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Abstract: In the field of Artificial Intelligence (AI) and Machine Learning (ML), a common objective
is the approximation of unknown target functions y = f (x) using limited instances S = (x(i), y(i)),
where x(i) ∈ D and D represents the domain of interest. We refer to S as the training set and aim to
identify a low-complexity mathematical model that can effectively approximate this target function
for new instances x. Consequently, the model’s generalization ability is evaluated on a separate set
T = {x(j)} ⊂ D, where T 6= S, frequently with T ∩ S = ∅, to assess its performance beyond
the training set. However, certain applications require accurate approximation not only within
the original domain D but in an extended domain D′ that encompasses D as well. This becomes
particularly relevant in scenarios involving the design of new structures, where minimizing errors
in approximations is crucial. For example, when developing new materials through data-driven
approaches, the AI/ML system can provide valuable insights to guide the design process by serving
as a surrogate function. Consequently, the learned model can be employed to facilitate the design of
new laboratory experiments. In this paper, we propose a method for multivariate regression based
on iterative fitting of a continued fraction, incorporating additive spline models. We compare the
performance of our method with established techniques, including AdaBoost, Kernel Ridge, Linear
Regression, Lasso Lars, Linear Support Vector Regression, Multi-Layer Perceptrons, Random Forest, Stochastic
Gradient Descent, and XGBoost. To evaluate these methods, we focus on an important problem in
the field, namely, predicting the critical temperature of superconductors based on their physical–
chemical characteristics.

Keywords: regression; continued fractions; superconducting materials; superconductivity

1. Introduction

Superconductors are remarkable materials that exhibit the extraordinary property of
conducting electrical current with zero resistance. This unique characteristic has led to a
wide range of applications. As an example, Magnetic Resonance Imaging (MRI) systems
are used globally as a crucial medical tool for producing detailed images of internal organs
and tissues. In the face of increasing energy demands driven by renewable energy sources
and innovations such as solar cars, superconductors hold great potential for efficient
energy transfer.
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The elimination of electrical resistance in superconductors significantly reduces energy
wastage during current transmission from one location to another. However, a major limi-
tation of existing superconductors is their reliance on extremely low temperatures, known
as critical temperatures (Tc), to achieve zero resistance. Conventional superconductors
described by the Bardeen–Cooper–Schrieffer (BCS) theory (the first microscopic theory of su-
perconductivity since Heike Kamerlingh Onnes’s 1911 discovery of the phenomenon) [1,2]
typically exhibit transition temperatures of several Kelvins (i.e., approximately −270 K) [3].
Recently discovered iron-based bulk superconductors demonstrate a highest critical temper-
ature of approximately 56 Kelvin (i.e., at approximately−217 degrees Celsius) [4]. However,
these materials are far from being considered high-temperature superconductors (HTS),
which are defined as materials that behave as superconductors at temperatures above 77 K
(−196.2 degrees Celsius), corresponding to the boiling point of liquid nitrogen. Cuprate
superconductors, which are copper oxides combined with other metals, especially rare
earth barium copper oxides such as yttrium barium copper oxide, constitute the main class
of HTS. The highest critical temperature achieved by cuprates is around 138 K at ambient
pressure and possibly 164 K under high pressure. Only cuprate superconductors [5] and
some possible organic superconductors [6] show critical temperature values near or above
the liquid nitrogen boiling temperature of −196.2 degrees Celsius. The discovery of HTS
has opened up new possibilities for applications that require coolants with low cost and
that are easy to handle as well as higher magnetic fields and currents. Therefore, predicting
the critical temperature (Tc) of superconductors has become a topic of great interest in the
field of materials science [7].

In this study, we leverage various machine learning techniques and propose a novel
approach based on multivariate continued fractions to develop mathematical models capa-
ble of predicting the critical temperature of superconductors. Our models rely solely on the
characterization of the chemical structure of the superconducting material by uncovering
hidden information within. Accurate prediction of Tc for superconductors can greatly
enhance our ability to harness the potential of superconductivity, ushering in a new era of
possibilities in multiple fields.

Continued Fraction Regression

In 2019, a new approach for multivariate regression using continued fractions was
introduced in [8] and compared with a state-of-the-art genetic programming method for
regression. We named this approach ‘Continued Fraction Regression’, or CFR. The best
existing algorithm currently utilizes a memetic algorithm for optimizing the coefficients of
a model that approximates a target function as the convergent of a continued fraction [8,9].
Memetic Algorithms are well-established research areas in the field of Evolutionary Com-
putation, and the IEEE had established a Task Force in Computational Intelligence for their
study. Therefore, it is important to refer readers to a number of the latest references and
reviews on the field [10,11]. Very recently, continued fraction regression has been used to
obtain analytical approximations of the minimum electrostatic energy configuration of an
electron n when the charge is constrained to be on the surface sphere, i.e., the celebrated
Thomson Problem. For other applications of continued fraction regression, please see [12]
and references therein.

A basic introduction on analytic continued fraction approximation is necessary here.
A continued fraction for a real value α has the following form (1) and may be finite or
infinite [13] according to whether or not α is a rational number:

α = a0 +
b1

a1 +
b2

a2 + . . .

(1)

Euler proved a mathematical formula that allows us to write a sum of products as a
continued fraction (2):
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β = a0 + a0a1 + a0a1a2 + . . . + a0a1a2 . . . an

=
a0

1−
a1

1 + a1 −
a2

1 + a2 −
. . .

. . . an−1
1+an−1− an

1+an

. (2)

This simple yet powerful equation reveals how infinite series can be written as infinite
continued fractions, meaning that continued fractions can be a good general technique
to approximate analytic functions thanks to the improved optimization methods such as
those provided by memetic algorithms [9]. Indeed, CFR has already demonstrated its
effectiveness as a regression technique on the real-world datasets provided by the Penn
Machine Learning Benchmarks [9].

In this paper, we use Carl Friedrich Gauss’ mathematical notation for generalized
continued fractions [14] (i.e., a compact notation in which “K” stands for the German word
“Kettenbruch”, which means ‘Continued Fraction’). Using this notation, we may write the
continued fraction in (1) as

α = a0 +
∞
K

i=1

bi
ai

; (3)

thus, the problem of finding an approximation of an unknown target function of n variables
x given a training dataset of m samples S = {(x(i), y(i))} is that of finding the set of
functions F = {a0(x)..., b1(x), ...} such that a certain objective function is minimized, i.e.,
we aim to find

f (x) = a0(x) +
∞
K

i=1

bi(x)
ai(x)

. (4)

2. Materials and Methods
2.1. A New Approach: Continued Fractions with Splines

In previous contributions [8,9], a memetic algorithm was employed to find the approx-
imations. Here, we present another method to fit continued fraction representations by
iteratively fitting splines.

Splines provide a regression technique that involves fitting piecewise polynomial
functions to the given data [15]. The domain is partitioned into intervals at locations known
as “knots”. Then, a polynomial model of degree n is separately fitted for each interval
while generally enforcing boundary conditions, including the continuity of the function
and continuity of the first (n− 1)-order derivatives at each of the knots. Splines can be
represented as a linear combination of basis functions, of which the standard is the B-spline
basis. Thus, fitting a spline model is equivalent to fitting a linear model of basis functions.
We refer to Hastie et al. [16] for the particular definition of the B-spline basis.

First, when all the functions bi(x) = 1, we have a simple continued fraction representa-
tion for all i, which we can write as

f (x) = g0(x) +
1

g1(x) +
1

g2(x) +
1

g3(x) + ...

. (5)

Note that for a term gi(x) we say that it is at a “depth” of i.
Finding the best values for the coefficients in the set of functions {gi(x)} can be

addressed as a nonlinear optimization problem as in [8,9]. However, despite the great
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performance of that approach we aim to introduce a faster variant that can scale well to
larger datasets such as this one.

Towards that end, and thinking about the scalability, we fit the model iteratively by
depth as follows: we first consider only the first term g0(x) at depth 0, ignoring all other
terms. We fit a model for the first term using the predictors x and target f (x). Next, we
consider only the first and second depths, with the terms g0(x) and g1(x), ignoring the
rest. We then fit g1(x) using the previously fit model for g0(x). For example, truncating the
expansion at depth 1, we have

g1(x) =
1

f (x)− g0(x)
. (6)

Thus, we fit g1(x) using the predictors x and the target ( f (x)− g0(x))−1. We label this
target as y(1). We repeat this process, fitting a new model by truncating at the next depth
by using the models fit from previous depths and iterations.

We have that at depth i > 0, the target y(i) for the model gi(x) is (εi−1)
−1(x), where

εi−1(x) is the residual of the previous depth’s model, y(i−1) − gi−1(x).
One notable characteristic of this approach is that if any model gi(x), i > 0 evaluates

to 0, then we will have a pole in the continued fraction, which is often spurious. To remedy
this, we modify the structure of the fraction such that each fitted gi(x), i > 0 is encouraged
to be strictly positive on the domain of the training data. To do this, we add a constant Ci to
εi when calculating the target y(i+1), where Ci = |minx εi|. Thus, the targets y(i) for i > 0
are all non-negative, encouraging each gi(x), i > 0, to be strictly positive. For example, for
g1(x), we would have that the target y(1) = ( f (x)− g0(x) + C1)

−1. Of course, we must
then subtract Ci from gi−1(x) in the final continued fraction model.

We have found that data normalization often results in a better fit using this approach.
It is sufficient to simply divide the targets uniformly by a constant when training and
multiply by the same constant for prediction. We denote this constant parameter norm.

A good choice of the regression model for each gi(x) is a spline since they are well-
established. For reasons stated in the next section, the exception is the first term g0(x),
which is a linear model. We use an additive model to work with multivariate data where
each term is a spline along a dimension. That is, given m predictor variables, we have that

gi(x) =
m

∑
j=1

f j(xj) (7)

for each term gi(x), i > 0, where each function f j is a cubic spline along variable j, that is,
f j is a piecewise polynomial of degree 3 and is a function of variable j.

We implement the splines with a penalized cubic B-spline basis, that is, f j(x) =

∑k
i=1 βkBk(xj), where each Bi(x) is one of k cubic B-spline basis functions along dimension

j and corresponds to one of k knots. We use the following loss function L(B(x, y, βββ)), i.e.,

L(B(x, y, βββ)) = ‖y− Bβββ‖2 + λ
m

∑
j=0

βββTPjβββ (8)

where B is the matrix of cubic B-spline basis functions for all variables, βββ is the vector of
all of the weights, and Pj is the associated second derivative smoothing penalty matrix for
the basis for the spline f j. This is standard for spline models [16]. The pseudocode for this
approach is shown in Algorithm 1.
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Algorithm 1: Iterative CFR using additive spline models with adaptive knot
selection

Input: Training data D = {(x1, f (x1), ..., (xn, f (xn))} and parameters λ, k, norm,
and max_depth

/* Let n be the number of samples; m be the number of variables */
/* X ∈ Rn×m be data matrix and y ∈ Rn be the vector of targets. */

1 knot_indices = {}
2 y(0) ← y/norm
3 for i← 0, 1, ..., max_depth do
4 if i = 0 then

/* g0 is a linear model parameterized by fi, and is fit with
least squares. */

5 fi← argminfi‖y
(0) − Xfi‖2

6 else
/* gi be an additive spline model as given in equation (7),

parameterized by fi. For each predictor variable, the knots
are at the samples indexed by the first k indices in
knot_indices */

7 for j← 1, 2, ..., m do
8 f j ← new SplineModel()
9 for each index p in knot_indices do

10 f j ← AssignKnotAt(X[p][j])
11 end
12 end
13 gi = ∑m

j=1 f j(xj)

/* Construct the splines, and fit with regularized least
squares */

14 B← BSplineBasisMatrix(gi.knots)
15 Pj ← BSplinePenaltyMatrix( f j: for each f j in gi)

16 fi← argminfi‖y
(i) − Bfi‖2 + λ

m

∑
j=1

fiTPjfi

17 end
/* Compute ffli, the vector of residuals of the ith model, and then

compute the targets and knot locations for the next depth. */
18 ffli ← y(i) − gi(X)
19 Ci ← |minx ffli|
20 y(i+1) ← (ffli + Ci)

−1

21 knot_indices← SelectKnots(ffli)
22 end
23 The estimate for f (x) at max_depth is:

≈ norm ·
[

g0(x)− C0 +
max_depth

K
i=1

1
gi(x)− Ci

]

2.2. Adaptive Knot Selection

The iterative method of fitting continued fractions allows for an adaptive method
of selecting knot placements for the additive spline models. For the spline model gi(x)
at depth i > 0, we use all of the knots of the spline model gi−1(x) at depth i − 1. Then,
for each variable, we place k new knots at the unique locations of the k samples with the
highest absolute error from the model gi−1(x) at depth i− 1. As the points with the highest
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error are likely to be very close to each other, we impose the condition that we take the
samples with the highest error, but they must have alternating signs.

In this way, we select k knots for gi(x) and i > 0, with the first knot at the location of
the sample with the highest absolute error computed from the model gi−1(x). For the rest
of the knots, the jth knot is selected at the sample’s location with the next highest absolute
error after the sample used for the (j− 1)th knot, and only if the sign of the (non-absolute)
error of that sample is different from the sign of the (non-absolute) error of the sample
used for the (j − 1)th knot. Otherwise, we move on to the next highest absolute error
sample, and so on, until we fulfill this condition. This knot selection procedure is shown
in Algorithm 2. Note that we let g0 be a linear model, as there is no previous model from
which to obtain the knot locations.

Algorithm 2: SelectKnots (Adaptive Knot Selection)
Input: εi
/* Given the vector of residuals ffli of the spline model at depth i,

select the knot placements for the next spline model at depth
i + 1 */

/* Sort by indices of highest absolute error */
1 abs_error← elementWiseAbsoluteValue(ffli)
2 highest_error_indices← argsortDecreasing(abs_error)
/* Take the top k highest order indices, such that each error term

has opposite sign of the last */
3 current_sign← null
4 knots_added← 0
5 for each i in highest_error_indices do
6 if knots_added ≥ k then
7 break
8 end
9 if sign(εi[i] 6= current_sign) then

10 current_sign← sign(εi)
11 knot_indices.append(εi[i])
12 knots_added← knots_added+ 1
13 end
14 end
15 return knot_indices

The goal of using additive spline models with the continued fraction is to take advan-
tage of the continued fraction representation’s demonstrated ability to approximate general
functions (see the discussion on the relationship with Padé approximants in [9]). The frac-
tion’s hierarchical structure allows for the automatic introduction of variable interactions,
which is not included individually in the additive models that constitute the fraction. The
iterative approach to fitting makes for a better knot selection algorithm.

An example of this algorithm modeling the well-known gamma function (with stan-
dard normally distributed noise added) is demonstrated in Figure 1. Here, we show how
the fitting to gamma is affected by different values of depths (3, 5, 10, 15) in the Spline
Continued Fraction. As desired, it is evident from the figure that the Spline Continued Fraction
with more depth has a better fit with the data.
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Figure 1. Examples of the fit obtained by the Spline Continued Fraction using a dataset generated
thanks to the gamma function with added noise. We present several continued fractions with depths
of 3 (a), 5 (b), 10 (c), and 15 (d). In this example, the number of knots k was chosen to be 3, norm = 1,
and λ = 0.1.

2.3. Data and Methods Used in the Study

We used the superconductivity dataset from Hamidieh [7], available from the UCI
Machine Learning repository (https://archive.ics.uci.edu/ml/datasets/Superconductivty+
Data, accessed on 11 September 2020). The website contains two files. In this work, we only
used the train.csv file, which contains information on 21,263 superconductors, including
the critical temperature and a total of 81 attributes for each of them.

This dataset on superconductors utilizes elemental properties to predict the critical
temperature (Tc). The data extraction process involves obtaining ten features from the
chemical formula for each of the eight variables, which include Atomic Mass, First Ionization
Energy, Atomic Radius, Density, Electron Affinity, Fusion Heat, Thermal Conductivity, and
Valence. This results in a total of 80 features. Additionally, the dataset includes one extra
feature representing the count of elements present in the superconductor. The dataset
encompasses both “oxides” and “metallic” materials, but excludes elements with atomic
numbers greater than 86. After performing thorough data preparation and cleaning steps,
the final dataset consisted of 21,263 samples, each described by 81 features.

Regarding the elemental distributions of the superconductors in the dataset, Oxygen
constitutes approximately 56% of the total composition. Following Oxygen, the next most
abundant elements are Copper, Barium, Strontium, and Calcium. As many of the research
group’s primary interest is in iron-based superconductors, the following information is
likely to be of significant interest to them. Within this dataset, Iron is present in about 11%
of the superconductors, with a mean critical temperature (Tc) of 26.9 ± 21.4 K. On the other
hand, the mean Tc for non-iron-containing superconductors is 35.4 ± 35.4 K. Looking at
the overall distribution of Tc values, it is found to be right-skewed, with a noticeable peak
centered around 80 K.

https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
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For a more detailed understanding of the data generation, feature extraction pro-
cess, and specific characteristics of the dataset, readers can refer to Hamidieh’s original
contribution in [7].

We conducted two main studies to assess the generalization capabilities of many
regression algorithms. We denote these as Out-of-Sample and Out-of-Domain, respectively.
For the Out-of-Sample study, the data were randomly partitioned into two thirds training
data and one third test data. Each model was fitted to the training data, and the RMSE was
calculated on the separated test portion of the data.

For the Out-of-Domain study, the data were partitioned such that the training samples
were always extracted from the set of samples with the lowest 90% of critical temperatures.
For the test set, the samples come from the highest 10% of critical temperatures. It turned
out that the lowest 90% had critical temperatures < 89 K, whereas the highest 10% had
temperatures greater than or equal to 89 K that ranged from 89 K to 185 K (we highlight
that the range of variation of the test set is more than that of the training set, making the
generalization task a challenging one). For each of the 100 repeated runs of the Out-of-
Domain test, we randomly took half of the training set (from lowest 90% of the observed
value) to train the models and the same ratio from the test data (from 10% of the highest
actual value) to estimate the model performance. The Out-of-Domain study allowed us
to assess the capacity of several regression models in terms of “prediction” on a set of
materials with higher critical temperatures, meaning that in this case generalization is
strictly connected to the extrapolation capacity of the fitted models. We executed both
the Out-of-Sample and Out-of-Domain tests 100 times to help validate our conclusions with
statistical results.

The Spline Continued Fraction model had a depth of 5, five knots per depth, a nor-
malization constant of 1000, and a regularization parameter λ of 0.5. These parameters
resulted from a one-dimensional nonlinear model fitting to problems such as the gamma
function with noise (already discussed in Figure 1) and others, such as fitting the func-
tion f (x) = sin(x)/x. The parameters were selected empirically using these datasets; no
problem-specific tuning on the superconductivity datasets was conducted.

The final model was then iteratively produced by beginning at a depth of 1 and
increasing the depth by one until the error was greater than that observed for a previous
depth (which we considered as a proxy for overfitting the data).

To evaluate the performance of the Spline Continued Fraction (Spln-CFR) introduced in
this paper with other state-of-the-art regression methods, we used a set of eleven regressors
from two popular Python libraries, namely, the XGBoost [17] and Scikit-learn [18] machine
learning libraries. The names of the regression methods are listed as follows:

• AdaBoost (ada-b)
• Gradient Boosting (grad-b)
• Kernel Ridge (krnl-r)
• Lasso Lars (lasso-l)
• Linear Regression (l-regr)
• Linear SVR (l-svr)
• MLP Regressor (mlp)
• Random Forest (rf)
• Stochastic Gradient Descent (sgd-r)
• XGBoost (xg-b)

The XGBoost code is available as an open-source package (https://github.com/dmlc/
xgboost, accessed on 11 September 2020). The parameters of the XGBoost model were the
same as those used in Hamidieh (2018) [7]. We kept the parameters of the other machine
learning algorithms the same as the Scikit defaults.

All executions of the experiments were performed on an Intelr CoreTM i7-9750H
hexcore-based computer with hyperthreading and 16 GB of memory running a Windows
10 operating system. We used Python v3.7 to implement the Spline Continued Fraction using

https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
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the pyGAM [19] package. All experiments were executed under the same Python runtime
and computing environment.

3. Results

Table 1 presents the results of the regression methods along with with those of the
Spline Continued Fraction approach for both the Out-of-Sample and Out-of-Domain stud-
ies. The median RMSE value obtained from 100 runs is taken as the Out-of-Sample
RMSE estimate.

Table 1. Results from 100 runs of the proposed Spline Continued Fraction and ten regression methods
all trained on the same dataset, with the median of the Root Mean Squared Error (RMSE) and standard
deviation as the uncertainty of error.

Regressor
Median RMSE Score ± Std

Out-of-Sample Out-of-Domain

Spln-CFR 10.989 ± 0.382 36.327 ± 1.187
xg-b 9.474 ± 0.190 37.264 ± 0.947

rf 9.670 ± 0.197 38.074 ± 0.751
grad-b 12.659 ± 0.178 39.609 ± 0.619
l-regr 17.618 ± 0.187 41.265 ± 0.466
krnl-r 17.635 ± 0.163 41.427 ± 0.464
mlp 19.797 ± 5.140 41.480 ± 9.640

ada-b 18.901 ± 0.686 47.502 ± 0.743
l-svr 26.065 ± 7.838 47.985 ± 1.734

lasso-l 34.234 ± 0.267 74.724 ± 0.376
sgd-r 1 N.R. N.R.

1 The Stochastic Gradient Descent Regressor (sgd-r) without parameter estimation predicted unreasonable high
values and had an extreme predicted error measure. Hence, we do not report (N.R.) the performance of sgd-r,
and have omitted it from further analysis.

For each of the 100 repeated runs of the Out-of-Domain test, we estimate the model
performance via the Out-of-Domain RMSE score. The median RMSE score obtained from this
test performance is reported in Table 1 as Out-of-Domain RMSE. In addition, we report other
descriptive statistics, such as the number of times that the regressor correctly predicted a
material to have a critical temperature greater or equal to 89 K.

3.1. Out-of-Sample Test

For the Out-of-Sample testing, XGBoost achieved the lowest error (median RMSE score
of 9.47) among the eleven regression methods. The three closest regression methods to
XGBoost are Random Forest (median RMSE of 9.67), Spline Continued Fraction (median RMSE
of 10.99), and Gradient Boosting (median RMSE of 12.66). Stochastic Gradient Descent without
parameter estimation performed the worst among all regression methods used in the
experiment, and due to the unreasonable high error observed in the runs we have omitted
it from further analysis.

Statistical Significance of the Results of the Out-of-Sample Test

To evaluate the significance of the results obtained by the different regression methods
for the Out-of-Sample test, we applied a Friedman test for repeated measure [20] for the
100 runs. We computed the ranking of the methods for each of the runs based on the
RMSE score obtained in the test distribution of the Out-of-Sample settings. This helps to
determine whether the experiment’s techniques were consistent in terms of performance.
The statistical test found a p-value = 1.9899× 10−183, which rejects the null hypothesis, i.e.,
“all the algorithms perform the same”; thus, we proceeded with the post hoc test.

We applied Friedman’s post hoc test on the ranking of the ten regressors computed for
the RMSE scores obtained for 100 runs of the Out-of-Sample test. In Figure 2a, the p-values
obtained for the test are plotted as a heat map. It can be seen that there exist no significant
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differences (NS) between the performances of Spline Continued Fraction (Spnl-CFR) and
those of rf and grad-b.

Additionally, we generated the Critical Difference (CD) diagram proposed in [21]
to visualize the differences among the regressors for their median ranking. The CD plot
uses the Nyemeni post hoc test and places the regressors on the x-axis of their median
ranking. It then computes the critical difference of the rankings between them and connects
those which are closer than the critical difference with a horizontal line, denoting them as
statistically ‘non-significant’.

We plot the CD graph in Figure 2b using the implementation from the Orange data
mining toolbox [22] in Python. The Critical Difference (CD) is found to be 1.25. It can be
seen that xg-b ranked first among the regressors, with no significant difference’, while rf
ranked second. The median ranking of the proposed Spline Continued Fraction was third,
withno significant differences in the performance rankings of rf and grad-b.
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Figure 2. Statistical comparison of the regressors for the Out-of-Sample test: (a) heat map show-
ing the significance levels of the p-values obtained by the Friedman post hoc test and (b) critical
difference (CD) plot showing the statistical significance of the rankings achieved by the different
regression methods.

3.2. Out-of-Domain Test

For the task of Out-of-Domain prediction, the Spline Continued Fraction regressor exhib-
ited the best performance (median RMSE score of 36.3) among all regression methods used
in the experiment (in Table 1). The three closest regressors to the proposed Spline Continued
Fraction method are XGBoost (median RMSE = 37.3), Random Forest (median RMSE = 38.1),
and Gradient Boosting (median RMSE = 39.6).

3.2.1. Statistical Significance of the Results of the Out-of-Domain Test

To test the significance of the results obtained by the different regression methods for
the Out-of-Domain study, we employed the same statistical test used above for the Out-of-
Sample study. The test returned a p-value = 1.2065× 10−156, rejecting the null hypothesis;
thus, we proceeded with the post hoc test.

The p-values obtained for the post hoc test are plotted as a heat map in Figure 3a for
the Out-of-Domain test. It can be seen that no significant differences (NS) exist between
the performance of Spline Continued Fraction (Spnl-CFR) and those of Random Forest (rf)
and XGBoost (xg-b). There is no significant difference between the performance ranking of
Linear Regression (l-regr) and those of mlp, l-svr, krnl-r, and grad-b.

The Critical Difference (CD) graph for the Out-of-Domain test is plotted in Figure 3b.
The Critical Difference (CD) is 1.3898. It is evident from the critical difference plot that the
top three methods in Out-of-Domain prediction are Spline Continued Fraction, XGBoost, and
Random Forest. It can be seen that the average ranking of Spln-CFR is very close to second,
which is the best-ranking performance among the ten regressors. There is no significant
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difference between Spline Continued Fraction and the second-best method, XGBoost (xg-b),
which has an average ranking between second and third for Out-of-Domain prediction.
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Figure 3. Statistical comparison of the regressors for the Out-of-Domain test: (a) heat map show-
ing the significance levels of the p-values obtained by the Friedman post hoc test and (b) critical
difference (CD) plot showing the statistical significance of the rankings achieved by the different
regression methods.

3.2.2. Runtimes of the Different Methods on the Out-of-Domain Test

Figure 4 shows the running time (in s) required by each of the regression methods for
100 runs of the Out-of-Domain test. It can be seen that the lowest required running times
are for Linear Regression, with a 50th percentile runtime of 0.02 s and maximum of 0.158 s,
and Lasso Lars, with a 50th percentile runtime of 0.013 s and maximum of 0.027 s. XGBoost
(xg-b) required the longest time (50th percentile runtime of 55.33 s and maximum 79.05 s);
on the other hand, Random Forest and the proposed Spline Continued Fraction regression
required very similar times (50th percentile runtimes of 36.88 s and 41.65 s for rf and
Spln-CFR, respectively) on the Out-of-Domain test.
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Figure 4. Runtime (in seconds) required for model building and prediction by the regressors for
100 runs of the Out-of-Domain test, in which samples with the lowest 90% of critical temperatures
were drawn as the training data and an equal number of samples drawn from the top 10% highest
critical temperatures constituted the test data.

4. Discussion

To illustrate the performance of models in the Out-of-Sample study, we employed
Linear Regression, XGBoost, and Spline Continued Fraction on the training set and plotted the
predictions versus the actual temperatures for the entire dataset (in Figure 5). We were
able to reproduce the results of the Out-of-Sample test from Hamidieh [7] Figure 5a, with
an RMSE of 17.7. The Out-of-Sample models for Spline Continued Fraction and XGBoost
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were used to predict the critical temperature for the entire dataset. Together, the figures
show that Spln-CFR performed better in modelling Out-of-Sample critical temperatures than
Linear Regression, particularly for larger temperatures.
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(a) Linear Regression
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(b) XGBoost
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(c) Spline Continued Fraction

Figure 5. Out-of-Sample test results, showing the predicted vs. actual temperatures for the entire
dataset with regression models trained on the training data: (a) Linear Regression (replicating the
outcome from Hamidieh), (b) XGBoost, and (c) Spline Continued Fraction.

Figure 6 shows the actual versus predicted critical temperature for the Out-of-Domain
test for the Linear Regression, XGBoost, and Spline Continued Fraction models. Recall that in
the Out-of-Domain test settings we trained each of the models with the samples from the
bottom 90% of the observed temperature, which is < 89 K, and measured the samples’ test
performance using the top 10% of the observed critical temperatures, with 2126 samples in
the test set.
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(a) Linear Regression
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(b) XGBoost
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(c) Spline Continued Fraction

Figure 6. Out-of-Domain test results, showing the predicted vs. actual temperatures of the samples
for the highest 10% of critical temperatures, where the models were fitted using the samples with the
lowest 90% critical temperatures. The x-axis values up to 145 K are shown, leaving one extreme value
(185 K) outside of the visualized area. Results of the Out-of-Domain test for: (a) Linear Regression, with
an RMSE of 41.3; (b) XGBoost, with an RMSE of 36.3; and (c) Spline Continued Fraction, with an RMSE
of 34.8.

Another set of our observed results are interesting for discussion and might be relevant
for future research directions. In Table 2, we report the top twenty predicted versus actual (y)
temperatures for all ten regression methods for a single run of the Out-of-Domain test. The
last row of the table shows the averages of the corresponding actual critical temperatures for
the materials with the highest twenty predicted values by each of the models. Interestingly,
XGBoost’s top twenty predictions of the critical temperature are all below 90 K (in the
range of 87.48 to 89.64 K). Similarly, Random Forest’s top twenty predictions are in the
range of 87.69 to 87.89 K. The top twenty predicted critical temperatures by the Linear
Regression are in the range of 81.83 to 91.59 K. In contrast, the top twenty predicted critical
temperatures by Spline Continued Fraction vary from 98.39 to 114.14 K, which by comparison
represents the highest starting and ending values among all the regressors. We report the
average temperature (x̄), average relative errors (η̄), and RMSE score for the top twenty
predictions. XGBoost shows the lowest value for both η̄ (0.036) and RMSE (3.775) among
the ten regressors. In terms of those scores, our proposed Spln-CFR is in the fourth position.
However, looking at the average of the predictions, Spln-CFR has the highest average
prediction temperatures for the top twenty predictions on the Out-of-Domain test.
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Table 2. Predicted vs. actual critical temperatures for the materials with the top twenty predicted temperatures in the Out-of-Domain study, i.e., the one in which the
lowest 90% of critical temperature samples were used for drawing the training data. The average values of the critical temperatures (x̄), the average relative error (η̄),
and the root mean squared error (RMSE, denoted as rm) of these materials for the top twenty predictions (which are not necessarily the same, as they depend on the
models) are shown in the last rows.

Spln-CFR xg-b rf grad-b mlp l-regr l-svr krnl-r ada-b lasso-l

y pred y pred y pred y pred y pred y pred y pred y pred y pred y pred

92.00 114.14 89.20 89.64 91.19 87.89 89.50 83.44 109.00 100.81 98.00 91.59 112.00 94.81 98.00 91.02 89.50 58.63 89.00 27.06
90.00 109.69 94.20 89.19 89.90 87.88 89.90 83.44 124.90 100.31 112.00 89.14 100.00 93.49 112.00 88.67 89.50 58.63 89.00 27.06

111.00 108.54 89.88 88.69 90.00 87.88 90.50 83.44 114.00 99.70 105.00 87.53 132.60 93.49 105.00 86.84 89.70 58.63 89.00 27.06
93.50 108.01 89.93 88.34 90.20 87.88 91.50 83.44 128.40 99.59 117.00 87.06 105.00 92.94 117.00 86.65 89.80 58.63 89.00 27.06
99.00 106.50 90.00 88.15 90.90 87.88 90.00 83.42 127.40 99.53 100.00 85.92 115.00 92.93 100.00 85.88 89.80 58.63 89.00 27.06

105.60 105.01 90.10 88.15 91.00 87.88 91.80 83.42 127.80 99.53 132.60 85.92 111.00 92.90 132.60 85.88 89.90 58.63 89.00 27.06
113.00 104.35 91.00 88.15 92.00 87.88 90.00 82.22 130.10 98.76 115.00 85.50 110.00 92.84 115.00 85.51 90.00 58.63 89.00 27.06
113.00 103.95 91.30 88.15 92.20 87.88 89.50 79.29 128.50 98.55 111.00 84.97 106.70 92.54 111.00 84.46 90.00 58.63 89.00 27.06
106.60 103.95 96.10 88.15 92.40 87.88 90.00 79.29 128.40 98.45 132.00 84.96 126.90 91.73 132.00 84.42 90.50 58.63 89.00 27.06
128.70 103.92 90.00 88.10 92.50 87.88 91.00 79.29 128.80 98.45 110.00 84.31 117.00 91.73 110.00 84.38 91.50 58.63 89.00 27.06

91.80 102.10 91.40 88.10 92.74 87.88 91.80 79.29 131.40 98.33 106.70 83.95 126.80 91.30 106.70 82.97 100.00 58.63 89.00 27.06
108.00 101.56 92.60 87.82 92.80 87.88 92.30 79.29 128.80 98.10 126.90 82.72 115.00 90.84 95.00 82.64 108.00 58.63 89.00 27.06

92.00 101.32 91.60 87.53 93.00 87.88 90.00 78.85 128.70 93.96 105.00 82.63 95.00 90.80 105.00 82.01 110.00 58.63 89.00 27.06
90.00 101.19 93.00 87.53 93.00 87.88 91.60 78.85 130.30 93.94 95.00 82.62 121.60 90.80 107.00 81.88 110.90 58.63 89.00 27.06

105.10 100.50 93.80 87.49 93.05 87.88 89.10 78.79 131.30 93.93 107.00 82.47 100.00 90.78 126.90 81.82 114.00 58.63 89.00 27.06
130.30 100.35 89.90 87.48 93.20 87.88 89.20 78.79 122.00 91.96 105.00 82.41 107.00 90.78 105.00 81.51 114.00 58.63 89.00 27.06

93.00 100.24 90.00 87.48 93.40 87.88 89.40 78.79 123.50 91.64 126.80 82.12 90.00 90.63 90.00 81.40 116.00 58.63 89.10 27.06
91.50 100.00 90.20 87.48 93.50 87.88 89.40 78.79 121.00 90.69 98.50 82.03 96.00 90.49 126.80 81.24 122.50 58.63 89.10 27.06
91.50 99.18 90.90 87.48 91.80 87.75 89.40 78.79 115.00 90.14 112.00 82.03 128.70 90.48 117.00 80.89 127.00 58.63 89.10 27.06

116.00 98.39 91.00 87.48 92.10 87.69 89.50 78.79 110.00 90.01 117.00 81.83 130.30 90.26 121.60 80.87 130.90 58.63 89.10 27.06

x̄: 103.08 103.64 91.31 88.03 92.044 87.86 90.27 80.49 124.47 96.32 111.63 84.59 112.33 91.83 111.68 84.05 102.68 58.63 89.02 27.06
η̄: 0.1085 0.036 0.0453 0.1083 0.224 0.2351 0.1733 0.2389 0.4187 0.696
rm: 13.6023 3.7753 4.3261 10.0078 28.9783 29.3265 23.9282 30.2426 46.2473 61.96
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Because all the actual critical temperatures of the test set in the Out-of-Domain settings
were ≥ 89 K, it is relevant to evaluate for how many of these samples each regression
method was able to predict above that value. Here, we consider the predicted value as P
= critical temperature value ≥ 89 K (denoted as ‘P’ for positive) and N = critical temperature
value < 89 K (denoted as ‘N’ for negative). In Table 3, we report the number of samples for
which each of the methods predicted a temperature value in the P and N categories for the
whole testing set of the Out-of-Domain test. It can be seen that only six regression methods
predicted the critical temperature of ≥ 89 K for at least one sample. Both Linear Regression
and XGBoost predicted two sample temperatures with the critical temperature ≥ 89 K.
Kernel Ridge predicted only one sample value within that range, while MLP Regressor and
Linear SVR predicted it for 21 and 34 samples, respectively. The proposed Spline Continued
Fraction predicted 108 sample values of ≥ 89 K, the best among all regression methods used
in our experiments.

Table 3. Number of times the different methods predicted a critical temperature value Tc ≥ 89 K
(denoted as ‘P’ for positive) and Tc < 89 K (denoted as ‘N’ for Negative) on the Out-of-Domain test.

Regressor
Out-of-Domain Predicted Critical Temperature, Tc

P (Tc ≥ 89 K) N (Tc < 89 K)

Spln-CFR 108 2018
xg-b 2 2124

rf 0 2126
grad-b 0 2126

mlp 21 2105
l-regr 2 2124
l-svr 34 2092

krnl-r 1 2125
ada-b 0 2126
lasso-l 0 2126

We examined the consensus between the regression methods in Out-of-Domain predic-
tions. Only five regressors, (Spln-CFR, xg-b, mlp, l-regr, l-svr, and krnl-r), were able
to predict at least one positive value (critical temperature ≥ 89 K). We computed pairwise
inter-rater agreement statistics, Cohen’s kappa [23], for these five regression methods. We
tabulated the value of Kappa (κ) ordered by highest to lowest; the level of agreement is
outlined in Table 4. It can be seen that in most cases there is either no agreement (nine
cases) none to slight (four cases) between the pairs of regressors. Such behaviour is seen in
the agreement between the pairs formed with Spln-CFR and each of the other five methods.
MLP Regressor and Linear SVR have fair agreement in their predictions. The highest value
is κ = 0.67 for Linear Regression and Kernel Ridge, yielding substantial agreement.

Table 4. Inter-rater agreement between the pairs of regressor methods where the resulting models
were able to predict at least one positive temperature value (Tc ≥ 89 K).

Rater 1 Rater 2 Value of Kappa (κ) Level of Agreement

Spln-CFR xg-b −0.001851 No Agreement
Spln-CFR mlp 0.030476 None to Slight
Spln-CFR l-regr 0.016365 None to Slight
Spln-CFR l-svr 0.104988 None to Slight
Spln-CFR krnl-r −0.000933 No Agreement

xg-b mlp −0.001721 No Agreement
xg-b l-regr −0.000942 No Agreement
xg-b l-svr −0.001780 No Agreement
xg-b krnl-r −0.000628 No Agreement
mlp l-regr −0.001721 No Agreement
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Table 4. Cont.

Rater 1 Rater 2 Value of Kappa (κ) Level of Agreement

mlp l-svr 0.208516 Fair
mlp krnl-r −0.000899 No Agreement

l-regr l-svr 0.053874 None to Slight
l-regr krnl-r 0.666457 Substantial
l-svr krnl-r −0.000915 No Agreement

Extrapolation Capability of the Regressors in General

As all of the results presented in this work are for a special case of finding models for
the extrapolation of the critical temperature of superconductors, we included more robust
experimental outcomes with a set of six datasets used in [8]. This additional test can help
to evaluate the extrapolation capabilities of the regressors in other problem domains.

Jerome Friedman proposed a Multivariate Adaptive Regression Splines (MARS)
algorithm in [24] which aggregates multiple linear regression models throughout the
range of target values. We used the implementation of the MARS algorithm from the py-
earth Python library (https://contrib.scikit-learn.org/py-earth/content.html#multivariate-
adaptive-regression-splines accessed on 8 October 2021). We included a comparison of
MARS with Spln-CFR and other regressors to assess their extrapolation capability.

Here, the samples from each of the datasets were sorted based on the target value,
which was then split into the out-of-domain setting by taking samples with the lower 90%
target values for training and the higher 10% target values for testing. We took half of
the samples uniformly and at random from the out-of-domain training set to build the
model and uesd the same ratio from the out-of-domain test set for prediction for each of
the 100 independent runs. We applied min-max normalization on the training set and used
the same distribution to normalize the test set.

We analyze the regressors’ performance statistically in Figure 7; it can be seen that
MARS has a median ranking of fifth and is statistically significantly different from only
krnl-r, sgd-r, and lasso-l. On the other hand, the proposed Spln-CFR achieves the first
rank among all the methods, with a median ranking between two to three. To calculate
how many predictions surpass the threshold (which matches the highest target score in the
training data) in out-of-domain scenarios, we can convert the predictions of each model
back to their original scale, i.e., denormalize them. Table 5 shows the full denormalization
results. These counts show that Spln-CFR has the highest number of predictions (13,560),
followed by MARS (3716) and l-regr (2594). These results demonstrate the strength of the
regressors in terms of their extrapolation capability.

Table 5. Number of predictions by the different regressor methods which fall within the out-of-
domain threshold range for the test set during 100 repeated runs on six datasets from [8].

Regressor in Range Regressor in Range Regressor in Range

Spln-CFR 13,560 grad-b 1227 ada-b 0
MARS 3716 mlp 1158 lasso-l 0
l-regr 2594 xg-b 826 rf 0
l-svr 2045 krnl-r 735 sgd-r 0

https://contrib.scikit-learn.org/py-earth/content.html#multivariate-adaptive-regression-splines
https://contrib.scikit-learn.org/py-earth/content.html#multivariate-adaptive-regression-splines
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Figure 7. Critical difference (CD) plot showing the statistical significance of rankings achieved by the
regression methods for 100 runs on the six datasets form [8].

5. Conclusions

To conclude, we provide a brief summary of the results observed using this
new technique:

• For the Out-of-Sample study, the proposed Spln-CFR approach is among the top three
methods based on the median RMSE obtained for 100 independent runs (Table 1).

• For the statistical test of the Out-of-Sample rankings, Spln-CFR is statistically similar to
the second-ranked method, Random Forest, in Figure 2b.

• In terms of the Out-of-Domain median RMSE obtained for 100 runs, Spln-CFR is ranked
first (Table 1).

• For the statistical test of the Out-of-Domain rankings in Figure 3b, Spln-CFR is the
best method, with a median ranking close to second, and is statistically similar to
the second-best regressor, XGBoost, which has a median ranking between second
and third.

• Spln-CFR correctly predicted 108 unique materials with critical temperature values
greater than or equal to 89 K in the Out-of-Domain test, nearly twice the number
achieved all the other regression methods combined, which was 60 (Table 3).

Table 2 reveals interesting characteristics of the different methods that deserve further
consideration as an area of research. First, it can be noted that the twenty top materials
for the different methods are not necessarily the same, although a few intersections ob-
viously exist. In the Out-of-Domain study, the top twenty predicted critical temperature
values by Spln-CFR were all above 98.9 K, with eighteen being above 100 K. The average
RMSE critical temperature on this set (103.64 K) is nearly the same as the predicted one
(103.08 K). The RMSE of xg-b, however, is nearly three times smaller, while the method’s
top predictions are materials with relatively smaller values (average of 91.31 K). For the
collected information of the materials in the dataset, we observed that the top suggestions
of critical temperatures in superconductors are closer to the measured temperatures, at
least on the average, when using Spln-CFR. Therefore, the use of Spln-CFR as a surrogate
model to explore the possibility of testing the superconductivity of materials may provide
better returns.

Interestingly, while we observed similarities in the behavior of xg-b and other multi-
variate regression techniques, there were important differences worth noting. For instance,
Linear Regression, perhaps the simplest scheme of them all, shows interesting behavior; its
top twenty highest predictions are all in the range of 81.83–91.59 K while the actual values
are in the interval 98.00–132.60 K. For the multi-layer perceptron method (mlp), the top
twenty highest predictions are all in the range of 90.01–100.81 K, yet the true values are
in the interval 109.00–131.40 K. By considering the rankings given to several materials, as
opposed to the predicted values, valuable information about materials can be obtained
with these techniques when trained using the MSE, allowing prioritization of materials
for testing.

Overall, our results show the limitations of the current dataset. One limitation is the
lack of other useful molecular descriptors that can provide important problem domain
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knowledge about the structure of the materials and their properties. In addition,careful
segmentation of the different materials may be necessary. In a sense, the results of our
experiments an help the AI community to reflect on how to carry out such analyses and
provide motivation for closer collaboration with superconductivity specialists in order to
provide other molecular descriptors.

The inherent difficulties in prediction using in this dataset can be compared to other
areas in which some of us have been working extensively, such as the prediction of sur-
vivability in breast cancer using transcriptomic data. In both cases, the obtained models
showed poor generalization capability when the training samples were not separated
into meaningful subgroups. One reason that our continued fraction-based method may
be achieving better results on the generalization test in our Out-of-Domain study may be
that there are structural similarities in the set of compounds used to define the continued
fraction approximation at the highest temperatures in the training set. Thus, perhaps
indirectly, useful information exists in the molecular descriptors present in these samples
which the continued fraction representation approach is able to exploit. We will investigate
this hypothesis further in a future publication, where we will additionally aim to include
more relevant problem domain information in collaboration with specialists in order to
benefit from the structure and known properties of the actual compounds.

In terms of future research on the algorithm we propose here, it is clear that Spln-CFR
is already a promising approach with obvious extensions worth considering in the future.
For instance, the inclusion of the bagging and boosting techniques could improve its Out-
of-Sample performance, while modifications of the MSE used in the training set may lead
to better learning performance in the Out-of-Domain scenario. We plan to conduct further
research in these areas.

Note Added in Proof

As of 29 July 2023, while completing the last version of this manuscript before publi-
cation, a group of Korean researchers has made an intriguing announcement. They claim
to have discovered a material known as LK-99, which they assert is the world’s first room
temperature and ambient pressure superconductor. The details of this discovery were
made available in preprints on Saturday, 22 July 2023, at 07:51:19 UTC [25] and 10:11:28
UTC [26].

The scientific community worldwide is closely monitoring this breakthrough with
great anticipation. Notably, the authors of the above publications suggest that the critical
temperature of LK-99 might exceed 400 degrees Kelvin [25], a value significantly surpass-
ing any previous expectations derived from the existing dataset from Hamidieh [7]. If
their claims are validated and other laboratories can reproduce the results, it will not
undermine our ongoing pursuit of enhanced generalization through multivariate regres-
sion extrapolation.

On the contrary, if proven correct, this remarkable discovery may provide valuable
insights into the study of effective extrapolation regression methods, especially in combi-
nation with the screening of chemically novel compositions described in the forthcoming
paper by Seegmiller et al. [27]. In light of the considerable attention now focused on these
matters globally, we foresee a significant surge in the importance of multivariate regression
techniques for material discovery. We eagerly await the unfolding developments in this
exciting field.
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