
Citation: Nourian, N.; El-Badry, M.;

Jamshidi, M. Design Optimization of

Truss Structures Using a Graph

Neural Network-Based Surrogate

Model. Algorithms 2023, 16, 380.

https://doi.org/10.3390/a16080380

Academic Editor: Jia-Bao Liu

Received: 25 June 2023

Revised: 31 July 2023

Accepted: 31 July 2023

Published: 7 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Design Optimization of Truss Structures Using a Graph Neural
Network-Based Surrogate Model
Navid Nourian, Mamdouh El-Badry * and Maziar Jamshidi

Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
* Correspondence: melbadry@ucalgary.ca

Abstract: One of the primary objectives of truss structure design optimization is to minimize the total
weight by determining the optimal sizes of the truss members while ensuring structural stability
and integrity against external loads. Trusses consist of pin joints connected by straight members,
analogous to vertices and edges in a mathematical graph. This characteristic motivates the idea of
representing truss joints and members as graph vertices and edges. In this study, a Graph Neural
Network (GNN) is employed to exploit the benefits of graph representation and develop a GNN-based
surrogate model integrated with a Particle Swarm Optimization (PSO) algorithm to approximate
nodal displacements of trusses during the design optimization process. This approach enables the
determination of the optimal cross-sectional areas of the truss members with fewer finite element
model (FEM) analyses. The validity and effectiveness of the GNN-based optimization technique are
assessed by comparing its results with those of a conventional FEM-based design optimization of
three truss structures: a 10-bar planar truss, a 72-bar space truss, and a 200-bar planar truss. The
results demonstrate the superiority of the GNN-based optimization, which can achieve the optimal
solutions without violating constraints and at a faster rate, particularly for complex truss structures
like the 200-bar planar truss problem.

Keywords: artificial neural network; design optimization; graph neural network; particle swarm
optimization algorithm; size optimization; surrogate model; truss structures

1. Introduction

The construction industry is a key global sector that contributes around 9% of the
world’s gross domestic product [1]. However, the significant resource consumption in
this industry poses challenges that adversely impact the environment. To mitigate these
issues, optimization techniques can be employed throughout the entire project life cycle,
including design, construction, operation, and maintenance. Structural optimization plays
a significant role in achieving efficient, sustainable, and economical designs while satisfying
structural performance constraints pertinent, for example, to allowable displacements and
stresses [2]. An economical structural design typically involves minimizing the structural
member sizes, and hence the weight of the whole structure, leading to a reduction in the
consumption of construction materials and the overall cost [3].

Trusses have been widely used in various types of structure such as bridges, buildings,
power transmission towers, the aerospace industry, and other civil structures due to their
advantages, including the efficient use of materials, flexibility of design, and ease of installation.
The simple configuration of trusses, consisting of pin joints and interconnected straight
elements built up from a single type of material, has made them particularly attractive in the
field of structural optimization. Consequently, there has been a significant interest among
researchers in truss structural design optimization, with a focus on the development and
application of metaheuristic algorithms as the preferred optimization method.

Truss optimization can be classified into three categories: topology, shape, and size
optimization. Topology optimization involves determining the optimal arrangement of the

Algorithms 2023, 16, 380. https://doi.org/10.3390/a16080380 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16080380
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6277-4130
https://orcid.org/0000-0002-8420-5542
https://doi.org/10.3390/a16080380
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16080380?type=check_update&version=1

Algorithms 2023, 16, 380 2 of 25

truss members, selecting which members should be present or absent, while keeping the
overall geometric configuration fixed [4,5]. In shape optimization, the objective is to find the
optimal configuration of a truss with a given topology [6,7], in which case the coordinates of
the truss joints are considered as design variables. It does not alter the overall connectivity
and arrangement of the truss elements determined in topology optimization. Ultimately,
size optimization aims to determine the optimal cross-sectional areas of the truss elements
as design variables while maintaining both the topology and shape unchanged [8–10].

Metaheuristic algorithms are a class of optimization techniques designed to solve
complex problems for which traditional derivative-based methods may be ineffective or
impractical. Generally, metaheuristics are inspired by natural or abstract systems and often
mimic the behavior of natural processes such as evolution, swarm intelligence, or physical
phenomenon. Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are the two
most popular and deep-rooted metaheuristic methods, particularly in the field of structural
optimization [11]. Metaheuristics are well-suited for exploring complex design spaces for
problems involving non-linear, multimodal, and discontinuous behavior constraints [12,13].
These derivative-free and iterative-based methods offer a problem-independent approach,
enabling them to find satisfactory solutions for complex problems faster than conventional
derivative-based approaches. However, the computational cost associated with objective
and constraint functions for large structures remains a concern, as a significant number of
function evaluations are required to obtain acceptable solutions [14].

In recent years, many researchers have been exploring the potential of Artificial Neural
Networks (ANNs) to address structural engineering problems that involve inevitable
uncertainties [15–17]. Numerous studies have demonstrated the effectiveness of neural
networks in structural analysis [18,19] and optimization [20–23]. Neural networks have
primarily been used in two applications for structural optimization: predicting optimal
designs and creating surrogate-assisted models. In the studies that have focused on
predicting optimal structural designs, the networks solve size optimization problems and
directly predict the optimal cross-sectional areas of the structural members. For instance,
Moghadas et al. [24] developed a Deep Neural Network (DNN) to predict the optimal
design of double-layer grids with pin joints under a defined loading scenario. In another
study, Yücel et al. [25] trained a neural network to predict the optimal cross-sectional area
of each bar and the minimum volume of a simple 3-bar truss under different loading
conditions. Recently, Nguyen and Vu [26] presented a method to optimally design a 10-bar
planar truss using a deep neural network. The DNN returns the optimal cross-sectional
areas of the truss elements for different cases of applied loads and allowable stresses
and displacements. Nourian et al. [27] proposed a novel DNN-based model by which a
simultaneous truss shape and size optimization problem is decomposed into two simpler
problems: a size optimization problem nested within a shape optimization problem. The
DNN was trained to directly approximate the optimal cross-sectional areas of the members
of a truss with a given shape configuration.

Surrogate-assisted optimization has become increasingly popular. Surrogate models
are prediction tools that can replace objective or constraint functions to accelerate the
optimization process. Hajela and Berke [28,29] were among the first researchers who
applied neural networks in the optimization process as a replacement for structural analysis.
Papadrakakis et al. [30] implemented a neural network-based surrogate model for size
optimization of large-scale 3D trusses to approximate their structural responses during the
optimization process. A similar method involving neural networks and genetic algorithm as
the metaheuristic algorithm was proposed by Liu et al. [31] for structural system reliability
optimization. Zhou et al. [32] developed a data-driven framework and bypassed the use of
constitutive models to improve the speed of topology optimization processes. In a similar
vein, Nguyen and Vu [33] trained two neural networks to separately approximate the nodal
displacements and the member axial forces for evaluation of the constraints in truss size
optimization problems. Mai et al. [34] proposed a neural network-based surrogate model
for the optimization of truss structures. In their method, a DNN uses cross-sectional areas

Algorithms 2023, 16, 380 3 of 25

of the truss members as input and approximates the nodal displacements by including
nonlinear effects due to large deformations.

While traditional ANNs are primarily designed to process data that can be represented
as feature vectors, Graph Neural Networks (GNNs) are specifically tailored to operate on
graph-structured data. GNNs capture both the relational information between nodes and
the features associated with each node within a graph, allowing them to learn complex
interactions in the graph data. Although extensively explored for over a decade [35–37],
GNNs’ popularity has grown only in recent years. Several comprehensive reviews on
graph neural networks have recently been published [38–42]. These networks have been
effectively employed in various domains such as computer vision, molecular chemistry,
molecular biology, pattern recognition, and data mining, in which the data relationships
can be represented as graphs. For example, Duvenaud et al. [43] and Hamaguchi et al. [44]
represented chemical molecules as graphs and predicted their chemical properties using
GNNs. Battaglia et al. [45] implemented a GNN to learn accurate physical simulations, infer
abstract properties of physical systems, and predict the physical trajectories of dozens of
objects over any number of time steps. Maurizi et al. [46] developed a mesh-based machine
learning model for the prediction of deformation, stress, and strain fields in material and
structural systems using a GNN model.

However, despite their ability to process graph data with rich relational information
among objects, to the best of the authors’ knowledge, GNNs have not yet been employed
in structural optimization problems. The advantages of GNNs include their ability to
compute and learn based on graphs, considering the dependencies among objects, and
their capability to predict entities at the node, edge, and graph levels. These advantages
make the use of GNNs promising for the structural optimization of trusses.

In this study, a novel GNN-based technique is developed to efficiently solve the size
optimization problems of trusses with a fixed topology and shape. The primary objective is
to reduce the computational cost while maintaining an acceptable level of solution accuracy.
The technique combines a PSO algorithm for iterative search of the optimal cross-sectional
area of the truss members with a GNN-based surrogate model trained to approximate
nodal displacements of trusses with different sets of cross-sections during most iterations
of the optimization process. The training dataset is generated using a simple finite element
model (FEM) to determine the nodal displacements in various truss structures, which
are then transformed into a graph representation where the truss joints and members are
presented, respectively, as vertices and edges. The nodes and edges within the graphs are
associated with input/output features. Specifically, the edge input feature corresponds to
the cross-sectional area of the truss member, while the node input features include truss
joint coordinates, joint external forces, and support conditions. The nodal displacements
serve as the nodal output features. By leveraging the trained GNN-based surrogate model,
the number of FEMs needed to analyze truss structures is minimized, leading to a reduction
in computational time.

The remainder of the paper is organized as follows. Section 2 presents the objective
and significance of the research. Section 3 describes the development of the proposed GNN-
based optimization technique and provides an overview of the PSO implementation for
truss size optimization problems. Section 4 demonstrates the accuracy and effectiveness of
the proposed technique by using the solution of three distinct truss optimization problems:
a 10-bar plane truss, a 72-bar space truss, and a 200-bar plane truss. Finally, Section 5
provides a summary and concluding remarks.

2. Research Significance

In recent years, the rapid progress of graph neural networks has led to many of their
applications across various fields. However, to the best of the authors’ knowledge, the
utilization of GNNs for the solution of structural optimization problems has not been
previously explored. Therefore, the significance of this study lies in its contribution in
developing a novel technique that integrates a particle swarm optimization algorithm and

Algorithms 2023, 16, 380 4 of 25

a GNN-based surrogate model with a primary aim to provide a more computationally
efficient approach while still achieving an acceptable level of accuracy for the solution of
truss structure size optimization problems. By leveraging the graph representation of the
trusses, the GNN enables the surrogate model to approximate the nodal displacements,
and consequently the member stresses, during the design optimization process. This tech-
nique enables the determination of the optimal cross-sectional areas of the truss members
with fewer FEM analyses, thereby significantly reducing the required computational time,
especially for the optimization of large structures.

3. Materials and Methods
3.1. Truss Size Optimization Problem

The objective of truss size optimization is to minimize the weight of truss structures by
attaining the optimal cross-sectional areas that can safely withstand the effects of external
loads. Thus, a general truss size optimization problem can mathematically be written as:

Minimize W(A) = γ
ne
∑

i=1
Li Ai

A

Subject to:
|σ| ≤ σa
|δnode| ≤ δa

AL ≤ A ≤ AU

(1)

where the objective function W is the total weight of the truss; γ is the material unit weight; Li
and Ai are, respectively, the length and the cross-sectional area of the ith truss element; and ne
is the total number of truss elements. Therefore, the size variables A = {A1, A2, A3, · · · , Ane}
are determined by minimizing the total weight.

To ensure safety, stability, and functionality of the truss, specific stress constraints and
displacement constraints must be satisfied. The stress constraints are specified to ensure
that the stress levels in the truss elements remain below a predefined threshold to maintain
the structural integrity and prevent failure. On the other hand, the displacement constraints
aim to limit the magnitude or direction of the displacements at different truss joints to
prevent excessive movements that could compromise the stability and overall performance
of the structure. These constraints stipulate that the absolute stress in the truss members
must not exceed the maximum allowable stress, σa, and the nodal displacements should
stay within the specified maximum allowable displacement, δa. The allowable stresses
and displacements are influenced by factors such as the material type, truss geometry, and
stiffness, and are typically defined by the relevant design codes and criteria. The truss size
optimization also involves lower and upper bounds, AL and AU , for the cross-sectional
areas of the truss members.

3.2. GNN-Based Optimization

In this study, a graph neural network (GNN)-based optimization technique is devel-
oped to address truss size optimization problems. In the proposed technique, a trained
GNN is employed to approximate the values of constraint functions for various structural
designs during most of the iterations in the PSO algorithm. Specifically, the GNN model
directly approximates the nodal displacements in Equation (1), which subsequently leads
to the calculation of the element stresses. By doing so, the trained GNN eliminates the need
for analyzing the structural responses via FEM. This significantly improves the efficiency
of the optimization process. However, given that neural network predictions may contain
some degree of error, FEM analysis is used in the final iterations. In this manner, the devel-
oped technique achieves a significant enhancement in computational efficiency without
compromising the reliability of the final optimal results.

A flowchart of the proposed GNN-based optimization technique is depicted in Figure 1.
As shown, the technique consists of the following three main stages:

Algorithms 2023, 16, 380 5 of 25

Algorithms 2023, 16, x FOR PEER REVIEW 5 of 26

3.2. GNN-Based Optimization
In this study, a graph neural network (GNN)-based optimization technique is devel-

oped to address truss size optimization problems. In the proposed technique, a trained
GNN is employed to approximate the values of constraint functions for various structural
designs during most of the iterations in the PSO algorithm. Specifically, the GNN model
directly approximates the nodal displacements in Equation (1), which subsequently leads
to the calculation of the element stresses. By doing so, the trained GNN eliminates the
need for analyzing the structural responses via FEM. This significantly improves the effi-
ciency of the optimization process. However, given that neural network predictions may
contain some degree of error, FEM analysis is used in the final iterations. In this manner,
the developed technique achieves a significant enhancement in computational efficiency with-
out compromising the reliability of the final optimal results.

A flowchart of the proposed GNN-based optimization technique is depicted in Fig-
ure 1. As shown, the technique consists of the following three main stages:
• Data Preparation. Generating a dataset of trusses with their members assigned a ran-

dom sample set of cross-sectional areas, Α , which is then analyzed and transformed
into graphs to be used as input to the GNN for training and validation.

• Surrogate Model. Building and training the GNN as a surrogate model for the con-
straints.

• Optimization. Using a PSO algorithm integrated with the trained GNN to attain the
optimal cross-sectional areas of the truss members.
Details of the three stages are given below.

Figure 1. Flowchart illustrating the GNN-based truss size optimization.

3.2.1. Data Preparation
For training the GNN and validating its effectiveness in approximating the nodal

displacements of various designs during iterations in the PSO algorithm, a comprehensive
dataset must be generated to encapsulate the structural responses of different trusses
within the full design space, L UΑ Α Α≤ ≤ . First, a random sample set of member cross-
sectional areas, Α , is generated and assigned to trusses of the same configuration, topol-
ogy, and boundary conditions as the truss structure to be optimized. Second, finite ele-
ment analyses of these trusses are performed to determine their nodal displacements,

nodeδ , under the same set of forces applied at the joint. The trusses are then transformed
into graph representations as input to the GNN. Both the nodes and edges of the graphs
are typically associated with input/output feature vectors. In this study, the cross-sectional
areas of the truss members serve as the edge input feature, while the truss joint coordi-
nates, joint external forces, and support conditions (0 for restrained directions and 1

Figure 1. Flowchart illustrating the GNN-based truss size optimization.

• Data Preparation. Generating a dataset of trusses with their members assigned a
random sample set of cross-sectional areas, A, which is then analyzed and transformed
into graphs to be used as input to the GNN for training and validation.

• Surrogate Model. Building and training the GNN as a surrogate model for
the constraints.

• Optimization. Using a PSO algorithm integrated with the trained GNN to attain the
optimal cross-sectional areas of the truss members.

Details of the three stages are given below.

3.2.1. Data Preparation

For training the GNN and validating its effectiveness in approximating the nodal
displacements of various designs during iterations in the PSO algorithm, a comprehensive
dataset must be generated to encapsulate the structural responses of different trusses
within the full design space, AL ≤ A ≤ AU . First, a random sample set of member cross-
sectional areas, A, is generated and assigned to trusses of the same configuration, topology,
and boundary conditions as the truss structure to be optimized. Second, finite element
analyses of these trusses are performed to determine their nodal displacements, δnode,
under the same set of forces applied at the joint. The trusses are then transformed into
graph representations as input to the GNN. Both the nodes and edges of the graphs are
typically associated with input/output feature vectors. In this study, the cross-sectional
areas of the truss members serve as the edge input feature, while the truss joint coordinates,
joint external forces, and support conditions (0 for restrained directions and 1 otherwise) are
the node input features. Thus, in graph representations of a three-dimensional (space) truss
and two-dimensional (planar) truss, the nodal input feature vector consists of nine and six
variables, respectively. The nodal output feature vector for the space and planar trusses
consists, respectively, of the three and two nodal displacement components obtained from
finite element analyses. Accordingly, the generated dataset used for training and validation
of the GNN consists of the graphs and the input and output feature vectors of their nodes
and edges.

3.2.2. Surrogate Model

The task of the surrogate model is to predict the nodal displacements of a truss using
the trained GNN. To accomplish this, an Encode-Process-Decode architecture is proposed,
as described in Section 3.3.2 [47]. To ensure the robustness and reliability of the model, the
five-fold cross-validation technique is applied to evaluate the errors for both the training
and validation datasets and to establish a suitable architecture. The network is trained
using Adam optimizer [48] with the Mean Square Error (MSE) as the loss function, as given

Algorithms 2023, 16, 380 6 of 25

by Equation (2). In addition, the Root Mean Square Error (RMSE), as given by Equation (3),
is employed as the accuracy metric for assessing the network performance.

Loss = MSE =
1
m

m

∑
i=1

(yi − ŷi)
2, (2)

Metric = RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2, (3)

where m is the number of training samples, and ŷi and yi are the predicted and target
outputs, respectively.

Moreover, an initial learning rate of 0.01 is utilized, which exponentially decays at a
rate of 0.5 over 500 steps. This enables the network to attain convergence and enhance the
accuracy of the predictions.

The network was successfully implemented on a desktop computer equipped with a
Corei7-6700HQ CPU running at 2.60 GHz and boasting 12 GB of RAM. The implementation
was performed by utilizing the Spektral library, which is an open-source Python library
designed for constructing graph neural networks via TensorFlow and Keras interfaces. This
versatile library features an extensive array of cutting-edge techniques for deep learning on
graphs, thus simplifying the GNN implementation process by offering essential building
blocks [49].

3.2.3. Optimization

The proposed GNN-based optimization technique employs a GNN in conjunction
with a PSO algorithm to iteratively solve a truss size optimization problem. The objective
of optimization is still minimizing the total weight of the truss, while ensuring structural
integrity. For prediction of the truss nodal displacements, the trained GNN is used as a
surrogate model for 90% of the iterations, with the remaining 10% utilizing FEM analysis
to determine more accurate nodal displacements. Subsequently, the internal stresses of the
truss elements are calculated based on the nodal displacements and axial deformations
of the elements. Notably, to improve diversity of the PSO optimization process, which is
discussed in Section 3.4, the population size is increased when the GNN prediction model
is substituted with FEM analysis. This allows new particles to join the optimization process
and helps ensure more population diversity. The final obtained set of cross-sections are,
therefore, highly trustworthy, as they have been rigorously verified using FEM analyses
during the final iterations. By integrating the power of the GNN and PSO algorithm, this
optimization technique provides an efficient solution for truss size optimization, with
potential applications in a wide range of structural designs, particularly for large structures.

3.3. Graphs and Graph Neural Networks

Graph neural networks represent a specialized category of artificial neural networks
that are specifically engineered to leverage the benefits of data structured as a graph. This
is applicable in two common scenarios: in some applications, the dataset is inherently orga-
nized as graphs, such as the data associated with molecules and physical systems. However,
in other cases, graphs can be implicit and require structuring, such as word graphs for text
interpretation [50]. Truss structures can be represented as graphs by considering the joints
as vertices and the members as edges. Once the graph data are structured, the existing
relationships within the graphs can be learned by establishing an optimal graph neural
network architecture.

Graphs serve as mathematical structures employed for modeling a group of objects
along with their relationships. A graph is made up of a collection of vertices or nodes
connected by edges or links. In this context, a graph can be denoted as G = (X, E), where
X and E are node and edge features, respectively; ‖X‖ = Nn is the number of nodes; and
‖E‖ = Ne is the number of edges.

Algorithms 2023, 16, 380 7 of 25

Graphs can be classified based on several parameters, some of which are [50]:

• Directed or undirected graphs. In directed graphs, directional dependencies exist
between nodes, and edges only go from one node to another. In contrast, in undirected
graphs, edges are considered undirected or bidirectional. Figure 2 illustrates examples
of the two edge types.

• Homogeneous or heterogeneous graphs. Vertices and edges are of the same types in
homogenous graphs, whereas they have different types in heterogenous graphs. The
latter can be important information in further usage of the graph datasets.

• Static or dynamic graphs. The graph is regarded as dynamic when input features or
graph configuration changes over time.

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 26

potential applications in a wide range of structural designs, particularly for large struc-
tures.

3.3. Graphs and Graph Neural Networks
Graph neural networks represent a specialized category of artificial neural networks

that are specifically engineered to leverage the benefits of data structured as a graph. This
is applicable in two common scenarios: in some applications, the dataset is inherently or-
ganized as graphs, such as the data associated with molecules and physical systems. How-
ever, in other cases, graphs can be implicit and require structuring, such as word graphs
for text interpretation [50]. Truss structures can be represented as graphs by considering
the joints as vertices and the members as edges. Once the graph data are structured, the
existing relationships within the graphs can be learned by establishing an optimal graph
neural network architecture.

Graphs serve as mathematical structures employed for modeling a group of objects
along with their relationships. A graph is made up of a collection of vertices or nodes
connected by edges or links. In this context, a graph can be denoted as (,)G = X E , where
X and E are node and edge features, respectively; n= NX is the number of nodes;

and e= NE is the number of edges.
Graphs can be classified based on several parameters, some of which are [50]:

• Directed or undirected graphs. In directed graphs, directional dependencies exist be-
tween nodes, and edges only go from one node to another. In contrast, in undirected
graphs, edges are considered undirected or bidirectional. Figure 2 illustrates examples of
the two edge types.

• Homogeneous or heterogeneous graphs. Vertices and edges are of the same types in
homogenous graphs, whereas they have different types in heterogenous graphs. The
latter can be important information in further usage of the graph datasets.

• Static or dynamic graphs. The graph is regarded as dynamic when input features or
graph configuration changes over time.

Figure 2. Directed and undirected edges.

The information storage capabilities of vertices and edges in a graph are sufficient for
prediction tasks. Such tasks can fall into one of three categories: the node-level, edge-level,
and graph-level prediction [50]:
• Node-level prediction tasks revolve around node attributes and their roles within a

graph. Node classification, node regression, and node clustering are examples of
node-level prediction tasks. In node classification, nodes are categorized in a verity
of predetermined classes. Node regression aims to predict continuous variables for

Figure 2. Directed and undirected edges.

The information storage capabilities of vertices and edges in a graph are sufficient for
prediction tasks. Such tasks can fall into one of three categories: the node-level, edge-level,
and graph-level prediction [50]:

• Node-level prediction tasks revolve around node attributes and their roles within
a graph. Node classification, node regression, and node clustering are examples of
node-level prediction tasks. In node classification, nodes are categorized in a verity of
predetermined classes. Node regression aims to predict continuous variables for each
node. On the other hand, the goal of node clustering is to make groups of unlabeled
nodes with similar attributes.

• Edge-level prediction tasks are edge classification, regression, and link prediction.
Here, edge classification pertains to classifying edge types, while edge regression deals
with continuous variables associated with edges. Link prediction involves determining
the presence or absence of an edge between two given nodes.

• Graph-level prediction tasks seek to predict the properties of an entire graph, includ-
ing graph classification, graph regression, and graph matching. While the notion
of graph classification and regression mirrors that of other types of prediction tasks,
the classes and continuous variables are now for the entire graph. Graph matching,
meanwhile, aims to investigate the similarity of graphs.

3.3.1. Computational Modules

A typical GNN model usually comprises a multitude of computational modules. Some
widely used modules are [50]:

• Propagation Modules. Propagation modules are used to propagate information
through nodes so that an aggregated representation of the graph’s configuration and
features are created. Notably, convolution operators serve as propagation modules, as
they allow for aggregation of information from the neighboring nodes.

• Sampling Modules. For large-scale graphs, i.e., graphs that cannot be stored and
processed by the device, sampling modules work in conjunction with propagation
modules to propagate information effectively across the graph.

Algorithms 2023, 16, 380 8 of 25

• Pooling Modules. Pooling modules play a crucial role in extracting information from
nodes to construct high-level representations of subgraphs or graphs.

Figure 3 illustrates a typical architecture of a GNN model tailored to analyze graph-
structured data. The model receives input in the form of graphs and generates embeddings
for the nodes, edges, and the entire graph as its output, drawing upon the particular
prediction task at hand. These embeddings comprise vector representations that capture
crucial information concerning the graph configuration, as well as the relationships among
the nodes. The GNN model incorporates a range of modules, including propagation,
sampling, and pooling, which work together to facilitate the transmission of information
throughout the various layers.

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 26

each node. On the other hand, the goal of node clustering is to make groups of unla-
beled nodes with similar attributes.

• Edge-level prediction tasks are edge classification, regression, and link prediction.
Here, edge classification pertains to classifying edge types, while edge regression
deals with continuous variables associated with edges. Link prediction involves de-
termining the presence or absence of an edge between two given nodes.

• Graph-level prediction tasks seek to predict the properties of an entire graph, includ-
ing graph classification, graph regression, and graph matching. While the notion of
graph classification and regression mirrors that of other types of prediction tasks, the
classes and continuous variables are now for the entire graph. Graph matching,
meanwhile, aims to investigate the similarity of graphs.

3.3.1. Computational Modules
A typical GNN model usually comprises a multitude of computational modules.

Some widely used modules are [50]:
• Propagation Modules. Propagation modules are used to propagate information through

nodes so that an aggregated representation of the graph’s configuration and features are
created. Notably, convolution operators serve as propagation modules, as they allow for
aggregation of information from the neighboring nodes.

• Sampling Modules. For large-scale graphs, i.e., graphs that cannot be stored and pro-
cessed by the device, sampling modules work in conjunction with propagation modules
to propagate information effectively across the graph.

• Pooling Modules. Pooling modules play a crucial role in extracting information from
nodes to construct high-level representations of subgraphs or graphs.
Figure 3 illustrates a typical architecture of a GNN model tailored to analyze graph-

structured data. The model receives input in the form of graphs and generates embed-
dings for the nodes, edges, and the entire graph as its output, drawing upon the particular
prediction task at hand. These embeddings comprise vector representations that capture
crucial information concerning the graph configuration, as well as the relationships
among the nodes. The GNN model incorporates a range of modules, including propaga-
tion, sampling, and pooling, which work together to facilitate the transmission of infor-
mation throughout the various layers.

Figure 3. A typical GNN model.

3.3.2. Encode-Process-Decode Architecture
The objective is to utilize a GNN-based surrogate model that has been trained to pre-

dict the nodal displacements of a truss within a node-level prediction task. This is
achieved using an Encode-Process-Decode architecture (see Figure 4) which comprises
distinct components that work in tandem, with the inputs being trusses structured as un-
directed, homogeneous, and static graphs. The encoder constructs latent node and edge
features, 0X and 0

j i→e , based on the inputs, X and j i→e . The processor then performs

Figure 3. A typical GNN model.

3.3.2. Encode-Process-Decode Architecture

The objective is to utilize a GNN-based surrogate model that has been trained to
predict the nodal displacements of a truss within a node-level prediction task. This is
achieved using an Encode-Process-Decode architecture (see Figure 4) which comprises
distinct components that work in tandem, with the inputs being trusses structured as
undirected, homogeneous, and static graphs. The encoder constructs latent node and edge
features, X0 and e0

j→i, based on the inputs, X and ej→i. The processor then performs three

convolutional layers across the latent node and edge features, X1, X2, and X3. Ultimately,
the decoder extracts structural responses, Ŷ, from the final latent node features, X3. This
section provides an overview of each component of the network architecture.

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 26

three convolutional layers across the latent node and edge features, 1 2,X X , and 3X .
Ultimately, the decoder extracts structural responses, Ŷ , from the final latent node
features, 3X . This section provides an overview of each component of the network archi-
tecture.

Figure 4. Encode-Process-Decode architecture.

Encoder
Each node and edge in the graphs contain a feature vector that represents its charac-

teristics. Two encoders are utilized to set the initial state of the node and edge representa-
tions by separately transforming each of the feature vectors into embeddings with differ-
ent sizes of vectors. The encoders take the original feature vectors of the nodes and edges
as inputs and apply non-linear transformations to obtain the embedded representations. A
simple Multilayer Perceptron (MLP) with two 8-unit layers is employed to encode the fea-
tures of each node, resulting in a latent vector of size 16. Likewise, edge features are also
encoded using an MLP with an identical architecture, yielding a latent vector of size 16 for
each edge. The rectified linear unit (ReLu) is utilized as the activation function of the en-
coders, which is known for its ability to reduce sparsity and facilitate the learning process.
Therefore, the embeddings generated by the encoders capture the characteristics and in-
formation of each node and edge in an increased dimensional space, which are used for
further processing to learn meaningful node representations.
Processor

The embeddings obtained from the encoders are used for iterative message-passing
and node updates. In each layer of the processor, the embeddings of a node are aggregated
with the embeddings of its neighbors and connecting edges, collecting knowledge from
the node’s neighborhood for updating its own embeddings. The processor comprises
three convolutional layers, with a central layer named CrystalConv nestled between the
two additional layers known as ECCConv. This selection of layer types was made due to
their remarkable ability to incorporate edge features—a critical component in the training
process. Both layer types are described below:
• ECCConv Layer is an Edge-Conditioned Convolution (ECC) layer that not only captures

the features of individual nodes, but also ties the weights, lW , to the edge features in
each layer l . The output of ECCConv layers in this study takes the form of a vector with
64 distinct components. The ECC convolution layer is mathematically formulated as a
function of both the node and edge features in the following manner [51]:

()1 1

()
MLPl l l l l

i i root j j i
j N i

− −
→

∈
= + +X X W X e b ,

(4)

where lX and l
j i→e are the node and edge features of layer l , respectively. rootW is

the weight for the node features of the previous layer. A neighborhood
= ∈() { ;(,) }N i j j i E of vertex i includes all adjacent vertices j . MLP is a multilayer

perceptron that outputs an edge-specific weight, lW , as a function of the edge features.
lb is the bias vector as a model parameter being updated and optimized during the

training process.
• CrystalConv is a Crystal Convolution layer introduced by Xie and Grossman [52].

This layer computes:

Figure 4. Encode-Process-Decode architecture.

Encoder

Each node and edge in the graphs contain a feature vector that represents its character-
istics. Two encoders are utilized to set the initial state of the node and edge representations
by separately transforming each of the feature vectors into embeddings with different sizes
of vectors. The encoders take the original feature vectors of the nodes and edges as inputs
and apply non-linear transformations to obtain the embedded representations. A simple
Multilayer Perceptron (MLP) with two 8-unit layers is employed to encode the features of
each node, resulting in a latent vector of size 16. Likewise, edge features are also encoded
using an MLP with an identical architecture, yielding a latent vector of size 16 for each edge.
The rectified linear unit (ReLu) is utilized as the activation function of the encoders, which
is known for its ability to reduce sparsity and facilitate the learning process. Therefore, the
embeddings generated by the encoders capture the characteristics and information of each
node and edge in an increased dimensional space, which are used for further processing to
learn meaningful node representations.

Algorithms 2023, 16, 380 9 of 25

Processor

The embeddings obtained from the encoders are used for iterative message-passing
and node updates. In each layer of the processor, the embeddings of a node are aggregated
with the embeddings of its neighbors and connecting edges, collecting knowledge from
the node’s neighborhood for updating its own embeddings. The processor comprises
three convolutional layers, with a central layer named CrystalConv nestled between the
two additional layers known as ECCConv. This selection of layer types was made due to
their remarkable ability to incorporate edge features—a critical component in the training
process. Both layer types are described below:

• ECCConv Layer is an Edge-Conditioned Convolution (ECC) layer that not only cap-
tures the features of individual nodes, but also ties the weights, Wl , to the edge features
in each layer l. The output of ECCConv layers in this study takes the form of a vector
with 64 distinct components. The ECC convolution layer is mathematically formulated
as a function of both the node and edge features in the following manner [51]:

Xl
i = Xl−1

i Wroot + ∑
j∈N(i)

Xl−1
j MLP

(
el

j→i

)
+ bl , (4)

where Xl and el
j→i are the node and edge features of layer l, respectively. Wroot is the

weight for the node features of the previous layer. A neighborhood N(i) = {j; (j, i) ∈ E}
of vertex i includes all adjacent vertices j. MLP is a multilayer perceptron that outputs
an edge-specific weight, Wl, as a function of the edge features. bl is the bias vector as a
model parameter being updated and optimized during the training process.

• CrystalConv is a Crystal Convolution layer introduced by Xie and Grossman [52].
This layer computes:

Xl(i) = Xl−1(i) + ∑
j∈N(i)

σ
(

Zl−1
ij Wl

f + bl−1
f

)
� g
(

Zl−1
ij Wl

s + bl−1
s

)
, (5)

where Zl−1
ij = Xl−1

i ⊕ Xl−1
j ⊕ el−1

j→i concatenates neighbor vectors with the features of
the connecting edge. Meanwhile, � indicates an element-wise multiplication; σ(·)
denotes a sigmoid function; and g(·) is an activation function defined by the user.
In this work, summation pooling and ReLU are used as the pooling and activation
functions, respectively.

Decoder

The decoder follows the processor by separately taking the final node representations
obtained after the message-passing and node updates to provide a fixed-length output
vector for each node. An MLP with two 8-unit layers is utilized to decode the features
of each node to a latent vector that aligns with the required size of the nodal outputs.
Therefore, the defined decoder can produce final outputs that consist of two components
for 2D trusses and three components for 3D trusses.

3.4. PSO Implementation

Various metaheuristic algorithms have been employed to tackle truss size optimization
problems. In 1995, Kennedy et al. [53] developed a new evolutionary algorithm called
particle swarm optimizer (PSO). It is a mathematical method imitating the behavior of a
swarm of birds flocking or a school of fish searching for food. This algorithm has fewer
parameters and, in turn, is simpler to implement than other available methods, such as
genetic algorithms. Also, PSO exhibits a faster convergence rate than other evolutionary
algorithms for solving several optimization problems [54]. This algorithm involves a swarm
of individual particles, each of which represents a point within the M-dimensional search
space, where M is the number of parameters to be optimized. A particle possesses a fitness
value and a velocity, which are continuously updated to steer the particle towards the best

Algorithms 2023, 16, 380 10 of 25

experience of the swarm. The velocity Vm
i and position Km

i of the mth dimension of the ith
particle are updated as follows [53,55]:

Vm
i ← w×Vm

i + c1 × rand1m
i × (pbestm

i − Km
i) + c2 × rand2m

i × (gbestm − Km
i), (6)

Km
i ← Km

i + Vm
i , (7)

where Ki =
{

K1
i , K2

i , K3
i , · · · , KM

i
}

and Vi =
{

V1
i , V2

i , V3
i , · · · , VM

i
}

are vectors represent-
ing, respectively, the position and velocity of the ith particle; W is the inertia weight
balancing the global and local search abilities. A large inertia weight facilitates global
search, while a small inertial weight is more suitable for local search. In this study, a
method of linearly decreasing the inertia weight over the optimization process [56] is
employed. By doing so, the inertia weight is set to 0.9 at the initial point (w0 = 0.9). Dur-
ing the optimization, the weight decreases linearly to reach 0.4 at the end of the process
(wend = 0.4).

The vector pbesti =
{

pbest1
i , pbest2

i , pbest3
i , · · · , pbestM

i
}

is the best previous posi-
tion that resulted in the best fitness (objective) value for the ith particle, and the vector
gbesti =

{
gbest1

i , gbest2
i , gbest3

i , · · · , gbestM
i
}

is the best position yielded by the entire pop-
ulation. c1 and c2 are the acceleration constants reflecting the weighting of each stochastic
acceleration terms (c1 = c2 = 2). They determine the relative amount of particle move-
ments towards pbest and gbest positions. Also, rand1m

i and rand2m
i are two random

numbers sampled uniformly in the range [0, 1]. There are minimum and maximum possi-
ble velocity vectors

[
Vmin, Vmax

]
as boundaries defined by the user to limit the velocity of

the particle. Considering that the search range for a problem is
[
Kmin, Kmax

]
, the minimum

and maximum velocity vectors are defined as follows:

Vmin = −0.2
(

Kmax −Kmin
)

(8)

Vmax = +0.2
(

Kmax −Kmin
)

(9)

Algorithm 1 outlines the step-by-step procedure of the PSO algorithm, which is pro-
grammed based on Reference [55]. Subsequently, the program is enhanced to incorporate
the fitness (objective) function and manage the constraints, specifically to solve truss size
optimization problems.

Algorithm 1 Particle Swarm Optimization algorithm

INPUT: Initialize the population of particles:
Set the maximum number of iterations.
Set the number of particles in the swarm.
Randomly initialize the position and velocity of each particle.
Determine the fitness value of each particle.
Set the personal best position (pbest) of each particle as its initial position.
Determine the global best position (gbest) of the population.

OUTPUT: gbest and its fitness value found in the final iteration.
1. For each iteration until the maximum number of iterations is reached:
2. Update the velocity and position of each particle using the formulas:
3. Vm

i ← w×Vm
i + c1 × rand1m

i ×
(

pbestm
i − Km

i
)
+ c2 × rand2m

i ×
(

gbestm − Km
i
)

4. Km
i ← Km

i + Vm
i

5. Evaluate the fitness of the new position of each particle.
6. Update the pbest and gbest:
7. If the fitness of the new position is better than its pbest fitness:

Update pbest.
Check if the fitness of pbest is better than the gbest fitness:

8. Update gbest.

Algorithms 2023, 16, 380 11 of 25

Handling of Size Optimization Constraints

Structural design must satisfy several requirements, including but not limited to
resistance and serviceability. As such, truss size optimization is inevitably subject to several
design constraints; see Equation (1). For handling the constraints, the penalty function,
P(·), is employed, which is formulated as shown in the following [57,58]:

P(A) = W(A)× ϕp × B, (10)

ϕp = (1 + C)ε, (11)

where B and ε describe the penalty coefficient and penalty exponent, which are taken
in this study as 1 and 2, respectively. As before, A = {A1, A2, A3, · · · , Ane} are the size
variables, and W is the resultant total weight of the structure. Additionally, the violation
measurement C is determined by the following equation:

C =
ne

∑
j=1

Cj
σ +

nj

∑
i=1

Ci
δ, (12)

Cj
σ =

∣∣∣∣ |σj|−σa
σa

∣∣∣∣ if
∣∣σj
∣∣ > σa

Cj
σ = 0 if

∣∣σj
∣∣ < σa

, (13)

Ci
δ =

∣∣∣ |δi |−δa
δa

∣∣∣ if |δi| > δa

Ci
δ = 0 if |δi| < δa

, (14)

where C j
σ and C i

δ are associated with the stress and displacement constraints, thereby
expressing the constraints in normalized forms. The parameters ne and nj correspond to
the number of truss elements and truss joints, respectively. Other relevant parameters have
been defined in Equation (1).

4. Results and Discussion

The developed GNN-based optimization technique is used to solve three truss size
optimization problems: (1) a 10-bar planar truss, (2) a 72-bar space truss, and (3) a
200-bar planar truss. To verify the validity and effectiveness of the proposed technique,
a FEM-based PSO optimization technique is also developed in Python. The FEM-based
optimization adopts a simple finite element approach to analyze truss structures and de-
termine the corresponding nodal displacements and element stresses. The results of the
FEM-based optimization are used as a benchmark for validating and verifying the optimal
solutions obtained from the GNN-based model.

4.1. Ten-Bar Planar Truss

The considered 10-bar planar truss problem is commonly used as a starting point
when assessing new optimization methods. The truss illustrated in Figure 5 consists of
six joints connected by ten elements. The process of optimizing the size of this structure
necessitates the use of 10 distinct design variables, namely, the cross-sectional areas of the
10 truss elements. The cross-sectional areas are selected from the range of [1, 15] in2. Table 1
presents a summary of the design parameters used for this problem.

Algorithms 2023, 16, 380 12 of 25

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 26

1 1

njne
j i

j i
C = C Cσ δ

= =
+ , (12)

if

0 if

j aj
j a

a

j
j a

C =

C

σ

σ

σ σ
σ σ

σ

σ < σ

−
>

=
,

(13)

if

0 if

i ai
i a

a

i
i a

C =

C

−
>

=

δ

δ

δ δ
δ δ

δ

δ < δ
,

(14)

where jCσ and iCδ are associated with the stress and displacement constraints, thereby
expressing the constraints in normalized forms. The parameters ne and nj correspond to
the number of truss elements and truss joints, respectively. Other relevant parameters
have been defined in Equation (1).

4. Results and Discussion
The developed GNN-based optimization technique is used to solve three truss size

optimization problems: (1) a 10-bar planar truss, (2) a 72-bar space truss, and (3) a 200-bar
planar truss. To verify the validity and effectiveness of the proposed technique, a FEM-
based PSO optimization technique is also developed in Python. The FEM-based optimi-
zation adopts a simple finite element approach to analyze truss structures and determine
the corresponding nodal displacements and element stresses. The results of the FEM-
based optimization are used as a benchmark for validating and verifying the optimal so-
lutions obtained from the GNN-based model.

4.1. Ten-Bar Planar Truss
The considered 10-bar planar truss problem is commonly used as a starting point

when assessing new optimization methods. The truss illustrated in Figure 5 consists of six
joints connected by ten elements. The process of optimizing the size of this structure ne-
cessitates the use of 10 distinct design variables, namely, the cross-sectional areas of the
10 truss elements. The cross-sectional areas are selected from the range of [1, 15] in2. Table
1 presents a summary of the design parameters used for this problem.

Figure 5. Ten-bar planar truss. Figure 5. Ten-bar planar truss.

Table 1. Design parameters of the 10-bar planar truss.

Parameter Value

Modulus of elasticity 10,000 ksi
Material density 0.1 lb/in3

Allowable stresses ±25 ksi
Allowable nodal displacement 2 in

4.1.1. Data Preparation

The initial stage involved generating truss structural design samples with element
cross-sectional areas within a defined space of A ∈ [1, 15] in2. Specifically, 1000 truss
structural design samples were generated, whereby for each truss sample, 10 design
variables were randomly assigned values within the specified range. The trusses were then
analyzed using a finite element model, and the nodal displacements determined from the
analysis were stored along with other information pertaining to the truss configuration.
These data were subsequently utilized to create graphs representing the truss structures.
Since the 10-bar planar truss is two-dimensional, and the applied loads are vertical, five
node features are sufficient to effectively represent the truss. As shown in Figure 6, these
features include the truss joint coordinates (x, y), the vertical load

(
Fy
)

applied at the
joints, and the two binary features (0 or 1) indicating the degrees of freedom associated
with the joint translations. Additionally, each edge has a single feature that pertains to the
corresponding truss element’s cross-sectional area, A, while each node contains two output
features that correspond to the nodal displacements

(
δx, δy

)
obtained via FEM.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 26

Table 1. Design parameters of the 10-bar planar truss.

Parameter Value
Modulus of elasticity 10,000 ksi

Material density 0.1 lb/in3

Allowable stresses ±25 ksi
Allowable nodal displacement 2 in

4.1.1. Data Preparation
The initial stage involved generating truss structural design samples with element

cross-sectional areas within a defined space of [1,15]∈A in2. Specifically, 1000 truss
structural design samples were generated, whereby for each truss sample, 10 design var-
iables were randomly assigned values within the specified range. The trusses were then
analyzed using a finite element model, and the nodal displacements determined from the
analysis were stored along with other information pertaining to the truss configuration.
These data were subsequently utilized to create graphs representing the truss structures.
Since the 10-bar planar truss is two-dimensional, and the applied loads are vertical, five
node features are sufficient to effectively represent the truss. As shown in Figure 6, these

features include the truss joint coordinates (),x y , the vertical load ()yF applied at the

joints, and the two binary features (0 or 1) indicating the degrees of freedom associated
with the joint translations. Additionally, each edge has a single feature that pertains to the
corresponding truss element’s cross-sectional area, A, while each node contains two out-
put features that correspond to the nodal displacements (),x yδ δ obtained via FEM.

Figure 6. Graph representation of the 10-bar planar truss.

4.1.2. GNN Model Training
The performance of the graph neural network was assessed using the five-fold cross-

validation method. Figure 7 presents the learning curves of the training and validation
datasets for the loss and metric functions. As can be seen, the curves for both datasets
exhibit a gradual flattening, which provides evidence that the models have been ade-
quately trained. Meanwhile, the risk of overfitting is deemed to be negligible, given the
minimal difference between the training and validation loss learning curves. To supple-
ment this, the mean values for both MSE and RMSE across all five training and validation
sets are shown in Table 2.

Figure 6. Graph representation of the 10-bar planar truss.

4.1.2. GNN Model Training

The performance of the graph neural network was assessed using the five-fold cross-
validation method. Figure 7 presents the learning curves of the training and validation
datasets for the loss and metric functions. As can be seen, the curves for both datasets

Algorithms 2023, 16, 380 13 of 25

exhibit a gradual flattening, which provides evidence that the models have been adequately
trained. Meanwhile, the risk of overfitting is deemed to be negligible, given the minimal
difference between the training and validation loss learning curves. To supplement this,
the mean values for both MSE and RMSE across all five training and validation sets are
shown in Table 2.

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 26

(a) (b)

Figure 7. (a) Convergence history of the loss function for five-fold validation model; and (b) conver-
gence history of the metric function for five-fold validation model.

Table 2. Mean results of five-fold cross-validation for 10-bar truss.

 Training Validation
MSE (in2) 0.236 0.240
RMSE (in) 0.271 0.288

To enhance the nodal displacements prediction accuracy, the surrogate model was
trained utilizing the entire dataset comprising all 1000 truss samples (Figure 8). The figure
shows an accurate performance of the model measured by the mean square error, MSE =
0.022 at the end of training.

Figure 8. Convergence history of the loss function for the trained surrogate model.

4.1.3. GNN-Based Optimization
The proposed GNN-based optimization was validated by a simple FEM-based opti-

mization, in which the PSO algorithm evaluates each particle via a finite element analy-
sis. It should be noted that the population of the GNN-based optimization was set to 75
and increased to 150 in the final 10% of iterations, compared to the fixed population of 75
for the FEM-based optimization over the course of all 100 iterations. The optimum out-
comes for the 100 independent runs of each optimization technique are presented in Table
3, with the GNN-based optimization reaching the optimal weight with a negligible 0.05%
deviation from the results of the FEM-based optimization. As for computational efficiency,
the FEM-based optimization required an average of 9.3 seconds to attain an optimal

Figure 7. (a) Convergence history of the loss function for five-fold validation model; and (b) conver-
gence history of the metric function for five-fold validation model.

Table 2. Mean results of five-fold cross-validation for 10-bar truss.

Training Validation

MSE (in2) 0.236 0.240
RMSE (in) 0.271 0.288

To enhance the nodal displacements prediction accuracy, the surrogate model was
trained utilizing the entire dataset comprising all 1000 truss samples (Figure 8). The figure
shows an accurate performance of the model measured by the mean square error, MSE =
0.022 at the end of training.

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 26

(a) (b)

Figure 7. (a) Convergence history of the loss function for five-fold validation model; and (b) conver-
gence history of the metric function for five-fold validation model.

Table 2. Mean results of five-fold cross-validation for 10-bar truss.

 Training Validation
MSE (in2) 0.236 0.240
RMSE (in) 0.271 0.288

To enhance the nodal displacements prediction accuracy, the surrogate model was
trained utilizing the entire dataset comprising all 1000 truss samples (Figure 8). The figure
shows an accurate performance of the model measured by the mean square error, MSE =
0.022 at the end of training.

Figure 8. Convergence history of the loss function for the trained surrogate model.

4.1.3. GNN-Based Optimization
The proposed GNN-based optimization was validated by a simple FEM-based opti-

mization, in which the PSO algorithm evaluates each particle via a finite element analy-
sis. It should be noted that the population of the GNN-based optimization was set to 75
and increased to 150 in the final 10% of iterations, compared to the fixed population of 75
for the FEM-based optimization over the course of all 100 iterations. The optimum out-
comes for the 100 independent runs of each optimization technique are presented in Table
3, with the GNN-based optimization reaching the optimal weight with a negligible 0.05%
deviation from the results of the FEM-based optimization. As for computational efficiency,
the FEM-based optimization required an average of 9.3 seconds to attain an optimal

Figure 8. Convergence history of the loss function for the trained surrogate model.

4.1.3. GNN-Based Optimization

The proposed GNN-based optimization was validated by a simple FEM-based opti-
mization, in which the PSO algorithm evaluates each particle via a finite element analysis.
It should be noted that the population of the GNN-based optimization was set to 75 and
increased to 150 in the final 10% of iterations, compared to the fixed population of 75 for
the FEM-based optimization over the course of all 100 iterations. The optimum outcomes
for the 100 independent runs of each optimization technique are presented in Table 3,
with the GNN-based optimization reaching the optimal weight with a negligible 0.05%
deviation from the results of the FEM-based optimization. As for computational efficiency,

Algorithms 2023, 16, 380 14 of 25

the FEM-based optimization required an average of 9.3 s to attain an optimal solution with
7500 analyses. In contrast, the GNN-based optimization took 221.7 s, including 3.2 s for the
data preparation and 218.5 s for the optimization process. A total of 2500 FEM analyses
were performed by the GNN-based optimization, of which 1000 were to generate training
samples and 1500 analyses were in the last ten iterations for 150 particles in each iteration.
Despite using fewer FEM analyses than the FEM-based optimization, the GNN-based
optimization required more time to achieve the optimal solution. This is because the 10-bar
planar truss is a simple problem that lends itself to simple analysis, and therefore, the
needed time to analyze the simple truss is less than that required for GNN predictions.

Table 3. Optimal design for the 10-bar planar truss.

Variables Cross-Sectional Areas (in2)

Element Group Members FEM-Based Optimization
(Benchmark)

GNN-Based
Optimization

1 1 15.000 15.000
2 2 1.000 1.000
3 3 12.268 12.012
4 4 7.644 7.660
5 5 1.000 1.000
6 6 1.000 1.000
7 7 4.684 4.943
8 8 11.202 11.088
9 9 10.913 10.966
10 10 1.000 1.000

|δnode|max (in) 2.00 2.00
|σ|max (ksi) 12.49 12.04
Weight (lb) 2780.09 2781.56

Nanalyses 7500 2500

4.2. Seventy-Two-Bar Space Truss

Figure 9 shows a 72-bar multi-story space truss consisting of 20 joints connected by
72 elements. To simplify the design process and make use of the structural symmetry,
the 72 elements were classified into 16 groups. Thus, the number of design variables was
reduced to 16, which represent the cross-sections of truss elements in each group. These
cross-sections were chosen within the range of 0.1 in2 to 3 in2. The design parameters used
to solve the size optimization problem are summarized in Table 4. The applied loading
case is also presented in Table 5.

Table 4. Design parameters of the 72-bar space truss.

Parameter Value

Modulus of elasticity 10,000 ksi
Material density 0.1 lb/in3

Allowable stresses ±25 ksi
Allowable nodal displacement 0.25 in

Table 5. Applied loads on the 72-bar space truss.

Joint Px (kips) Py (kips) Pz (kips)

18 5 5 −5
19 5 5 −5

Algorithms 2023, 16, 380 15 of 25Algorithms 2023, 16, x FOR PEER REVIEW 16 of 26

Figure 9. Seventy-two-bar space truss.

Table 4. Design parameters of the 72-bar space truss.

Parameter Value
Modulus of elasticity 10,000 ksi

Material density 0.1 lb/in3

Allowable stresses ±25 ksi
Allowable nodal displacement 0.25 in

Table 5. Applied loads on the 72-bar space truss.

Joint Px (kips) Py (kips) Pz (kips)
18 5 5 −5
19 5 5 −5

4.2.1. Data Preparation
A thousand truss structural design samples were generated in a defined space of

2[0.1, 3] in∈A , with the 16 design variables being assigned random values within the
specified range for each sample. Each generated structure was analyzed using a finite el-
ement model. The results of the structural analyses were subsequently used to create a
graph-structured dataset that contained nine distinct features for each node. As presented

in Figure 10, the features of each node are the truss joint coordinates (), ,x y z , the applied

joint loads (), ,x y zF F F , and the three binary features (0 or 1) representing the degrees of

freedom associated with the translations of the joint. Once again, each edge has a single
feature that pertains to the corresponding truss element’s cross-sectional area, A. Also,
each node has three output features, namely, the nodal displacements (), ,x y zδ δ δ ob-

tained from the FEM analysis.

Figure 9. Seventy-two-bar space truss.

4.2.1. Data Preparation

A thousand truss structural design samples were generated in a defined space of
A ∈ [0.1, 3] in2, with the 16 design variables being assigned random values within the
specified range for each sample. Each generated structure was analyzed using a finite
element model. The results of the structural analyses were subsequently used to create a
graph-structured dataset that contained nine distinct features for each node. As presented
in Figure 10, the features of each node are the truss joint coordinates (x, y, z), the applied
joint loads

(
Fx, Fy, Fz

)
, and the three binary features (0 or 1) representing the degrees of

freedom associated with the translations of the joint. Once again, each edge has a single
feature that pertains to the corresponding truss element’s cross-sectional area, A. Also, each
node has three output features, namely, the nodal displacements

(
δx, δy, δz

)
obtained from

the FEM analysis.
Algorithms 2023, 16, x FOR PEER REVIEW 17 of 26

Figure 10. Graph representation of the 72-bar space truss.

4.2.2. GNN Model Training
The graph neural network was evaluated using the five-fold cross-validation tech-

nique, as depicted in Figure 11. The calculated mean values of MSE and RMSE for the
training and validation datasets across all the five folds are shown in Table 6. The surro-
gate model used in the GNN-based optimization was trained using all 1000 truss samples,
as shown in Figure 12, and the resulting final mean square error was MSE = 0.019 in2.

(a) (b)

Figure 11. (a) Convergence history of the loss function for five-fold validation model; and (b) con-
vergence history of the metric function for five-fold validation model.

Table 6. Mean results of five-fold cross-validation for 72-bar truss.

 Training Validation
MSE (in2) 0.038 0.039
RMSE (in) 0.162 0.164

Figure 10. Graph representation of the 72-bar space truss.

Algorithms 2023, 16, 380 16 of 25

4.2.2. GNN Model Training

The graph neural network was evaluated using the five-fold cross-validation technique,
as depicted in Figure 11. The calculated mean values of MSE and RMSE for the training
and validation datasets across all the five folds are shown in Table 6. The surrogate model
used in the GNN-based optimization was trained using all 1000 truss samples, as shown in
Figure 12, and the resulting final mean square error was MSE = 0.019 in2.

Algorithms 2023, 16, x FOR PEER REVIEW 17 of 26

Figure 10. Graph representation of the 72-bar space truss.

4.2.2. GNN Model Training
The graph neural network was evaluated using the five-fold cross-validation tech-

nique, as depicted in Figure 11. The calculated mean values of MSE and RMSE for the
training and validation datasets across all the five folds are shown in Table 6. The surro-
gate model used in the GNN-based optimization was trained using all 1000 truss samples,
as shown in Figure 12, and the resulting final mean square error was MSE = 0.019 in2.

(a) (b)

Figure 11. (a) Convergence history of the loss function for five-fold validation model; and (b) con-
vergence history of the metric function for five-fold validation model.

Table 6. Mean results of five-fold cross-validation for 72-bar truss.

 Training Validation
MSE (in2) 0.038 0.039
RMSE (in) 0.162 0.164

Figure 11. (a) Convergence history of the loss function for five-fold validation model; and
(b) convergence history of the metric function for five-fold validation model.

Table 6. Mean results of five-fold cross-validation for 72-bar truss.

Training Validation

MSE (in2) 0.038 0.039
RMSE (in) 0.162 0.164

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 26

Figure 12. Convergence history of the loss function for the trained surrogate model.

4.2.3. GNN-Based Optimization
The population of the GNN-based optimization began at 75 and increased to 150 in

the final 10% of iterations, whereas the FEM-based optimization population was 75
throughout all 100 iterations. Table 7 presents the best results for the 100 independent runs
of each optimization technique. Remarkably, the achieved optimal structural weight ex-
hibits a high accuracy with a negligible difference of less than 0.2% from the outcomes of
the FEM-based optimization. In terms of computational time, the FEM-based optimization
required an average of 68.7 seconds with 7500 analyses, while the GNN-based optimiza-
tion needed 242.6 seconds for prediction, comprising 13.1 seconds for the data preparation
and 229.5 seconds for the optimization stage. As before, the GNN-based optimization re-
quired a total of 2500 FEM analyses, including 1000 analyses to generate training samples
and 1500 analyses in the last 10 iterations for 150 particles in each iteration.

Table 7. Optimal design for the 72-bar space truss.

Variables Cross-Sectional Areas (in2)

Element Group Members
FEM-Based Optimization

(Benchmark)
GNN-Based Optimization

1 1–4 3.000 3.000
2 5–12 2.210 2.186
3 13–16 0.109 0.100
4 17, 18 0.100 0.100
5 19–22 3.000 3.000
6 23–30 2.207 2.184
7 31–34 0.100 0.100
8 35, 36 0.100 0.100
9 37–40 3.000 3.000

10 41–48 2.148 2.036
11 49–52 0.100 0.100
12 53, 54 0.100 0.100
13 55–58 1.627 1.851
14 59–66 2.113 2.200
15 67–70 0.719 0.817
16 71, 72 0.250 0.264
m ax

nodeδ (in) 0.25 0.25
maxσ (ksi) 7.91 7.90

Weight (lb) 1254.68 1256.94
Nanalyses 7500 2500

Figure 12. Convergence history of the loss function for the trained surrogate model.

4.2.3. GNN-Based Optimization

The population of the GNN-based optimization began at 75 and increased to 150 in the
final 10% of iterations, whereas the FEM-based optimization population was 75 throughout
all 100 iterations. Table 7 presents the best results for the 100 independent runs of each
optimization technique. Remarkably, the achieved optimal structural weight exhibits a high
accuracy with a negligible difference of less than 0.2% from the outcomes of the FEM-based
optimization. In terms of computational time, the FEM-based optimization required an
average of 68.7 s with 7500 analyses, while the GNN-based optimization needed 242.6 s for
prediction, comprising 13.1 s for the data preparation and 229.5 s for the optimization stage.
As before, the GNN-based optimization required a total of 2500 FEM analyses, including

Algorithms 2023, 16, 380 17 of 25

1000 analyses to generate training samples and 1500 analyses in the last 10 iterations for
150 particles in each iteration.

Table 7. Optimal design for the 72-bar space truss.

Variables Cross-Sectional Areas (in2)

Element Group Members FEM-Based Optimization
(Benchmark)

GNN-Based
Optimization

1 1–4 3.000 3.000
2 5–12 2.210 2.186
3 13–16 0.109 0.100
4 17, 18 0.100 0.100
5 19–22 3.000 3.000
6 23–30 2.207 2.184
7 31–34 0.100 0.100
8 35, 36 0.100 0.100
9 37–40 3.000 3.000
10 41–48 2.148 2.036
11 49–52 0.100 0.100
12 53, 54 0.100 0.100
13 55–58 1.627 1.851
14 59–66 2.113 2.200
15 67–70 0.719 0.817
16 71, 72 0.250 0.264

|δnode|max(in) 0.25 0.25
|σ|max(ksi) 7.91 7.90
Weight (lb) 1254.68 1256.94

Nanalyses 7500 2500

4.3. Two-Hundred-Bar Planar Truss Example

Figure 13 shows a 200-bar planar truss consisting of 77 joints connected by a total of
200 members. The 200 members were thoughtfully categorized into 29 independent groups.
The selection of the cross-sectional areas of the truss members were chosen within the
range of 0.1 to 2 in2. The truss is designed with the sole consideration of the displacement
constraints. The parameters used to optimize the design of this complex system are given
in Table 8. The joint loads applied on the truss are given in Table 9.

Table 8. Design parameters of the 200-bar planar truss.

Parameter Value

Modulus of elasticity 30,000 ksi
Material density 0.283 lb/in3

Allowable nodal displacement 4 in

Table 9. Applied loads on the 200-bar planar truss.

Joints Px (kips) Py (kips) Pz (kips)

1, 6, 15, 20, 29, 34, 43, 48, 57, 62 1 0 0

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16,
17, 18, 19, 20, 22, 24, 26, 28, 29, 30,
31, 32, 33, 34, 36, 38, 40, 42, 43, 44,
45, 46, 47, 48, 50, 52, 54, 56, 57, 58,
59, 60, 61, 62, 64, 66, 68, 70, 71, 72,

73, 74, 75

0 −10 0

Algorithms 2023, 16, 380 18 of 25

Algorithms 2023, 16, x FOR PEER REVIEW 19 of 26

4.3. Two-Hundred-Bar Planar Truss Example
Figure 13 shows a 200-bar planar truss consisting of 77 joints connected by a total of

200 members. The 200 members were thoughtfully categorized into 29 independent
groups. The selection of the cross-sectional areas of the truss members were chosen within
the range of 0.1 to 2 in2. The truss is designed with the sole consideration of the displace-
ment constraints. The parameters used to optimize the design of this complex system are
given in Table 8. The joint loads applied on the truss are given in Table 9.

Figure 13. The 200-bar planar truss.

Table 8. Design parameters of the 200-bar planar truss.

Parameter Value
Modulus of elasticity 30,000 ksi

Material density 0.283 lb/in3

Allowable nodal displacement 4 in

Figure 13. The 200-bar planar truss.

4.3.1. Data Preparation

Within a specified space of A ∈ [0.1, 2] in2, a structural design exploration was
undertaken, generating 1000 truss design samples, each consisting of 29 design variables,
with values randomly assigned within the specified range. The finite element model was
used to analyze the structure, and from the resulting data, a graph-structured dataset was
constructed. Due to the planar nature of the 200-bar truss, six distinct node features were
adopted to represent the structure, as illustrated in Figure 14. The node features include
truss joint coordinates (x, y), joint loads

(
Fx, Fy

)
, and two binary features (0 or 1) indicating

the degrees of freedom related to the translations of the joints. Moreover, each edge had a
single cross-sectional area, A, feature. Also, each node has two nodal displacement output
features

(
δx, δy

)
determined by FEM analysis.

Algorithms 2023, 16, 380 19 of 25

Algorithms 2023, 16, x FOR PEER REVIEW 20 of 26

Table 9. Applied loads on the 200-bar planar truss.

Joints Px (kips) Py (kips) Pz (kips)
1, 6, 15, 20, 29, 34, 43, 48, 57, 62 1 0 0

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26,
28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47,
48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71,

72, 73, 74, 75

0 −10 0

4.3.1. Data Preparation

Within a specified space of 2[0.1,2] in∈A , a structural design exploration was un-
dertaken, generating 1000 truss design samples, each consisting of 29 design variables,
with values randomly assigned within the specified range. The finite element model was
used to analyze the structure, and from the resulting data, a graph-structured dataset was
constructed. Due to the planar nature of the 200-bar truss, six distinct node features were
adopted to represent the structure, as illustrated in Figure 14. The node features include

truss joint coordinates (),x y , joint loads (),x yF F , and two binary features (0 or 1) indi-

cating the degrees of freedom related to the translations of the joints. Moreover, each edge
had a single cross-sectional area, A, feature. Also, each node has two nodal displacement
output features (),x yδ δ determined by FEM analysis.

Figure 14. Graph representation of the 200-bar planar truss.

Figure 14. Graph representation of the 200-bar planar truss.

4.3.2. GNN Model Training

To evaluate the GNN model architecture, the five-fold cross-validation technique, as
depicted in Figure 15, was implemented. The performance of the model was assessed by
calculating the mean values of the MSE and RMSE for the training and validation datasets
across the five folds. The values of MSE and RMSE are given in Table 10. To construct the
surrogate model, the neural network was trained using all 1000 truss samples, resulting in
a final mean square error of MSE = 0.496 in2, as presented in Figure 16.

Algorithms 2023, 16, x FOR PEER REVIEW 21 of 26

4.3.2. GNN Model Training
To evaluate the GNN model architecture, the five-fold cross-validation technique, as

depicted in Figure 15, was implemented. The performance of the model was assessed by
calculating the mean values of the MSE and RMSE for the training and validation datasets
across the five folds. The values of MSE and RMSE are given in Table 10. To construct the
surrogate model, the neural network was trained using all 1000 truss samples, resulting
in a final mean square error of MSE = 0.496 in2, as presented in Figure 16.

(a) (b)

Figure 15. (a) Convergence history of the loss function for five-fold validation model; and (b) con-
vergence history of the metric function for five-fold validation model.

Table 10. Mean results of five-fold cross-validation for 200-bar truss.

 Training Validation
MSE (in2) 0.939 0.881
RMSE (in) 0.943 0.882

Figure 16. Convergence history of the loss function for the trained surrogate model.

4.3.3. GNN-Based Optimization
The FEM-based optimization population remained constant at 75 across 150 itera-

tions, while the population of the GNN-based optimization grew from 75 to 150 in the
final 10% of iterations. The best outcome obtained from the 100 independent runs of both
optimization techniques is presented in Table 11. As can be seen, in comparison to the
outcome of the FEM-based optimization, the achieved optimal structural weight using the
GNN-based optimization displays a high accuracy with a minimal difference of 0.9%. The

Figure 15. (a) Convergence history of the loss function for five-fold validation model; and
(b) convergence history of the metric function for five-fold validation model.

Algorithms 2023, 16, 380 20 of 25

Table 10. Mean results of five-fold cross-validation for 200-bar truss.

Training Validation

MSE (in2) 0.939 0.881
RMSE (in) 0.943 0.882

Algorithms 2023, 16, x FOR PEER REVIEW 21 of 26

4.3.2. GNN Model Training
To evaluate the GNN model architecture, the five-fold cross-validation technique, as

depicted in Figure 15, was implemented. The performance of the model was assessed by
calculating the mean values of the MSE and RMSE for the training and validation datasets
across the five folds. The values of MSE and RMSE are given in Table 10. To construct the
surrogate model, the neural network was trained using all 1000 truss samples, resulting
in a final mean square error of MSE = 0.496 in2, as presented in Figure 16.

(a) (b)

Figure 15. (a) Convergence history of the loss function for five-fold validation model; and (b) con-
vergence history of the metric function for five-fold validation model.

Table 10. Mean results of five-fold cross-validation for 200-bar truss.

 Training Validation
MSE (in2) 0.939 0.881
RMSE (in) 0.943 0.882

Figure 16. Convergence history of the loss function for the trained surrogate model.

4.3.3. GNN-Based Optimization
The FEM-based optimization population remained constant at 75 across 150 itera-

tions, while the population of the GNN-based optimization grew from 75 to 150 in the
final 10% of iterations. The best outcome obtained from the 100 independent runs of both
optimization techniques is presented in Table 11. As can be seen, in comparison to the
outcome of the FEM-based optimization, the achieved optimal structural weight using the
GNN-based optimization displays a high accuracy with a minimal difference of 0.9%. The

Figure 16. Convergence history of the loss function for the trained surrogate model.

4.3.3. GNN-Based Optimization

The FEM-based optimization population remained constant at 75 across 150 iterations,
while the population of the GNN-based optimization grew from 75 to 150 in the final 10% of
iterations. The best outcome obtained from the 100 independent runs of both optimization
techniques is presented in Table 11. As can be seen, in comparison to the outcome of the
FEM-based optimization, the achieved optimal structural weight using the GNN-based
optimization displays a high accuracy with a minimal difference of 0.9%. The GNN-based
technique took only 607.1 s for predictions, which included 80.5 s and 526.6 s for the data
preparation and the optimization stages, respectively. On the other hand, the FEM-based
technique required an average of 731.5 s with 11,250 analyses to solve the problem, which
was a significantly longer computational time compared to the GNN-based technique.

Table 11. Optimal design for the 200-bar planar truss.

Variables Cross-Sectional Areas (in2)

Element Group Members
FEM-Based

Optimization
(Benchmark)

GNN-Based
Optimization

1 1–4 0.100 0.100
2 5, 8, 11, 14, 17 0.435 0.523
3 19–24 0.100 0.100

4 18, 25, 56, 63, 94, 101, 132, 139, 170,
177 0.100 0.100

5 26, 29, 32, 35, 38 0.660 0.586

6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31,
33, 34, 36, 37 0.100 0.100

7 39–42 0.100 0.100
8 43, 46, 49, 52, 55 0.754 0.855
9 57–62 0.100 0.100

10 64, 67, 70, 73, 76 0.925 0.802

Algorithms 2023, 16, 380 21 of 25

Table 11. Cont.

Variables Cross-Sectional Areas (in2)

Element Group Members
FEM-Based

Optimization
(Benchmark)

GNN-Based
Optimization

11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68,
69, 71, 72, 74, 75 0.100 0.100

12 77–80 0.100 0.100
13 81, 84, 87, 90, 93 0.929 0.910
14 95–100 0.100 0.100
15 102, 105, 108, 111, 114 1.135 1.095

16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104,
106, 107, 109, 110, 112, 113 0.100 0.100

17 115–118 0.100 0.100
18 119, 122, 125, 128, 131 1.220 1.065
19 133–138 0.100 0.100
20 140, 143, 146, 149, 152 1.240 1.162

21 120, 121, 123, 124, 126, 127, 129, 130,
141, 142, 144, 145, 147, 148, 150, 151 0.100 0.100

22 153–156 0.100 0.100
23 157, 160, 163, 166, 169 1.434 1.816
24 171–176 0.100 0.100
25 178, 181, 184, 187, 190 1.446 1.619

26 158, 159, 161, 162, 164, 165, 167, 168,
179, 180, 182, 183, 185, 186, 188, 189 0.133 0.116

27 191–194 0.839 0.823
28 195, 197, 198, 200 1.497 1.496
29 196, 199 2.000 2.000

|δnode|max(in) 4.00 4.00
Weight (lb) 4166.81 4204.00

Nanalyses 11,250 3750

4.4. Accuracy and Effectiveness

The comparative analysis of the two optimization techniques, namely, the proposed
GNN-based and the conventional FEM-based, presented in Sections 4.1–4.3 has demon-
strated the accuracy and effectiveness of the developed GNN-based optimization in solving
three distinct truss design problems. The results of the study reveal that the GNN-based
optimization technique can find the optimal weights with a remarkable degree of accuracy
without violating any constraints. Specifically, the achieved optimal weights are char-
acterized by only a marginal deviation of 0.05%, 0.2%, and 0.9% from the results of the
FEM-based optimization for the 10-bar planar truss, 72-bar space truss, and 200-bar planar
truss, respectively. In addition to its high accuracy, the GNN-based optimization exhibits a
higher degree of efficiency for more complex structures compared to the FEM-based opti-
mization. This is evident from Figure 17, which shows that the GNN-based optimization
was able to reach the optimal results faster for the 200-bar planar truss problem, outper-
forming the FEM-based optimization, which identified the optimal weights for the 10-bar
planar truss and the 72-bar space truss problems more expeditiously.

Algorithms 2023, 16, 380 22 of 25

Algorithms 2023, 16, x FOR PEER REVIEW 23 of 26

4.4. Accuracy and Effectiveness
The comparative analysis of the two optimization techniques, namely, the proposed

GNN-based and the conventional FEM-based, presented in Sections 4.1–4.3, has demon-
strated the accuracy and effectiveness of the developed GNN-based optimization in solv-
ing three distinct truss design problems. The results of the study reveal that the GNN-
based optimization technique can find the optimal weights with a remarkable degree of
accuracy without violating any constraints. Specifically, the achieved optimal weights are
characterized by only a marginal deviation of 0.05%, 0.2%, and 0.9% from the results of
the FEM-based optimization for the 10-bar planar truss, 72-bar space truss, and 200-bar
planar truss, respectively. In addition to its high accuracy, the GNN-based optimization
exhibits a higher degree of efficiency for more complex structures compared to the FEM-
based optimization. This is evident from Figure 17, which shows that the GNN-based op-
timization was able to reach the optimal results faster for the 200-bar planar truss problem,
outperforming the FEM-based optimization, which identified the optimal weights for the
10-bar planar truss and the 72-bar space truss problems more expeditiously.

Figure 17. Optimization process time for the GNN-based and FEM-based techniques.

5. Summary, Conclusions, and Future Work
In this study, a novel graph neural network (GNN)-based optimization technique is

proposed for dealing with the size optimization of truss structures. The technique em-
ploys a particle swarm optimization algorithm to conduct an iterative search for the opti-
mal solutions. A surrogate model based on a graph neural network is trained to approxi-
mate the nodal displacements of trusses with different sets of cross-sectional areas of the
truss elements for the first 90% of iterations, while the remaining 10% utilizes FEM anal-
ysis to determine accurate nodal displacements. In this manner, this technique eliminates
the need for finite element models to analyze truss structures, which in turn leads to com-
putational time reduction. Moreover, three different truss optimization problems, a 10-
bar truss, a 72-bar truss, and a 200-bar truss, are used to investigate the proposed GNN-
based optimization technique against a conventional FEM-based technique. The results
demonstrate the superiority of the GNN-based technique, as it arrives at the optimal de-
sign with no constraint violations and is faster in complex truss structures like the 200-bar
problem.

There are two avenues for future improvement in this research. Firstly, enhancing
the surrogate model by incorporating a trained GNN to predict the stresses in the truss
elements alongside the nodal displacements. Secondly, training a single GNN to predict
the structural response of trusses of different topologies, paving the way to the simulta-
neous optimization of truss topology and size.

Figure 17. Optimization process time for the GNN-based and FEM-based techniques.

5. Summary, Conclusions, and Future Work

In this study, a novel graph neural network (GNN)-based optimization technique is
proposed for dealing with the size optimization of truss structures. The technique employs a
particle swarm optimization algorithm to conduct an iterative search for the optimal solutions.
A surrogate model based on a graph neural network is trained to approximate the nodal
displacements of trusses with different sets of cross-sectional areas of the truss elements for the
first 90% of iterations, while the remaining 10% utilizes FEM analysis to determine accurate
nodal displacements. In this manner, this technique eliminates the need for finite element
models to analyze truss structures, which in turn leads to computational time reduction.
Moreover, three different truss optimization problems, a 10-bar truss, a 72-bar truss, and
a 200-bar truss, are used to investigate the proposed GNN-based optimization technique
against a conventional FEM-based technique. The results demonstrate the superiority of the
GNN-based technique, as it arrives at the optimal design with no constraint violations and is
faster in complex truss structures like the 200-bar problem.

There are two avenues for future improvement in this research. Firstly, enhancing
the surrogate model by incorporating a trained GNN to predict the stresses in the truss
elements alongside the nodal displacements. Secondly, training a single GNN to predict the
structural response of trusses of different topologies, paving the way to the simultaneous
optimization of truss topology and size.

Author Contributions: Conceptualization, N.N., M.J. and M.E.-B.; methodology, N.N. and M.J.;
software, N.N.; validation, N.N. and M.J.; data curation, N.N.; writing—original draft preparation,
N.N.; writing—review and editing, M.E.-B. and M.J.; visualization, N.N.; supervision, M.E.-B.;
project administration, M.E.-B.; funding acquisition, M.E.-B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council
(NSERC), grant number 04683-2019.

Data Availability Statement: The generated and analyzed data are accessible from the corresponding
author, M.E.-B., upon request.

Acknowledgments: This research is also supported by the CSA Group Graduate Scholarship and
the Alberta Motor Association Graduate Scholarship awarded to the first author, N.N. This support
is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2023, 16, 380 23 of 25

References
1. Horta, I.M.; Camanho, A.S.; Johnes, J.; Johnes, G. Performance trends in the construction industry worldwide: An overview of the

turn of the century. J. Product. Anal. 2013, 39, 89–99. [CrossRef]
2. Mei, L.; Wang, Q. Structural Optimization in Civil Engineering: A Literature Review. Buildings 2021, 11, 66. [CrossRef]
3. Kaveh, A.; Khayatazad, M. Ray Optimization for Size and Shape Optimization of Truss Structures. Comput. Struct. 2013, 117,

82–94. [CrossRef]
4. Dorn, W.; Gomory, R.; Greenberg, H.J. Automatic Design of Optimal Structures. J. Mec. 1964, 3, 25–52.
5. Hajela, P.; Lee, E. Genetic algorithms in truss topological optimization. Int. J. Solids Struct. 1995, 32, 3341–3357. [CrossRef]
6. Wang, D.; Zhang, W.H.; Jiang, J.S. Truss shape optimization with multiple displacement constraints. Comput. Methods Appl. Mech.

Eng. 2002, 191, 3597–3612. [CrossRef]
7. Miguel, L.F.F.; Fadel Miguel, L.F. Shape and Size Optimization of Truss Structures Considering Dynamic Constraints through

Modern Metaheuristic Algorithms. Expert Syst. Appl. 2012, 39, 9458–9467. [CrossRef]
8. Stolpe, M. Truss Optimization with Discrete Design Variables: A Critical Review. Struct. Multidiscip. Optim. 2016, 53, 349–374.

[CrossRef]
9. Kaveh, A.; Malakouti Rad, S. Hybrid genetic algorithm and particle swarm optimization for the force method-based simultaneous

analysis and design. Iran. J. Sci. Technol. Trans. B Eng. 2010, 34, 15–34.
10. Li, L.J.; Huang, Z.B.; Liu, F. A Heuristic Particle Swarm Optimization Method for Truss Structures with Discrete Variables. Comput.

Struct. 2009, 87, 435–443. [CrossRef]
11. Renkavieski, C.; Parpinelli, R.S. Meta-heuristic algorithms to truss optimization: Literature mapping and application. Expert Syst.

Appl. 2021, 182, 22. [CrossRef]
12. Saka, M.P.; Hasançebi, O.; Geem, Z.W. Metaheuristics in Structural Optimization and Discussions on Harmony Search Algorithm.

Swarm Evol. Comput. 2016, 28, 88–97. [CrossRef]
13. Du, F.; Dong, Q.Y.; Li, H.S. Truss Structure Optimization with Subset Simulation and Augmented Lagrangian Multiplier Method.

Algorithms 2017, 10, 128. [CrossRef]
14. Desale, S.; Rasool, A.; Andhale, S.; Rane, P. Heuristic and Meta-Heuristic Algorithms and Their Relevance to the Real World: A

Survey. Int. J. Comput. Eng. Res. Trends 2015, 2, 296–304.
15. Salehi, H.; Burgueño, R. Emerging Artificial Intelligence Methods in Structural Engineering. Eng. Struct. 2018, 171, 170–189.

[CrossRef]
16. Flood, I. Towards the Next Generation of Artificial Neural Networks for Civil Engineering. Adv. Eng. Inform. 2008, 22, 4–14.

[CrossRef]
17. Lee, S.; Ha, J.; Zokhirova, M.; Moon, H.; Lee, J. Background Information of Deep Learning for Structural Engineering. Arch.

Comput. Methods Eng. 2018, 25, 121–129. [CrossRef]
18. Gu, G.X.; Chen, C.T.; Buehler, M.J. De Novo Composite Design Based on Machine Learning Algorithm. Extrem. Mech. Lett. 2018,

18, 19–28. [CrossRef]
19. Nguyen, H.; Vu, T.; Vo, T.P.; Thai, H.T. Efficient Machine Learning Models for Prediction of Concrete Strengths. Constr. Build.

Mater. 2021, 266, 17. [CrossRef]
20. Abueidda, D.W.; Koric, S.; Sobh, N.A. Topology Optimization of 2D Structures with Nonlinearities Using Deep Learning. Comput.

Struct. 2020, 237, 14. [CrossRef]
21. Kollmann, H.T.; Abueidda, D.W.; Koric, S.; Guleryuz, E.; Sobh, N.A. Deep Learning for Topology Optimization of 2D Metamateri-

als. Mater. Des. 2020, 196, 14. [CrossRef]
22. Yu, Y.; Hur, T.; Jung, J.; Jang, I.G. Deep Learning for Determining a Near-Optimal Topological Design without any Iteration.

Struct. Multidiscip. Optim. 2019, 59, 787–799. [CrossRef]
23. Chandrasekhar, A.; Suresh, K. TOuNN: Topology Optimization Using Neural Networks. Struct. Multidiscip. Optim. 2021, 63,

1135–1149. [CrossRef]
24. Moghadas, K.R.; Choong, K.K.; Bin Mohd, S. Prediction of Optimal Design and Deflection of Space Structures Using Neural

Networks. Math. Probl. Eng. 2012, 2012, 712974.
25. Yücel, M.; Bekdaş, G.; Nigdeli, S.M. Prediction of Optimum 3-Bar Truss Model Parameters with an ANN Model. In Proceedings

of the 6th International Conference on Harmony Search, Soft Computing and Applications, ICHSA 2020, Advances in Intelligent
Systems and Computing, Istanbul, Turkey, 22–24 April 2020; Volume 1275, pp. 317–324.

26. Nguyen, T.-H.; Vu, A.-T. Prediction of Optimal Cross-Sectional Areas of Truss Structures Using Artificial Neural Networks.
In Proceedings of the 6th International Conference on Geomatics, Civil Engineering and Structures, CIGOS 2021, Emerging
Technologies and Applications for Green Infrastructure, Ha Long, Vietnam, 28–29 October 2021; Volume 203, pp. 1897–1905.

27. Nourian, N.; El-Badry, M.; Jamshidi, M. Design Optimization of Pedestrian Truss Bridges Using Deep Neural Network. In
Proceedings of the 11th International Conference on Short and Medium Span Bridges, SMSB XI, Toronto, ON, Canada, 19–22 July
2022; p. 10.

28. Hajela, P.; Berke, L. Neurobiological computational models in structural analysis and design. Comput. Struct. 1991, 41, 657–667.
[CrossRef]

29. Hajela, P.; Berke, L. Neural Network Based Decomposition in Optimal Structural Synthesis. Comput. Syst. Eng. 1991, 2, 473–481.
[CrossRef]

https://doi.org/10.1007/s11123-012-0276-0
https://doi.org/10.3390/buildings11020066
https://doi.org/10.1016/j.compstruc.2012.12.010
https://doi.org/10.1016/0020-7683(94)00306-H
https://doi.org/10.1016/S0045-7825(02)00297-9
https://doi.org/10.1016/j.eswa.2012.02.113
https://doi.org/10.1007/s00158-015-1333-x
https://doi.org/10.1016/j.compstruc.2009.01.004
https://doi.org/10.1016/j.eswa.2021.115197
https://doi.org/10.1016/j.swevo.2016.01.005
https://doi.org/10.3390/a10040128
https://doi.org/10.1016/j.engstruct.2018.05.084
https://doi.org/10.1016/j.aei.2007.07.001
https://doi.org/10.1007/s11831-017-9237-0
https://doi.org/10.1016/j.eml.2017.10.001
https://doi.org/10.1016/j.conbuildmat.2020.120950
https://doi.org/10.1016/j.compstruc.2020.106283
https://doi.org/10.1016/j.matdes.2020.109098
https://doi.org/10.1007/s00158-018-2101-5
https://doi.org/10.1007/s00158-020-02748-4
https://doi.org/10.1016/0045-7949(91)90178-O
https://doi.org/10.1016/0956-0521(91)90050-F

Algorithms 2023, 16, 380 24 of 25

30. Papadrakakis, M.; Lagaros, N.D.; Tsompanakis, Y. Optimization of Large-Scale 3-D Trusses Using Evolution Strategies and Neural
Networks. Int. J. Space Struct. 1999, 14, 211–223. [CrossRef]

31. Liu, Y.; Lu, N.; Noori, M.; Yin, X. System Reliability-Based Optimisation for Truss Structures Using Genetic Algorithm and Neural
Network. Int. J. Reliab. Saf. 2014, 8, 51–69. [CrossRef]

32. Zhou, Y.; Zhan, H.; Zhang, W.; Zhu, J.; Bai, J.; Wang, Q.; Gu, Y. A New Data-Driven Topology Optimization Framework for
Structural Optimization. Comput. Struct. 2020, 239, 16. [CrossRef]

33. Nguyen, T.H.; Vu, A.T. Using Neural Networks as Surrogate Models in Differential Evolution Optimization of Truss Structures.
In Proceedings of the 12th International Conference on Computational Collective Intelligence, ICCCI 2020, Da Nang, Vietnam,
30 November–3 December 2020; Volume 12496, pp. 152–163.

34. Mai, H.T.; Kang, J.; Lee, J. A Machine Learning-Based Surrogate Model for Optimization of Truss Structures with Geometrically
Nonlinear Behavior. Finite Elem. Anal. Des. 2021, 196, 14. [CrossRef]

35. Gori, M.; Monfardini, G.; Scarselli, F. A New Model for Learning in Graph Domains. In Proceedings of the 2005 IEEE International
Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; Volume 2, pp. 729–734.

36. Scarselli, F.; Hagenbuchner, M.; Yong, S.L.; Tsoi, A.C.; Gori, M.; Maggini, M. Graph Neural Networks for Ranking Web Pages.
In Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, WI’05, Compiegne, France, 19–22
September 2005; pp. 666–672.

37. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated Graph Sequence Neural Networks. In Proceedings of the International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016; p. 20.

38. Bronstein, M.M.; Bruna, J.; Lecun, Y.; Szlam, A.; Vandergheynst, P. Geometric Deep Learning: Going beyond Euclidean Data.
IEEE Signal Process Mag. 2017, 34, 18–42. [CrossRef]

39. Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph Convolutional Networks: A Comprehensive Review. Comput. Soc. Netw. 2019,
6, 23. [CrossRef]

40. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef]

41. Chami, I.; Abu-El-Haija, S.; Perozzi, B.; Ré, C.; Murphy, K. Machine Learning on Graphs: A Model and Comprehensive Taxonomy.
J. Mach. Learn. Res. 2022, 23, 3840–3903.

42. Zhang, Z.; Cui, P.; Zhu, W. Deep Learning on Graphs: A Survey. IEEE Trans. Knowl. Data Eng. 2022, 34, 249–270. [CrossRef]
43. Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P.

Convolutional Networks on Graphs for Learning Molecular Fingerprints. In Proceedings of the 28th International Conference on
Neural Information Processing Systems, NIPS’15, Montreal, QC, Canada, 7–12 December 2015; Volume 2, pp. 2224–2232.

44. Hamaguchi, T.; Oiwa, H.; Shimbo, M.; Matsumoto, Y. Knowledge Transfer for Out-of-Knowledge-Base Entities: A Graph Neural
Network Approach. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, 19–25 August 2017; p. 7.

45. Battaglia, P.; Pascanu, R.; Lai, M.; Rezende, D.J. Interaction Networks for Learning about Objects, Relations and Physics.
In Proceedings of the 29th International Conference on Neural Information Processing Systems, NIPS’16, Barcelona, Spain,
5–10 December 2016; p. 9.

46. Maurizi, M.; Gao, C.; Berto, F. Predicting stress, strain and deformation fields in materials and structures with graph neural
networks. Sci. Rep. 2022, 12, 21834. [CrossRef]

47. Battaglia, P.W.; Hamrick, J.B.; Bapst, V.; Sanchez-Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro,
A.; Faulkner, R.; et al. Relational inductive biases, deep learning, and graph networks. arXiv 2018, arXiv:1806.01261.

48. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; p. 15.

49. Grattarola, D.; Alippi, C. Graph Neural Networks in TensorFlow and Keras with Spektral. IEEE Comput. Intell. Mag. 2021, 16,
99–106. [CrossRef]

50. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph Neural Networks: A Review of Methods and
Applications. AI Open 2020, 1, 57–81. [CrossRef]

51. Simonovsky, M.; Komodakis, N. Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. In Proceed-
ings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017;
pp. 3693–3702.

52. Xie, T.; Grossman, J.C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material
Properties. Phys. Rev. Lett. 2018, 120, 6. [CrossRef]

53. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the International Conference on Neural Networks,
ICNN’95, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

54. Kennedy, J.; Eberhart, R.C. Swarm Intelligence; Elsevier: Amsterdam, The Netherlands, 2001.
55. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive Learning Particle Swarm Optimizer for Global Optimization of

Multimodal Functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]
56. Shi, Y.; Eberhart, R. Modified Particle Swarm Optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary

Computation, ICEC, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73.

https://doi.org/10.1260/0266351991494830
https://doi.org/10.1504/IJRS.2014.062640
https://doi.org/10.1016/j.compstruc.2020.106310
https://doi.org/10.1016/j.finel.2021.103572
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1038/s41598-022-26424-3
https://doi.org/10.1109/MCI.2020.3039072
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1109/TEVC.2005.857610

Algorithms 2023, 16, 380 25 of 25

57. Rajeev, B.S.; Krishnamoorthy, C.S. Discrete Optimization of Structures Using Genetic Algorithms. J. Struct. Eng. 1992, 118,
1233–1250. [CrossRef]

58. Jawad, F.K.J.; Mahmood, M.; Wang, D.; AL-Azzawi, O.; Al-Jamely, A. Heuristic Dragonfly Algorithm for Optimal Design of Truss
Structures with Discrete Variables. Structures 2021, 29, 843. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
https://doi.org/10.1016/j.istruc.2020.11.071

	Introduction
	Research Significance
	Materials and Methods
	Truss Size Optimization Problem
	GNN-Based Optimization
	Data Preparation
	Surrogate Model
	Optimization

	Graphs and Graph Neural Networks
	Computational Modules
	Encode-Process-Decode Architecture

	PSO Implementation

	Results and Discussion
	Ten-Bar Planar Truss
	Data Preparation
	GNN Model Training
	GNN-Based Optimization

	Seventy-Two-Bar Space Truss
	Data Preparation
	GNN Model Training
	GNN-Based Optimization

	Two-Hundred-Bar Planar Truss Example
	Data Preparation
	GNN Model Training
	GNN-Based Optimization

	Accuracy and Effectiveness

	Summary, Conclusions, and Future Work
	References

