chosen approaches, refer
to Appendix B. Appendix C further presents the details of the MPC experiment design for
a population of control laws.

3. Results
3.1. Testing Digital Twin as a Predictive Model

Before implementing with the GP-based controller on the real experimental setup,
the performance of the digital twin is first assessed in two distinct aspects. First, it should
be able to accurately predict the next two frames given a certain set of inputs. Second, it
should be able to capture the impact of the fan loads on the temperature distribution within
a virtual experiment, even if it is not part of its training set. In other words, the learnt
model representation of the problem in NN parameters should be able to answer “what if”
questions in a reasonable way.

Figures 5 and 6 illustrate some good and bad predictions of the digital twin model
on new test experiments with pre-set heat load changes and fan settings. It is worth note
here that the digital twin typically performed well for experiment trajectories with around
10 snapshots, while failing to capture the extreme hot spots in very short experiments, which
were underrepresented in the training set (see Table 1). For instance, the first experiment in
Figure 6 consists of only one executable sequence. As a result, the model never received
information regarding the new heat load on the system. Consequently, the prediction is an
informed guess, based on the last steady state reached. Similar behavior can be observed in
the first predictions for experiments (a) and (b) in Figure 5. Hence, weaker performance is
to be expected in such cases. This indicates that input sequences containing only the frames,
depicting the steady state reached from the previous experiment, may have a negative
influence on the model’s predictive capabilities on hot spot risk estimation. Fortunately, we
do not parse two consecutive steady-state frames as input to the controller, thus mitigating
the effect of such outliers when we evaluate the MPC performance. The reason for the
inaccurate predictions for the second experiment in Figure 6 is not clearly identifiable.
While it manages to capture the structural evolution of the temperature field, it misses the
hot spot formation. One reasonable explanation for this is the effect of sampling through a
sparsely populated set of fan settings. Increasing the number of training and validation
examples and sampling from a set with smaller intervals may remedy this behavior. In
either case, however, the MAPE score was less than 5%, which would still be relatively
informative enough to decide upon the best MPC policy given the input sequence.
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(a)

(b)

(c)

Figure 5. Examples of successful digital twin predictions. GT refers to the ground truth (i.e., experi-
ments). (a) Fans [0, 40, 60]; Heating Strips [75, 0, 25]. (b) Fans [0, 40, 40]; Heating Strips [75, 100, 100].
(c) Fans [60, 80, 100]; Heating Strips [75, 75, 100].
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(a)

(b)

Figure 6. Digital twin predictions missing the hot spot formations. GT refers to the ground truth (i.e.,
experiments). (a) Fans [60, 20, 20]; Heating Strips [25, 100, 25]. (b) Fans [80, 0, 40]; Heating Strips [100,
75, 75].

The second assessment for the digital twin is related to its ability to capture the
physical relationship between the fan settings and the evolution of the temperature field, as
“understanding” the fans’ impact is crucial for the performance of the controller. For that
purpose, we conducted a set of parametric analysis. Given a sequence of inputs, the digital
twin first makes a prediction of the next one minute for a given fan setting (e.g., [0%, 40%,
60%]), for which the ground truth measurements exist. After checking model accuracy
(MAPE < 2%), the DT is used to estimate how the temperature field would be if the fans
were fully open ([100%, 100%, 100%]), or fully closed ([0%, 0%, 0 %]). Some examples
of the DT predictions are shown in Figure 7. While it is difficult to judge the extent to
which the model perceives the impact of cooling on the temperature field distribution, one
may conclude that it adequately shifts the prediction with changing fan loads. If they are
fully opened, there is an increased cooling effect, while turning the fans off leads to the
emergence of some hot spots.

It is worth noting here that changing the way the fan settings are parsed to the model
can further improve its ability to capture the effect of the fan loads on the temperature
distribution. In the current architecture, we clone the fan settings vector 100 times to
increase its relative importance. Although this strategy achieves satisfactory results, it may
not be the optimum approach. An alternative way would be to append each of the three
fan loads as a channel to the input images. In this way, we would allow the encoder to
“learn” the impact the fan settings have on the temperature field evolution. For the current
implementation, however, it is considered to be unnecessary as the model already performs
with high accuracy (mean absolute percentage error, Equation (1)).
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(a)

(b)

(c)

(d)
Figure 7. Capabilities of the digital twin model for extrapolation of the fan settings. (a) Prediction:
Fans [0, 40, 60]; Fans on [100, 100, 100]. (b) Prediction: Fans [0, 40, 40]; Fans on [100, 100, 100].
(c) Prediction: Fans [60, 20, 20]; Fans off [0, 0, 0]. (d) Prediction: Fans [80, 0, 40]; Fans off [0, 0, 0].

3.2. Model Predictive Controller Performance

After validating the accuracy of the digital twin model, the performance of the con-
trol law population is investigated via following the experimental protocol described in
Appendices B and C. The metrics used to evaluate the controller’s performance are the
same as the loss functions defined in Equation (2).
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The greatest advantage of the intelligent controller is that it can leverage the speed of
the NN-based predictive model to select the best control law policy among the alternatives
for the current state trajectory in real time. Figure 8 portrays the change in the temperature
field caused by a significant and sudden increase in the thermal load applied to the system,
while Figure 9 shows the temporal evolution of performance metrics. In all GP-based tests,
a control law population of 10 is deployed. In both figures, the term “Specialist” denotes a
subset of controls particularly trained to handle high load disturbances. “General” refers
to control laws learned for the entire operating range. The category labeled as “Random”
corresponds to the benchmark case, where fan settings are randomly assigned (for further
details, refer to Appendix C). It is clearly observed in Figure 9 that both GP controllers
(Specialist, General) significantly outperform the random controller. Interestingly, the Gen-
eral population achieves a reasonably similar performance to the Specialist at significantly
lower energy consumption.

Figure 8. From left to right—Evolution of the temperature field during the experiment: Specialist
(top row), General (middle row) and Random Control (bottom row).

Figure 9. Performance metrics of MPC with 10 individuals at high thermal loads. The x-axis denotes
the time, while the y-axis shows the metric.

When the the heat load is raised to medium range from low loads (Figure 10), the
Specialist population was found to outperform both the General control law population and
the Random cooling, despite the fact that the fan load of the Random case is much higher
(Figure 11). If just the fan settings are considered, Specialist MPC is at a disadvantage to
eliminate the hot spots on the surface, compared to the random controller. Yet it was found
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in repeated experiments that Specialist population-based control outperforms the others
with less power usage for the fans. The performances of the GP-based controller were
also tested in the settings where the heat load is reduced (Figures 12 and 13). As expected,
the Specialist population is the best performer. However, its energy consumption is also
higher. A possible explanation is that since a homogeneous temperature field is currently
prioritized over efficiency, individuals that perform better on the hot-spot and standard
deviation metrics are overtaken, albeit at a higher energetic cost.

Figure 10. From left to right—Evolution of the temperature field during the experiment: Specialist
(top row), General (middle row) and Random Control (bottom row).

Figure 11. Performance metrics of MPC with 10 individuals at medium thermal loads. The x-axis
denotes the time, while the y-axis shows the metric.

Figure 12. From left to right—Evolution of the temperature field during the experiment: Specialist
(top row), General (middle row) and Random Control (bottom row).
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Figure 13. Performance metrics of MPC with 10 individuals at low thermal loads. The x-axis denotes
the time, while the y-axis shows the metric.

4. Discussions

Many critical processes of a technical nature occur at high temperatures, leading to
the heating of structurally and functionally important components. This heat can signifi-
cantly deteriorate their properties, especially when coupled with an uneven distribution
of temperatures that creates local stresses and deformations. Such processes are often
characterized by nonlinearity and stochasticity, making analytical modeling challenging.
Fortunately, recent advances in machine learning have provided new opportunities for
modeling dynamic systems, even in the absence of precise mathematical descriptions.
Consequently, it has become feasible to design controllers that exhibit robust performance
and fast response times, even for systems that are stochastic and nonlinear in nature. The
objective of this work is to establish a population-based model predictive controller, which
tests alternative cooling policies via a virtually trained digital twin on a generic multi-mode
heat transfer test rig. The practical aim is to minimize the hot spot formations on the sur-
face, while simultaneously minimizing the overall surface temperature. In accordance, the
controlled variables are taken from IR camera measurements, which creates an extremely
large input space with more than half a million dimensions. Furthermore, the sudden
changes in the heat load distributions on the surface leads to complex, nonlinear transient
heat transfer processes, resulting in a significant variation in the time and length scales
in the thermal state. In accordance, the controller should be complex enough to respond
the drifts in both the system state and the measured variable characteristics. In this work,
we propose to use a population of control models within an MPC scheme to respond to
these demands. Moreover, the control models in the population were not assumed a priori,
but rather learnt via an evolutionary algorithm on measured data. The same training
database of experiments were also used to create a digital twin of the process, with which
virtual control experiments can be conducted to speed up the evolutionary process. For
the studied problem type of image sequence prediction, ConvLSTM-based autoencoder
enabled the extraction of a latent representation of the past and current state by using IR
camera measurements. More importantly, when fan settings are appended to the vector
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representation in the latent space, the autoencoder was shown to learn and interpret the
impact of fan settings on the future state trajectories, which is of critical importance for a
dynamic MPC problem. The robustness of the population-based controller is one of the key
properties of the proposed digital-twin-assisted MPC pipeline. In order to demonstrate
its added value, the same high, medium and low heat load tests were also conducted by
picking one individual control model from the converged population pool, instead of 10 for
the Specialist and the General sub-groups (Appendix D). While selecting one individual
from the gene pool led to a better control when the heat load was suddenly decreased to
medium and low load range, it resulted in a worse performance in hot spot formation
when the load suddenly increased from a low to high range. It should be pointed out at
this point that 323 experiments were conducted in the study to create a train/validation
dataset, and the whole MPC pipeline was tested on randomly generated disturbances out
of 27,000 possible configurations (data density was 1.2%). As a result of this sparsity, it is
likely that the state dynamics may not be captured with a single control law, particularly if
both the DT and the controller model is learnt from data. However, deploying an ensemble
of controller models with a DT enables the testing of alternative control policies virtually
and deploys the best approach. Furthermore, with an evolutionary approach, it is also
possible to trigger the creation of new offspring models, if the current population starts to
fail in suppressing the hot spot formations. In the current work, we only deployed 10 of
the best individuals from the whole gene pool around 300 converged solutions, based on
their performance on a small subset of the state space (<1%). Although the performance of
10 individuals was better than the benchmark case, utilizing the whole population within
MPC would lead to much better performance. In MPC experiments, the time interval to
make a decision after testing the controller models was set to be less than 30 s. In the current
code implementation, the tree model compiling of the GP model was run in a serial mode,
hence it limited the application to a maximum of 10 individuals. Therefore, it is strongly
recommended to parallelize the controller testing for a more robust implementation. The
task of speeding up the candidate evaluation problem and sampling from a larger pool of
candidates remains open for future work.

Enhancing the accuracy of the predictive model is a paramount objective for future
contributors. Expanding the size of the training and validation datasets is imperative to
comprehensively evaluate the architecture’s potential. Moreover, refining the data-cleaning
process and incorporating experiments with longer durations could booster the model’s
performance and reliability. Tailoring the pipeline to the specific requirements of the
problem at hand is another crucial aspect to consider. For instance, another potential
improvement is to extend the length of the sequence for the ConvLSTM autoencoder to
fully take advantage of the long-term memory capacity of the model, particularly if the
proposed methodology is applied to a different problem. Additionally, we investigate the
integration of fan settings as channels within the input images and explore the utilization
of symmetric skip connections.

Overall, the results strongly suggest that taking advantage of the ability to test multiple
control laws in real-time leads to a significant improvement in the controller’s performance.
The results clearly indicate that DT-assisted MPC produces effective and efficient control
laws even with sparse training data. The fact that the specialist populations consistently
outperform random controllers, highlights the potential for the application to more sophis-
ticated problems.

5. Conclusions

This study highlights the significant potential that emerges from combining a
population-based control strategy with neural networks to construct a robust and dy-
namic Model Predictive Control framework suitable for addressing complex and nonlinear
challenges. The effectiveness of our approach is demonstrated through extensive real-time
experiments conducted within a multi-mode heat transfer scenario, where the measured
variable vector encompasses high-dimensional infrared camera measurements organized
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as a sequence (655,360 inputs). We utilize evolutionary algorithms to generate a diverse set
of control laws from empirical data, allowing for adaptability to complex and transient heat
transfer dynamics. Importantly, our digital twin-enhanced population-based MPC outper-
forms individual control models, particularly in scenarios involving sudden and stochastic
shifts in localized thermal loads. The digital twin, engineered through ConvLSTM-based
spatiotemporal pattern extraction, assumes a pivotal role in virtually testing alternative
control policies, thereby substantially heightening the controller’s responsiveness, even
when confronted with limited data availability. Differentiating from traditional methods
constrained by the nonlinear and stochastic aspects of complex systems, our data-driven
approach harmonizes the capabilities of neural networks, genetic programming and digital
twin technology. This blend not only demonstrates the practical efficacy of our contribution,
but also highlights the broader potential of these methods across various domains.
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Nomenclature
The following abbreviations are used in this manuscript:

ARIMA Autoregressive moving average model
CNN Convolutional neural network
ConvLSTM Convolutional Long Short-Term Memory
DT Digital twin
FSP Fixed set-point
GA Genetic algorithm
GP Genetic programming
HDF Hierarchical data format
HVAC Heating, ventilation and air conditioning
LIDAR Light detection and ranging
MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean squared error
MPC Model predictive control
NARIMAX Nonlinear Autoregressive moving average model with exogenous inputs
NN Neural networks
PID Proportional–integral–derivative controller
PSO Particle swarm optimization
RNN Recurrent neural network
ReLU Rectified linear unit
STD Standard deviation

https://github.com/cihan-ates/model_predictive_control
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Appendix A. Background of the Deployed Digital Twin Model

While data-driven methods have an impressive potential for application in the field of
digital twin creation, it is important to note that the architecture and performance are heav-
ily dependent on the nature of the problem to be solved. Thus, a thorough understanding
of the system and the underlying fundamental physical laws could contribute to a more
precise problem formulation. In turn, this can facilitate the selection of a more adequate
architecture for the approximation of the system. The problem that the model used in this
paper is going to solve falls within the subcategory of the image sequence prediction.

Given that the system’s state is represented by infrared (IR) camera images, the
predictive task undertaken by the digital twin becomes a challenging task of estimating
conditioned image sequences. This entails the need to capture both the spatial structures
within the images and the temporal relationships between consecutive frames. When
working with image data, CNNs are widely regarded as the preferred choice due to
their strong performance and efficiency. Conversely, RNNs have demonstrated success
in handling time-series data. Thus, a combination of CNN and RNN architectures is
necessary to address the image sequence prediction problem effectively. In recent years,
architectures incorporating the Convolutional Long Short-Term Memory (ConvLSTM) module
have emerged as successful solutions for such tasks [6,46,47]. The ConvLSTM memory cell
has a very similar structure to the standard LSTM. However, the fully connected matrix
multiplications are replaced by convolutional operators [47]. This simple modification
has two significant implications. First, it reduces the redundancy in the model. Second,
by setting the convolutional kernel to a value larger than one, one can capture complex
“spatiotemporal motion patterns” [6]. An interesting point to highlight here is the robustness
of LSTM-based temporal modeling. For instance, in a recent work, the concept has been
further extended to a reversed sequence-to-sequence mapping technique that is applicable
for long time-horizon forecasting in dynamical systems [48]. The applicability of the
approach was also shown to model spiking (biological) pyramidal neurons in hippocampal
CA1 [48].

The typical ConvLSTM architecture resembles an Encoder-Decoder architecture. In
the original implementation of this architecture, Shi et al. [6] try out several models with
varying depths and widths. This approach consistently outperforms the fully connected
LSTM. In another example, ref. [49] construct a next-frame prediction model adopting
ConvLSTM. The encoder extracts high-level features and encodes them into a fixed-size
vector, while the decoder reads the vector and transforms it into the prediction for the next
frame’s state [49].

Considering the practical importance of multivariate time series prediction, several
improvements to the original ConvLSTM architecture have been proposed. Ref. [50] demon-
strated that symmetric skip connections between the encoder and decoder parts of the
model can significantly improve its image restoration capabilities. Others try to combine
ConvLSTM cells with conventional convolutional modules. For instance, ref. [51] applied
a ConvLSTM network to the fully compressed feature map of a five-layer convolutional
encoder to predict subsurface flows. This allows them to extract rich features through the
convolutional encoder alongside the long-term temporal evolution of the flow with a rela-
tively compact model. Alternatively, ref. [52] applied a standard 2D convolution in parallel
with a ConvLSTM layer. In this way, he preserves the original ConvLSTM implementation
where the input dimensions remain constant, while simultaneously compressing the inputs
through a standard convolutional encoder. This architecture allows the addition of more
layers, and thus extracts more features, without a dramatic increase in the number of total
parameters. As a result, the model can generalize better and process longer sequences.
Ref. [53] adopted a similar approach, however, they argued that separating the convo-
lutional autoencoder from the ConvLSTM network may further increase the network’s
performance. Furthermore, they proposed an improved training protocol. The autoencoder
was first trained independently. Consequently, latent space representations are used for the
training of the ConvLSTM network. As a last step, the entire network was trained together
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for fine-tuning [53]. Finally, ref. [47] proposed an inception-inspired ConvLSTM, where
each convolution was implemented with a different kernel size, thus extracting features at
different scales. Overall, the previous work indicates that ConvLSTM-based models can
achieve good results for image sequence prediction. Furthermore, the architecture can be
optimized according to the task at hand.

In this work, a relatively simpler design approach was considered. The image space
of the case of interest was found to be relatively homogeneous, and the duration of the
experiments ranged between three and five minutes. As a result, the main objectives could
be identified as follows: (i) accurate predictions of the next frames, (ii) low computational
cost to be useful to the controller, and (iii) avoidance of information loss during image
reconstruction. Consequently, a ConvLSTM-based approach was deemed sufficient due to
its adequate performance, flexibility, and straightforward implementation. Details of the
deployed architecture are provided in the next section.

Appendix B. GP Controller Hyperparameters and Operators

Table A1. Hyperparameters of the deployed genetic programming approach.

Parameter/Operator Value/Policy Argument

Mutation Probability 0.05 To prevent the loss of good solutions while maintaining diversity in the gene
pool.

Crossover Probability 0.85 To avoid unnecessary population shrinkage and prevent excessively fast
convergence.

Tree Depth 15–25
Shallow trees would only utilize a small portion of the inputs and would be
insufficient for generating sophisticated control laws. Deeper trees, however,

require longer computational times for evaluation.

Selection Strategy Tournament selection
This strategy is widely used and has shown acceptable results. According to [41],

all selection strategies can generate satisfactory outcomes, except for roulette,
which is not suitable for minimization tasks.

Tournament Size 2 A smaller tournament size preserves greater variety in the gene pool.

Population Size 300
A larger initial population ensures a more diverse gene pool. However, it also

leads to longer training times. To capitalize on the processing power of our GPU
unit, we explore a broader set of initial candidates.

Output Filter Sigmoid The outputs of the trees are scaled to values between 0 and 1 using the sigmoid
function.

Furthermore, we selected the following mathematical operations for the nodes of
the trees:

• Linear operations—summation, addition, subtraction, multiplication and negation;
• Trigonometric operations—sine and cosine—these operators are used to scale the

floating point numbers in the tree. This prevents an “explosion” of the values in either
direction (positive or negative), resulting in only two possible modes of operation for
the fans—either 0% or 100% load;

• Regrouping operations—create a 3D vector from three values—this is a hard-coded
function for the output of the tree, which should result in a 3D vector with one value
for the duty cycle of each fan.

Appendix C. MPC Experiment Design

The next step is to transfer the controller from the virtual to the physical domain and
assess its performance on the experimental setup. Figure A2 depicts the final procedure for
the MPC experiments with one, or multiple control models.
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Figure A1. The training pipeline for the GP controller.

(a)
Figure A2. Cont.
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(b)

Figure A2. Experimental protocol for MPC. (a) Experiment pipeline with a single individual. (b) Ex-
periment pipeline with population-based MPC.

MPC tests were conducted using three distinct control policies: (i) specialist control
models based on heat loading, (ii) general-purpose control models, and (iii) a simple
control model utilized as a benchmark. The specialist groups were formed by selecting
the top 10 performers from the final population in experiments with low (total load < 100),
medium (100 < total load < 200), and high heat load conditions (200 < total load < 300).
As a result, three specialist populations were created, each corresponding to one of the
heating load groups. The general group consisted of randomly chosen individuals from
the final population.

Figure A3. Standardized protocol for the Performance Evaluation Experiments.

To ensure a proper evaluation of the controller’s performance, it is essential to maintain
comparability among experiments within each group. To achieve this, a standardized
workflow is followed, as depicted in Figure A3. The workflow includes the following steps:

1. Cooling to the initial state: All experiments begin from the same starting point by cool-
ing the system to the initial state. This step ensures consistency across experiments.

2. Recreating a predetermined steady state: To simulate the control of a dynamic system
and replicate a realistic scenario, the system is preheated to a predetermined secondary
steady state. This step further enhances the reliability of the evaluation.

3. Fixed experiment duration: Each experiment is conducted for a fixed duration of
5 min, with a frame captured every 30 s. This extended monitoring period allows for
a comprehensive observation of the evolution of the temperature field.

In the MPC tests, three different thermal load scenarios are investigated:

• High heat loading: the load on the heating strips was suddenly increased from [50%,
25% and 0%] to [75%, 100% and 75%], while the fans were open at [20%, 40% and
20%]. The benchmark control law resulted in a fan setting for the cooling experiment
of [70%, 0% and 20%] after the set point change.
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• Medium heat loading: the heating strip loads were suddenly raised from [25%, 0%
and 50%] to [25%, 50% and 70%], while the fans were open at [30%, 20% and 30%]
during the second steady state. In this situation, the benchmark control law adjusted
the fan settings to [30%, 80% and 100%].

• Low heat loading: the thermal load was abruptly reduced from [75%, 75% and 50%]
to [0%, 25% and 25%], while the fans were open at [50%, 80% and 0%]. In this case,
the benchmark controller set the fan settings to [80%, 50% and 40%].

Finally, the number of candidates to be evaluated in real-time before applying the
control laws needs to be determined. Given our objective of achieving quick response times,
it is crucial to strike a balance between evaluation accuracy and computational efficiency.
To address this, we employ two different strategies, as illustrated in Figure A2. In the first
strategy, a single individual is evaluated. For the specialist populations, the best individual
is selected, while for the general populations, a single individual is randomly chosen. This
approach ensures a focused evaluation while minimizing computational overhead. In the
second strategy, ten individuals are selected for real-time evaluation. Similar to the first
strategy, individuals are randomly chosen from the general populations. However, for the
specialist populations, the entire population is included in the evaluation. This expanded
evaluation allows for a more comprehensive assessment of the control laws. Regardless
of the chosen strategy, the randomly generated fan settings remain constant throughout
the entire duration of the control experiment. This ensures consistency and eliminates any
potential bias introduced by varying fan settings.

Appendix D. Single Individual Tests

Appendix D.1. High Load Test Case

Figure A4. Performance metrics of MPC with 1 individual at high thermal loads. The x-axis denotes
the time, while the y-axis shows the metric.
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Appendix D.2. Medium Load Test Case

Figure A5. Performance metrics of MPC with 1 individual at medium thermal loads. The x-axis
denotes the time, while the y-axis shows the metric.

Appendix D.3. Low Load Test Case

Figure A6. Performance metrics of MPC with 1 individual at low thermal loads. The x-axis denotes
the time, while the y-axis shows the metric.
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28. Zarzycki, K.; Ławryńczuk, M. Advanced predictive control for GRU and LSTM networks. Inf. Sci. 2022, 616, 229–254. [CrossRef]

http://doi.org/10.3390/a13060143
http://dx.doi.org/10.3390/a14010010
http://dx.doi.org/10.3390/a13040097
http://dx.doi.org/10.1186/s40323-020-00147-4
http://dx.doi.org/10.1002/int.22798
http://dx.doi.org/10.1109/IROS.2009.5354018
http://dx.doi.org/10.1109/CDC.2018.8619572
http://dx.doi.org/10.1016/j.scs.2018.05.035
http://dx.doi.org/10.1016/j.enbuild.2022.112316
http://dx.doi.org/10.1109/LRA.2019.2901638
http://dx.doi.org/10.1016/j.buildenv.2023.110350
http://dx.doi.org/10.1109/37.845038
http://dx.doi.org/10.23919/ACC.2004.1384765
http://dx.doi.org/10.1016/j.enbuild.2017.02.012
http://dx.doi.org/10.23919/ChiCC.2019.8865797
http://dx.doi.org/10.1109/LRA.2020.2975727
http://dx.doi.org/10.1016/j.jclepro.2020.124124
http://dx.doi.org/10.1109/TII.2019.2953275
http://dx.doi.org/10.1109/TIE.2011.2169636
http://dx.doi.org/10.1016/j.ifacol.2018.09.373
http://dx.doi.org/10.1016/j.compchemeng.2019.04.011
http://dx.doi.org/10.1002/aic.16729
http://dx.doi.org/10.1021/acs.iecr.9b03055
http://dx.doi.org/10.1109/TIE.2022.3229323
http://dx.doi.org/10.1016/j.ins.2022.10.078


Algorithms 2023, 16, 387 26 of 26

29. Zheng, Y.; Zhao, T.; Wang, X.; Wu, Z. Online learning-based predictive control of crystallization processes under batch-to-batch
parametric drift. AIChE J. 2022, 68, e17815. [CrossRef]

30. Cho, M.; Ban, J.; Seo, M.; Kim, S.W. Neural network MPC for heating section of annealing furnace. Expert Syst. Appl. 2023,
223, 119869. [CrossRef]

31. Jung, M.; da Costa Mendes, P.R.; Önnheim, M.; Gustavsson, E. Model Predictive Control when utilizing LSTM as dynamic
models. Eng. Appl. Artif. Intell. 2023, 123, 106226. [CrossRef]

32. Meng, J.; Li, C.; Tao, J.; Li, Y.; Tong, Y.; Wang, Y.; Zhang, L.; Dong, Y.; Du, J. RNN-LSTM-Based Model Predictive Control for a
Corn-to-Sugar Process. Processes 2023, 11, 1080. [CrossRef]

33. Achirei, S.D.; Mocanu, R.; Popovici, A.T.; Dosoftei, C.C. Model-Predictive Control for Omnidirectional Mobile Robots in Logistic
Environments Based on Object Detection Using CNNs. Sensors 2023, 23, 4992. [CrossRef] [PubMed]

34. Sands, T. Comparison and Interpretation Methods for Predictive Control of Mechanics. Algorithms 2019, 12, 232. [CrossRef]
35. Rosolia, U.; Zhang, X.; Borrelli, F. Data-Driven Predictive Control for Autonomous Systems. Annu. Rev. Control. Robot. Auton.

Syst. 2018, 1, 259–286. [CrossRef]
36. Rawlings, J.B.; Maravelias, C.T. Bringing new technologies and approaches to the operation and control of chemical process

systems. AIChE J. 2019, 65, e16615. [CrossRef]
37. Schwenzer, M.; Ay, M.; Bergs, T.; Abel, D. Review on model predictive control: An engineering perspective. Int. J. Adv. Manuf.

Technol. 2021, 117, 1327–1349. [CrossRef]
38. Schweidtmann, A.M.; Esche, E.; Fischer, A.; Kloft, M.; Repke, J.U.; Sager, S.; Mitsos, A. Machine Learning in Chemical Engineering:

A Perspective. Chemie-Ingenieur-Technik 2021, 93, 2029–2039. [CrossRef]
39. De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing

2016, 192, 38–48. [CrossRef]
40. Nazmul Siddique, H. Intelligent Control: A Hybrid Approach Based on Fuzzy Logic, Neural Networks and Genetic Algorithms; Springer:

Cham, Switzerland, 2013.
41. Ahvanooey, M.T.; Li, Q.; Wu, M.; Wang, S. A Survey of Genetic Programming and Its Applications. KSII Trans. Internet Inf. Syst.

2019, 13, 1765–1794.
42. Zheng, C.; Eskandari, M.; Li, M.; Sun, Z. GA-Reinforced Deep Neural Network for Net Electric Load Forecasting in Microgrids

with Renewable Energy Resources for Scheduling Battery Energy Storage Systems. Algorithms 2022, 15, 338. [CrossRef]
43. Koza, J.R.; Keane, M.A.; Yu, J.; Bennett, F.H.; Mydlowec, W. Automatic creation of human-competitive programs and controllers

by means of genetic programming. Genet. Program. Evolvable Mach. 2000, 1, 121–164. [CrossRef]
44. Grosman, B.; Lewin, D.R. Automated nonlinear model predictive control using genetic programming. Comput. Chem. Eng. 2002,

26, 631–640. [CrossRef]
45. Vyas, R.; Goel, P.; Tambe, S.S. Genetic programming applications in chemical sciences and engineering. In Handbook of Genetic

Programming Applications; Springer: Cham, Switzerland, 2015, pp. 99–140.
46. Lotter, W.; Kreiman, G.; Cox, D. Deep predictive coding networks for video prediction and unsupervised learning. arXiv 2016,

arXiv:1605.08104.
47. Hosseini, M.; Maida, A.S.; Hosseini, M.; Raju, G. Inception-inspired lstm for next-frame video prediction. arXiv 2019,

arXiv:1909.05622.
48. Plaster, B.; Kumar, G. Data-Driven Predictive Modeling of Neuronal Dynamics Using Long Short-Term Memory. Algorithms 2019,

12, 203. [CrossRef]
49. Desai, P.; Sujatha, C.; Chakraborty, S.; Ansuman, S.; Bhandari, S.; Kardiguddi, S. Next frame prediction using ConvLSTM. J. Phys.

Conf. Ser. 2022, 2161, 012024. [CrossRef]
50. Hong, S.; Kim, S.; Joh, M.; Song, S.K. Psique: Next sequence prediction of satellite images using a convolutional sequence-to-

sequence network. arXiv 2017, arXiv:1711.10644.
51. Tang, M.; Liu, Y.; Durlofsky, L.J. A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow

problems. J. Comput. Phys. 2020, 413, 109456. [CrossRef]
52. Kakka, P.R. Sequence to sequence AE-ConvLSTM network for modelling the dynamics of PDE systems. arXiv 2022,

arXiv:2208.07315.
53. Mukherjee, S.; Ghosh, S.; Ghosh, S.; Kumar, P.; Roy, P.P. Predicting video-frames using encoder-convlstm combination. In

Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 2027–2031.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/aic.17815
http://dx.doi.org/10.1016/j.eswa.2023.119869
http://dx.doi.org/10.1016/j.engappai.2023.106226
http://dx.doi.org/10.3390/pr11041080
http://dx.doi.org/10.3390/s23114992
http://www.ncbi.nlm.nih.gov/pubmed/37299719
http://dx.doi.org/10.3390/a12110232
http://dx.doi.org/10.1146/annurev-control-060117-105215
http://dx.doi.org/10.1002/aic.16615
http://dx.doi.org/10.1007/s00170-021-07682-3
http://dx.doi.org/10.1002/cite.202100083
http://dx.doi.org/10.1016/j.neucom.2015.12.114
http://dx.doi.org/10.3390/a15100338
http://dx.doi.org/10.1023/A:1010076532029
http://dx.doi.org/10.1016/S0098-1354(01)00780-3
http://dx.doi.org/10.3390/a12100203
http://dx.doi.org/10.1088/1742-6596/2161/1/012024
http://dx.doi.org/10.1016/j.jcp.2020.109456

	Introduction
	Materials and Methods
	Experimental Setup
	Dataset
	Digital Twin
	Model Architecture
	Training Protocol

	Control Policy Generation Using Genetic Programming

	Results
	Testing Digital Twin as a Predictive Model
	Model Predictive Controller Performance

	Discussions
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	High Load Test Case
	Medium Load Test Case
	Low Load Test Case

	References

