
Citation: Clarke, R.; Fletcher, L.; East,

S.; Richardson, T. Reinforcement

Learning Derived High-Alpha

Aerobatic Manoeuvres for Fixed

Wing Operation in Confined Spaces.

Algorithms 2023, 16, 384. https://

doi.org/10.3390/a16080384

Academic Editors: Rafet Durgut,

Abdur Rakib and Mehmet Aydin

Received: 14 July 2023

Revised: 4 August 2023

Accepted: 6 August 2023

Published: 10 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Reinforcement Learning Derived High-Alpha Aerobatic
Manoeuvres for Fixed Wing Operation in Confined Spaces
Robert Clarke * , Liam Fletcher , Sebastian East and Thomas Richardson *

Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK
* Correspondence: robert.clarke@bristol.ac.uk (R.C.); thomas.richardson@bristol.ac.uk (T.R.)

Abstract: Reinforcement learning has been used on a variety of control tasks for drones, including, in
previous work at the University of Bristol, on perching manoeuvres with sweep-wing aircraft. In this
paper, a new aircraft model is presented representing flight up to very high angles of attack where the
aerodynamic models are highly nonlinear. The model is employed to develop high-alpha manoeuvres,
using reinforcement learning to exploit the nonlinearities at the edge of the flight envelope, enabling
fixed-wing operations in tightly confined spaces. Training networks for multiple manoeuvres is also
demonstrated. The approach is shown to generate controllers that take full advantage of the aircraft
capability. It is suggested that a combination of these neural network-based controllers, together with
classical model predictive control, could be used to operate efficiently within the low alpha flight
regime and, yet, respond rapidly in confined spaces where high alpha, agile manoeuvres are required.

Keywords: reinforcement learning; drone control; high alpha flight; aerobatic control

1. Introduction

Operating uncrewed aerial vehicles (UAVs) in complex environments requires the
UAV to be able to avoid collisions, either with air vehicles, terrain or other obstacles. For
multirotor vehicles, this can be achieved by exploiting the ability to hover and fly in any
direction, whereas most fixed-wing vehicles operate under significantly more restrictive
conditions, typically requiring a minimum speed to maintain flight and lacking the ability
to hover. However, compared to larger fixed-wing aircraft, small UAVs typically possess
higher thrust-to-weight ratios. Coupled with their generally lower mass and inertia, and
the lack of a pilot limited by acceleration, such aircraft are highly manoeuvrable. The
most extreme examples are seen at remote-control aerobatics competitions, where aircraft
demonstrate manoeuvres such as the prop-hang and the rapid direction reversal. Many
of these manoeuvres exploit post-stall dynamics and are challenging even for experts to
fly consistently.

Fixed-wing vehicles offer a number of advantages over multirotors, a primary one
being their longer range and endurance relative to similar sized multirotors. This allows
missions to be undertaken that are simply not possible with multirotors of a similar scale.
It would be very useful, though, to extend the flight envelope of the fixed-wing vehicle to
allow for manoeuvres within confined spaces and to combine the superior aerodynamic
performance of fixed-wing vehicles with the agility of multirotors, but without the complex-
ity of additional propulsion systems or mechanisms. To attain a similar agility, fixed-wing
vehicles are required to operate through the post-stall regime and transition from low alpha
to high alpha flight and back. Continuous flight in this regime is difficult to control due
to the nonlinear nature of the flow and rapid divergence from stable conditions. Modern
military aircraft that are designed to operate in high-alpha regimes are typically fitted
with stability augmentation systems. In many cases, these are required due to the inherent
instability of the air frame.

The work presented in this paper uses reinforcement learning to address the challenge
of rapid manoeuvres, including transition into a post-stall regime and back into low alpha

Algorithms 2023, 16, 384. https://doi.org/10.3390/a16080384 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16080384
https://doi.org/10.3390/a16080384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-5485-2992
https://orcid.org/0000-0003-4840-2474
https://orcid.org/0000-0001-7767-452X
https://doi.org/10.3390/a16080384
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16080384?type=check_update&version=1

Algorithms 2023, 16, 384 2 of 20

flight. This is demonstrated on a series of longitudinal aircraft manoeuvres, based on a new
nonlinear aircraft model which allows the algorithms to explore the possible flight envelope
during the learning process. The manoeuvres are defined using a series of reward functions
chosen to provide a set of manoeuvre options that can be linked together to achieve a given
flight objective. It is shown that a series of these manoeuvres can be linked together, and
that a single agent can be trained to control multiple manoeuvres based on an optional
additional input. The benefits of reinforcement learning within this setting is the capability
to fully explore the flight envelope without defining the manoeuvre itself, and to provide
a series of robust manoeuvres that can be linked together to generate complex paths in
confined environments using a computationally lightweight control implementation. These
reinforcement learning derived controllers can then be combined with more conventional
classical approaches to allow for efficient, robust flight in the low alpha regime. This paper
is arranged as follows: Section 2 contains the details on the reinforcement learning approach
taken in this work and the aircraft model; Section 3 presents the results and discussion;
Section 4 contains the conclusions and future work.

Previous Work Using Reinforcement Learning for Flight Control

Fletcher et al. [1] previously integrated goal-based reinforcement learning agents into
a closed control loop for a small unmanned aerial vehicle with variable wing sweep, and
performed in-flight testing. This work demonstrates that the use of domain randomisation
with atmospheric disturbances improves the real-world performance of the controllers,
leading to an increased reward. Several test cases were explored to identify the best
combination of enhancements and flight testing was performed, comparing a baseline
model against some of the best performing test cases from simulation. Generally, test cases
that performed better than the baseline in simulation, also performed better in the real
world. A PPO (Proximal Policy Optimisation) based algorithm was also used and although
enhanced models demonstrated improved performance compared to the baseline in both
simulation and the real world, the results suggest that, even with the domain randomisation
performed in this work, there is still a significant reality gap. This current paper builds on
the work through the use of a new aircraft model, which narrows this reality gap, especially
in the post-stall region where the aerodynamics are highly nonlinear.

PPO- and PPO-based methods are popular across a diverse range of control problems,
including multirotors [2], humanoid [3] and quadruped [4] locomotion, and ship dock-
ing [5]. There have also been efforts by Libardi, Dittert and De Fabritiis to incorporate
human demonstration and replay buffers with PPO [6]. This extends the real-world appli-
cability, especially to domains where accurate simulation and real-world experience are
both challenging. This is of particular interest in the flight control space.

Bøhn et al. [7] extended the flight envelope of existing UAV flight control systems by
using deep reinforcement learning techniques, specifically PPO, to generate a nonlinear
attitude controller. The controller was shown to have equivalent performance to a reference
PID controller but was also able to recover the aircraft to the target attitude from a wider
range of starting conditions. They also observed that the RL-based controller was robust
to external disturbances, despite these not being incorporated during training. One of
the key factors in the success of the controllers was found to be the number of variables
they included in the observation vector, together with values for previous time steps.
They also found that a reinforcement learning-based controller generalizes well to unseen
disturbances in the form of wind and turbulence, even in severe disturbance conditions.
Recommendations from their work include a closer study of both the reality gap between
the simulated and real world, and for the inclusion of more advanced manoeuvres, e.g.,
aerobatic flight or recovering from extreme situations, with freedom given to the controller
in terms of the target airspeed. Both of these are the focus of the work presented within this
current paper. In later work, Bøhn et al. [8], developed a similar attitude controller, but this
time using the Soft Actor Critic (SAC) algorithm, allowing for off-policy data to be used.
They also included wind and turbulence in the simulation, as well as actuator delay.

Algorithms 2023, 16, 384 3 of 20

Similarly, Wei et al. [9] used an SAC-based method to control a simulated F-16 model
through a series of S-curves at a constant altitude. Unlike Bøhn et al., who used a convolu-
tional layer to incorporate the temporal information, Wei et al. used the Gate Recurrent
Unit (GRU). This is a form of recurrent neural network (RNN) where output is dependent
on previous inputs. They used model-free deep reinforcement learning (DRL) to train the
networks. A new method, using Soft Actor Critic (SAC) with Proportion Differentiation
(PD) teacher guidance, is proposed to accelerate the training process and they highlight
that this approach provides better tracking performance than a conventional PD controller
alone. They have also highlighted the need for a higher fidelity simulation environment in
order to close the reality gap and to create more robust controllers.

Clarke et al. [10] used the Normalised Advantage Function (NAF) framework, which
trains a neural network to approximate loss functions directly, as well as outputting the
predicted control action. A separate agent was trained to perform each of three manoeuvres
with hand-crafted reward functions for each. The reward signal is non-zero throughout
the manoeuvre, providing the agent with continuous feedback on performance. Through
trial-and-error simulated experiences, the controller is able to explore the full range of the
nonlinear flight envelope, is able to learn by itself, without human input, and can learn
an aerobatic manoeuvre rapidly, in the order of just a few hours. This controller utilises
the large multidimensional state and action spaces of the aircraft to optimise aerobatic
performance and to develop a high degree of autonomous flight skills. They demonstrated,
through the use of high-fidelity simulations, that the controller was able to successfully
learn and execute two different aerobatic manoeuvres, namely the slow roll and knife edge.
Their proposed future work includes energy management, and testing of the approach in
free flight using small UAVs. This paper also works towards this objective, with a new,
high-fidelity model built on data from a flight-worthy UAS airframe, which also allows for
future free-flight trials.

Lee and van Kampen [11] used Incremental Dual Heuristic Programming (IDHP) for
control of a Cessena Citation model. Adaptive Critic Design (ACD) is proposed as a popular
approach for online reinforcement learning control, due to its explicit generalisation of the
policy evaluation and the policy improvement elements. IDHP is used in this paper to
control the altitude under the influence of measurement noise and atmospheric gusts. IDHP
uses a representation of the aircraft dynamics separate from the simulated environment
to act as a source of weight updates for actor and critic networks. Two IDHP controller
designs are proposed, with and without the cascaded actor structure. Simulation results
with measurement noise indicate that the IDHP controller design without the cascaded
actor structure can achieve high success ratios. They state that the overall shape of the
policy maintained by the actor ultimately leads to an aggressive control policy from which
destabilisation occurs. To alleviate aggressive policy generation, they propose using a
different activation function with a smoother gradient for the output layer.

Wu et al. [12] presented a learning-based reactive MCOA (Manoeuvre Control for Ob-
stacle Avoidance) framework for uncrewed air vehicles. The basis for this is the generation
of an interfered fluid dynamical system (IFDS) guidance law with back-stepping control
loops. This is then used within a deep reinforcement learning framework to generate a re-
active online decision-making mechanism matched with the IFDS guidance law. They state
that simulation results showed that, when compared with the deliberative frameworks,
the proposed framework is faster, provides better tracking, and could improve safety in
dense, obstacle-laden 3D environments. Although the results presented in this paper are
for reinforcement learning-based controllers, the proposed implementation route is also to
combine them with a second form of control, which, in this case, is model predictive control.

Zhang et al. [13] used neural networks for the control of a 6DoF fixed-wing aircraft
model. They used a PID controller as a baseline and trained a neural network through deep
reinforcement learning (DQN) to replicate the PID controller performance. To generalise to
a continuous action space, they also used a Deep Deterministic Policy Gradient (DDPG)
algorithm. Through using the DDPG algorithm to learn the control law from flight states

Algorithms 2023, 16, 384 4 of 20

through to the aero-surfaces and thrust control, an intelligent integrated flight controller
developed, and they highlight that it avoids the separation of guidance and control that is
common in traditional approaches to controller design. They state that a trained neural
network meets the control objective; however, for future work, they propose the need to
improve the response and generality of the controllers. Whilst this is a logical approach for
the use of RL, in the work presented here, reinforcement learning is used to explore the
full flight envelope based on the use of targeted cost reward structures, building on the
manoeuvres currently available from more classical-based control.

Lopes et al. [2] developed a PPO-based controller for a multirotor. They used the
full nine-element rotation matrix, representing the orientation of the vehicle as part of
their state input. In this work, a quaternion representation is used, which reduces the
overall size of the input vector, while retaining the advantage of eliminating singularities,
unlike an Euler angle representation. Similar to other works, they generate a controller that
takes an error as part of the input, whereas, here, the error signal is delivered through the
reward function.

Zhen et al. [14] used PPO to develop an attitude control using a small fixed-wing model.
The endpoint reward was based on deviation from the control point and reinforcement
learning was used to provide attitude control. Demonstrated in simulation, the resultant
neural networks were shown to be relatively robust and performed well in comparison with
a baseline PID controller. Although it is not clear what the maximum angle of attack the
aircraft reached during the tests was, the response was shown to be stable up to plus/minus
a twenty degrees pitch angle. The work within this current paper uses a similar framework
for the PPO control, but moves away from the steady state and low alpha transitions into
the highly nonlinear, high alpha flight regimes to provide agile manoeuvres.

Building on this previous work, the key contributions of this current paper are the
following:

1. The introduction of a high fidelity longitudinal aircraft model which allows reinforce-
ment learning to explore the full flight envelope, thereby closing the reality gap to
free flight.

2. The generation of aerobatic manoeuvres, exploiting the high-alpha flight regime that
classical controllers typically do not enter.

3. The linking together of multiple manoeuvres through the generation of robust neural
network-based controllers and the training of a single neural network for more than
one manoeuvre.

The following section introduces the aircraft model and reinforcement learning
environment.

2. Reinforcement Learning and the Longitudinal Aircraft Model
2.1. Proximal Policy Optimisation Algorithm

This work was carried out using the baseline implementation of the Proximal Policy
Optimisation (PPO) algorithm from stable-baselines3 [15]. This library is an updated
version of stable-baselines, which, in turn, is a fork of OpenAI’s original Baselines
library. It provides ‘reliable implementations of reinforcement learning algorithms in PyTorch’.

The PPO algorithm was originally proposed by Schulman et al. [16] as a development
of Schulman et al.’s earlier work on Trust Region Policy Optimisation [17]. Both techniques
are policy-based methods, in which the agent learns a policy πθ , which maps the current
state st to a distribution over the action space. For problems with continuous action spaces,
this is often a (potentially multivariate) Gaussian distribution. During training, the action
to take is sampled according to this distribution. Following training, the mode of the
distribution is taken to be the optimal action for use in evaluation.

Both methods limit how ‘far’ an update can shift the policy. In the typical implementa-
tion of PPO, this is achieved by maximising a surrogate objective function in the gradient
ascent that includes a term to penalise changes in policy, effectively limiting the rate of

Algorithms 2023, 16, 384 5 of 20

change. This objective function is reproduced in Equation (1). In practical implementations,
the expected value is calculated across a batched sample of transitions.

LCLIP(θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(1)

The two key terms in this equation are the policy update probability ratio rt(θ) and
the advantage estimator, Ât. The probability ratio is defined as

rt(θ) =
πθ(at|st)

πθold
(at|st)

,

so that, if the new policy, πθ , is more likely to choose action at in state st than the old policy,
πθold

, then the probability ratio is greater than 1. The advantage estimator represents an
estimate of ‘how much better’ the overall reward is if a particular action at is taken, as
opposed to choosing a random action distributed according to the policy. The loss function
is maximised by having a probability ratio less than one when the advantage is negative,
and greater than one when the advantage is positive. In effect, this means the new policy is
more likely to result in advantageous actions.

The clipping term serves to penalise large changes to the existing policy, by limiting the
overall increase in LCLIP that can be achieved by generating extreme probability ratios. By
taking a minimum of both the original and clipped values in the objective function, the clip-
ping process does not mask extreme changes in the probability ratios that result in reduced
probability of advantageous actions, or increased probability of disadvantageous actions.

2.2. Aircraft Model

The state of the aircraft model is composed of the following: the Cartesian position,~r =
(x, y, z); the body-frame velocity, ~vb = (u, v, w); the vehicle attitude as a non-normalised
quaternion, q = qii + qjj + qkk + qw (denoted in vector form in the order (qi, qj, qk, qw));
the body–axis angular rates, ~ω = (p, q, r). Using this state representation, the full six
degree-of-freedom equations of motion of the aircraft are

~̇r =

 ẋ
ẏ
ż

 = D(q)T~vb, (2)

~̇vb =

 u̇
v̇
ẇ

 = ~vb × ~ω +
1

mb

(
D(q)~Fw + ~Fb

)
, (3)

q̇ =

q̇i
q̇j
q̇k
˙qw

 =
1
2

0 r −q p
−r 0 p q
q −p 0 r
−p −q −r 0

q, (4)

~̇ω =

 ṗ
q̇
ṙ

 = I−1
b (D(q)~τw +~τb − Ib~ω× ~ω), (5)

D(q) =
1
‖q‖2

 q2
w + q2

i − q2
j − q2

k 2(qiqj + qwqk) 2(qiqk − qwqj)

2(qiqj − qwqk) q2
w − q2

i + q2
j − q2

k 2(qjqk + qwqi)

2(qiqk + qwqj) 2(qjqk − qwqi) q2
w − q2

i − q2
j + q2

k

. (6)

For the work presented here, only the longitudinal terms, x, z, u, w, qj, qw, q, are non-
zero. Follow on work will consider the lateral motion of the aircraft.

Algorithms 2023, 16, 384 6 of 20

The forces ~Fb,w and torques ~τb,w on the vehicle are computed from parameterised
curves representing the aerodynamic coefficients. These aerodynamic coefficients are
resolved into dimensionalised forces and torques through equations of the forms:

FX =
1
2

ρV2
∞SCX ,

τY =
1
2

ρV2
∞Sc̄CY.

These equations use the dynamic pressure of the fluid from the 1
2 ρv2

∞ term, where ρ is
the air density and V∞ is the freestream velocity. Alongside this is the coefficient itself
CX, and scaling terms, S and c̄. Typical choices in aerospace, and those used for this
model, are the main wing area for S and the main wing mean aerodynamic chord for c̄.
The coefficient terms are, typically, a function of the aerodynamic state of the aircraft and
current control inputs.

Figure 1 is a graphical representation of the various angles used in aircraft dynamics.
The vehicle’s centre-of-mass is travelling along the green arrow, describing the flight path.
The angle γ is the angle between this direction of travel, and the horizon is the flight path
angle. The angle between the horizon and the aircraft’s reference axis is the pitch angle,
denoted by θ, and the difference between the pitch and flight path angles provides the
angle of attack, denoted by α. The angle of attack describes the angle between the oncoming
airflow and the aircraft reference axis and is key for the modelling of the aerodynamic
forces and moments. The elevator angle, η, is also shown.

Algorithms 2023, 1, 0 6 of 20

The forces ~Fb,w and torques ~τb,w on the vehicle are computed from parameterised
curves representing the aerodynamic coefficients. These aerodynamic coefficients are
resolved into dimensionalised forces and torques through equations of the forms:

FX =
1
2

ρV2
∞SCX ,

τY =
1
2

ρV2
∞Sc̄CY.

These equations use the dynamic pressure of the fluid from the 1
2 ρv2

∞ term, where ρ is
the air density and V∞ is the freestream velocity. Alongside this is the coefficient itself
CX, and scaling terms, S and c̄. Typical choices in aerospace, and those used for this
model, are the main wing area for S and the main wing mean aerodynamic chord for c̄.
The coefficient terms are, typically, a function of the aerodynamic state of the aircraft and
current control inputs.

Figure 1 is a graphical representation of the various angles used in aircraft dynamics.
The vehicle’s centre-of-mass is travelling along the green arrow, describing the flight path.
The angle γ is the angle between this direction of travel, and the horizon is the flight path
angle. The angle between the horizon and the aircraft’s reference axis is the pitch angle,
denoted by θ, and the difference between the pitch and flight path angles provides the
angle of attack, denoted by α. The angle of attack describes the angle between the oncoming
airflow and the aircraft reference axis and is key for the modelling of the aerodynamic
forces and moments. The elevator angle, η, is also shown.

η

γ
θ

α

Thrust

Figure 1. Diagram showing definitions of pitch angle, θ, angle of attack, α, flight path angle, γ, and
elevator angle, η.

The model used in this work is based on wind-tunnel data for the FMS Models MXS2
airframe (https://www.fmshobby.com/products/fms-1100mm-mxs-v2-pnp-with-reflex,
accessed on 24 November 2022), pictured in Figure 2. The airframe was mounted in the
University of Bristol’s 7’×5’ wind tunnel, with a load cell mounted internally (see Figure 2a).
Automated control inputs were generated by a set of Python scripts, which also recorded
load cell data. The pitch and yaw traverse, and the tunnel airspeed, were controlled by the
wind tunnel’s existing control system, which was manually provided with setpoints.

With the airframe mounted, the overall range available for the traverse was −18° to
20° in angle of attack, and ±30° in sideslip. Data was gathered at indicated wind tunnel
speeds of 10 m s−1 to 22.5 m s−1 in 2.5 m s−1 increments. The elevator, rudder and aileron
were each deflected individually across a range of throttle settings at each tunnel speed

Figure 1. Diagram showing definitions of pitch angle, θ, angle of attack, α, flight path angle, γ, and
elevator angle, η.

The model used in this work is based on wind-tunnel data for the FMS Models MXS2
airframe (https://www.fmshobby.com/products/fms-1100mm-mxs-v2-pnp-with-reflex,
accessed on 24 November 2022), pictured in Figure 2. The airframe was mounted in
the University of Bristol’s 7′ × 5′ wind tunnel, with a load cell mounted internally (see
Figure 2a). Automated control inputs were generated by a set of Python scripts, which
also recorded load cell data. The pitch and yaw traverse, and the tunnel airspeed, were
controlled by the wind tunnel’s existing control system, which was manually provided
with setpoints.

With the airframe mounted, the overall range available for the traverse was −18° to
20° in angle of attack, and ±30° in sideslip. Data was gathered at indicated wind tunnel
speeds of 10 m s−1 to 22.5 m s−1 in 2.5 m s−1 increments. The elevator, rudder and aileron
were each deflected individually across a range of throttle settings at each tunnel speed

https://www.fmshobby.com/products/fms-1100mm-mxs-v2-pnp-with-reflex

Algorithms 2023, 16, 384 7 of 20

and vehicle attitude, yielding a large dataset covering almost all of the conventional flight
envelope and initial stages of the post-stall regime.

(a) MXS2 mounted in the large wind tunnel (b) MXS2 in hovering flight

Figure 2. Images of the MXS2 airframe in the University of Bristol Wind Tunnel and in free flight at
the University of Bristol Fenswood free flight facility.

This data was then used to generate a set of parameterised curves to define the coeffi-
cients for the longitudinal model. These curves were extended with data from additional
references to cover the full range of angle of attack from −180° through to 180°. The
resulting curves for the lift and pitching moment coefficients are plotted in Figure 3.

−150 −100 −50 0 50 100 150
Angle of attack (deg)

−1.0

−0.5

0.0

0.5

1.0

Li
ft
 c
oe

ff
ic
ie
nt

Linear fit
XFLR 2D
Polynomial fit
Raw Data

(a) Lift coefficient vs angle of attack

−150 −100 −50 0 50 100 150
Angle of attack (deg)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Pi
tc
hi
ng

 m
om

en
t c

oe
ff
ic
ie
nt

Linear fit
As mptopic fit
Pol nomial fit
Raw data

(b) Pitching moment coefficient vs angle of attack

Figure 3. Plots of the lift and pitching moment coefficient curves used in the MXS model across the
full range of α.

The longitudinal model has two control inputs available: elevator angle, η and throttle
setting τ. Figure 1 shows the elevator angle, here defined as the angle to which the elevator
is deflected upwards relative to its neutral position. Note that this definition of elevator
angle is opposite in sense to convention, generating a positive pitching moment with a
positive deflection. The wind tunnel data was used to generate a coefficient for the elevator
that varied with throttle setting, airspeed and elevator angle. The throttle setting is mapped
to the generated thrust, based on a two-dimensional polynomial incorporating the airspeed.

Along with the forces and torques exerted on the body, the mass and inertial properties
of the body are required. A second airframe was fitted with necessary hardware for
autonomous flight and used to make measurements of these properties. The resulting
measurements are presented in Table 1. In the work presented here, only a longitudinal
model is used, so only the pitch inertia Iyy and overall mass are needed.

Algorithms 2023, 16, 384 8 of 20

Table 1. Mass and inertial properties of the MXS2 airframe.

Property Measured Unit

Mass, m 1.221 kg
Ixx 0.019 kg m2

Iyy 0.091 kg m2

Izz 0.121 kg m2

These coefficient curves, thrust modelling and inertial data were used to implement
the model using pyaerso [18]. This is an accessible Python interface to a simple flight
dynamics modelling library implemented in Rust [19]. It allows forces and moments to be
calculated in Python, based on the current vehicle aerodynamic state, and to be transferred
to dedicated, pre-compiled machine-code for the state propagation process. Wind and
atmospheric density models can also be defined in Python, or a set of pre-built models
can be selected from. This allows easy experimentation without the need to recompile
software or manipulate aircraft model configuration files. It also means users are free to use
arbitrary functions to define their models, rather than being limited to a set supported by the
underlying dynamics code. The Python interface (https://github.com/rob-clarke/pyaerso,
accessed on 14 July 2023) and the underlying Rust library (https://github.com/rob-clarke/
aerso, accessed on 14 July 2023) are both available on GitHub under MIT licenses.

3. Reinforcement Learning-Based Results and Discussion
3.1. Descent Manoeuvre

The initial manoeuvre explored and presented here was constrained descent. For
this manoeuvre the objective is to achieve the maximum descent within a fixed forward
distance, with the vehicle starting in trimmed level flight. The naïve implementation simply
provides a reward proportional to the final z-coordinate value when the vehicle crosses the
x-coordinate limit. In typical aerospace convention, positive z is downwards so R = wzz
gives an increasing reward for increasing descent, assuming wz > 0.

Such an implementation induces descent behaviour, with one potential solution being
a vertical dive. This can achieve an unlimited descent within a fixed forward distance.
However, it has a number of problems. Firstly, increasing airspeed in the dive likely exceeds
the validity of the model, and in the real world could potentially exceed airframe limits.
Secondly, as the episode ends when the forward distance limit is reached, the agent seeks
to maximise downwards velocity in the moments before episode end in order to maximise
the reward. This likely leads to an extreme nose-down attitude, which is not conducive to
continued controlled flight.

To address these problems, consider the manoeuvre in the context of an approach to
landing. The exit velocity should be limited, lest the vehicle overrun the runway, and the
exit attitude should be close to level, assuming a conventional landing. Therefore, the exit
attitude condition can be encouraged with the reward function

Rend = (1− wθ |θ − θtarget|)wzz,

where the overall reward is weighted by the pitch error. In this case, θtarget is 0, with a
weighting term wθ left for tuning the reward function.

The airspeed condition can be incorporated in a similar fashion by weighting the
overall reward by the ratio of the vehicle’s initial kinetic energy to that at the end of
the episode:

Rend = wzz
|vb,0|2
|vb,end|2

.

In this formulation, an increase in the vehicle’s kinetic energy over the initial value causes
a decrease in the reward, while a reduction in energy increases the reward. This has the

https://github.com/rob-clarke/pyaerso
https://github.com/rob-clarke/aerso
https://github.com/rob-clarke/aerso

Algorithms 2023, 16, 384 9 of 20

effect of encouraging a bleed-off of energy during the manoeuvre, but this is ideal as part
of a landing approach manoeuvre.

With both of these modifications in place, there is still an edge case that the agent
can exploit. Assuming there is sufficient forwards distance, the vehicle can be put into a
potentially unlimited vertical dive and pull up into a climb to bleed off the excess energy
prior to hitting the forward limit. This is not a particularly useful solution in an approach
to landing scenario, unless the landing site is located on a cliff edge. To combat this, the
reward function is further augmented to penalise the amount of climb the vehicle carries
out during the manoeuvre:

Rend =
wzz

1 + wclimb(zmax − z)
.

This reduces the award for any end position above the lowest point in the manoeuvre. The
wclimb parameter is used for tuning the reward.

There are a few further edge cases that the agent could exploit that are imposed with
hard limits, rather than modifying the shape of the end-of-episode reward. If any of the
conditions are breached, the episode is ended immediately and a negative reward given to
the agent. First, there is a lower limit on the x-coordinate to prevent the agent using more
forwards space than intended by flying the aircraft back past the initial position. Second,
there is a set of conditions to prevent the agent looping the vehicle. This could come about
in a similar fashion to the scenario requiring climb mitigation, where a vertical dive can be
recovered into a high angle-of-attack (and so a high drag) loop, allowing bleed-off of energy
without triggering the reward penalty for climbing introduced above. An outline of this
hypothetical manoeuvre sequence is shown in Figure 4. Finally, an effort was made to keep
the simulation within the range of validity for the model by putting limits on the vehicle’s
body–axis velocity. For future experiments with wind incorporated, this will need to be
modified to reflect the vehicle airspeed. These limitations are represented mathematically
in Equation (7).

Rend =

(1− wθ |θ|) z

k(1+wclimb(zmax−z)) if x > xlim

−1000 if x < 0
−1000 if θ > 89◦ or θ < −270◦

−1000 if u > ulim or u < 0

k =
|~vb,end|2
|~vb,0|2

(7)

Figure 5a,b show a position plot and the vehicle state traces for an evaluation of an
agent trained on the reward function in Equation (7). Table 2 lists the parameters used
during training. Note the pitch weight of 0, meaning that error in pitch did not discount
the reward. The pitch-up behaviour at the end of the episode was likely due to the high
angle of attack causing significant energy loss, so the agent pitched up to reduce the reward
discount due to energy gain. The initial use of high throttle was likely to increase elevator
response in order to rapidly pitch the aircraft nose down.

Table 2. Run A: Descent metadata used.

Parameter Value

Timesteps 500,000
xlim 30 m
ulim 25 m s−1

wθ 0
wclimb 1

Algorithms 2023, 16, 384 10 of 20

−10 −5 0 5 10 15 20 25

−25

−20

−15

−10

−5

0

Figure 4. Diagram showing a hypothetical looping exit from a vertical dive.

0 5 10 15 20 25 30
x-position

−20

−15

−10

−5

0

z-
po

sit
io
n
(in

ve
rte

d)

(a) Position and attitude visualisation

−20

0
Height (m)

−50

0Pitch Angle (deg)

0

25Alpha (deg)

15

20Airspeed (m/s)

0

20
Ele ator (deg)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

0

1
Throttle (frac)

(b) State and control traces

Figure 5. Run A: Simulation results showing Reinforcement Learning-based Descent Response.

3.2. Adding Waypoints to the Descent Manoeuvre

For Figure 6 waypoints were added to the scenario and the x-distance available for
the manoeuvre extended out to 45 m. The purpose of this scenario was to demonstrate the
use of additional requirements on the manoeuvre during the descent. The aircraft can be
seen to pitch up to meet the first waypoint before rapidly pitching nose down to meet the
second. The success of this type of manoeuvre is highly dependent on the weighting given
to the waypoints, relative to the requirements for the descent and the exit from the episode.

Algorithms 2023, 16, 384 11 of 20

The waypoints themselves influenced the RL, based on proximity to the waypoint, until
each x-coordinate was passed, using the reward function

Rend = Rdescent +
T

∑
t=0

rwp,

rwp = wwp

nwp

∑
i=1

{
0 x > xwpi

1
|(x,z)−(x,z)wpi |+0.01 otherwise

.

Note that, unlike the overall manoeuvre reward, the waypoint reward was delivered
continuously throughout the episode. This meant careful balancing of the waypoint weight,
and wwp, was required to ensure that the reward signal from the waypoints did not
overpower the final episode reward. For the result presented above, wwp was set to 0.15.
This resulted in the waypoint-derived reward being 52% of the total reward for the episode.
The other parameters used in training are listed in Table 3.

Table 3. Run B: Descent with Waypoints metadata used.

Parameter Value

Timesteps 500,000
xlim 45 m
ulim 25 m s−1

wθ 0
wclimb 1
wwp 0.15

Waypoint positions (10,−2) and (30, 5)

0 10 20 30 40
x-position

−20

−15

−10

−5

0

5

10

z-
po

sit
io
n
(in

ve
rte

d)

(a) Position and attitude visualisation with waypoints

−10
0Height (m)

−25
0

25Pitch Angle (deg)

−10
0

10Alpha (deg)

10
15Air peed (m/)

−20
0Elevator (deg)

0.0

0.5Throttle (frac)

0.0

0.5Reward

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time ()

0

20
Cumulative reward

(b) State, control and reward traces

Figure 6. Run B: Simulation results showing the Descent Response With Waypoints.

3.3. Hover Manoeuvre

The next manoeuvre explored and presented here is a hover entry. The main objective
was for the agent to control the vehicle from level trimmed flight through to a hover. There
was an ‘easy’ solution in the vehicle pitching to the vertical and maintaining that attitude
until the speed reduced to 0. In order to provide a more interesting environment and
challenge, a secondary objective was also encoded into the reward function.

Initially, this secondary objective was to minimise the height gain during the manoeu-
vre. To motivate this, again consider the manoeuvre as part of an approach to a landing
sequence, this time for a tail-sitter landing. The hover condition is much less efficient than

Algorithms 2023, 16, 384 12 of 20

conventional flight, so to minimise energy expenditure during the final descent phase, the
transition to hovering flight should take place as low as possible.

The initial approach was to check at each timestep if the vehicle had achieved a state
within some acceptable bounds of a hover, with the assumption that a conventional control
system would then be able to stabilise the hover. The bounds used for the hover state are
listed in Table 4. If the vehicle was deemed to be in the hover, the episode was ended and
the episode reward was proportional to the final height of the vehicle: namely, R = zend + c.
The constant offset was tuned to ensure that heights above the starting position (that is a
negative z-coordinate) did not result in a negative reward.

Table 4. Limits on state variables for hover condition check.

Parameter Lower Limit Upper Limit

Pitch angle, θ 85° 95°
Pitch rate, q −0.01 rad s−1 0.01 rad s−1

x-axis velocity, u −0.1 m s−1 0.1 m s−1

z-axis velocity, w −0.1 m s−1 0.1 m s−1

This initial approach proved difficult to train. Most runs resulted in the vehicle simply
falling until the episode was terminated by the time or position limits. The reward signal
was only given in the constrained part of the state space near the hover condition, which
made it very sparse for the learning algorithm, with the gradient in the reward space
difficult to determine. In order to improve this, a time limit was added to the episodes,
after which the reward would be based on the vehicle’s progress towards the hover state,
as shown in the reward function

Rend = 100
(

1
1 + |q| ·

1
1 + |90◦ − θ| ·

1
1 + |u| ·

1
1 + |w|

)
.

For a perfect hover, this function returned a value of 100, with any deviation from
hover discounting this. The constant offset above was also tuned to ensure a successful
hover resulted in a reward greater than 100.

Figure 7a,b show the evaluated outputs for an agent trained with the hover reward
function. The parameters used for training the agent are listed in Table 5. The horizontal
velocity at the end of the episode was still a little high for the hover condition, so the
episode timed out. Of note was the initial throttle input, which was likely to increase
elevator effectiveness. This was followed by a period of no throttle to minimise height gain.
The throttle then increased at the end of the episode to maintain the hover. The overall
height gain throughout the manoeuvre was ≈10 m. Note also the rapid transition into the
high alpha regime as the throttle came back on at approximately 1.8 s.

During training for this manoeuvre, another solution was generated in addition to
the expected aggressive pitch-up, this being a nose-down manoeuvre. In the nose-down
variation, the vehicle pitches down, passing through extreme negative angles of attack
before ending the episode pointing upwards, usually significantly below the starting point
and, potentially, very close to the hover condition. This drop below the starting point yields
a significant improvement in reward over the more conventional approach. A successful
execution of the nose-down variation has not been seen in a final deterministic evaluation.
It would be interesting to see if this nose-down variation is physically realisable, and
whether the aircraft model accurately captures the physics at these very high negative
angles of attack. It would also be intriguing to witness how the learning algorithms find
unexpected solutions to maximise the reward function.

Algorithms 2023, 16, 384 13 of 20

Table 5. Run C: Hover metadata used.

Parameter Value

Timesteps 1,500,000
xlim 30 m
ulim 25 m s−1

0 2 4 6 8 10 12 14
x-position

0

2

4

6

8

10

z-
po

sit
io
n
(in

ve
rte

d)

(a) Position and attitude visualisation

0

10
Height (m)

0

50Pitch Angle (deg)

0

100
Alpha (deg)

5
10
15

Airspeed (m/s)

−25

0Elevator (deg)

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0

1
Throttle (frac)

(b) State and control traces

Figure 7. Run C: Simulation results showing the transition into the Hover.

The runs that exploit this manoeuvre typically initially exhibit a high throttle with
minimal pitch input, serving to accelerate the vehicle. This increased airspeed increases the
pitch authority of the elevator, which the agent then uses to rapidly pitch down. In some
cases, the angular momentum from the pitch input is just sufficient to transition the vehicle
through −90° angle of attack and into a nose-up attitude. However, typically, the final
deterministic evaluation does not show sufficient momentum to complete the transition
through to the nose-up state.

3.4. Turn-Around and Climb Manoeuvres

Two additional manoeuvres are also presented here, in less detail. The first is a turn-
around manoeuvre, to reverse the direction of travel. The second is a climb within a fixed
forward distance.

In previously presented cases, the agent learnt using the full six-degree-of-freedom
state of the vehicle. However, the model is only longitudinal, so many members of the
observation vector are unchanging. Truncating the state vector to only include the relevant
longitudinal states should allow the agent to begin learning relevant information sooner,
rather than learning to ignore unchanging state–vector elements. This approach was
followed for the direction change and climb manoeuvres.

3.4.1. Turn-Around Manoeuvre

For the turn-around manoeuvre, the objective is to reverse the direction of travel of the
vehicle. As the model is restricted to the longitudinal plane, this means the vehicle ends
the manoeuvre inverted.

To minimise the constraints on the agent, the reward function was initially specified
very loosely, only requiring that the vehicle x-coordinate became negative. This was later
augmented to include a penalty for ending the manoeuvre at a different height than it
was started at, and penalising longer episode times. Combined, these had the effect of
influencing the agent to complete the manoeuvre as quickly as possible, with minimal
change in height.

Algorithms 2023, 16, 384 14 of 20

The reward function for the turn-around manoeuvre is

Rend = 1 +
1
T

100
wz(1 + |z|)

.

This reward was applied at the end of the episode, determined by the point where the
x-coordinate went below 0. For all other time steps, the returned reward was zero. The
value T represents the number of time steps in the episode.

Figure 8 shows an example evaluation of the turn-around manoeuvre. The parameters
used in training the agent are listed in Table 6 The height change penalty appears to be
disproportional to the time-based penalty as there is a significant height change throughout
the manoeuvre.

Table 6. Run D: Turn-around metadata used.

Parameter Value

Timesteps 500,000
xlim 30 m
ulim 25 m s−1

wclimb 1
Use reduced observation True

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5
x-position

−14

−12

−10

−8

−6

−4

−2

0

z-
po

sit
io
n
(in

ve
rte

d)

(a) Position and attitude visualisation

−10

0
Height (m)

−100
0

100Pitch Angle (deg)

−10

0
Alpha (deg)

15

20Ai speed (m/s)

−15
−10
−5

Elevato (deg)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (s)

0.95

1.00

1.05
Th ottle (f ac)

(b) State and control traces

Figure 8. Run D: Simulation results showing the Turn-around Manoeuvre.

3.4.2. Climb Manoeuvre

The second additional manoeuvre demonstrates a climb within a fixed forward dis-
tance. During this manoeuvre, the response is penalised if the u velocity drops below
7 m s−1 and the pitch angle is rewarded for being zero at the end of an episode. Figure 9
shows an example evaluation and the aircraft can be seen to transition into a climb, whilst
maintaining airspeed. The agent was trained using the parameters listed in Table 7. Al-
though the pitch angle can be seen to be reducing towards the end, it did not level out.
This was likely to be due to insufficient pitch weight in the reward function, given in
Equation (8). It can also be noted that this agent took approximately 20 min to train on a
standard laptop. It would be possible to extend the flight time of each episode and increase
the weighting on the pitch angle response which would allow for transition into, and out
of, the climb.

Rend = −z + 10(1− wθ |θ|) (8)

Algorithms 2023, 16, 384 15 of 20

Table 7. Run E: Climb metadata used.

Parameter Value

Timesteps 500,000
xlim 30 m
ulim 25 m s−1

wθ 0
Use reduced observation True

0 5 10 15 20 25 30
x-position

0

5

10

15

20

z-
po

sit
io
n
(in

ve
rte

d)

(a) Position and attitude visualisation

0

20
Height (m)

0

50Pitch Angle (deg)

−5
0
5

Alpha (deg)

15

20Airspeed (m/s)

−10

0Ele ator (deg)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time (s)

0

1
Throttle (frac)

(b) State and control traces

Figure 9. Run E: Simulation results showing the Climb manoeuvre response.

3.5. Learning Multiple Manoeuvres with a Single Network

This section takes a single network and trains it for two different manoeuvres. The
objective is to train the agent with an additional input to encode the manoeuvre that is
being demanded. Hence, the manoeuvre is encoded as an ’one-hot’ vector in addition to
the standard state data. This vector encodes the selected manoeuvre as a single 1 value
within a vector of zeroes. As with the turn-around and climb manoeuvres, a truncated
state vector is used, containing only the longitudinal state elements. For the purposes of
this demonstration, the descent and hover entry manoeuvres, that have been shown in the
sections above, were selected.

The agent is trained on both manoeuvres simultaneously, alternating between them,
with the manoeuvre encoding input and the reward function changing for each episode. This
allows the single network agent to be exposed equally to training data for both manoeuvres.

The agent was trained on both descent and entry into the hover using the settings as
detailed in Table 8. The simulation results from this can be seen in Figure 10. Starting from
identical flight conditions, the aircraft can be seen transitioning into the hover and into a
descent depending on the the ’one-hot’ state input used.

Table 8. Run F: Multi-manoeuvre metadata used.

Parameter Value

Timesteps 1,000,000
xlim 30 m
ulim 25 m s−1

wθ 0
wclimb 1

Use reduced observation True
Network depth 3
Network width 64

Algorithms 2023, 16, 384 16 of 20

−5 0 5 10 15 20 25 30 35
x-position

−10

−5

0

5

10

15

z-
po

sit
io
n
(in

ve
rte

d)

hover
descent

(a) Position and attitude visualisation

−10
0

10Height (m)

0

100
Pitch Angle (deg)

−100
0

100Alpha (deg)

5
10
15Airspeed (m/s)

0

25
Elevator (deg)

0.0 0.5 1.0 1.5 2.0
Time (s)

0

1
Throttle (frac) hover

descent

(b) State and control traces

Figure 10. Run F: Simulation results showing the Multiple Manoeuvres from a Single Agent.

In this case, though, ‘bleed’ can be seen between the manoeuvres where, for example,
the descent manoeuvre ended with the aircraft at a very high angle of attack, whereas a low
pitch angle and alpha response was desirable. During experimentation, it was found that
increased network depth improved the discrimination between manoeuvres. Therefore, a
depth of 3, one additional layer, was used for the multi-manoeuvre cases.

In the following example, the pitch weight was used to penalise the high pitch at
the end of the descent manoeuvre, to aid the agent in discriminating between the re-
quired behaviours. Following this, the two manoeuvres from a single agent were linked
together sequentially.

3.6. Linking Manoeuvres

Prior to demonstrating the sequential response of the two separate manoeuvres from
a single agent, it was retrained with an increased pitch angle weight, and with noise
applied to the starting conditions. As with the previous example, the selected manoeuvre
was encoded with a ‘one-hot’ vector appended to the truncated longitudinal state vector.
The increase in the pitch angle weight reduced the ‘bleed’ between the manoeuvres and
allowed for a smoother transition between the two manoeuvres when linked sequentially.
The added noise allowed for imperfect state conditions at the start of the episode, which
would arise when linking together the manoeuvres sequentially. Although these combined
changes could result in a poorer overall performance, signified by a lower overall reward
function, the agent was more robust to noise in the starting state and demonstrated clearer
separation between the two manoeuvres.

The noise added to the starting conditions was distributed uniformly within a range
defined by the run metadata. The values given for airspeed and flight path angle noise
in Table 9 were the half-range of this distribution. For example, the airspeed value
used for each episode was distributed uniformly within a range ±1.0 m s−1 about the
trimmed airspeed.

Figure 11 shows the new response for the agent trained on two manoeuvres. The
improvement can clearly be seen in the pitch angle response where the aircraft was much
closer to having a pitch angle of zero for the descent at the end of the episode, and much
closer to the vertical at the end of the episode when that manoeuvre was demanded. It
is this instance of the trained agent that was used in the final demonstration where both
manoeuvres were demonstrated sequentially in the same simulation.

Algorithms 2023, 16, 384 17 of 20

Table 9. Run G: Multi-manoeuvre with noise metadata used.

Parameter Value

Timesteps 1,000,000
xlim 30 m
ulim 25 m s−1

wθ 1
wclimb 1

Use reduced observation True
Network depth 3
Network width 64
Airspeed noise 1.0 m s−1

Flight path angle noise 0.2 rad

0 5 10 15 20 25 30
x-position

−15

−10

−5

0

5

10

z-
po

sit
io
n
(in

ve
rte

d)

hover
descent

(a) Position and attitude visualisation

−10
0

10
Height (m)

0

100
Pitch Angle (deg)

−10
0

10
Alpha (deg)

10

20
Airspeed (m/s)

−20

0Elevator (deg)

0.0 0.5 1.0 1.5 2.0
Time (s)

0

1
Throttle (frac) hover

descent

(b) State and control traces

Figure 11. Run G: Simulation demonstrating Multi-manoeuvre Agent with noise.

The manoeuvres were chained together by transforming the vehicle’s position for the
second manoeuvre, such that the manoeuvre appeared to start at position (x, z) = (0, 0),
replicating the conditions experienced during training. This transformation is represented
in Equation (9). The remainder of the state vector remained untransformed. The simulation
of this run can be seen in Figure 12, where the aircraft initially descended, and, at the
conclusion of this first manoeuvre, the agent was signalled to transition into the vertical. It
should be noted that the entry speed into the hover was faster than the agent experienced
during the training episodes, which was why the aircraft was close to the vertical, but still
at non-zero airspeed at the conclusion of both manoeuvres.

(x′, z′) = (x− xT1 , z− zT1) (9)

The scenario shown here could represent transition through an opening into a confined
space. It should be noted that the obstacles shown in the figure were not used within
the simulation, but were used to demonstrate how these types of agents could be used
in practice. With robust responses, multiple manoeuvres and agents could be chained
together to create complex, nonlinear paths, capable of fast responses with lightweight
controller implementation.

Algorithms 2023, 16, 384 18 of 20

0 10 20 30 40 50 60
x-position

−20

−10

0

10

z-
po

sit
io
n
(in

ve
rte

d)

hover.seq
descent.seq

(a) Position and attitude visualisation

−20

0
Height (m)

0

100
Pitch Angle (deg)

−10
0

10
Alpha (deg)

10

20Air peed (m/)

−20

0Elevator (deg)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time ()

0

1
Throttle (frac) hover. eq

de cent. eq

(b) State and control traces

Figure 12. Run G: multi-manoeuvre with noise sequentially evaluated output. Shown with represen-
tative obstacles.

4. Conclusions and Further Work

A new nonlinear aircraft model was used within a reinforcement learning framework
to train agents to perform different longitudinal manoeuvres, including those at a high
angle of attack where response is highly nonlinear. The approach taken is shown to be able
to encode for manoeuvres including transition into the hover and the descent. Furthermore,
a single agent was trained for two manoeuvres, which were subsequently demonstrated in
a single simulation where both were performed sequentially.

There are many avenues available for further work, including additional randomi-
sation, both on the input state and in the simulation environment in which the agents
are trained. This should include the effects of gusts and steady state wind. The results
shown here are for the longitudinal response. It would be interesting to extend the training
to include the lateral-directional response, to allow for nonlinear flight regimes such as
the spin.

Whilst the model is based on both wind tunnel data and additional resources, it would
be useful to further explore the fidelity at high alpha. This would also benefit from taking
the model and the trained agents into free-flight. One reason for the selection of the baseline
aircraft is that it is available for free flight tests in the same configuration that it was tested
in the wind tunnel. Comparison of simulated and free-flight data through manoeuvres
and model identification from free-flight data will help to highlight continuing model
inaccuracies and the remaining reality gap.

Training the model for multiple manoeuvres comes at the expense of increased training
time. The trade-off between the use of linked multiple agents for simplicity, against the use
of a larger network single agent needs to be evaluated through manoeuvre performance,
training time, overall weight size and robustness. Increased randomisation of the initial
conditions would allow a single agent to cope with variation in the end points. Increased
training with stricter conditions on the endpoints would also help to facilitate robust transi-
tion between manoeuvres. The networks would also benefit from further hyper-parameter
optimisation. The use of eXplainable AI (XAI) methods may help in this optimisation effort,
and in assessing the efficacy of the current approach. The use of such methods in a control
context, with coupled input states, is an area of active research [5,20].

Finally, reinforcement learning-based agents were shown to be capable of exploiting
the high-alpha part of the flight envelope through rapid manoeuvres. This was achieved
through the use of complex reward structures, and our future work will consider the
inclusion of these agents in a multi-modal form of control where there are transitions
between more traditional model predictive control and the rapid manoeuvres that this type

Algorithms 2023, 16, 384 19 of 20

of agent can generate. Flight into, and out of, confined spaces with fixed-wing vehicles will
benefit from rapid, nonlinear, agile control structures.

Author Contributions: Investigation and methodology, R.C. and L.F.; software and visualization,
R.C.; supervision T.R. and S.E.; writing R.C., T.R. and S.E. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Engineering and Physical Sciences Research Council grant
number EP/N509619/1.

Data Availability Statement: The code used in generating these results is available on GitHub at:
https://github.com/rob-clarke/pymxs (accessed on 14 July 2023). The repository also includes the
wind tunnel data and the longitudinal model implementation under the wind_tunnel_data and
models directories respectively. Run data and trained models are available in the same repository in
the archive branch.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fletcher, L.; Clarke, R.; Richardson, T.; Hansen, M. Improvements in learning to control perched landings. Aeronaut. J. 2022,

126, 1101–1123. [CrossRef]
2. Cano Lopes, G.; Ferreira, M.; da Silva Simões, A.; Luna Colombini, E. Intelligent Control of a Quadrotor with Proximal

Policy Optimization Reinforcement Learning. In Proceedings of the 2018 Latin American Robotic Symposium, 2018 Brazilian
Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), João Pessoa, Brazil, 6–10 November 2018;
pp. 503–508. [CrossRef]

3. Carvalho Melo, L.; Omena Albuquerque Máximo, M.R. Learning Humanoid Robot Running Skills through Proximal Policy
Optimization. In Proceedings of the 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics
(SBR) and 2019 Workshop on Robotics in Education (WRE), Rio Grande, Brazil, 23–25 October 2019; pp. 37–42. [CrossRef]

4. Aractingi, M.; Léziart, P.A.; Flayols, T.; Perez, J.; Silander, T.; Souères, P. Controlling the Solo12 quadruped robot with deep
reinforcement learning. Sci. Rep. 2023, 13, 11945. [CrossRef] [PubMed]

5. Løver, J.; Gjærum, V.B.; Lekkas, A.M. Explainable AI methods on a deep reinforcement learning agent for automatic docking.
(This work was supported by the Research Council of Norway through the EXAIGON project, project number 304843). IFAC-
PapersOnLine 2021, 54, 146–152.

6. Libardi, G.; De Fabritiis, G.; Dittert, S. Guided Exploration with Proximal Policy Optimization using a Single Demonstration. In
Proceedings of the 38th International Conference on Machine Learning, Vienna, Austria (Virtual), 18–24 July 2021; Meila, M.,
Zhang, T., Eds.; International Machine Learning Society: Princeton, NJ, USA, 2021; Volume 139, pp. 6611–6620.

7. Bøhn, E.; Coates, E.M.; Moe, S.; Johansen, T.A. Deep Reinforcement Learning Attitude Control of Fixed-Wing UAVs Using
Proximal Policy optimization. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS),
Atlanta, GA, USA, 11–14 June 2019; pp. 523–533. [CrossRef]

8. Bohn, E.; Coates, E.M.; Reinhardt, D.; Johansen, T.A. Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments. IEEE Trans. Neural Netw. Learn. Syst. 2023, early access. [CrossRef] [PubMed]

9. Wei, W.; Fang, Z.; Zhu, Y. Model-free Maneuvering Control of Fixed-Wing UAVs Based on Deep Reinforcement Learning. In
Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023. [CrossRef]

10. Clarke, S.; Hwang, I. Deep Reinforcement Learning Control for Aerobatic Maneuvering of Agile Fixed-Wing Aircraft. In
Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [CrossRef]

11. Lee, J.H.; Kampen, E.J.V. Online Reinforcement Learning for Fixed-Wing Aircraft Longitudinal Control. In Proceedings of the
AIAA Scitech 2021 Forum, Virtual, 11–15 and 19–21 January 2021. [CrossRef]

12. Wu, J.; Wang, H.; Liu, Y.; Zhang, M.; Wu, T. Learning-based fixed-wing UAV reactive maneuver control for obstacle avoidance.
Aerosp. Sci. Technol. 2022, 126, 107623. [CrossRef]

13. Zhang, S.; Du, X.; Xiao, J.; Huang, J.; He, K. Reinforcement Learning Control for 6 DOF Flight of Fixed-Wing Aircraft. In
Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 5454–5460.
[CrossRef]

14. Zhen, Y.; Hao, M.; Sun, W. Deep Reinforcement Learning Attitude Control of Fixed-Wing UAVs. In Proceedings of the 2020 3rd
International Conference on Unmanned Systems (ICUS), Harbin, China, 27–28 November 2020; pp. 239–244. [CrossRef]

15. Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus, M.; Dormann, N. Stable-Baselines3: Reliable Reinforcement Learning
Implementations. J. Mach. Learn. Res. 2021, 22, 1–8.

16. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017, arXiv:1707.06347.
17. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust Region Policy Optimization. In Proceedings of the 32nd

International Conference on Machine Learning, Lille, France, 7–9 July 2015; Bach, F., Blei, D., Eds.; International Machine Learning
Society: Princeton, NJ, USA, 2015; Volume 37, pp. 1889–1897.

https://github.com/rob-clarke/pymxs
http://doi.org/10.1017/aer.2022.48
http://dx.doi.org/10.1109/LARS/SBR/WRE.2018.00094
http://dx.doi.org/10.1109/LARS-SBR-WRE48964.2019.00015
http://dx.doi.org/10.1038/s41598-023-38259-7
http://www.ncbi.nlm.nih.gov/pubmed/37488193
http://dx.doi.org/10.1109/ICUAS.2019.8798254
http://dx.doi.org/10.1109/TNNLS.2023.3263430
http://www.ncbi.nlm.nih.gov/pubmed/37053066
http://dx.doi.org/10.2514/6.2023-1072
http://dx.doi.org/10.2514/6.2020-0136
http://dx.doi.org/10.2514/6.2021-0392
http://dx.doi.org/10.1016/j.ast.2022.107623
http://dx.doi.org/10.1109/CCDC52312.2021.9602605
http://dx.doi.org/10.1109/ICUS50048.2020.9274875

Algorithms 2023, 16, 384 20 of 20

18. Clarke, R.J.; Fletcher, L.J.; Richardson, T.S. pyaerso: A Rust-backed Python Module for Accessible Flight Dynamics Modelling
for Machine Learning. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023.
[CrossRef]

19. Matsakis, N.D.; Klock, F.S., II. The rust language. ACM Sigada Ada Lett. 2014, 34, 103–104. [CrossRef]
20. Raz, A.K.; Nolan, S.M.; Levin, W.; Mall, K.; Mia, A.; Mockus, L.; Ezra, K.; Williams, K. Test and Evaluation of Reinforcement

Learning via Robustness Testing and Explainable AI for High-Speed Aerospace Vehicles. In Proceedings of the 2022 IEEE
Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–14. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/6.2023-0149
http://dx.doi.org/10.1145/2692956.2663188
http://dx.doi.org/10.1109/AERO53065.2022.9843563

	Introduction
	Reinforcement Learning and the Longitudinal Aircraft Model
	Proximal Policy Optimisation Algorithm
	Aircraft Model

	Reinforcement Learning-Based Results and Discussion
	Descent Manoeuvre
	Adding Waypoints to the Descent Manoeuvre
	Hover Manoeuvre
	Turn-Around and Climb Manoeuvres
	Turn-Around Manoeuvre
	Climb Manoeuvre

	Learning Multiple Manoeuvres with a Single Network
	Linking Manoeuvres

	Conclusions and Further Work
	References

